1
|
Garand M, Huang SSY, Dineen B, Glass IA, Eghtesady P. Differential Regulation of Immune-Related Genes in the Developing Heart. Pediatr Cardiol 2025; 46:442-457. [PMID: 38480572 DOI: 10.1007/s00246-024-03441-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/02/2024] [Indexed: 02/02/2025]
Abstract
In many congenital heart defects, it can be difficult to ascertain primary pathology from secondary consequences from altered flow through the developing heart. The molecular differences between the growing right and left ventricles (RV and LV, respectively) following the completion of septation and the impact of sex on these mechanisms have not been investigated. We analyzed RNA-seq data derived from twelve RV and LVs, one with Hypoplastic Left Heart Syndrome (HLHS), to compare the transcriptomic landscape between the ventricles during development. Differential gene expression analysis revealed a large proportion of genes unique to either the RV or LV as well as sex bias. Our GO enrichment and network analysis strategy highlighted the differential role of immune functions between the RV and LV in the developing heart. Comparatively, RNA-seq analysis of data from C57Bl6/J mice hearts collected at E14 resulted in the enrichment of similar processes related to T cells and leukocyte migration and activation. Differential gene expression analysis of an HLHS case highlighted significant downregulation of chromatin organization pathways and upregulation of genes involved in muscle organ development. This analysis also identified previously unreported upregulation of genes involved in IL-17 production pathways. In conclusion, differences exist between the gene expression profiles of RV versus LV with the expression of immune-related genes being significantly different between these two chambers. The pathogenesis of HLHS may involve alterations in the expression of chromatin and muscle gene organization as well as upregulation of the IL-17 response pathway.
Collapse
Affiliation(s)
- Mathieu Garand
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Susie S Y Huang
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian Dineen
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ian A Glass
- Department of Pediatrics and Medicine, University of Washington, Seattle, WA, USA
| | - Pirooz Eghtesady
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Hu B, Liu X, Xiong S, Gong Q, Yang J, Shi H, Zhang M, Liang F, Zhang Z. Increased cardiac macrophages in Sorbs2-deficient hearts: revealing a potential role for macrophage in responding to embryonic myocardial abnormalities. Front Genet 2025; 15:1525931. [PMID: 39882075 PMCID: PMC11774933 DOI: 10.3389/fgene.2024.1525931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Macrophages are known to support cardiac development and homeostasis, contributing to tissue remodeling and repair in the adult heart. However, it remains unclear whether embryonic macrophages also respond to abnormalities in the developing heart. Previously, we reported that the structural protein Sorbs2 promotes the development of the second heart field, with its deficiency resulting in atrial septal defects (ASD). In analyzing RNA-seq data, we noted an upregulation of macrophage-related genes in Sorbs2 -/- hearts. Immunostaining and lineage-tracing confirmed an increase in macrophage numbers, underscoring a macrophage response to myocardial abnormalities. Partial depletion of macrophages led to downregulation of genes involved in lipid metabolism, muscle development and organ regeneration, alongside upregulation of genes associated with DNA damage-induced senescence and cardiomyopathy. Additionally, a non-significant increase in septal defects in macrophage-depleted Sorbs2 -/- hearts suggests a potential reparative function for macrophages in maintaining structural integrity. Valve formation, however, remained unaffected. Our findings suggest that embryonic macrophages might sense abnormalities in embryonic cardiomyocytes and could adaptively support cardiac structure and function development in response to myocardial abnormalities.
Collapse
Affiliation(s)
- Beibei Hu
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyang Liu
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shanshan Xiong
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Gong
- Shanghai United International School (Gubei Campus), Shanghai, China
| | - Junjie Yang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjun Shi
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Min Zhang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Liang
- Neonatal Intensive Care Unit, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Zhang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Collaborative Innovative Center of Intelligent Medical Device and Active Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
3
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Liu N, Nakano A. A crucial new aspect of cardiac morphogenesis: endocardial hematopoiesis. Front Physiol 2024; 15:1525985. [PMID: 39720314 PMCID: PMC11667111 DOI: 10.3389/fphys.2024.1525985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Affiliation(s)
- Norika Liu
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Atsushi Nakano
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
- David Geffen Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
5
|
O'Hern C, Caywood S, Aminova S, Kiselev A, Volmert B, Wang F, Sewavi ML, Cao W, Dionise M, Muniyandi P, Popa M, Basrai H, Skoric M, Boulos G, Huang A, Nuñez-Regueiro I, Chalfoun N, Park S, Ashammakhi N, Zhou C, Contag C, Aguirre A. Human heart assembloids with autologous tissue-resident macrophages recreate physiological immuno-cardiac interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623051. [PMID: 39677610 PMCID: PMC11642760 DOI: 10.1101/2024.11.13.623051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Interactions between the developing heart and the embryonic immune system are essential for proper cardiac development and maintaining homeostasis, with disruptions linked to various diseases. While human pluripotent stem cell (hPSC)-derived organoids are valuable models for studying human organ function, they often lack critical tissue-resident immune cells. Here, we introduce an advanced human heart assembloid model, termed hHMA (human heart-macrophage assembloid), which fully integrates autologous cardiac tissue- resident macrophages (MPs) with pre-existing human heart organoids (hHOs). Through multi-omic analyses, we confirmed that these MPs are phenotypically similar to embryonic cardiac tissue-resident MPs and remain viable in the assembloids over time. The inclusion of MPs significantly impacts hHMA development, influencing cardiac cellular composition, boosting cellular communication, remodeling the extracellular matrix, promoting ventricular morphogenesis, and enhancing sarcomeric maturation. Our findings indicate that MPs contribute to homeostasis via efferocytosis, integrate into the cardiomyocyte electrical system, and support catabolic metabolism. To demonstrate the versatility of this model, we developed a platform to study cardiac arrhythmias by chronic exposure to pro-inflammatory factors linked to arrhythmogenesis in clinical settings, successfully replicating key features of inflammasome-mediated atrial fibrillation. Overall, this work introduces a robust platform for examining the role of immune cells in cardiac development, disease mechanisms, and drug discovery, bridging the gap between in vitro models and human physiology. These findings offer insights into cardiogenesis and inflammation-driven heart disease, positioning the hHMA system as an invaluable tool for future cardiovascular research and therapeutic development.
Collapse
|
6
|
Bornhorst D, Hejjaji AV, Steuter L, Woodhead NM, Maier P, Gentile A, Alhajkadour A, Santis Larrain O, Weber M, Kikhi K, Guenther S, Huisken J, Tamplin OJ, Stainier DYR, Gunawan F. The heart is a resident tissue for hematopoietic stem and progenitor cells in zebrafish. Nat Commun 2024; 15:7589. [PMID: 39217144 PMCID: PMC11366026 DOI: 10.1038/s41467-024-51920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The contribution of endocardial cells (EdCs) to the hematopoietic lineages has been strongly debated. Here, we provide evidence that in zebrafish, the endocardium gives rise to and maintains a stable population of hematopoietic cells. Using single-cell sequencing, we identify an endocardial subpopulation expressing enriched levels of hematopoietic-promoting genes. High-resolution microscopy and photoconversion tracing experiments uncover hematopoietic cells, mainly hematopoietic stem and progenitor cells (HSPCs)/megakaryocyte-erythroid precursors (MEPs), derived from EdCs as well as the dorsal aorta stably attached to the endocardium. Emergence of HSPCs/MEPs in hearts cultured ex vivo without external hematopoietic sources, as well as longitudinal imaging of the beating heart using light sheet microscopy, support endocardial contribution to hematopoiesis. Maintenance of these hematopoietic cells depends on the adhesion factors Integrin α4 and Vcam1 but is at least partly independent of cardiac trabeculation or shear stress. Finally, blocking primitive erythropoiesis increases cardiac-residing hematopoietic cells, suggesting that the endocardium is a hematopoietic reservoir. Altogether, these studies uncover the endocardium as a resident tissue for HSPCs/MEPs and a de novo source of hematopoietic cells.
Collapse
Affiliation(s)
- Dorothee Bornhorst
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany
| | - Amulya V Hejjaji
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany
| | - Lena Steuter
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany
| | - Nicole M Woodhead
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Paul Maier
- Multiscale Biology, Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, 37077, Germany
| | - Alessandra Gentile
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research (MPI-HLR), Bad Nauheim, 61231, Germany
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alice Alhajkadour
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Octavia Santis Larrain
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Michael Weber
- Multiscale Biology, Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, 37077, Germany
| | - Khrievono Kikhi
- Flow Cytometry and Cell Sorting Core Facility, MPI-HLR, Bad Nauheim, 61231, Germany
| | - Stefan Guenther
- Deep Sequencing Platform, MPI-HLR, Bad Nauheim, 61231, Germany
| | - Jan Huisken
- Multiscale Biology, Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, 37077, Germany
| | - Owen J Tamplin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research (MPI-HLR), Bad Nauheim, 61231, Germany
| | - Felix Gunawan
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany.
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany.
| |
Collapse
|
7
|
Yokomizo T. Hematopoietic cluster formation: an essential prelude to blood cell genesis. Exp Hematol 2024; 136:104284. [PMID: 39032856 DOI: 10.1016/j.exphem.2024.104284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Adult blood cells are produced in the bone marrow by hematopoietic stem cells (HSCs), the origin of which can be traced back to fetal developmental stages. Indeed, during mouse development, at days 10-11 of gestation, the aorta-gonad-mesonephros (AGM) region is a primary site of HSC production, with characteristic cell clusters related to stem cell genesis observed in the dorsal aorta. Similar clusters linked with hematopoiesis are also observed in the other sites such as the yolk sac and placenta. In this review, I outline the formation and function of these clusters, focusing on the well-characterized intra-aortic hematopoietic clusters (IAHCs).
