1
|
Cao Y, Yi Y, Han C, Shi B. NF-κB signaling pathway in tumor microenvironment. Front Immunol 2024; 15:1476030. [PMID: 39493763 PMCID: PMC11530992 DOI: 10.3389/fimmu.2024.1476030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
The genesis and progression of tumors are multifaceted processes influenced by genetic mutations within the tumor cells and the dynamic interplay with their surrounding milieu, which incessantly impacts the course of cancer. The tumor microenvironment (TME) is a complex and dynamic entity that encompasses not only the tumor cells but also an array of non-cancerous cells, signaling molecules, and the extracellular matrix. This intricate network is crucial in tumor progression, metastasis, and response to treatments. The TME is populated by diverse cell types, including immune cells, fibroblasts, endothelial cells, alongside cytokines and growth factors, all of which play roles in either suppressing or fostering tumor growth. Grasping the nuances of the interactions within the TME is vital for the advancement of targeted cancer therapies. Consequently, a thorough understanding of the alterations of TME and the identification of upstream regulatory targets have emerged as a research priority. NF-κB transcription factors, central to inflammation and innate immunity, are increasingly recognized for their significant role in cancer onset and progression. This review emphasizes the crucial influence of the NF-κB signaling pathway within the TME, underscoring its roles in the development and advancement of cancer. By examining the interactions between NF-κB and various components of the TME, targeting the NF-κB pathway appears as a promising cancer treatment approach.
Collapse
Affiliation(s)
- Yaning Cao
- Department of Blood Transfusion, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| | - Yanan Yi
- Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Chongxu Han
- Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingwei Shi
- Department of Blood Transfusion, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| |
Collapse
|
2
|
Bao W, Lyu J, Feng G, Guo L, Zhao D, You K, Liu Y, Li H, Du P, Chen D, Shen X. Aloe emodin promotes mucosal healing by modifying the differentiation fate of enteroendocrine cells via regulating cellular free fatty acid sensitivity. Acta Pharm Sin B 2024; 14:3964-3982. [PMID: 39309505 PMCID: PMC11413701 DOI: 10.1016/j.apsb.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
The proper differentiation and reorganization of the intestinal epithelial cell population is critical to mucosal regeneration post injury. Label retaining cells (LRCs) expressing SRY-box transcription factor 9 (SOX9) promote epithelial repair by replenishing LGR5+ intestinal stem cells (ISCs). While, LRCs are also considered precursor cells for enteroendocrine cells (EECs) which exacerbate mucosal damage in inflammatory bowel disease (IBD). The factors that determine LRC-EEC differentiation and the effect of intervening in LRC-EEC differentiation on IBD remain unclear. In this study, we investigated the effects of a natural anthraquinone called aloe emodin (derived from the Chinese herb rhubarb) on mucosal healing in IBD models. Our findings demonstrated that aloe emodin effectively interfered with the differentiation to EECs and preserved a higher number of SOX9+ LRCs, thereby promoting mucosal healing. Furthermore, we discovered that aloe emodin acted as an antagonist of free fatty acid receptors (FFAR1), suppressing the FFAR1-mediated Gβγ/serine/threonine-protein kinase (AKT) pathway and promoting the translocation of forkhead box protein O1 (FOXO1) into the nucleus, ultimately resulting in the intervention of differentiation fate. These findings reveal the effect of free fatty acid accessibility on EEC differentiation and introduce a strategy for promoting mucosal healing in IBD by regulating the FFAR1/AKT/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Weilian Bao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Jiaren Lyu
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Guize Feng
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Linfeng Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Dian Zhao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Keyuan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Yang Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Haidong Li
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| |
Collapse
|
3
|
Ramesh P, Tiwari SK, Kaizer M, Jangra D, Ghosh K, Mandal S, Mandal L. The NF-κB Factor Relish maintains blood progenitor homeostasis in the developing Drosophila lymph gland. PLoS Genet 2024; 20:e1011403. [PMID: 39250509 PMCID: PMC11424005 DOI: 10.1371/journal.pgen.1011403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/25/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024] Open
Abstract
Post-larval hematopoiesis in Drosophila largely depends upon the stockpile of progenitors present in the blood-forming organ/lymph gland of the larvae. During larval stages, the lymph gland progenitors gradually accumulate reactive oxygen species (ROS), which is essential to prime them for differentiation. Studies have shown that ROS triggers the activation of JNK (c-Jun Kinase), which upregulates fatty acid oxidation (FAO) to facilitate progenitor differentiation. Intriguingly, despite having ROS, the entire progenitor pool does not differentiate simultaneously in the late larval stages. Using expression analyses, genetic manipulation and pharmacological approaches, we found that the Drosophila NF-κB transcription factor Relish (Rel) shields the progenitor pool from the metabolic pathway that inducts them into the differentiation program by curtailing the activation of JNK. Although ROS serves as the metabolic signal for progenitor differentiation, the input from ROS is monitored by the developmental signal TAK1, which is regulated by Relish. This developmental circuit ensures that the stockpile of ROS-primed progenitors is not exhausted entirely. Our study sheds light on how, during development, integrating NF-κB-like factors with metabolic pathways seem crucial to regulating cell fate transition during development.
Collapse
Affiliation(s)
- Parvathy Ramesh
- Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali (IISER Mohali), Punjab, INDIA
| | - Satish Kumar Tiwari
- Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali (IISER Mohali), Punjab, INDIA
| | - Md Kaizer
- Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali (IISER Mohali), Punjab, INDIA
| | - Deepak Jangra
- Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali (IISER Mohali), Punjab, INDIA
| | - Kaustuv Ghosh
- Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali (IISER Mohali), Punjab, INDIA
| | - Sudip Mandal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Punjab, INDIA
| | - Lolitika Mandal
- Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali (IISER Mohali), Punjab, INDIA
| |
Collapse
|
4
|
Khan F, Elsori D, Verma M, Pandey S, Obaidur Rab S, Siddiqui S, Alabdallah NM, Saeed M, Pandey P. Unraveling the intricate relationship between lipid metabolism and oncogenic signaling pathways. Front Cell Dev Biol 2024; 12:1399065. [PMID: 38933330 PMCID: PMC11199418 DOI: 10.3389/fcell.2024.1399065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Lipids, the primary constituents of the cell membrane, play essential roles in nearly all cellular functions, such as cell-cell recognition, signaling transduction, and energy provision. Lipid metabolism is necessary for the maintenance of life since it regulates the balance between the processes of synthesis and breakdown. Increasing evidence suggests that cancer cells exhibit abnormal lipid metabolism, significantly affecting their malignant characteristics, including self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. Prominent oncogenic signaling pathways that modulate metabolic gene expression and elevate metabolic enzyme activity include phosphoinositide 3-kinase (PI3K)/AKT, MAPK, NF-kB, Wnt, Notch, and Hippo pathway. Conversely, when metabolic processes are not regulated, they can lead to malfunctions in cellular signal transduction pathways. This, in turn, enables uncontrolled cancer cell growth by providing the necessary energy, building blocks, and redox potentials. Therefore, targeting lipid metabolism-associated oncogenic signaling pathways could be an effective therapeutic approach to decrease cancer incidence and promote survival. This review sheds light on the interactions between lipid reprogramming and signaling pathways in cancer. Exploring lipid metabolism as a target could provide a promising approach for creating anticancer treatments by identifying metabolic inhibitors. Additionally, we have also provided an overview of the drugs targeting lipid metabolism in cancer in this review.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Samra Siddiqui
- Department of Health Service Management, College of Public Health and Health Informatics, University of Hail, Haʼil, Saudi Arabia
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Haʼil, Saudi Arabia
| | - Pratibha Pandey
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
5
|
Chao CF, Pesch YY, Yu H, Wang C, Aristizabal MJ, Huan T, Tanentzapf G, Rideout E. An important role for triglyceride in regulating spermatogenesis. eLife 2024; 12:RP87523. [PMID: 38805376 PMCID: PMC11132686 DOI: 10.7554/elife.87523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Drosophila is a powerful model to study how lipids affect spermatogenesis. Yet, the contribution of neutral lipids, a major lipid group which resides in organelles called lipid droplets (LD), to sperm development is largely unknown. Emerging evidence suggests LD are present in the testis and that loss of neutral lipid- and LD-associated genes causes subfertility; however, key regulators of testis neutral lipids and LD remain unclear. Here, we show LD are present in early-stage somatic and germline cells within the Drosophila testis. We identified a role for triglyceride lipase brummer (bmm) in regulating testis LD, and found that whole-body loss of bmm leads to defects in sperm development. Importantly, these represent cell-autonomous roles for bmm in regulating testis LD and spermatogenesis. Because lipidomic analysis of bmm mutants revealed excess triglyceride accumulation, and spermatogenic defects in bmm mutants were rescued by genetically blocking triglyceride synthesis, our data suggest that bmm-mediated regulation of triglyceride influences sperm development. This identifies triglyceride as an important neutral lipid that contributes to Drosophila sperm development, and reveals a key role for bmm in regulating testis triglyceride levels during spermatogenesis.
Collapse
Affiliation(s)
- Charlotte F Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Yanina-Yasmin Pesch
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Huaxu Yu
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | - Chenjingyi Wang
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | | | - Tao Huan
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Elizabeth Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| |
Collapse
|
6
|
Musselman LP, Truong HG, DiAngelo JR. Transcriptional Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38782870 DOI: 10.1007/5584_2024_808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Transcriptional control of lipid metabolism uses a framework that parallels the control of lipid metabolism at the protein or enzyme level, via feedback and feed-forward mechanisms. Increasing the substrates for an enzyme often increases enzyme gene expression, for example. A paucity of product can likewise potentiate transcription or stability of the mRNA encoding the enzyme or enzymes needed to produce it. In addition, changes in second messengers or cellular energy charge can act as on/off switches for transcriptional regulators to control transcript (and protein) abundance. Insects use a wide range of DNA-binding transcription factors (TFs) that sense changes in the cell and its environment to produce the appropriate change in transcription at gene promoters. These TFs work together with histones, spliceosomes, and additional RNA processing factors to ultimately regulate lipid metabolism. In this chapter, we will first focus on the important TFs that control lipid metabolism in insects. Next, we will describe non-TF regulators of insect lipid metabolism such as enzymes that modify acetylation and methylation status, transcriptional coactivators, splicing factors, and microRNAs. To conclude, we consider future goals for studying the mechanisms underlying the control of lipid metabolism in insects.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Huy G Truong
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Justin R DiAngelo
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA.
| |
Collapse
|
7
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Liu M, Yang S, Yang J, Feng P, Luo F, Zhang Q, Yang L, Jiang H. BubR1 controls starvation-induced lipolysis via IMD signaling pathway in Drosophila. Aging (Albany NY) 2024; 16:3257-3279. [PMID: 38334966 PMCID: PMC10929803 DOI: 10.18632/aging.205533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Lipolysis, the key process releasing fat acids to generate energy in adipose tissues, correlates with starvation resistance. Nevertheless, its detail mechanisms remain elusive. BubR1, an essential mitotic regulator, ensures proper chromosome alignment and segregation during mitosis, but its physiological functions are largely unknown. Here, we use Drosophila adult fat body, the major lipid storage organ, to study the functions of BubR1 in lipolysis. We show that both whole body- and fat body-specific BubR1 depletions increase lipid degradation and shorten the lifespan under fasting but not feeding. Relish, the conserved regulator of IMD signaling pathway, acts as the downstream target of BubR1 to control the expression level of Bmm and modulate the lipolysis upon fasting. Thus, our study reveals new functions of BubR1 in starvation-induced lipolysis and provides new insights into the molecular mechanisms of lipolysis mediated by IMD signaling pathway.
Collapse
Affiliation(s)
- Mengyou Liu
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengye Yang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingsi Yang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Feng
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng Luo
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiaoqiao Zhang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Yang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Sreejith P, Lolo S, Patten KR, Gunasinghe M, More N, Pallanck LJ, Bharadwaj R. Nazo, the Drosophila homolog of the NBIA-mutated protein-c19orf12, is required for triglyceride homeostasis. PLoS Genet 2024; 20:e1011137. [PMID: 38335241 PMCID: PMC10883546 DOI: 10.1371/journal.pgen.1011137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/22/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Lipid dyshomeostasis has been implicated in a variety of diseases ranging from obesity to neurodegenerative disorders such as Neurodegeneration with Brain Iron Accumulation (NBIA). Here, we uncover the physiological role of Nazo, the Drosophila melanogaster homolog of the NBIA-mutated protein-c19orf12, whose function has been elusive. Ablation of Drosophila c19orf12 homologs leads to dysregulation of multiple lipid metabolism genes. nazo mutants exhibit markedly reduced gut lipid droplet and whole-body triglyceride contents. Consequently, they are sensitive to starvation and oxidative stress. Nazo is required for maintaining normal levels of Perilipin-2, an inhibitor of the lipase-Brummer. Concurrent knockdown of Brummer or overexpression of Perilipin-2 rescues the nazo phenotype, suggesting that this defect, at least in part, may arise from diminished Perilipin-2 on lipid droplets leading to aberrant Brummer-mediated lipolysis. Our findings potentially provide novel insights into the role of c19orf12 as a possible link between lipid dyshomeostasis and neurodegeneration, particularly in the context of NBIA.
Collapse
Affiliation(s)
- Perinthottathil Sreejith
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sara Lolo
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kristen R Patten
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Maduka Gunasinghe
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Neya More
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Leo J Pallanck
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Rajnish Bharadwaj
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
10
|
Darby AM, Lazzaro BP. Interactions between innate immunity and insulin signaling affect resistance to infection in insects. Front Immunol 2023; 14:1276357. [PMID: 37915572 PMCID: PMC10616485 DOI: 10.3389/fimmu.2023.1276357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
An active immune response is energetically demanding and requires reallocation of nutrients to support resistance to and tolerance of infection. Insulin signaling is a critical global regulator of metabolism and whole-body homeostasis in response to nutrient availability and energetic needs, including those required for mobilization of energy in support of the immune system. In this review, we share findings that demonstrate interactions between innate immune activity and insulin signaling primarily in the insect model Drosophila melanogaster as well as other insects like Bombyx mori and Anopheles mosquitos. These studies indicate that insulin signaling and innate immune activation have reciprocal effects on each other, but that those effects vary depending on the type of pathogen, route of infection, and nutritional status of the host. Future research will be required to further understand the detailed mechanisms by which innate immunity and insulin signaling activity impact each other.
Collapse
Affiliation(s)
- Andrea M. Darby
- Department of Entomology, Cornell University, Ithaca, NY, United States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY, United States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States
| |
Collapse
|
11
|
Venkatasubramani AV, Ichinose T, Kanno M, Forne I, Tanimoto H, Peleg S, Imhof A. The fruit fly acetyltransferase chameau promotes starvation resilience at the expense of longevity. EMBO Rep 2023; 24:e57023. [PMID: 37724628 PMCID: PMC10561354 DOI: 10.15252/embr.202357023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Proteins involved in cellular metabolism and molecular regulation can extend lifespan of various organisms in the laboratory. However, any improvement in aging would only provide an evolutionary benefit if the organisms were able to survive under non-ideal conditions. We have previously shown that Drosophila melanogaster carrying a loss-of-function allele of the acetyltransferase chameau (chm) has an increased healthy lifespan when fed ad libitum. Here, we show that loss of chm and reduction in its activity results in a substantial reduction in weight and a decrease in starvation resistance. This phenotype is caused by failure to properly regulate the genes and proteins required for energy storage and expenditure. The previously observed increase in survival time thus comes with the inability to prepare for and cope with nutrient stress. As the ability to survive in environments with restricted food availability is likely a stronger evolutionary driver than the ability to live a long life, chm is still present in the organism's genome despite its apparent negative effect on lifespan.