Collapse
Affiliation(s)
- Tomomasa Yokomizo
- Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
8
|
Weijts B, Robin C. Capturing embryonic hematopoiesis in temporal and spatial dimensions. Exp Hematol 2024; 136:104257. [PMID: 38897373 DOI: 10.1016/j.exphem.2024.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Hematopoietic stem cells (HSCs) possess the ability to sustain the continuous production of all blood cell types throughout an organism's lifespan. Although primarily located in the bone marrow of adults, HSCs originate during embryonic development. Visualization of the birth of HSCs, their developmental trajectory, and the specific interactions with their successive niches have significantly contributed to our understanding of the biology and mechanics governing HSC formation and expansion. Intravital techniques applied to live embryos or non-fixed samples have remarkably provided invaluable insights into the cellular and anatomical origins of HSCs. These imaging technologies have also shed light on the dynamic interactions between HSCs and neighboring cell types within the surrounding microenvironment or niche, such as endothelial cells or macrophages. This review delves into the advancements made in understanding the origin, production, and cellular interactions of HSCs, particularly during the embryonic development of mice and zebrafish, focusing on studies employing (live) imaging analysis.
Collapse
Affiliation(s)
- Bart Weijts
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Doyle EH, Vaughan HJ, Mariani SA. From drosophila to humans: a journey through macrophage development. Exp Hematol 2024; 136:104272. [PMID: 38972565 DOI: 10.1016/j.exphem.2024.104272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
Macrophages are fascinating immune cells involved in a variety of processes in both health and disease. Although they were first discovered and characterized by their functions as professional phagocytes and antigen-presenting cells, it is now clear that macrophages have multiple roles within embryonic development, tissue homeostasis, regulation of inflammation, and host response to pathogens and tissue insults. Interestingly, macrophages, or macrophage-like cells, exist in a variety of organisms, from echinoderms to humans, and are present also in species that lack an adaptive immune system or hematopoietic stem cells (HSCs). In mammals, macrophages can be generated from bone marrow precursors through a monocyte intermediate, but it is now known that they are also generated during earlier hematopoietic waves in the embryo. Seeding a variety of tissues at different times, macrophages contribute to embryonic organogenesis and tissue homeostasis. Interestingly, in species where embryonic macrophages are generated before HSC specification, they seem to be an important component of the HSC generative microenvironment. There are many excellent reviews reporting the current knowledge on the ontogeny and functions of macrophages in adult tissues. Here, we aim to summarize the current knowledge on the development and functions of embryonic macrophages across the most used animal models, with a special focus on developmental hematopoiesis.
Collapse
Affiliation(s)
- Eva H Doyle
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hollie J Vaughan
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Samanta A Mariani
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
10
|
Cardeira-da-Silva J, Wang Q, Sagvekar P, Mintcheva J, Latting S, Günther S, Ramadass R, Yekelchyk M, Preussner J, Looso M, Junker JP, Stainier DYR. Antigen presentation plays positive roles in the regenerative response to cardiac injury in zebrafish. Nat Commun 2024; 15:3637. [PMID: 38684665 PMCID: PMC11058276 DOI: 10.1038/s41467-024-47430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
In contrast to adult mammals, adult zebrafish can fully regenerate injured cardiac tissue, and this regeneration process requires an adequate and tightly controlled immune response. However, which components of the immune response are required during regeneration is unclear. Here, we report positive roles for the antigen presentation-adaptive immunity axis during zebrafish cardiac regeneration. We find that following the initial innate immune response, activated endocardial cells (EdCs), as well as immune cells, start expressing antigen presentation genes. We also observe that T helper cells, a.k.a. Cd4+ T cells, lie in close physical proximity to these antigen-presenting EdCs. We targeted Major Histocompatibility Complex (MHC) class II antigen presentation by generating cd74a; cd74b mutants, which display a defective immune response. In these mutants, Cd4+ T cells and activated EdCs fail to efficiently populate the injured tissue and EdC proliferation is significantly decreased. cd74a; cd74b mutants exhibit additional defects in cardiac regeneration including reduced cardiomyocyte dedifferentiation and proliferation. Notably, Cd74 also becomes activated in neonatal mouse EdCs following cardiac injury. Altogether, these findings point to positive roles for antigen presentation during cardiac regeneration, potentially involving interactions between activated EdCs, classical antigen-presenting cells, and Cd4+ T cells.
Collapse
Affiliation(s)
- João Cardeira-da-Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| | - Qianchen Wang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Pooja Sagvekar
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Janita Mintcheva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- Humboldt University of Berlin, Berlin, Germany
| | - Stephan Latting
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michail Yekelchyk
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jens Preussner
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jan Philipp Junker
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
11
|
Catalano F, Vlaar EC, Dammou Z, Katsavelis D, Huizer TF, Zundo G, Hoogeveen-Westerveld M, Oussoren E, van den Hout HJ, Schaaf G, Pike-Overzet K, Staal FJ, van der Ploeg AT, Pijnappel WP. Lentiviral Gene Therapy for Mucopolysaccharidosis II with Tagged Iduronate 2-Sulfatase Prevents Life-Threatening Pathology in Peripheral Tissues But Fails to Correct Cartilage. Hum Gene Ther 2024; 35:256-268. [PMID: 38085235 PMCID: PMC11044872 DOI: 10.1089/hum.2023.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024] Open
Abstract
Deficiency of iduronate 2-sulfatase (IDS) causes Mucopolysaccharidosis type II (MPS II), a lysosomal storage disorder characterized by systemic accumulation of glycosaminoglycans (GAGs), leading to a devastating cognitive decline and life-threatening respiratory and cardiac complications. We previously found that hematopoietic stem and progenitor cell-mediated lentiviral gene therapy (HSPC-LVGT) employing tagged IDS with insulin-like growth factor 2 (IGF2) or ApoE2, but not receptor-associated protein minimal peptide (RAP12x2), efficiently prevented brain pathology in a murine model of MPS II. In this study, we report on the effects of HSPC-LVGT on peripheral pathology and we analyzed IDS biodistribution. We found that HSPC-LVGT with all vectors completely corrected GAG accumulation and lysosomal pathology in liver, spleen, kidney, tracheal mucosa, and heart valves. Full correction of tunica media of the great heart vessels was achieved only with IDS.IGF2co gene therapy, while the other vectors provided near complete (IDS.ApoE2co) or no (IDSco and IDS.RAP12x2co) correction. In contrast, tracheal, epiphyseal, and articular cartilage remained largely uncorrected by all vectors tested. These efficacies were closely matched by IDS protein levels following HSPC-LVGT. Our results demonstrate the capability of HSPC-LVGT to correct pathology in tissues of high clinical relevance, including those of the heart and respiratory system, while challenges remain for the correction of cartilage pathology.
Collapse
Affiliation(s)
- Fabio Catalano
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eva C. Vlaar
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Zina Dammou
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Drosos Katsavelis
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tessa F. Huizer
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Giacomo Zundo
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marianne Hoogeveen-Westerveld
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Esmeralda Oussoren
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hannerieke J.M.P. van den Hout
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Gerben Schaaf
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank J.T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ans T. van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - W.W.M. Pim Pijnappel
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Jin J, Wang Y, Liu Y, Chakrabarti S, Su Z. Cardiac resident macrophages: Spatiotemporal distribution, development, physiological functions, and their translational potential on cardiac diseases. Acta Pharm Sin B 2024; 14:1483-1493. [PMID: 38572111 PMCID: PMC10985034 DOI: 10.1016/j.apsb.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/29/2023] [Indexed: 04/05/2024] Open
Abstract
Cardiac resident macrophages (CRMs) are the main population of cardiac immune cells. The role of these cells in regeneration, functional remodeling, and repair after cardiac injury is always the focus of research. However, in recent years, their dynamic changes and contributions in physiological states have a significant attention. CRMs have specific phenotypes and functions in different cardiac chambers or locations of the heart and at different stages. They further show specific differentiation and development processes. The present review will summarize the new progress about the spatiotemporal distribution, potential developmental regulation, and their roles in cardiac development and aging as well as the translational potential of CRMs on cardiac diseases. Of course, the research tools for CRMs, their respective advantages and disadvantages, and key issues on CRMs will further be discussed.
Collapse
Affiliation(s)
- Jing Jin
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Institute for Medical Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Yurou Wang
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Institute for Medical Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Yueqin Liu
- Center Laboratory, the Fourth People's Hospital of Zhenjiang, Zhenjiang 212008, China
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 5C1, Canada
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Institute for Medical Immunology, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
13
|
Qin D, Zhang Y, Liu F, Xu X, Jiang H, Su Z, Xia L. Spatiotemporal development and the regulatory mechanisms of cardiac resident macrophages: Contribution in cardiac development and steady state. Acta Physiol (Oxf) 2024; 240:e14088. [PMID: 38230805 DOI: 10.1111/apha.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
Cardiac resident macrophages (CRMs) are integral components of the heart and play significant roles in cardiac development, steady-state, and injury. Advances in sequencing technology have revealed that CRMs are a highly heterogeneous population, with significant differences in phenotype and function at different developmental stages and locations within the heart. In addition to research focused on diseases, recent years have witnessed a heightened interest in elucidating the involvement of CRMs in heart development and the maintenance of cardiac function. In this review, we primarily concentrated on summarizing the developmental trajectories, both spatial and temporal, of CRMs and their impact on cardiac development and steady-state. Moreover, we discuss the possible factors by which the cardiac microenvironment regulates macrophages from the perspectives of migration, proliferation, and differentiation under physiological conditions. Gaining insight into the spatiotemporal heterogeneity and regulatory mechanisms of CRMs is of paramount importance in comprehending the involvement of macrophages in cardiac development, injury, and repair, and also provides new ideas and therapeutic methods for treating heart diseases.