Collapse
Affiliation(s)
- Anuroop Venkateswaran Venkatasubramani
- Department of Molecular Biology, Biomedical Center Munich, Faculty of MedicineLMU MunichMartinsriedGermany
- Graduate School of Quantitative Biosciences (QBM)LMU MunichMunichGermany
| | - Toshiharu Ichinose
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversitySendaiJapan
| | - Mai Kanno
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Ignasi Forne
- Protein Analysis Unit, Faculty of Medicine, Biomedical Center MunichLMU MunichMartinsriedGermany
| | - Hiromu Tanimoto
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Shahaf Peleg
- Research Group Epigenetics, Metabolism and LongevityInstitute for Farm Animal BiologyDummerstorfGermany
| | - Axel Imhof
- Department of Molecular Biology, Biomedical Center Munich, Faculty of MedicineLMU MunichMartinsriedGermany
- Protein Analysis Unit, Faculty of Medicine, Biomedical Center MunichLMU MunichMartinsriedGermany
| |
Collapse
|
12
|
Sun X, Shen J, Perrimon N, Kong X, Wang D. The endoribonuclease Arlr is required to maintain lipid homeostasis by downregulating lipolytic genes during aging. Nat Commun 2023; 14:6254. [PMID: 37803019 PMCID: PMC10558556 DOI: 10.1038/s41467-023-42042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
While disorders in lipid metabolism have been associated with aging and age-related diseases, how lipid metabolism is regulated during aging is poorly understood. Here, we characterize the Drosophila endoribonuclease CG2145, an ortholog of mammalian EndoU that we named Age-related lipid regulator (Arlr), as a regulator of lipid homeostasis during aging. In adult adipose tissues, Arlr is necessary for maintenance of lipid storage in lipid droplets (LDs) as flies age, a phenotype that can be rescued by either high-fat or high-glucose diet. Interestingly, RNA-seq of arlr mutant adipose tissues and RIP-seq suggest that Arlr affects lipid metabolism through the degradation of the mRNAs of lipolysis genes - a model further supported by the observation that knockdown of Lsd-1, regucalcin, yip2 or CG5162, which encode genes involved in lipolysis, rescue the LD defects of arlr mutants. In addition, we characterize DendoU as a functional paralog of Arlr and show that human ENDOU can rescue arlr mutants. Altogether, our study reveals a role of ENDOU-like endonucleases as negative regulator of lipolysis.
Collapse
Affiliation(s)
- Xiaowei Sun
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Xue Kong
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Dan Wang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
13
|
He L, Wu B, Shi J, Du J, Zhao Z. Regulation of feeding and energy homeostasis by clock-mediated Gart in Drosophila. Cell Rep 2023; 42:112912. [PMID: 37531254 DOI: 10.1016/j.celrep.2023.112912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/19/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Feeding behavior is essential for growth and survival of animals; however, relatively little is known about its intrinsic mechanisms. Here, we demonstrate that Gart is expressed in the glia, fat body, and gut and positively regulates feeding behavior via cooperation and coordination. Gart in the gut is crucial for maintaining endogenous feeding rhythms and food intake, while Gart in the glia and fat body regulates energy homeostasis between synthesis and metabolism. These roles of Gart further impact Drosophila lifespan. Importantly, Gart expression is directly regulated by the CLOCK/CYCLE heterodimer via canonical E-box, in which the CLOCKs (CLKs) in the glia, fat body, and gut positively regulate Gart of peripheral tissues, while the core CLK in brain negatively controls Gart of peripheral tissues. This study provides insight into the complex and subtle regulatory mechanisms of feeding and lifespan extension in animals.
Collapse
Affiliation(s)
- Lei He
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Binbin Wu
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Jian Shi
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China; College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China.
| |
Collapse
|
14
|
Kim HS, Parker DJ, Hardiman MM, Munkácsy E, Jiang N, Rogers AN, Bai Y, Brent C, Mobley JA, Austad SN, Pickering AM. Early-adulthood spike in protein translation drives aging via juvenile hormone/germline signaling. Nat Commun 2023; 14:5021. [PMID: 37596266 PMCID: PMC10439225 DOI: 10.1038/s41467-023-40618-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
Protein translation (PT) declines with age in invertebrates, rodents, and humans. It has been assumed that elevated PT at young ages is beneficial to health and PT ends up dropping as a passive byproduct of aging. In Drosophila, we show that a transient elevation in PT during early-adulthood exerts long-lasting negative impacts on aging trajectories and proteostasis in later-life. Blocking the early-life PT elevation robustly improves life-/health-span and prevents age-related protein aggregation, whereas transiently inducing an early-life PT surge in long-lived fly strains abolishes their longevity/proteostasis benefits. The early-life PT elevation triggers proteostatic dysfunction, silences stress responses, and drives age-related functional decline via juvenile hormone-lipid transfer protein axis and germline signaling. Our findings suggest that PT is adaptively suppressed after early-adulthood, alleviating later-life proteostatic burden, slowing down age-related functional decline, and improving lifespan. Our work provides a theoretical framework for understanding how lifetime PT dynamics shape future aging trajectories.
Collapse
Affiliation(s)
- Harper S Kim
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Medical Scientist Training Program, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Danitra J Parker
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, 77030, USA
| | - Madison M Hardiman
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Nisi Jiang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Aric N Rogers
- MDI Biological Laboratory, Bar Harbor, ME, 04672, USA
| | - Yidong Bai
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Colin Brent
- USDA-ARS Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Andrew M Pickering
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, 77030, USA.
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
15
|
Sen D, Maniyadath B, Chowdhury S, Kaur A, Khatri S, Chakraborty A, Mehendale N, Nadagouda S, Sandra U, Kamat SS, Kolthur-Seetharam U. Metabolic regulation of CTCF expression and chromatin association dictates starvation response in mice and flies. iScience 2023; 26:107128. [PMID: 37416476 PMCID: PMC10320512 DOI: 10.1016/j.isci.2023.107128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 05/16/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Coordinated temporal control of gene expression is essential for physiological homeostasis, especially during metabolic transitions. However, the interplay between chromatin architectural proteins and metabolism in regulating transcription is less understood. Here, we demonstrate a conserved bidirectional interplay between CTCF (CCCTC-binding factor) expression/function and metabolic inputs during feed-fast cycles. Our results indicate that its loci-specific functional diversity is associated with physiological plasticity in mouse hepatocytes. CTCF differential expression and long non-coding RNA-Jpx mediated changes in chromatin occupancy, unraveled its paradoxical yet tuneable functions, which are governed by metabolic inputs. We illustrate the key role of CTCF in controlling temporal cascade of transcriptional response, with effects on hepatic mitochondrial energetics and lipidome. Underscoring the evolutionary conservation of CTCF-dependent metabolic homeostasis, CTCF knockdown in flies abrogated starvation resistance. In summary, we demonstrate the interplay between CTCF and metabolic inputs that highlights the coupled plasticity of physiological responses and chromatin function.
Collapse
Affiliation(s)
- Devashish Sen
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Babukrishna Maniyadath
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Shreyam Chowdhury
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Arshdeep Kaur
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Subhash Khatri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Neelay Mehendale
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Snigdha Nadagouda
- Tata Institute of Fundamental Research- Hyderabad (TIFR-H), Hyderabad, Telangana 500046, India
| | - U.S. Sandra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Siddhesh S. Kamat
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
- Tata Institute of Fundamental Research- Hyderabad (TIFR-H), Hyderabad, Telangana 500046, India
| |
Collapse
|
16
|
Zhang Q, Zheng H, Yang S, Feng T, Jie M, Chen H, Jiang H. Bub1 and Bub3 regulate metabolic adaptation via macrolipophagy in Drosophila. Cell Rep 2023; 42:112343. [PMID: 37027296 DOI: 10.1016/j.celrep.2023.112343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Lipophagy, the process of selective catabolism of lipid droplets (LDs) by autophagy, maintains lipid homeostasis and provides cellular energy under metabolic adaptation, yet its underlying mechanism remains largely ambiguous. Here, we show that the Bub1-Bub3 complex, the crucial regulator involved in the whole process of chromosome alignment and separation during mitosis, controls the fasting-induced lipid catabolism in the fat body (FB) of Drosophila. Bidirectional deviations of the Bub1 or Bub3 level affect the consumption of triacylglycerol (TAG) of fat bodies and the survival rate of adult flies under starving. Moreover, Bub1 and Bub3 work together to attenuate lipid degradation via macrolipophagy upon fasting. Thus, we uncover physiological roles of the Bub1-Bub3 complex on metabolic adaptation and lipid metabolism beyond their canonical mitotic functions, providing insights into the in vivo functions and molecular mechanisms of macrolipophagy during nutrient deprivation.