Collapse
Affiliation(s)
- Demeng Qin
- Institute of Hematological Disease, Jiangsu University, Zhenjiang, China
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang, China
- Institute of Medical Immunology, Jiangsu University, Zhenjiang, China
| | - Xiang Xu
- Department of Business, Yancheng Blood Center, Yancheng, China
| | - Haiqiang Jiang
- Department of Laboratory Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China
- Institute of Medical Immunology, Jiangsu University, Zhenjiang, China
| | - Lin Xia
- Institute of Hematological Disease, Jiangsu University, Zhenjiang, China
- International Genome Center, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Gurung S, Restrepo NK, Sumanas S. Endocardium gives rise to blood cells in zebrafish embryos. Cell Rep 2024; 43:113736. [PMID: 38308842 PMCID: PMC10993658 DOI: 10.1016/j.celrep.2024.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
Previous studies have suggested that the endocardium contributes to hematopoiesis in murine embryos, although definitive evidence to demonstrate the hematopoietic potential of the endocardium is still missing. Here, we use a zebrafish embryonic model to test the emergence of hematopoietic progenitors from the endocardium. By using a combination of expression analysis, time-lapse imaging, and lineage-tracing approaches, we demonstrate that myeloid cells emerge from the endocardium in zebrafish embryos. Inhibition of Etv2/Etsrp or Scl/Tal1, two known master regulators of hematopoiesis and vasculogenesis, does not affect the emergence of endocardial-derived myeloid cells, while inhibition of Hedgehog signaling results in their reduction. Single-cell RNA sequencing analysis followed by experimental validation suggests that the endocardium is the major source of neutrophilic granulocytes. These findings will promote our understanding of alternative mechanisms involved in hematopoiesis, which are likely to be conserved between zebrafish and mammalian embryos.
Collapse
Affiliation(s)
- Suman Gurung
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology, Advanced Diagnostics Laboratories, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Nicole K Restrepo
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Saulius Sumanas
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA.
| |
Collapse
|
15
|
Xu N, Gonzalez BA, Yutzey KE. Macrophage lineages in heart development and regeneration. Curr Top Dev Biol 2024; 156:1-17. [PMID: 38556420 DOI: 10.1016/bs.ctdb.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
During development, macrophage subpopulations derived from hematopoietic progenitors take up residence in the developing heart. Embryonic macrophages are detectable at the early stages of heart formation in the nascent myocardium, valves and coronary vasculature. The specific subtypes of macrophages present in the developing heart reflect the generation of hematopoietic progenitors in the yolk sac, aorta-gonad-mesonephros, fetal liver, and postnatal bone marrow. Ablation studies have demonstrated specific requirements for embryonic macrophages in valve remodeling, coronary and lymphatic vessel development, specialized conduction system maturation, and myocardial regeneration after neonatal injury. The developmental origins of macrophage lineages change over time, with embryonic lineages having more reparative and remodeling functions in comparison to the bone marrow derived myeloid lineages of adults. Here we review the contributions and functions of cardiac macrophages in the developing heart with potential regenerative and reparative implications for cardiovascular disease.
Collapse
Affiliation(s)
- Na Xu
- The Heart Institute, Cincinnati Children's Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brittany A Gonzalez
- The Heart Institute, Cincinnati Children's Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Katherine E Yutzey
- The Heart Institute, Cincinnati Children's Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
16
|
Lin Y, Yang Q, Lin X, Liu X, Qian Y, Xu D, Cao N, Han X, Zhu Y, Hu W, He X, Yu Z, Kong X, Zhu L, Zhong Z, Liu K, Zhou B, Wang Y, Peng J, Zhu W, Wang J. Extracellular Matrix Disorganization Caused by ADAMTS16 Deficiency Leads to Bicuspid Aortic Valve With Raphe Formation. Circulation 2024; 149:605-626. [PMID: 38018454 DOI: 10.1161/circulationaha.123.065458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND A better understanding of the molecular mechanism of aortic valve development and bicuspid aortic valve (BAV) formation would significantly improve and optimize the therapeutic strategy for BAV treatment. Over the past decade, the genes involved in aortic valve development and BAV formation have been increasingly recognized. On the other hand, ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) gene family members have been reported to be able to modulate cardiovascular development and diseases. The present study aimed to further investigate the roles of ADAMTS family members in aortic valve development and BAV formation. METHODS Morpholino-based ADAMTS family gene-targeted screening for zebrafish heart outflow tract phenotypes combined with DNA sequencing in a 304 cohort BAV patient registry study was initially carried out to identify potentially related genes. Both ADAMTS gene-specific fluorescence in situ hybridization assay and genetic tracing experiments were performed to evaluate the expression pattern in the aortic valve. Accordingly, related genetic mouse models (both knockout and knockin) were generated using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) method to further study the roles of ADAMTS family genes. The lineage-tracing technique was used again to evaluate how the cellular activity of specific progenitor cells was regulated by ADAMTS genes. Bulk RNA sequencing was used to investigate the signaling pathways involved. Inducible pluripotent stem cells derived from both BAV patients and genetic mouse tissue were used to study the molecular mechanism of ADAMTS. Immunohistochemistry was performed to examine the phenotype of cardiac valve anomalies, especially in the extracellular matrix components. RESULTS ADAMTS genes targeting and phenotype screening in zebrafish and targeted DNA sequencing on a cohort of patients with BAV identified ADAMTS16 (a disintegrin and metalloproteinase with thrombospondin motifs 16) as a BAV-causing gene and found the ADAMTS16 p. H357Q variant in an inherited BAV family. Both in situ hybridization and genetic tracing studies described a unique spatiotemporal pattern of ADAMTS16 expression during aortic valve development. Adamts16+/- and Adamts16+/H355Q mouse models both exhibited a right coronary cusp-noncoronary cusp fusion-type BAV phenotype, with progressive aortic valve thickening associated with raphe formation (fusion of the commissure). Further, ADAMTS16 deficiency in Tie2 lineage cells recapitulated the BAV phenotype. This was confirmed in lineage-tracing mouse models in which Adamts16 deficiency affected endothelial and second heart field cells, not the neural crest cells. Accordingly, the changes were mainly detected in the noncoronary and right coronary leaflets. Bulk RNA sequencing using inducible pluripotent stem cells-derived endothelial cells and genetic mouse embryonic heart tissue unveiled enhanced FAK (focal adhesion kinase) signaling, which was accompanied by elevated fibronectin levels. Both in vitro inducible pluripotent stem cells-derived endothelial cells culture and ex vivo embryonic outflow tract explant studies validated the altered FAK signaling. CONCLUSIONS Our present study identified a novel BAV-causing ADAMTS16 p. H357Q variant. ADAMTS16 deficiency led to BAV formation.
Collapse
Affiliation(s)
- Ying Lin
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Qifan Yang
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Xiaoping Lin
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Xianbao Liu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Yi Qian
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Dilin Xu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Naifang Cao
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Ximeng Han
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (X.H.)
| | - Yanqing Zhu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network (Y.Z., K.L., J.P.), Hangzhou, China
| | - Wangxing Hu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Xiaopeng He
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Zhengyang Yu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Xiangmin Kong
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Lianlian Zhu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Zhiwei Zhong
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Kai Liu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network (Y.Z., K.L., J.P.), Hangzhou, China
| | - Bin Zhou
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences (B.Z.)
| | - Yidong Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Health Science Center, China (Y.W.)
| | - Jinrong Peng
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network (Y.Z., K.L., J.P.), Hangzhou, China
| | - Wei Zhu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Jian'an Wang
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- Research Center for Life Science and Human Health, Binjiang Institute (J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| |
Collapse
|
17
|
Zhang M, Lui KO, Zhou B. Application of New Lineage Tracing Techniques in Cardiovascular Development and Physiology. Circ Res 2024; 134:445-458. [PMID: 38359092 DOI: 10.1161/circresaha.123.323179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cardiovascular disease has been the leading cause of mortality and morbidity worldwide in the past 3 decades. Multiple cell lineages undergo dynamic alternations in gene expression, cell state determination, and cell fate conversion to contribute, adapt, and even modulate the pathophysiological processes during disease progression. There is an urgent need to understand the intricate cellular and molecular underpinnings of cardiovascular cell development in homeostasis and pathogenesis. Recent strides in lineage tracing methodologies have revolutionized our understanding of cardiovascular biology with the identification of new cellular origins, fates, plasticity, and heterogeneity within the cardiomyocyte, endothelial, and mesenchymal cell populations. In this review, we introduce the new technologies for lineage tracing of cardiovascular cells and summarize their applications in studying cardiovascular development, diseases, repair, and regeneration.
Collapse
Affiliation(s)
- MingJun Zhang
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (M.J., B.Z.)
| | - Kathy O Lui
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, China (K.O.L.)
| | - Bin Zhou
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (M.J., B.Z.)
- School of Life Science and Technology, ShanghaiTech University, China (B.Z.)
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, China (B.Z.)
| |
Collapse
|
18
|
Farhat B, Bordeu I, Jagla B, Ibrahim S, Stefanovic S, Blanc H, Loulier K, Simons BD, Beaurepaire E, Livet J, Pucéat M. Understanding the cell fate and behavior of progenitors at the origin of the mouse cardiac mitral valve. Dev Cell 2024; 59:339-350.e4. [PMID: 38198889 DOI: 10.1016/j.devcel.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/08/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Congenital heart malformations include mitral valve defects, which remain largely unexplained. During embryogenesis, a restricted population of endocardial cells within the atrioventricular canal undergoes an endothelial-to-mesenchymal transition to give rise to mitral valvular cells. However, the identity and fate decisions of these progenitors as well as the behavior and distribution of their derivatives in valve leaflets remain unknown. We used single-cell RNA sequencing (scRNA-seq) of genetically labeled endocardial cells and microdissected mouse embryonic and postnatal mitral valves to characterize the developmental road. We defined the metabolic processes underlying the specification of the progenitors and their contributions to subtypes of valvular cells. Using retrospective multicolor clonal analysis, we describe specific modes of growth and behavior of endocardial cell-derived clones, which build up, in a proper manner, functional valve leaflets. Our data identify how both genetic and metabolic mechanisms specifically drive the fate of a subset of endocardial cells toward their distinct clonal contribution to the formation of the valve.