Collapse
Affiliation(s)
- Qiaoqiao Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Hui Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Shengye Yang
- Laboratory for Aging and Cancer Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tong Feng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Minwen Jie
- Laboratory for Aging and Cancer Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haiyang Chen
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
17
|
Hanson MA, Lemaitre B. Antimicrobial peptides do not directly contribute to aging in Drosophila, but improve lifespan by preventing dysbiosis. Dis Model Mech 2023; 16:dmm049965. [PMID: 36847474 PMCID: PMC10163324 DOI: 10.1242/dmm.049965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
Antimicrobial peptides (AMPs) are innate immune effectors first studied for their role in host defence. Recent studies have implicated these peptides in the clearance of aberrant cells and in neurodegenerative syndromes. In Drosophila, many AMPs are produced downstream of Toll and Imd NF-κB pathways upon infection. Upon aging, AMPs are upregulated, drawing attention to these molecules as possible causes of age-associated inflammatory diseases. However, functional studies overexpressing or silencing these genes have been inconclusive. Using an isogenic set of AMP gene deletions, we investigated the net impact of AMPs on aging. Overall, we found no major effect of individual AMPs on lifespan, with the possible exception of Defensin. However, ΔAMP14 flies lacking seven AMP gene families displayed reduced lifespan. Increased bacterial load in the food of aged ΔAMP14 flies suggested that their lifespan reduction was due to microbiome dysbiosis, consistent with a previous study. Moreover, germ-free conditions extended the lifespan of ΔAMP14 flies. Overall, our results did not point to an overt role of individual AMPs in lifespan. Instead, we found that AMPs collectively impact lifespan by preventing dysbiosis during aging.
Collapse
Affiliation(s)
- Mark A. Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Bland ML. Regulating metabolism to shape immune function: Lessons from Drosophila. Semin Cell Dev Biol 2023; 138:128-141. [PMID: 35440411 PMCID: PMC10617008 DOI: 10.1016/j.semcdb.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/21/2022] [Accepted: 04/03/2022] [Indexed: 12/14/2022]
Abstract
Infection with pathogenic microbes is a severe threat that hosts manage by activating the innate immune response. In Drosophila melanogaster, the Toll and Imd signaling pathways are activated by pathogen-associated molecular patterns to initiate cellular and humoral immune processes that neutralize and kill invaders. The Toll and Imd signaling pathways operate in organs such as fat body and gut that control host nutrient metabolism, and infections or genetic activation of Toll and Imd signaling also induce wide-ranging changes in host lipid, carbohydrate and protein metabolism. Metabolic regulation by immune signaling can confer resistance to or tolerance of infection, but it can also lead to pathology and susceptibility to infection. These immunometabolic phenotypes are described in this review, as are changes in endocrine signaling and gene regulation that mediate survival during infection. Future work in the field is anticipated to determine key variables such as sex, dietary nutrients, life stage, and pathogen characteristics that modify immunometabolic phenotypes and, importantly, to uncover the mechanisms used by the immune system to regulate metabolism.
Collapse
Affiliation(s)
- Michelle L Bland
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, United States.
| |
Collapse
|
19
|
Zhao T, Wang M, Li Z, Li H, Yuan D, Zhang X, Guo M, Qian W, Cheng D. Wds-Mediated H3K4me3 Modification Regulates Lipid Synthesis and Transport in Drosophila. Int J Mol Sci 2023; 24:ijms24076125. [PMID: 37047100 PMCID: PMC10093852 DOI: 10.3390/ijms24076125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Lipid homeostasis is essential for insect growth and development. The complex of proteins associated with Set 1 (COMPASS)-catalyzed Histone 3 lysine 4 trimethylation (H3K4me3) epigenetically activates gene transcription and is involved in various biological processes, but the role and molecular mechanism of H3K4me3 modification in lipid homeostasis remains largely unknown. In the present study, we showed in Drosophila that fat body-specific knockdown of will die slowly (Wds) as one of the COMPASS complex components caused a decrease in lipid droplet (LD) size and triglyceride (TG) levels. Mechanistically, Wds-mediated H3K4me3 modification in the fat body targeted several lipogenic genes involved in lipid synthesis and the Lpp gene associated with lipid transport to promote their expressions; the transcription factor heat shock factor (Hsf) could interact with Wds to modulate H3K4me3 modification within the promoters of these targets; and fat body-specific knockdown of Hsf phenocopied the effects of Wds knockdown on lipid homeostasis in the fat body. Moreover, fat body-specific knockdown of Wds or Hsf reduced high-fat diet (HFD)-induced oversized LDs and high TG levels. Altogether, our study reveals that Wds-mediated H3K4me3 modification is required for lipid homeostasis during Drosophila development and provides novel insights into the epigenetic regulation of insect lipid metabolism.
Collapse
Affiliation(s)
- Tujing Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Min Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Zheng Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Hao Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Dongqin Yuan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Xing Zhang
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Mengge Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
20
|
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204487. [PMID: 36737846 PMCID: PMC10037992 DOI: 10.1002/advs.202204487] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Overnutrition is a risk factor for various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. Therefore, targeting overnutrition represents a simple but attractive strategy for the treatment of these increasing public health threats. Fasting as a dietary intervention for combating overnutrition has been extensively studied. Fasting has been practiced for millennia, but only recently have its roles in the molecular clock, gut microbiome, and tissue homeostasis and function emerged. Fasting can slow aging in most species and protect against various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. These centuried and unfading adventures and explorations suggest that fasting has the potential to delay aging and help prevent and treat diseases while minimizing side effects caused by chronic dietary interventions. In this review, recent animal and human studies concerning the role and underlying mechanism of fasting in physiology and pathology are summarized, the therapeutic potential of fasting is highlighted, and the combination of pharmacological intervention and fasting is discussed as a new treatment regimen for human diseases.
Collapse
Affiliation(s)
- Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Qiuyan Tang
- Neurology Department of Integrated Traditional Chinese and Western Medicine, School of Clinical MedicineChengdu University of Traditional Chinese MedicineChengduSichuan610075China
| | - Wei Huang
- West China Centre of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China‐Liverpool Biomedical Research CentreWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuwei Zhang
- Division of Endocrinology and MetabolismWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| |
Collapse
|
21
|
Florance I, Ramasubbu S. Current Understanding on the Role of Lipids in Macrophages and Associated Diseases. Int J Mol Sci 2022; 24:ijms24010589. [PMID: 36614031 PMCID: PMC9820199 DOI: 10.3390/ijms24010589] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Lipid metabolism is the major intracellular mechanism driving a variety of cellular functions such as energy storage, hormone regulation and cell division. Lipids, being a primary component of the cell membrane, play a pivotal role in the survival of macrophages. Lipids are crucial for a variety of macrophage functions including phagocytosis, energy balance and ageing. However, functions of lipids in macrophages vary based on the site the macrophages are residing at. Lipid-loaded macrophages have recently been emerging as a hallmark for several diseases. This review discusses the significance of lipids in adipose tissue macrophages, tumor-associated macrophages, microglia and peritoneal macrophages. Accumulation of macrophages with impaired lipid metabolism is often characteristically observed in several metabolic disorders. Stress signals differentially regulate lipid metabolism. While conditions such as hypoxia result in accumulation of lipids in macrophages, stress signals such as nutrient deprivation initiate lipolysis and clearance of lipids. Understanding the biology of lipid accumulation in macrophages requires the development of potentially active modulators of lipid metabolism.