Collapse
Affiliation(s)
- Batoul Farhat
- INSERM U1251/Aix-Marseille Université, Marseille 13885, France
| | - Ignacio Bordeu
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 9160000, Chile
| | - Bernd Jagla
- Pasteur Institute UtechS CB & Hub de Bioinformatique et Biostatistiques, C3BI, Paris, France
| | - Stéphanie Ibrahim
- C2VN Aix-Marseille Université, INSERM 1263, INRAE 1260, Marseille 13885, France
| | - Sonia Stefanovic
- C2VN Aix-Marseille Université, INSERM 1263, INRAE 1260, Marseille 13885, France
| | - Hugo Blanc
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau 91120, France
| | - Karine Loulier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 A0W, UK
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau 91120, France
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Michel Pucéat
- INSERM U1251/Aix-Marseille Université, Marseille 13885, France.
| |
Collapse
|
19
|
Liu CZ, Prasad A, Jadhav B, Liu Y, Gu M, Sharp AJ, Gelb BD. Feeder-free generation and characterization of endocardial and cardiac valve cells from human pluripotent stem cells. iScience 2024; 27:108599. [PMID: 38170020 PMCID: PMC10758960 DOI: 10.1016/j.isci.2023.108599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Valvular heart disease presents a significant health burden, yet advancements in valve biology and therapeutics have been hindered by the lack of accessibility to human valve cells. In this study, we have developed a scalable and feeder-free method to differentiate human induced pluripotent stem cells (iPSCs) into endocardial cells, which are transcriptionally and phenotypically distinct from vascular endothelial cells. These endocardial cells can be challenged to undergo endothelial-to-mesenchymal transition (EndMT), after which two distinct populations emerge-one population undergoes EndMT to become valvular interstitial cells (VICs), while the other population reinforces their endothelial identity to become valvular endothelial cells (VECs). We then characterized these populations through bulk RNA-seq transcriptome analyses and compared our VIC and VEC populations to pseudobulk data generated from normal valve tissue of a 15-week-old human fetus. By increasing the accessibility to these cell populations, we aim to accelerate discoveries for cardiac valve biology and disease.
Collapse
Affiliation(s)
- Clifford Z. Liu
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aditi Prasad
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bharati Jadhav
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Liu
- Department of Medicine, Division of Cardiovascular Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Mingxia Gu
- Department of Medicine, Division of Cardiovascular Medicine, Stanford School of Medicine, Stanford, CA, USA
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew J. Sharp
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
Haneda Y, Miyagawa-Tomita S, Uchijima Y, Iwase A, Asai R, Kohro T, Wada Y, Kurihara H. Diverse contribution of amniogenic somatopleural cells to cardiovascular development: With special reference to thyroid vasculature. Dev Dyn 2024; 253:59-77. [PMID: 36038963 DOI: 10.1002/dvdy.532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that amniogenic somatopleural cells (ASCs) not only form the amnion but also migrate into the embryo and differentiate into cardiomyocytes and vascular endothelial cells. However, detailed differentiation processes and final distributions of these intra-embryonic ASCs (hereafter referred to as iASCs) remain largely unknown. RESULTS By quail-chick chimera analysis, we here show that iASCs differentiate into various cell types including cardiomyocytes, smooth muscle cells, cardiac interstitial cells, and vascular endothelial cells. In the pharyngeal region, they distribute selectively into the thyroid gland and differentiate into vascular endothelial cells to form intra-thyroid vasculature. Explant culture experiments indicated sequential requirement of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) signaling for endothelial differentiation of iASCs. Single-cell transcriptome analysis further revealed heterogeneity and the presence of hemangioblast-like cell population within ASCs, with a switch from FGF to VEGF receptor gene expression. CONCLUSION The present study demonstrates novel roles of ASCss especially in heart and thyroid development. It will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives.
Collapse
Affiliation(s)
- Yuka Haneda
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Sachiko Miyagawa-Tomita
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Animal Nursing Science, Yamazaki University of Animal Health Technology, Tokyo, Japan
| | - Yasunobu Uchijima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akiyasu Iwase
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rieko Asai
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Takahide Kohro
- Department of Medical Informatics, Jichi Medical University, Tochigi, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Ahlback A, Gentek R. Fate-Mapping Macrophages: From Ontogeny to Functions. Methods Mol Biol 2024; 2713:11-43. [PMID: 37639113 DOI: 10.1007/978-1-0716-3437-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Macrophages are vital to the physiological function of most tissues, but also contribute to disease through a multitude of pathological roles. They are thus highly plastic and heterogeneous. It is now well recognized that macrophages develop from several distinct progenitors from embryogenesis onwards and extending throughout life. Tissue-resident macrophages largely originate from embryonic sources and in many cases self-maintain independently without monocyte input. However, in certain tissues, monocyte-derived macrophages replace these over time or as a result of tissue injury and inflammation. This additional layer of heterogeneity has introduced many questions regarding the influence of origin on fate and function of macrophages in health and disease. To comprehensively address these questions, appropriate methods of tracing macrophage ontogeny are required. This chapter explores why ontogeny is of vital importance in macrophage biology and how to delineate macrophage populations by origin through genetic fate mapping. First, we summarize the current view of macrophage ontogeny and briefly discuss how origin may influence macrophage function in homeostasis and pathology. We go on to make the case for genetic fate mapping as the gold standard and briefly review different fate-mapping models. We then put forward our recommendations for fate-mapping strategies best suited to answer specific research questions and finally discuss the strengths and limitations of currently available models.
Collapse
Affiliation(s)
- Anna Ahlback
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Reproductive Health & Centre for Inflammation Research, Edinburgh, UK
| | - Rebecca Gentek
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Reproductive Health & Centre for Inflammation Research, Edinburgh, UK.
| |
Collapse
|
22
|
Li J, Xin Y, Wang Z, Li J, Li W, Li H. The role of cardiac resident macrophage in cardiac aging. Aging Cell 2023; 22:e14008. [PMID: 37817547 PMCID: PMC10726886 DOI: 10.1111/acel.14008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Advancements in longevity research have provided insights into the impact of cardiac aging on the structural and functional aspects of the heart. Notable changes include the gradual remodeling of the myocardium, the occurrence of left ventricular hypertrophy, and the decline in both systolic and diastolic functions. Macrophages, a type of immune cell, play a pivotal role in innate immunity by serving as vigilant agents against pathogens, facilitating wound healing, and orchestrating the development of targeted acquired immune responses. Distinct subsets of macrophages are present within the cardiac tissue and demonstrate varied functions in response to myocardial injury. The differentiation of cardiac macrophages according to their developmental origin has proven to be a valuable strategy in identifying reparative macrophage populations, which originate from embryonic cells and reside within the tissue, as well as inflammatory macrophages, which are derived from monocytes and recruited to the heart. These subsets of macrophages possess unique characteristics and perform distinct functions. This review aims to summarize the current understanding of the roles and phenotypes of cardiac macrophages in various conditions, including the steady state, aging, and other pathological conditions. Additionally, it will highlight areas that require further investigation to expand our knowledge in this field.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Yanguo Xin
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Zhaojia Wang
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Jingye Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Weiping Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular DiseaseBeijingChina
| |
Collapse
|
23
|
Hume DA, Teakle N, Keshvari S, Irvine KM. Macrophage deficiency in CSF1R-knockout rat embryos does not compromise placental or embryo development. J Leukoc Biol 2023; 114:421-433. [PMID: 37167456 DOI: 10.1093/jleuko/qiad052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
Macrophages are an abundant cell population in the placenta and developing embryo and appear to be involved in processes of vascularization, morphogenesis, organogenesis, and hematopoiesis. The proliferation, differentiation, and survival are dependent on signals from the macrophage colony-stimulating factor receptor, CSF1R. Aside from the role in macrophages, Csf1r mRNA is highly expressed in placental trophoblasts. To explore the function of macrophages and Csf1r in placental and embryonic development, we analyzed the impact of homozygous Csf1r null mutation (Csf1rko) in the rat. In late gestation, IBA1+ macrophages were abundant in control embryos in all tissues, including the placenta, and greatly reduced in the Csf1rko. CSF1R was also detected in stellate macrophage-like cells and in neurons using anti-CSF1R antibody but was undetectable in trophoblasts. However, the neuronal signal was not abolished in the Csf1rko. CD163 was most abundant in cells forming the center of erythroblastic islands in the liver and was also CSF1R dependent. Despite the substantial reduction in macrophage numbers, we detected no effect of the Csf1rko on development of the placenta or any organs, the relative abundance of vascular elements (CD31 staining), or cell proliferation (Ki67 staining). The loss of CD163+ erythroblastic island macrophages in the liver was not associated with anemia or any reduction in the proliferative activity in the liver, but there was a premature expansion of CD206+ cells, presumptive precursors of liver sinusoidal endothelial cells. We suggest that many functions of macrophages in development of the placenta and embryo can be provided by other cell types in their absence.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woollongabba, Brisbane, Qld 4102, Australia
| | - Ngari Teakle
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woollongabba, Brisbane, Qld 4102, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woollongabba, Brisbane, Qld 4102, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woollongabba, Brisbane, Qld 4102, Australia
| |
Collapse
|
24
|
Ibrahim DM, Fomina A, Bouten CVC, Smits AIPM. Functional regeneration at the blood-biomaterial interface. Adv Drug Deliv Rev 2023; 201:115085. [PMID: 37690484 DOI: 10.1016/j.addr.2023.115085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/01/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The use of cardiovascular implants is commonplace in clinical practice. However, reproducing the key bioactive and adaptive properties of native cardiovascular tissues with an artificial replacement is highly challenging. Exciting new treatment strategies are under development to regenerate (parts of) cardiovascular tissues directly in situ using immunomodulatory biomaterials. Direct exposure to the bloodstream and hemodynamic loads is a particular challenge, given the risk of thrombosis and adverse remodeling that it brings. However, the blood is also a source of (immune) cells and proteins that dominantly contribute to functional tissue regeneration. This review explores the potential of the blood as a source for the complete or partial in situ regeneration of cardiovascular tissues, with a particular focus on the endothelium, being the natural blood-tissue barrier. We pinpoint the current scientific challenges to enable rational engineering and testing of blood-contacting implants to leverage the regenerative potential of the blood.
Collapse
Affiliation(s)
- Dina M Ibrahim
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Aleksandra Fomina
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Graduate School of Life Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
25
|
Liu N, Kawahira N, Nakashima Y, Nakano H, Iwase A, Uchijima Y, Wang M, Wu SM, Minamisawa S, Kurihara H, Nakano A. Notch and retinoic acid signals regulate macrophage formation from endocardium downstream of Nkx2-5. Nat Commun 2023; 14:5398. [PMID: 37669937 PMCID: PMC10480477 DOI: 10.1038/s41467-023-41039-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023] Open
Abstract
Hematopoietic progenitors are enriched in the endocardial cushion and contribute, in a Nkx2-5-dependent manner, to tissue macrophages required for the remodeling of cardiac valves and septa. However, little is known about the molecular mechanism of endocardial-hematopoietic transition. In the current study, we identified the regulatory network of endocardial hematopoiesis. Signal network analysis from scRNA-seq datasets revealed that genes in Notch and retinoic acid (RA) signaling are significantly downregulated in Nkx2-5-null endocardial cells. In vivo and ex vivo analyses validate that the Nkx2-5-Notch axis is essential for the generation of both hemogenic and cushion endocardial cells, and the suppression of RA signaling via Dhrs3 expression plays important roles in further differentiation into macrophages. Genetic ablation study revealed that these macrophages are essential in cardiac valve remodeling. In summary, the study demonstrates that the Nkx2-5/Notch/RA signaling plays a pivotal role in macrophage differentiation from hematopoietic progenitors.
Collapse
Affiliation(s)
- Norika Liu
- The Jikei University School of Medicine, Department of Cell Physiology, Tokyo, Japan
- University of California Los Angeles, Department of Molecular Cell and Developmental Biology, Los Angeles, USA
| | - Naofumi Kawahira
- University of California Los Angeles, Department of Molecular Cell and Developmental Biology, Los Angeles, USA
| | | | - Haruko Nakano
- University of California Los Angeles, Department of Molecular Cell and Developmental Biology, Los Angeles, USA
| | - Akiyasu Iwase
- University of Tokyo, Department of Physiological Chemistry and Metabolism, Tokyo, Japan
| | - Yasunobu Uchijima
- University of Tokyo, Department of Physiological Chemistry and Metabolism, Tokyo, Japan
| | - Mei Wang
- The Jikei University School of Medicine, Department of Cell Physiology, Tokyo, Japan
| | - Sean M Wu
- Stanford University, Cardiovascular Institute and Division of Cardiovascular Medicine, Department of Medicine, Stanford, USA
| | - Susumu Minamisawa
- The Jikei University School of Medicine, Department of Cell Physiology, Tokyo, Japan
| | - Hiroki Kurihara
- University of Tokyo, Department of Physiological Chemistry and Metabolism, Tokyo, Japan
| | - Atsushi Nakano
- The Jikei University School of Medicine, Department of Cell Physiology, Tokyo, Japan.
- University of California Los Angeles, Department of Molecular Cell and Developmental Biology, Los Angeles, USA.
- University of California Los Angeles, David Geffen Department of Medicine, Division of Cardiology, Los Angeles, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, USA.
| |
Collapse
|
26
|
Nakano A, Liu N. Response to Matters Arising: Intercellular genetic tracing of cardiac endothelium in the developing heart. Dev Cell 2023; 58:1513-1514. [PMID: 37348504 PMCID: PMC10765415 DOI: 10.1016/j.devcel.2023.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Affiliation(s)
- Atsushi Nakano
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive South, Los Angeles, CA 90095, USA; The Jikei University School of Medicine, Department of Cell Physiology, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, USA.
| | - Norika Liu
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive South, Los Angeles, CA 90095, USA; The Jikei University School of Medicine, Department of Cell Physiology, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, USA
| |
Collapse
|
27
|
Liu K, Jin H, Zhang S, Tang M, Meng X, Li Y, Pu W, Lui KO, Zhou B. Intercellular genetic tracing of cardiac endothelium in the developing heart. Dev Cell 2023; 58:1502-1512.e3. [PMID: 37348503 DOI: 10.1016/j.devcel.2023.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/23/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
Cardiac resident macrophages play vital roles in heart development, homeostasis, repair, and regeneration. Recent studies documented the hematopoietic potential of cardiac endothelium that supports the generation of cardiac macrophages and peripheral blood cells in mice. However, the conclusion was not strongly supported by previous genetic tracing studies, given the non-specific nature of conventional Cre-loxP tracing tools. Here, we develop an intercellular genetic labeling system that can permanently trace heart-specific endothelial cells based on cell-cell interaction in mice. Results from cell-cell contact-mediated genetic fate mapping demonstrate that cardiac endothelial cells do not exhibit hemogenic potential and do not contribute to cardiac macrophages or other circulating blood cells. This Matters Arising paper is in response to Shigeta et al. (2019), published in Developmental Cell. See also the response by Liu and Nakano (2023), published in this issue.
Collapse
Affiliation(s)
- Kuo Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Hengwei Jin
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shaohua Zhang
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Muxue Tang
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinfeng Meng
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenjuan Pu
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Kathy O Lui
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Bin Zhou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
28
|
Chen C, Wang J, Liu C, Hu J. Cardiac resident macrophages: key regulatory mediators in the aftermath of myocardial infarction. Front Immunol 2023; 14:1207100. [PMID: 37457720 PMCID: PMC10348646 DOI: 10.3389/fimmu.2023.1207100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Acute myocardial infarction (MI) is a prevalent and highly fatal global disease. Despite significant reduction in mortality rates with standard treatment regimens, the risk of heart failure (HF) remains high, necessitating innovative approaches to protect cardiac function and prevent HF progression. Cardiac resident macrophages (cMacs) have emerged as key regulators of the pathophysiology following MI. cMacs are a heterogeneous population composed of subsets with different lineage origins and gene expression profiles. Several critical aspects of post-MI pathophysiology have been shown to be regulated by cMacs, including recruitment of peripheral immune cells, clearance and replacement of damaged myocardial cells. Furthermore, cMacs play a crucial role in regulating cardiac fibrosis, risk of arrhythmia, energy metabolism, as well as vascular and lymphatic remodeling. Given the multifaceted roles of cMacs in post-MI pathophysiology, targeting cMacs represents a promising therapeutic strategy. Finally, we discuss novel treatment strategies, including using nanocarriers to deliver drugs to cMacs or using cell therapies to introduce exogenous protective cMacs into the heart.
Collapse
|
29
|
Chia SL, Kapoor S, Carvalho C, Bajénoff M, Gentek R. Mast cell ontogeny: From fetal development to life-long health and disease. Immunol Rev 2023; 315:31-53. [PMID: 36752151 PMCID: PMC10952628 DOI: 10.1111/imr.13191] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mast cells (MCs) are evolutionarily ancient innate immune cells with important roles in protective immunity against bacteria, parasites, and venomous animals. They can be found in most organs of the body, where they also contribute to normal tissue functioning, for example by engaging in crosstalk with nerves. Despite this, they are most widely known for their detrimental roles in allergy, anaphylaxis, and atopic disease. Just like macrophages, mast cells were conventionally thought to originate from the bone marrow. However, they are already present in fetal tissues before the onset of bone marrow hematopoiesis, questioning this dogma. In recent years, our view of myeloid cell ontogeny has been revised. We now know that the first mast cells originate from progenitors made in the extra-embryonic yolk sac, and later get supplemented with mast cells produced from subsequent waves of hematopoiesis. In most connective tissues, sizeable populations of fetal-derived mast cells persist into adulthood, where they self-maintain largely independently from the bone marrow. These developmental origins are highly reminiscent of macrophages, which are known to have critical functions in development. Mast cells too may thus support healthy development. Their fetal origins and longevity also make mast cells susceptible to genetic and environmental perturbations, which may render them pathological. Here, we review our current understanding of mast cell biology from a developmental perspective. We first summarize how mast cell populations are established from distinct hematopoietic progenitor waves, and how they are subsequently maintained throughout life. We then discuss what functions mast cells may normally have at early life stages, and how they may be co-opted to cause, worsen, or increase susceptibility to disease.
Collapse
Affiliation(s)
- Shin Li Chia
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Simran Kapoor
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Cyril Carvalho
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille‐Luminy (CIML)MarseilleFrance
| | - Rebecca Gentek
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| |
Collapse
|
30
|
Fu M, Song J. Single-cell RNA sequencing reveals the diversity and biology of valve cells in cardiac valve disease. J Cardiol 2023; 81:49-56. [PMID: 35414472 DOI: 10.1016/j.jjcc.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
From highly aligned extracellular fibrils to the cells, a multilevel ordered hierarchy in valve leaflets is crucial for their biological function. Cardiac valve pathology most frequently involves a disruption in normal structure-function correlations through abnormal and complex interaction of cells, extracellular matrix, and their environment. At present, effective treatment for valve disease is limited and frequently ends with surgical repair or replacement with a mechanical or artificial biological cardiac valve, which comes with insuperable complications for many high-risk patients including aged and pediatric populations. Therefore, there is a critical need to fully appreciate the pathobiology of valve disease in order to develop better, alternative therapies. To date, the majority of studies have focused on delineating valve disease mechanisms at the cellular level. However, the cellular heterogeneity and function is still unclear. In this review, we summarize the body of work on valve cells, with a particular focus on the discoveries about valve cells heterogeneity and functions using single-cell RNA sequencing. We conclude by discussing state-of-the-art strategies for deciphering heterogeneity of these complex cell types, and argue this knowledge could translate into the improved personalized treatment of cardiac valve disease.