Collapse
|
22
|
Zhou S, Lu Y, Chen J, Pan Z, Pang L, Wang Y, Zhang Q, Strand MR, Chen XX, Huang J. Parasite reliance on its host gut microbiota for nutrition and survival. THE ISME JOURNAL 2022; 16:2574-2586. [PMID: 35941172 PMCID: PMC9561699 DOI: 10.1038/s41396-022-01301-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/12/2022]
Abstract
Studying the microbial symbionts of eukaryotic hosts has revealed a range of interactions that benefit host biology. Most eukaryotes are also infected by parasites that adversely affect host biology for their own benefit. However, it is largely unclear whether the ability of parasites to develop in hosts also depends on host-associated symbionts, e.g., the gut microbiota. Here, we studied the parasitic wasp Leptopilina boulardi (Lb) and its host Drosophila melanogaster. Results showed that Lb successfully develops in conventional hosts (CN) with a gut microbiota but fails to develop in axenic hosts (AX) without a gut microbiota. We determined that developing Lb larvae consume fat body cells that store lipids. We also determined that much larger amounts of lipid accumulate in fat body cells of parasitized CN hosts than parasitized AX hosts. CN hosts parasitized by Lb exhibited large increases in the abundance of the bacterium Acetobacter pomorum in the gut, but did not affect the abundance of Lactobacillus fructivorans which is another common member of the host gut microbiota. However, AX hosts inoculated with A. pomorum and/or L. fructivorans did not rescue development of Lb. In contrast, AX larvae inoculated with A. pomorum plus other identified gut community members including a Bacillus sp. substantially rescued Lb development. Rescue was further associated with increased lipid accumulation in host fat body cells. Insulin-like peptides increased in brain neurosecretory cells of parasitized CN larvae. Lipid accumulation in the fat body of CN hosts was further associated with reduced Bmm lipase activity mediated by insulin/insulin-like growth factor signaling (IIS). Altogether, our results identify a previously unknown role for the gut microbiota in defining host permissiveness for a parasite. Our findings also identify a new paradigm for parasite manipulation of host metabolism that depends on insulin signaling and the gut microbiota.
Collapse
Affiliation(s)
- Sicong Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Yueqi Lu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Jiani Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Zhongqiu Pan
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Lan Pang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Ying Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Qichao Zhang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA.
| | - Xue-Xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, 310058, China.
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Hussein AM, Balachandar N, Mathieu J, Ruohola-Baker H. Molecular Regulators of Embryonic Diapause and Cancer Diapause-like State. Cells 2022; 11:cells11192929. [PMID: 36230891 PMCID: PMC9562880 DOI: 10.3390/cells11192929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Embryonic diapause is an enigmatic state of dormancy that interrupts the normally tight connection between developmental stages and time. This reproductive strategy and state of suspended development occurs in mice, bears, roe deer, and over 130 other mammals and favors the survival of newborns. Diapause arrests the embryo at the blastocyst stage, delaying the post-implantation development of the embryo. This months-long quiescence is reversible, in contrast to senescence that occurs in aging stem cells. Recent studies have revealed critical regulators of diapause. These findings are important since defects in the diapause state can cause a lack of regeneration and control of normal growth. Controlling this state may also have therapeutic applications since recent findings suggest that radiation and chemotherapy may lead some cancer cells to a protective diapause-like, reversible state. Interestingly, recent studies have shown the metabolic regulation of epigenetic modifications and the role of microRNAs in embryonic diapause. In this review, we discuss the molecular mechanism of diapause induction.
Collapse
Affiliation(s)
- Abdiasis M. Hussein
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Nanditaa Balachandar
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai 603203, India
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Comparative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
24
|
Capece D, Verzella D, Flati I, Arboretto P, Cornice J, Franzoso G. NF-κB: blending metabolism, immunity, and inflammation. Trends Immunol 2022; 43:757-775. [PMID: 35965153 DOI: 10.1016/j.it.2022.07.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
The procurement and management of nutrients and ability to fight infections are fundamental requirements for survival. These defense responses are bioenergetically costly, requiring the immune system to balance protection against pathogens with the need to maintain metabolic homeostasis. NF-κB transcription factors are central regulators of immunity and inflammation. Over the last two decades, these factors have emerged as a pivotal node coordinating the immune and metabolic systems in physiology and the etiopathogenesis of major threats to human health, including cancer, autoimmunity, chronic inflammation, and others. In this review, we discuss recent advances in understanding how NF-κB-dependent metabolic programs control inflammation, metabolism, and immunity and how improved knowledge of them may lead to better diagnostics and therapeutics for widespread human diseases.
Collapse
Affiliation(s)
- Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
25
|
Chen Y, Xu W, Chen Y, Han A, Song J, Zhou X, Song W. Renal NF-κB activation impairs uric acid homeostasis to promote tumor-associated mortality independent of wasting. Immunity 2022; 55:1594-1608.e6. [PMID: 36029766 DOI: 10.1016/j.immuni.2022.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/27/2022] [Accepted: 07/29/2022] [Indexed: 12/12/2022]
Abstract
Tumor-induced host wasting and mortality are general phenomena across species. Many groups have previously demonstrated endocrinal impacts of malignant tumors on host wasting in rodents and Drosophila. Whether and how environmental factors and host immune response contribute to tumor-associated host wasting and survival, however, are largely unknown. Here, we report that flies bearing malignant yki3SA-gut tumors exhibited the exponential increase of commensal bacteria, which were mostly acquired from the environment, and systemic IMD-NF-κB activation due to suppression of a gut antibacterial amidase PGRP-SC2. Either gut microbial elimination or specific IMD-NF-κB blockade in the renal-like Malpighian tubules potently improved mortality of yki3SA-tumor-bearing flies in a manner independent of host wasting. We further indicate that renal IMD-NF-κB activation caused uric acid (UA) overload to reduce survival of tumor-bearing flies. Therefore, our results uncover a fundamental mechanism whereby gut commensal dysbiosis, renal immune activation, and UA imbalance potentiate tumor-associated host death.
Collapse
Affiliation(s)
- Yuchen Chen
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Wenhao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Yuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Anxuan Han
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Jiantao Song
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Xiaoya Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Wei Song
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China.
| |
Collapse
|
26
|
Shen R, Zheng K, Zhou Y, Chi X, Pan H, Wu C, Yang Y, Zheng Y, Pan D, Liu B. A dRASSF-STRIPAK-Imd-JAK/STAT axis controls antiviral immune response in Drosophila. Cell Rep 2022; 40:111143. [PMID: 35905720 DOI: 10.1016/j.celrep.2022.111143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/09/2022] [Accepted: 07/06/2022] [Indexed: 01/20/2023] Open
Abstract
Host antiviral immunity suffers strong pressure from rapidly evolving viruses. Identifying host antiviral immune mechanisms has profound implications for developing antiviral strategies. Here, we uncover an essential role for the tumor suppressor Ras-association domain family (RASSF) in Drosophila antiviral response. Loss of dRassf in fat body leads to increased vulnerability to viral infection and impaired Imd pathway activation accompanied by detrimental JAK/STAT signaling overactivation. Mechanistically, dRASSF protects TAK1, a key kinase of Imd pathway, from inhibition by the STRIPAK PP2A phosphatase complex. Activated Imd signaling then employs the effector Relish to interfere with the dimerization of JAK/STAT transmembrane receptor Domeless, therefore preventing excessive JAK/STAT signaling. Moreover, we find that RASSF and STRIPAK PP2A complex are also involved in antiviral response in human cell lines. Our study identifies an important role for RASSF in antiviral immunity and elucidates a dRASSF-STRIPAK-Imd-JAK/STAT signaling axis that ensures proper antiviral responses in Drosophila.
Collapse
Affiliation(s)
- Rui Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kewei Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaofeng Chi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huimin Pan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengfang Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yinan Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Bo Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
27
|
Deng Z, Yang Y, Luo J, Zhang B, Liu J, Shui G, Jiao R, Wei C. An Integrated Transcriptomics and Lipidomics Analysis Reveals That Ergosterol Is Required for Host Defense Against Bacterial Infection in Drosophila. Front Immunol 2022; 13:933137. [PMID: 35874695 PMCID: PMC9301368 DOI: 10.3389/fimmu.2022.933137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Animals adjust their lipid metabolism states in response to pathogens infection. However, the underlying molecular mechanisms for how lipid metabolism responds to infection remain to be elusive. In this study, we assessed the temporal changes of lipid metabolism profiles during infection by an integrated transcriptomics and lipidomics analysis. Ergosterol is identified to be required for proper host defense to pathogens. Notably, ergosterol level is increased in the hemolymph upon bacterial infection. We show that the increase of ergosterol level by food supplement or genetic depletion of Acsl, a long-chain fatty acid-CoA synthetase, promotes host survival against bacterial challenges. Together, our results suggest a critical role of lipid metabolism adaption in the process of host defense against invading pathogens.