Collapse
Affiliation(s)
- Mengxia Fu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; The Cardiomyopathy Research Group at Fuwai Hospital, Beijing, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; The Cardiomyopathy Research Group at Fuwai Hospital, Beijing, China; Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
31
|
Lee SH, Kim N, Kim M, Woo SH, Han I, Park J, Kim K, Park KS, Kim K, Shim D, Park SE, Zhang JY, Go DM, Kim DY, Yoon WK, Lee SP, Chung J, Kim KW, Park JH, Lee SH, Lee S, Ann SJ, Lee SH, Ahn HS, Jeong SC, Kim TK, Oh GT, Park WY, Lee HO, Choi JH. Single-cell transcriptomics reveal cellular diversity of aortic valve and the immunomodulation by PPARγ during hyperlipidemia. Nat Commun 2022; 13:5461. [PMID: 36115863 PMCID: PMC9482653 DOI: 10.1038/s41467-022-33202-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Valvular inflammation triggered by hyperlipidemia has been considered as an important initial process of aortic valve disease; however, cellular and molecular evidence remains unclear. Here, we assess the relationship between plasma lipids and valvular inflammation, and identify association of low-density lipoprotein with increased valvular lipid and macrophage accumulation. Single-cell RNA sequencing analysis reveals the cellular heterogeneity of leukocytes, valvular interstitial cells, and valvular endothelial cells, and their phenotypic changes during hyperlipidemia leading to recruitment of monocyte-derived MHC-IIhi macrophages. Interestingly, we find activated PPARγ pathway in Cd36+ valvular endothelial cells increased in hyperlipidemic mice, and the conservation of PPARγ activation in non-calcified human aortic valves. While the PPARγ inhibition promotes inflammation, PPARγ activation using pioglitazone reduces valvular inflammation in hyperlipidemic mice. These results show that low-density lipoprotein is the main lipoprotein accumulated in the aortic valve during hyperlipidemia, leading to early-stage aortic valve disease, and PPARγ activation protects the aortic valve against inflammation. Identifying the mechanisms underlying the early inflammatory phase of aortic valve disease is crucial for disease prevention. Here the authors perform single-cell RNA sequencing to show the immunomodulatory role of PPARγ in valvular endothelial cells during hyperlipidemia.
Collapse
|
32
|
Poulis N, Martin M, Hoerstrup SP, Emmert MY, Fioretta ES. Macrophage-extracellular matrix interactions: Perspectives for tissue engineered heart valve remodeling. Front Cardiovasc Med 2022; 9:952178. [PMID: 36176991 PMCID: PMC9513146 DOI: 10.3389/fcvm.2022.952178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
In situ heart valve tissue engineering approaches have been proposed as promising strategies to overcome the limitations of current heart valve replacements. Tissue engineered heart valves (TEHVs) generated from in vitro grown tissue engineered matrices (TEMs) aim at mimicking the microenvironmental cues from the extracellular matrix (ECM) to favor integration and remodeling of the implant. A key role of the ECM is to provide mechanical support to and attract host cells into the construct. Additionally, each ECM component plays a critical role in regulating cell adhesion, growth, migration, and differentiation potential. Importantly, the immune response to the implanted TEHV is also modulated biophysically via macrophage-ECM protein interactions. Therefore, the aim of this review is to summarize what is currently known about the interactions and signaling networks occurring between ECM proteins and macrophages, and how these interactions may impact the long-term in situ remodeling outcomes of TEMs. First, we provide an overview of in situ tissue engineering approaches and their clinical relevance, followed by a discussion on the fundamentals of the remodeling cascades. We then focus on the role of circulation-derived and resident tissue macrophages, with particular emphasis on the ramifications that ECM proteins and peptides may have in regulating the host immune response. Finally, the relevance of these findings for heart valve tissue engineering applications is discussed.
Collapse
Affiliation(s)
- Nikolaos Poulis
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Marcy Martin
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Wyss Zurich, University and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Wyss Zurich, University and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- *Correspondence: Maximilian Y. Emmert, ,
| | - Emanuela S. Fioretta
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Emanuela S. Fioretta,
| |
Collapse
|
33
|
Ganuza M, Clements W, McKinney-Freeman S. Specification of hematopoietic stem cells in mammalian embryos: a rare or frequent event? Blood 2022; 140:309-320. [PMID: 35737920 PMCID: PMC9335503 DOI: 10.1182/blood.2020009839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are the blood-forming stem cells thought to be responsible for supporting the blood system throughout life. Transplantability has long been the flagship assay used to define and characterize HSCs throughout ontogeny. However, it has recently become clear that many cells emerge during ontogeny that lack transplantability yet nevertheless are fated to ultimately contribute to the adult HSC pool. Here, we explore recent advances in understanding the numbers and kinetics of cells that emerge during development to support lifelong hematopoiesis; these advances are made possible by new technologies allowing interrogation of lifelong blood potential without embryo perturbation or transplantation. Illuminating the dynamics of these cells during normal development informs efforts to better understand the origins of hematologic disease and engineer HSCs from differentiating pluripotent stem cells.
Collapse
Affiliation(s)
- Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; and
| | - Wilson Clements
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
34
|
Xia R, Tomsits P, Loy S, Zhang Z, Pauly V, Schüttler D, Clauss S. Cardiac Macrophages and Their Effects on Arrhythmogenesis. Front Physiol 2022; 13:900094. [PMID: 35812333 PMCID: PMC9257039 DOI: 10.3389/fphys.2022.900094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiac electrophysiology is a complex system established by a plethora of inward and outward ion currents in cardiomyocytes generating and conducting electrical signals in the heart. However, not only cardiomyocytes but also other cell types can modulate the heart rhythm. Recently, cardiac macrophages were demonstrated as important players in both electrophysiology and arrhythmogenesis. Cardiac macrophages are a heterogeneous group of immune cells including resident macrophages derived from embryonic and fetal precursors and recruited macrophages derived from circulating monocytes from the bone marrow. Recent studies suggest antiarrhythmic as well as proarrhythmic effects of cardiac macrophages. The proposed mechanisms of how cardiac macrophages affect electrophysiology vary and include both direct and indirect interactions with other cardiac cells. In this review, we provide an overview of the different subsets of macrophages in the heart and their possible interactions with cardiomyocytes under both physiologic conditions and heart disease. Furthermore, we elucidate similarities and differences between human, murine and porcine cardiac macrophages, thus providing detailed information for researchers investigating cardiac macrophages in important animal species for electrophysiologic research. Finally, we discuss the pros and cons of mice and pigs to investigate the role of cardiac macrophages in arrhythmogenesis from a translational perspective.
Collapse
Affiliation(s)
- Ruibing Xia
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Simone Loy
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Zhihao Zhang
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Valerie Pauly
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
35
|
Meier LA, Faragher JL, Osinski V, Auger JL, Voeller R, Marath A, Binstadt BA. CD47 Promotes Autoimmune Valvular Carditis by Impairing Macrophage Efferocytosis and Enhancing Cytokine Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2643-2651. [PMID: 35867674 PMCID: PMC9309982 DOI: 10.4049/jimmunol.2100903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Systemic autoantibody-mediated diseases accelerate chronic cardiovascular disease in humans. In the K/B.g7 mouse model of spontaneous autoantibody-mediated inflammatory arthritis, valvular carditis arises in part because of Fc receptor-mediated activation of macrophages, leading to production of pathogenic TNF and IL-6. In this study, we explored whether impaired efferocytosis mediated by the interaction of CD47-expressing apoptotic cells with signal regulatory protein α (SIRPα) on macrophages contributes to disease progression in this model. CD47-expressing apoptotic cells and SIRPα+ macrophages were abundant in inflamed/rheumatic cardiac valves from both mice and humans. In vivo anti-CD47 blockade both prevented and treated valvular carditis in K/B.g7 mice. Blocking CD47 enhanced macrophage efferocytosis and reduced macrophage production of TNF and IL-6. These studies highlight the CD47:SIRPα interaction as a key driver of chronic cardiac valve inflammation and suggest these molecules as potential therapeutic targets to reduce cardiovascular disease risk in autoantibody-driven inflammatory diseases.
Collapse
Affiliation(s)
- Lee A Meier
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Jessica L Faragher
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Victoria Osinski
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Jennifer L Auger
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Rochus Voeller
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN; and
| | | | - Bryce A Binstadt
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN;
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
36
|
Liu K, Jin H, Tang M, Zhang S, Tian X, Zhang M, Han X, Liu X, Tang J, Pu W, Li Y, He L, Yang Z, Lui KO, Zhou B. Lineage tracing clarifies the cellular origin of tissue-resident macrophages in the developing heart. J Biophys Biochem Cytol 2022; 221:213182. [PMID: 35482005 DOI: 10.1083/jcb.202108093] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Tissue-resident macrophages play essential functions in the maintenance of tissue homeostasis and repair. Recently, the endocardium has been reported as a de novo hemogenic site for the contribution of hematopoietic cells, including cardiac macrophages, during embryogenesis. These observations challenge the current consensus that hematopoiesis originates from the hemogenic endothelium within the yolk sac and dorsal aorta. Whether the developing endocardium has such a hemogenic potential requires further investigation. Here, we generated new genetic tools to trace endocardial cells and reassessed their potential contribution to hematopoietic cells in the developing heart. Fate-mapping analyses revealed that the endocardium contributed minimally to cardiac macrophages and circulating blood cells. Instead, cardiac macrophages were mainly derived from the endothelium during primitive/transient definitive (yolk sac) and definitive (dorsal aorta) hematopoiesis. Our findings refute the concept of endocardial hematopoiesis, suggesting that the developing endocardium gives rise minimally to hematopoietic cells, including cardiac macrophages.
Collapse
Affiliation(s)
- Kuo Liu
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.,State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hengwei Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Muxue Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shaohua Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xueying Tian
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Mingjun Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ximeng Han
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiuxiu Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Pu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lingjuan He
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Kathy O Lui
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Bin Zhou
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.,State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
37
|
Fluid mechanics of the zebrafish embryonic heart trabeculation. PLoS Comput Biol 2022; 18:e1010142. [PMID: 35666714 PMCID: PMC9203006 DOI: 10.1371/journal.pcbi.1010142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/16/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Embryonic heart development is a mechanosensitive process, where specific fluid forces are needed for the correct development, and abnormal mechanical stimuli can lead to malformations. It is thus important to understand the nature of embryonic heart fluid forces. However, the fluid dynamical behaviour close to the embryonic endocardial surface is very sensitive to the geometry and motion dynamics of fine-scale cardiac trabecular surface structures. Here, we conducted image-based computational fluid dynamics (CFD) simulations to quantify the fluid mechanics associated with the zebrafish embryonic heart trabeculae. To capture trabecular geometric and motion details, we used a fish line that expresses fluorescence at the endocardial cell membrane, and high resolution 3D confocal microscopy. Our endocardial wall shear stress (WSS) results were found to exceed those reported in existing literature, which were estimated using myocardial rather than endocardial boundaries. By conducting simulations of single intra-trabecular spaces under varied scenarios, where the translational or deformational motions (caused by contraction) were removed, we found that a squeeze flow effect was responsible for most of the WSS magnitude in the intra-trabecular spaces, rather than the shear interaction with the flow in the main ventricular chamber. We found that trabecular structures were responsible for the high spatial variability of the magnitude and oscillatory nature of WSS, and for reducing the endocardial deformational burden. We further found cells attached to the endocardium within the intra-trabecular spaces, which were likely embryonic hemogenic cells, whose presence increased endocardial WSS. Overall, our results suggested that a complex multi-component consideration of both anatomic features and motion dynamics were needed to quantify the trabeculated embryonic heart fluid mechanics. In the embryonic heart, the mechanical forces that blood fluid imposes on the cardiac tissues are known to be important biological stimuli that affect the proper heart development. We thus perform careful quantification of these forces, using the zebrafish embryo as a model. To do this, we perform high resolution imaging of zebrafish embryonic hearts and image-based flow simulations. We find that the use of a particular fish line that expresses fluorescence at the exact boundary between heart tissue and blood, that is the endocardial cell membrane boundary, is important to give high quality results. The heart’s inner surface has uneven trabeculation structures. We find that they cause fluid forces to have spatial variability and an oscillatory nature. We also find that there is a squeezing motion of cardiac tissues on the trabeculation fluid spaces, which is the main mechanism that generated fluid forces. Fluid forces are also affected by a number of cardiac cells that were developing into blood cells, lodged in the trabeculation fluid spaces. Our investigations provide an understanding of the complexity of the fluid forces on the inner surface of the embryonic heart, and our quantifications will be useful to future studies on the biology elicited by these fluid forces.
Collapse
|
38
|
Suku M, Forrester L, Biggs M, Monaghan MG. Resident Macrophages and Their Potential in Cardiac Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:579-591. [PMID: 34088222 PMCID: PMC9242717 DOI: 10.1089/ten.teb.2021.0036] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023]
Abstract
Many facets of tissue engineered models aim at understanding cellular mechanisms to recapitulate in vivo behavior, to study and mimic diseases for drug interventions, and to provide a better understanding toward improving regenerative medicine. Recent and rapid advances in stem cell biology, material science and engineering, have made the generation of complex engineered tissues much more attainable. One such tissue, human myocardium, is extremely intricate, with a number of different cell types. Recent studies have unraveled cardiac resident macrophages as a critical mediator for normal cardiac function. Macrophages within the heart exert phagocytosis and efferocytosis, facilitate electrical conduction, promote regeneration, and remove cardiac exophers to maintain homeostasis. These findings underpin the rationale of introducing macrophages to engineered heart tissue (EHT), to more aptly capitulate in vivo physiology. Despite the lack of studies using cardiac macrophages in vitro, there is enough evidence to accept that they will be key to making EHTs more physiologically relevant. In this review, we explore the rationale and feasibility of using macrophages as an additional cell source in engineered cardiac tissues. Impact statement Macrophages play a critical role in cardiac homeostasis and in disease. Over the past decade, we have come to understand the many vital roles played by cardiac resident macrophages in the heart, including immunosurveillance, regeneration, electrical conduction, and elimination of exophers. There is a need to improve our understanding of the resident macrophage population in the heart in vitro, to better recapitulate the myocardium through tissue engineered models. However, obtaining them in vitro remains a challenge. Here, we discuss the importance of cardiac resident macrophages and potential ways to obtain cardiac resident macrophages in vitro. Finally, we critically discuss their potential in realizing impactful in vitro models of cardiac tissue and their impact in the field.
Collapse
Affiliation(s)
- Meenakshi Suku
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Lesley Forrester
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Manus Biggs
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Michael G. Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- Advanced Materials for Bioengineering Research (AMBER) Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
39
|
Novel insights into embryonic cardiac macrophages. Dev Biol 2022; 488:1-10. [DOI: 10.1016/j.ydbio.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/19/2022]
|
40
|
Feulner L, van Vliet PP, Puceat M, Andelfinger G. Endocardial Regulation of Cardiac Development. J Cardiovasc Dev Dis 2022; 9:jcdd9050122. [PMID: 35621833 PMCID: PMC9144171 DOI: 10.3390/jcdd9050122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 01/16/2023] Open
Abstract
The endocardium is a specialized form of endothelium that lines the inner side of the heart chambers and plays a crucial role in cardiac development. While comparatively less studied than other cardiac cell types, much progress has been made in understanding the regulation of and by the endocardium over the past two decades. In this review, we will summarize what is currently known regarding endocardial origin and development, the relationship between endocardium and other cardiac cell types, and the various lineages that endocardial cells derive from and contribute to. These processes are driven by key molecular mechanisms such as Notch and BMP signaling. These pathways in particular have been well studied, but other signaling pathways and mechanical cues also play important roles. Finally, we will touch on the contribution of stem cell modeling in combination with single cell sequencing and its potential translational impact for congenital heart defects such as bicuspid aortic valves and hypoplastic left heart syndrome. The detailed understanding of cellular and molecular processes in the endocardium will be vital to further develop representative stem cell-derived models for disease modeling and regenerative medicine in the future.
Collapse
Affiliation(s)
- Lara Feulner
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- Department of Molecular Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Patrick Piet van Vliet
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- LIA (International Associated Laboratory) CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
- LIA (International Associated Laboratory) INSERM, 13885 Marseille, France
| | - Michel Puceat
- LIA (International Associated Laboratory) CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
- LIA (International Associated Laboratory) INSERM, 13885 Marseille, France
- INSERM U-1251, Marseille Medical Genetics, Aix-Marseille University, 13885 Marseille, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Biochemistry, University of Montreal, Montreal, QC H3T 1J4, Canada
- Correspondence:
| |
Collapse
|
41
|
Abstract
The immune system is fundamental to tissue homeostasis and is the first line of defense following infection, injury or disease. In the damaged heart, large numbers of immune cells are recruited to the site of injury. These cells play an integral part in both repair by scar formation and the initiation of tissue regeneration. They initially assume inflammatory phenotypes, releasing pro-inflammatory cytokines and removing dead and dying tissue, before entering a reparative stage, replacing dead muscle tissue with a non-contractile scar. In this Review, we present an overview of the innate and adaptive immune response to heart injury. We explore the kinetics of immune cell mobilization following cardiac injury and how the different innate and adaptive immune cells interact with one another and with the damaged tissue. We draw on key findings from regenerative models, providing insight into how to support a robust immune response permissible for cardiac regeneration. Finally, we consider how the latest technological developments can offer opportunities for a deeper and unbiased functional understanding of the immune response to heart disease, highlighting the importance of such knowledge as the basis for promoting regeneration following cardiac injury in human patients.
Collapse
Affiliation(s)
- Filipa C. Simões
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford,Oxford, OxfordshireOX3 9DS, UK
- Institute of Developmental and Regenerative Medicine, Old Road Campus, Oxford, OxfordshireOX3 7DQ, UK
| | - Paul R. Riley
- Institute of Developmental and Regenerative Medicine, Old Road Campus, Oxford, OxfordshireOX3 7DQ, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OxfordshireOX1 3PT, UK
| |
Collapse
|
42
|
Magalhaes MS, Potter HG, Ahlback A, Gentek R. Developmental programming of macrophages by early life adversity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:213-259. [PMID: 35636928 DOI: 10.1016/bs.ircmb.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrophages are central elements of all organs, where they have a multitude of physiological and pathological functions. The first macrophages are produced during fetal development, and most adult organs retain populations of fetal-derived macrophages that self-maintain without major input of hematopoietic stem cell-derived monocytes. Their developmental origins make macrophages highly susceptible to environmental perturbations experienced in early life, in particular the fetal period. It is now well recognized that such adverse developmental conditions contribute to a wide range of diseases later in life. This chapter explores the notion that macrophages are key targets of environmental adversities during development, and mediators of their long-term impact on health and disease. We first briefly summarize our current understanding of macrophage ontogeny and their biology in tissues and consider potential mechanisms by which environmental stressors may mediate fetal programming. We then review evidence for programming of macrophages by adversities ranging from maternal immune activation and diet to environmental pollutants and toxins, which have disease relevance for different organ systems. Throughout this chapter, we contemplate appropriate experimental strategies to study macrophage programming. We conclude by discussing how our current knowledge of macrophage programming could be conceptualized, and finally highlight open questions in the field and approaches to address them.