Collapse
Affiliation(s)
- Zihao Deng
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yanyang Yang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiazhen Luo
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Biling Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiyong Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Renjie Jiao, ; Chuanxian Wei,
| | - Chuanxian Wei
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Renjie Jiao, ; Chuanxian Wei,
| |
Collapse
|
28
|
Deshpande R, Lee B, Grewal SS. Enteric bacterial infection in Drosophila induces whole-body alterations in metabolic gene expression independently of the immune deficiency signaling pathway. G3 GENES|GENOMES|GENETICS 2022; 12:6628587. [PMID: 35781508 PMCID: PMC9635644 DOI: 10.1093/g3journal/jkac163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022]
Abstract
When infected by intestinal pathogenic bacteria, animals initiate both local and systemic defence responses. These responses are required to reduce pathogen burden and also to alter host physiology and behavior to promote infection tolerance, and they are often mediated through alterations in host gene expression. Here, we have used transcriptome profiling to examine gene expression changes induced by enteric infection with the Gram-negative bacteria Pseudomonas entomophila in adult female Drosophila. We find that infection induces a strong upregulation of metabolic gene expression, including gut and fat body-enriched genes involved in lipid transport, lipolysis, and beta-oxidation, as well as glucose and amino acid metabolism genes. Furthermore, we find that the classic innate immune deficiency (Imd)/Relish/NF-KappaB pathway is not required for, and in some cases limits, these infection-mediated increases in metabolic gene expression. We also see that enteric infection with Pseudomonas entomophila downregulates the expression of many transcription factors and cell–cell signaling molecules, particularly those previously shown to be involved in gut-to-brain and neuronal signaling. Moreover, as with the metabolic genes, these changes occurred largely independent of the Imd pathway. Together, our study identifies many metabolic, signaling, and transcription factor gene expression changes that may contribute to organismal physiological and behavioral responses to enteric pathogen infection.
Collapse
Affiliation(s)
- Rujuta Deshpande
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, University of Calgary , Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary , Alberta T2N 4N1, Canada
| | - Byoungchun Lee
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, University of Calgary , Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary , Alberta T2N 4N1, Canada
| | - Savraj S Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, University of Calgary , Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary , Alberta T2N 4N1, Canada
| |
Collapse
|
29
|
Effects of Drosophila melanogaster regular exercise and apolipoprotein B knockdown on abnormal heart rhythm induced by a high-fat diet. PLoS One 2022; 17:e0262471. [PMID: 35657779 PMCID: PMC9165823 DOI: 10.1371/journal.pone.0262471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022] Open
Abstract
Abnormal heart rhythm is a common cardiac dysfunction in obese patients, and its pathogenesis is related to systemic lipid accumulation. The cardiomyocyte-derived apoLpp (homologous gene in Drosophila of the human apolipoprotein B) plays an important role in whole-body lipid metabolism of Drosophila under a high-fat diet (HFD). Knockdown of apoLpp derived from cardiomyocytes can reduce HFD-induced weight gain and abdominal lipid accumulation. In addition, exercise can reduce the total amount of apoLpp in circulation. However, the relationship between regular exercise, cardiomyocyte-derived apoLpp and abnormal heart rhythm is unclear. We found that an HFD increased the level of triglyceride (TG) in the whole-body, lipid accumulation and obesity in Drosophila. Moreover, the expression of apoLpp in the heart increased sharply, the heart rate and arrhythmia index increased and fibrillation occurred. Conversely, regular exercise or cardiomyocyte-derived apoLpp knockdown reduced the TG level in the whole-body of Drosophila. This significantly reduced the arrhythmia induced by obesity, including the reduction of heart rate, arrhythmia index, and fibrillation. Under HFD conditions, flies with apoLpp knockdown in the heart could resist the abnormal cardiac rhythm caused by obesity after receiving regular exercise. HFD-induced obesity and abnormal cardiac rhythm may be related to the acute increase of cardiomyocyte-derived apoLpp. Regular exercise and inhibition of cardiomyocyte-derived apoLpp can reduce the HFD-induced abnormal cardiac rhythm.
Collapse
|
30
|
Chandler JA, Innocent LV, Martinez DJ, Huang IL, Yang JL, Eisen MB, Ludington WB. Microbiome-by-ethanol interactions impact Drosophila melanogaster fitness, physiology, and behavior. iScience 2022; 25:104000. [PMID: 35313693 PMCID: PMC8933687 DOI: 10.1016/j.isci.2022.104000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/24/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota can affect how animals respond to ingested toxins, such as ethanol, which is prevalent in the diets of diverse animals and often leads to negative health outcomes in humans. Ethanol is a complex dietary factor because it acts as a toxin, behavioral manipulator, and nutritional source, with both direct effects on the host as well as indirect ones through the microbiome. Here, we developed a model for chronic, non-intoxicating ethanol ingestion in the adult fruit fly, Drosophila melanogaster, and paired this with the tractability of the fly gut microbiota, which can be experimentally removed. We linked numerous physiological, behavioral, and transcriptional variables to fly fitness, including a combination of intestinal barrier integrity, stored triglyceride levels, feeding behavior, and the immunodeficiency pathway. Our results reveal a complex tradeoff between lifespan and fecundity that is microbiome-dependent and modulated by dietary ethanol and feeding behavior.
Collapse
Affiliation(s)
- James Angus Chandler
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Lina Victoria Innocent
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | - Isaac Li Huang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jane Lani Yang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael Bruce Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - William Basil Ludington
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
31
|
Gáliková M, Klepsatel P. Endocrine control of glycogen and triacylglycerol breakdown in the fly model. Semin Cell Dev Biol 2022; 138:104-116. [PMID: 35393234 DOI: 10.1016/j.semcdb.2022.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Over the last decade, the combination of genetics, transcriptomic and proteomic approaches yielded substantial insights into the mechanisms behind the synthesis and breakdown of energy stores in the model organisms. The fruit fly Drosophila melanogaster has been particularly useful to unravel genetic regulations of energy metabolism. Despite the considerable evolutionary distance between humans and flies, the energy storage organs, main metabolic pathways, and even their genetic regulations remained relatively conserved. Glycogen and fat are universal energy reserves used in all animal phyla and several of their endocrine regulators, such as the insulin pathway, are highly evolutionarily conserved. Nevertheless, some of the factors inducing catabolism of energy stores have diverged significantly during evolution. Moreover, even within a single insect species, D. melanogaster, there are substantial developmental and context-dependent variances in the regulation of energy stores. These differences include, among others, the endocrine pathways that govern the catabolic events or the predominant fuel which is utilized for the given process. For example, many catabolic regulators that control energy reserves in adulthood seem to be largely dispensable for energy mobilization during development. In this review, we focus on a selection of the most important catabolic regulators from the group of peptide hormones (Adipokinetic hormone, Corazonin), catecholamines (octopamine), steroid hormones (20-hydroxyecdysone), and other factors (extracellular adenosine, regulators of lipase Brummer). We discuss their roles in the mobilization of energy reserves for processes such as development through non-feeding stages, flight or starvation survival. Finally, we conclude with future perspectives on the energy balance research in the fly model.
Collapse
Affiliation(s)
- Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| |
Collapse
|
32
|
Fedele G, Loh SHY, Celardo I, Leal NS, Lehmann S, Costa AC, Martins LM. Suppression of intestinal dysfunction in a Drosophila model of Parkinson's disease is neuroprotective. NATURE AGING 2022; 2:317-331. [PMID: 37117744 DOI: 10.1038/s43587-022-00194-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/16/2022] [Indexed: 04/30/2023]
Abstract
The innate immune response mounts a defense against foreign invaders and declines with age. An inappropriate induction of this response can cause diseases. Previous studies showed that mitochondria can be repurposed to promote inflammatory signaling. Damaged mitochondria can also trigger inflammation and promote diseases. Mutations in pink1, a gene required for mitochondrial health, cause Parkinson's disease, and Drosophila melanogaster pink1 mutants accumulate damaged mitochondria. Here, we show that defective mitochondria in pink1 mutants activate Relish targets and demonstrate that inflammatory signaling causes age-dependent intestinal dysfunction in pink1-mutant flies. These effects result in the death of intestinal cells, metabolic reprogramming and neurotoxicity. We found that Relish signaling is activated downstream of a pathway stimulated by cytosolic DNA. Suppression of Relish in the intestinal midgut of pink1-mutant flies restores mitochondrial function and is neuroprotective. We thus conclude that gut-brain communication modulates neurotoxicity in a fly model of Parkinson's disease through a mechanism involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Giorgio Fedele
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Ivana Celardo
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Susann Lehmann
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Ana C Costa
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
33
|
Gut-derived peptidoglycan remotely inhibits bacteria dependent activation of SREBP by Drosophila adipocytes. PLoS Genet 2022; 18:e1010098. [PMID: 35245295 PMCID: PMC8926189 DOI: 10.1371/journal.pgen.1010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 03/16/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Bacteria that colonize eukaryotic gut have profound influences on the physiology of their host. In Drosophila, many of these effects are mediated by adipocytes that combine immune and metabolic functions. We show here that enteric infection with some bacteria species triggers the activation of the SREBP lipogenic protein in surrounding enterocytes but also in remote fat body cells and in ovaries, an effect that requires insulin signaling. We demonstrate that by activating the NF-κB pathway, the cell wall peptidoglycan produced by the same gut bacteria remotely, and cell-autonomously, represses SREBP activation in adipocytes. We finally show that by reducing the level of peptidoglycan, the gut born PGRP-LB amidase balances host immune and metabolic responses of the fat body to gut-associated bacteria. In the absence of such modulation, uncontrolled immune pathway activation prevents SREBP activation and lipid production by the fat body. An increasing body of evidence indicates that microbes, which live closely associated with animals, significantly influence their development, physiology and even their behavior. The mechanisms that underly these mutual interactions are not yet completely understood. Using Drosophila as a model system, we study the impact of gut bacteria on the host physiology. We present here data showing that some bacteria present in the fly gut can stimulate the production of lipids in the remote fat body tissue via gut autophagy and insulin signaling. However, these bacteria produce many compounds and metabolites such as the cell wall peptidoglycan. Our data show that by cell-autonomously activating the NF-κB signaling pathway in the remote fat body, cell wall peptidoglycan antagonizes bacteria-triggered lipogenesis. We finally show that to prevent this antagonistic effect, flies produce an enzyme, called PGRP-LB, that cleaves the peptidoglycan into its inactive form. Our data highlight the multiple layers of interactions that take place between gut-associated bacteria and a eukaryotic host.
Collapse
|
34
|
Nath AS, Parsons BD, Makdissi S, Chilvers RL, Mu Y, Weaver CM, Euodia I, Fitze KA, Long J, Scur M, Mackenzie DP, Makrigiannis AP, Pichaud N, Boudreau LH, Simmonds AJ, Webber CA, Derfalvi B, Hammon Y, Rachubinski RA, Di Cara F. Modulation of the cell membrane lipid milieu by peroxisomal β-oxidation induces Rho1 signaling to trigger inflammatory responses. Cell Rep 2022; 38:110433. [PMID: 35235794 DOI: 10.1016/j.celrep.2022.110433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/21/2021] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
Phagocytosis, signal transduction, and inflammatory responses require changes in lipid metabolism. Peroxisomes have key roles in fatty acid homeostasis and in regulating immune function. We find that Drosophila macrophages lacking peroxisomes have perturbed lipid profiles, which reduce host survival after infection. Using lipidomic, transcriptomic, and genetic screens, we determine that peroxisomes contribute to the cell membrane glycerophospholipid composition necessary to induce Rho1-dependent signals, which drive cytoskeletal remodeling during macrophage activation. Loss of peroxisome function increases membrane phosphatidic acid (PA) and recruits RhoGAPp190 during infection, inhibiting Rho1-mediated responses. Peroxisome-glycerophospholipid-Rho1 signaling also controls cytoskeleton remodeling in mouse immune cells. While high levels of PA in cells without peroxisomes inhibit inflammatory phenotypes, large numbers of peroxisomes and low amounts of cell membrane PA are features of immune cells from patients with inflammatory Kawasaki disease and juvenile idiopathic arthritis. Our findings reveal potential metabolic markers and therapeutic targets for immune diseases and metabolic disorders.
Collapse
Affiliation(s)
- Anu S Nath
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Brendon D Parsons
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Stephanie Makdissi
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Rebecca L Chilvers
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Yizhu Mu
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Ceileigh M Weaver
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Irene Euodia
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Katherine A Fitze
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Juyang Long
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Michal Scur
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Duncan P Mackenzie
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Andrew P Makrigiannis
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Nicolas Pichaud
- Université de Moncton, Department of Chemistry and Biochemistry, Moncton, NB E1A 3E9, Canada; New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB E1A 3E9, Canada
| | - Luc H Boudreau
- Université de Moncton, Department of Chemistry and Biochemistry, Moncton, NB E1A 3E9, Canada; New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB E1A 3E9, Canada
| | - Andrew J Simmonds
- University of Alberta, Department of Cell Biology, Edmonton, AB T6G 2H7, Canada
| | - Christine A Webber
- University of Alberta, Department of Cell Biology, Edmonton, AB T6G 2H7, Canada
| | - Beata Derfalvi
- Dalhousie University, Department of Pediatrics, Halifax, NS B3K 6R8, Canada
| | - Yannick Hammon
- INSERM au Centre d'Immunologie de Marseille Luminy, Marseille 13288, France
| | | | - Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada; Dalhousie University, Department of Pediatrics, Halifax, NS B3K 6R8, Canada.
| |
Collapse
|
35
|
Bosch M, Pol A. Eukaryotic lipid droplets: metabolic hubs, and immune first responders. Trends Endocrinol Metab 2022; 33:218-229. [PMID: 35065875 DOI: 10.1016/j.tem.2021.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
As major eukaryotic lipid storage organelles, lipid droplets (LDs) are metabolic hubs coordinating energy flux and building block distribution. Infectious pathogens often promote accumulation and physically interact with LDs. The most accepted view is that host LDs are hijacked by invaders to draw on nutrients for host colonisation. However, unique traits such as biogenesis plasticity, dynamic proteome, signalling capacity, and ability to interact with other organelles endow LDs with competencies to face complex biological challenges. Here, we focus on published data suggesting that LDs are not usurped organelles but innate immunity first responders. By comparison with analogous mechanisms activated on LDs in nutrient-poor environments, our review supports the hypothesis that host LDs actively participate in immunometabolism, immune signalling, and microbial killing.
Collapse
Affiliation(s)
- Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona
| |
Collapse
|
36
|
Hänschke L, Heier C, Maya Palacios SJ, Özek HE, Thiele C, Bauer R, Kühnlein RP, Bülow MH. Drosophila Lipase 3 Mediates the Metabolic Response to Starvation and Aging. FRONTIERS IN AGING 2022; 3:800153. [PMID: 35821816 PMCID: PMC9261307 DOI: 10.3389/fragi.2022.800153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/13/2022] [Indexed: 05/23/2023]
Abstract
The human LIPA gene encodes for the enzyme lysosomal acid lipase, which hydrolyzes cholesteryl ester and triacylglycerol. Lysosomal acid lipase deficiency results in Wolman disease and cholesteryl ester storage disease. The Drosophila genome encodes for two LIPA orthologs, Magro and Lipase 3. Magro is a gut lipase that hydrolyzes triacylglycerides, while Lipase 3 lacks characterization based on mutant phenotypes. We found previously that Lipase 3 transcription is highly induced in mutants with defects in peroxisome biogenesis, but the conditions that allow a similar induction in wildtypic flies are not known. Here we show that Lipase 3 is drastically upregulated in starved larvae and starved female flies, as well as in aged male flies. We generated a lipase 3 mutant that shows sex-specific starvation resistance and a trend to lifespan extension. Using lipidomics, we demonstrate that Lipase 3 mutants accumulate phosphatidylinositol, but neither triacylglycerol nor diacylglycerol. Our study suggests that, in contrast to its mammalian homolog LIPA, Lipase 3 is a putative phospholipase that is upregulated under extreme conditions like prolonged nutrient deprivation and aging.