Collapse
Affiliation(s)
- Marlene S Magalhaes
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Harry G Potter
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Ahlback
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
43
|
Jin Z. Macrophage Targeting for Therapy of Cardiovascular Diseases (CVD). MACROPHAGE TARGETED DELIVERY SYSTEMS 2022:339-356. [DOI: 10.1007/978-3-030-84164-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
44
|
Otsuka KS, Nielson C, Firpo MA, Park AH, Beaudin AE. Early Life Inflammation and the Developing Hematopoietic and Immune Systems: The Cochlea as a Sensitive Indicator of Disruption. Cells 2021; 10:cells10123596. [PMID: 34944105 PMCID: PMC8700005 DOI: 10.3390/cells10123596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence indicates that perinatal infection and inflammation can influence the developing immune system and may ultimately affect long-term health and disease outcomes in offspring by perturbing tissue and immune homeostasis. We posit that perinatal inflammation influences immune outcomes in offspring by perturbing (1) the development and function of fetal-derived immune cells that regulate tissue development and homeostasis, and (2) the establishment and function of developing hematopoietic stem cells (HSCs) that continually generate immune cells across the lifespan. To disentangle the complexities of these interlinked systems, we propose the cochlea as an ideal model tissue to investigate how perinatal infection affects immune, tissue, and stem cell development. The cochlea contains complex tissue architecture and a rich immune milieu that is established during early life. A wide range of congenital infections cause cochlea dysfunction and sensorineural hearing loss (SNHL), likely attributable to early life inflammation. Furthermore, we show that both immune cells and bone marrow hematopoietic progenitors can be simultaneously analyzed within neonatal cochlear samples. Future work investigating the pathogenesis of SNHL in the context of congenital infection will therefore provide critical information on how perinatal inflammation drives disease susceptibility in offspring.
Collapse
Affiliation(s)
- Kelly S. Otsuka
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA;
| | - Christopher Nielson
- Division of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (C.N.); (A.H.P.)
| | - Matthew A. Firpo
- Department of Surgery, University of Utah, Salt Lake City, UT 84112, USA;
| | - Albert H. Park
- Division of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (C.N.); (A.H.P.)
| | - Anna E. Beaudin
- Division of Hematology and Hematologic Malignancies, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Correspondence:
| |
Collapse
|
45
|
Gunawan F, Priya R, Stainier DYR. Sculpting the heart: Cellular mechanisms shaping valves and trabeculae. Curr Opin Cell Biol 2021; 73:26-34. [PMID: 34147705 DOI: 10.1016/j.ceb.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
The transformation of the heart from a simple tube to a complex organ requires the orchestration of several morphogenetic processes. Two structures critical for cardiac function, the cardiac valves and the trabecular network, are formed through extensive tissue morphogenesis-endocardial cell migration, deadhesion and differentiation into fibroblast-like cells during valve formation, and cardiomyocyte delamination and apico-basal depolarization during trabeculation. Here, we review current knowledge of how these specialized structures acquire their shape by focusing on the underlying cellular behaviors and molecular mechanisms, highlighting findings from in vivo models and briefly discussing the recent advances in cardiac cell culture and organoids.
Collapse
Affiliation(s)
- Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany.
| | - Rashmi Priya
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany.
| |
Collapse
|
46
|
Abstract
Macrophages are essential components of the immune system and play a role in the normal functioning of the cardiovascular system. Depending on their origin and phenotype, cardiac macrophages perform various functions. In a steady-state, these cells play a beneficial role in maintaining cardiac homeostasis by defending the body from pathogens and eliminating apoptotic cells, participating in electrical conduction, vessel patrolling, and arterial tone regulation. However, macrophages also take part in adverse cardiac remodeling that could lead to the development and progression of heart failure (HF) in such HF comorbidities as hypertension, obesity, diabetes, and myocardial infarction. Nevertheless, studies on detailed mechanisms of cardiac macrophage function are still in progress, and could enable potential therapeutic applications of these cells. This review aims to present the latest reports on the origin, heterogeneity, and functions of cardiac macrophages in the healthy heart and in cardiovascular diseases leading to HF. The potential therapeutic use of macrophages is also briefly discussed.
Collapse
|
47
|
van de Pavert SA. Lymphoid Tissue inducer (LTi) cell ontogeny and functioning in embryo and adult. Biomed J 2021; 44:123-132. [PMID: 33849806 PMCID: PMC8178546 DOI: 10.1016/j.bj.2020.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Innate Lymphoid Cells (ILC) are involved in homeostasis and immunity. Their dynamic differentiation and characterization depend on their tissue of residency and is adapted to their role within these tissues. Lymphoid Tissue inducer (LTi) cells are an ILC member and essential for embryonic lymph node (LN) formation. LNs are formed at pre-defined and strategic positions throughout the body and how LTi cells are initially attracted towards these areas is under debate. Besides their role in LN formation, LTi-like and the closely related ILC type 3 (ILC3) cells have been observed within the embryonic gut. New studies have now shown more information on their origin and differentiation within the embryo. This review will evaluate the embryonic LTi cell origin from a specific embryonic hemogenic wave, which has recently been described in mouse. Moreover, I will discuss their differentiation and similarities with the closely related ILC3 cells in embryo and adult.
Collapse
Affiliation(s)
- Serge A van de Pavert
- Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS), National Institute for Health and Medical Research (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France.
| |
Collapse
|
48
|
Mass E, Gentek R. Fetal-Derived Immune Cells at the Roots of Lifelong Pathophysiology. Front Cell Dev Biol 2021; 9:648313. [PMID: 33708774 PMCID: PMC7940384 DOI: 10.3389/fcell.2021.648313] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue-resident innate immune cells exert a wide range of functions in both adult homeostasis and pathology. Our understanding of when and how these cellular networks are established has dramatically changed with the recognition that many lineages originate at least in part from fetal sources and self-maintain independently from hematopoietic stem cells. Indeed, fetal-derived immune cells are found in most organs and serous cavities of our body, where they reside throughout the entire lifespan. At the same time, there is a growing appreciation that pathologies manifesting in adulthood may be caused by adverse early life events, a concept known as “developmental origins of health and disease” (DOHaD). Yet, whether fetal-derived immune cells are mechanistically involved in DOHaD remains elusive. In this review, we summarize our knowledge of fetal hematopoiesis and its contribution to adult immune compartments, which results in a “layered immune system.” Based on their ontogeny, we argue that fetal-derived immune cells are prime transmitters of long-term consequences of prenatal adversities. In addition to increasing disease susceptibility, these may also directly cause inflammatory, degenerative, and metabolic disorders. We explore this notion for cells generated from erythro-myeloid progenitors (EMP) produced in the extra-embryonic yolk sac. Focusing on macrophages and mast cells, we present emerging evidence implicating them in lifelong disease by either somatic mutations or developmental programming events resulting from maternal and early environmental perturbations.
Collapse
Affiliation(s)
- Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
49
|
Neo WH, Lie-A-Ling M, Fadlullah MZH, Lacaud G. Contributions of Embryonic HSC-Independent Hematopoiesis to Organogenesis and the Adult Hematopoietic System. Front Cell Dev Biol 2021; 9:631699. [PMID: 33681211 PMCID: PMC7930747 DOI: 10.3389/fcell.2021.631699] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
During ontogeny, the establishment of the hematopoietic system takes place in several phases, separated both in time and location. The process is initiated extra-embryonically in the yolk sac (YS) and concludes in the main arteries of the embryo with the formation of hematopoietic stem cells (HSC). Initially, it was thought that HSC-independent hematopoietic YS cells were transient, and only required to bridge the gap to HSC activity. However, in recent years it has become clear that these cells also contribute to embryonic organogenesis, including the emergence of HSCs. Furthermore, some of these early HSC-independent YS cells persist into adulthood as distinct hematopoietic populations. These previously unrecognized abilities of embryonic HSC-independent hematopoietic cells constitute a new field of interest. Here, we aim to provide a succinct overview of the current knowledge regarding the contribution of YS-derived hematopoietic cells to the development of the embryo and the adult hematopoietic system.
Collapse
Affiliation(s)
- Wen Hao Neo
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | - Michael Lie-A-Ling
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | | | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| |
Collapse
|
50
|
Distinct Waves from the Hemogenic Endothelium Give Rise to Layered Lymphoid Tissue Inducer Cell Ontogeny. Cell Rep 2021; 32:108004. [PMID: 32783932 DOI: 10.1016/j.celrep.2020.108004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 01/28/2023] Open
Abstract
During embryogenesis, lymphoid tissue inducer (LTi) cells are essential for lymph node organogenesis. These cells are part of the innate lymphoid cell (ILC) family. Although their earliest embryonic hematopoietic origin is unclear, other innate immune cells have been shown to be derived from early hemogenic endothelium in the yolk sac as well as the aorta-gonad-mesonephros. A proper model to discriminate between these locations was unavailable. In this study, using a Cxcr4-CreERT2 lineage tracing model, we identify a major contribution from embryonic hemogenic endothelium, but not the yolk sac, toward LTi progenitors. Conversely, embryonic LTi cells are replaced by hematopoietic stem cell-derived cells in adults. We further show that, in the fetal liver, common lymphoid progenitors differentiate into highly dynamic alpha-lymphoid precursor cells that, at this embryonic stage, preferentially mature into LTi precursors and establish their functional LTi cell identity only after reaching the periphery.
Collapse
|