Collapse
Affiliation(s)
- Lea Hänschke
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Christoph Heier
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed- Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | | | - Huseyin Erdem Özek
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Christoph Thiele
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Reinhard Bauer
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Ronald P. Kühnlein
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed- Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Margret H. Bülow
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
37
|
Parra-Peralbo E, Talamillo A, Barrio R. Origin and Development of the Adipose Tissue, a Key Organ in Physiology and Disease. Front Cell Dev Biol 2022; 9:786129. [PMID: 34993199 PMCID: PMC8724577 DOI: 10.3389/fcell.2021.786129] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue is a dynamic organ, well known for its function in energy storage and mobilization according to nutrient availability and body needs, in charge of keeping the energetic balance of the organism. During the last decades, adipose tissue has emerged as the largest endocrine organ in the human body, being able to secrete hormones as well as inflammatory molecules and having an important impact in multiple processes such as adipogenesis, metabolism and chronic inflammation. However, the cellular progenitors, development, homeostasis and metabolism of the different types of adipose tissue are not fully known. During the last decade, Drosophila melanogaster has demonstrated to be an excellent model to tackle some of the open questions in the field of metabolism and development of endocrine/metabolic organs. Discoveries ranged from new hormones regulating obesity to subcellular mechanisms that regulate lipogenesis and lipolysis. Here, we review the available evidences on the development, types and functions of adipose tissue in Drosophila and identify some gaps for future research. This may help to understand the cellular and molecular mechanism underlying the pathophysiology of this fascinating key tissue, contributing to establish this organ as a therapeutic target.
Collapse
Affiliation(s)
| | - Ana Talamillo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
38
|
Sexual Dimorphism in Metabolic Responses to Western Diet in Drosophila melanogaster. Biomolecules 2021; 12:biom12010033. [PMID: 35053181 PMCID: PMC8774106 DOI: 10.3390/biom12010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity is a chronic disease affecting millions of people worldwide. The fruit fly (Drosophila melanogaster) is an interesting research model to study metabolic and transcriptomic responses to obesogenic diets. However, the sex-specific differences in these responses are still understudied and perhaps underestimated. In this study, we exposed adult male and female Dahomey fruit flies to a standard diet supplemented with sugar, fat, or a combination of both. The exposure to a diet supplemented with 10% sugar and 10% fat efficiently induced an increase in the lipid content in flies, a hallmark for obesity. This increase in lipid content was more prominent in males, while females displayed significant changes in glycogen content. A strong effect of the diets on the ovarian size and number of ma-ture oocytes was also present in females exposed to diets supplemented with fat and a combina-tion of fat and sugar. In both males and females, fat body morphology changed and was associ-ated with an increase in lipid content of fat cells in response to the diets. The expression of me-tabolism-related genes also displayed a strong sexually dimorphic response under normal condi-tions and in response to sugar and/or fat-supplemented diets. Here, we show that the exposure of adult fruit flies to an obesogenic diet containing both sugar and fat allowed studying sexual dimorphism in metabolism and the expression of genes regulating metabolism.
Collapse
|
39
|
Wang L, Lin J, Yu J, Yang K, Sun L, Tang H, Pan L. Downregulation of Perilipin1 by the Immune Deficiency Pathway Leads to Lipid Droplet Reconfiguration and Adaptation to Bacterial Infection in Drosophila. THE JOURNAL OF IMMUNOLOGY 2021; 207:2347-2358. [PMID: 34588219 DOI: 10.4049/jimmunol.2100343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
Lipid droplets (LDs), the highly dynamic intracellular organelles, are critical for lipid metabolism. Dynamic alterations in the configurations and functions of LDs during innate immune responses to bacterial infections and the underlying mechanisms, however, remain largely unknown. In this study, we trace the time-course morphology of LDs in fat bodies of Drosophila after transient bacterial infection. Detailed analysis shows that perilipin1 (plin1), a core gene involved in the regulation of LDs, is suppressed by the immune deficiency signaling, one major innate immune pathway in Drosophila During immune activation, downregulated plin1 promotes the enlargement of LDs, which in turn alleviates immune reaction-associated reactive oxygen species stress. Thus, the growth of LDs is likely an active adaptation to maintain redox homeostasis in response to immune deficiency activation. Therefore, our study provides evidence that plin1 serves as a modulator on LDs' reconfiguration in regulating infection-induced pathogenesis, and plin1 might be a potential therapeutic target for coordinating inflammation resolution and lipid metabolism.
Collapse
Affiliation(s)
- Lei Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,The Center for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Lin
- The Center for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Junjing Yu
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China; and
| | - Kaiyan Yang
- The Center for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Li Sun
- The Center for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hong Tang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China;
| | - Lei Pan
- The Center for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; .,University of Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Nazario-Yepiz NO, Fernández Sobaberas J, Lyman R, Campbell MR, Shankar V, Anholt RRH, Mackay TFC. Physiological and metabolomic consequences of reduced expression of the Drosophila brummer triglyceride Lipase. PLoS One 2021; 16:e0255198. [PMID: 34547020 PMCID: PMC8454933 DOI: 10.1371/journal.pone.0255198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
Disruption of lipolysis has widespread effects on intermediary metabolism and organismal phenotypes. Defects in lipolysis can be modeled in Drosophila melanogaster through genetic manipulations of brummer (bmm), which encodes a triglyceride lipase orthologous to mammalian Adipose Triglyceride Lipase. RNAi-mediated knock-down of bmm in all tissues or metabolic specific tissues results in reduced locomotor activity, altered sleep patterns and reduced lifespan. Metabolomic analysis on flies in which bmm is downregulated reveals a marked reduction in medium chain fatty acids, long chain saturated fatty acids and long chain monounsaturated and polyunsaturated fatty acids, and an increase in diacylglycerol levels. Elevated carbohydrate metabolites and tricarboxylic acid intermediates indicate that impairment of fatty acid mobilization as an energy source may result in upregulation of compensatory carbohydrate catabolism. bmm downregulation also results in elevated levels of serotonin and dopamine neurotransmitters, possibly accounting for the impairment of locomotor activity and sleep patterns. Physiological phenotypes and metabolomic changes upon reduction of bmm expression show extensive sexual dimorphism. Altered metabolic states in the Drosophila model are relevant for understanding human metabolic disorders, since pathways of intermediary metabolism are conserved across phyla.
Collapse
Affiliation(s)
- Nestor O. Nazario-Yepiz
- Department of Biochemistry and Genetics and Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Jaime Fernández Sobaberas
- Department of Biochemistry and Genetics and Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Roberta Lyman
- Department of Biochemistry and Genetics and Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Marion R. Campbell
- Department of Biochemistry and Genetics and Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Vijay Shankar
- Department of Biochemistry and Genetics and Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Robert R. H. Anholt
- Department of Biochemistry and Genetics and Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Trudy F. C. Mackay
- Department of Biochemistry and Genetics and Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| |
Collapse
|
41
|
Akhmetova K, Balasov M, Chesnokov I. Drosophila STING protein has a role in lipid metabolism. eLife 2021; 10:e67358. [PMID: 34467853 PMCID: PMC8443252 DOI: 10.7554/elife.67358] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Stimulator of interferon genes (STING) plays an important role in innate immunity by controlling type I interferon response against invaded pathogens. In this work, we describe a previously unknown role of STING in lipid metabolism in Drosophila. Flies with STING deletion are sensitive to starvation and oxidative stress, have reduced lipid storage, and downregulated expression of lipid metabolism genes. We found that Drosophila STING interacts with lipid synthesizing enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN). ACC and FASN also interact with each other, indicating that all three proteins may be components of a large multi-enzyme complex. The deletion of Drosophila STING leads to disturbed ACC localization and decreased FASN enzyme activity. Together, our results demonstrate a previously undescribed role of STING in lipid metabolism in Drosophila.
Collapse
Affiliation(s)
- Katarina Akhmetova
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of MedicineBirminghamUnited States
| | - Maxim Balasov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of MedicineBirminghamUnited States
| | - Igor Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of MedicineBirminghamUnited States
| |
Collapse
|
42
|
Bosch M, Sweet MJ, Parton RG, Pol A. Lipid droplets and the host-pathogen dynamic: FATal attraction? J Cell Biol 2021; 220:e202104005. [PMID: 34165498 PMCID: PMC8240858 DOI: 10.1083/jcb.202104005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
In the ongoing conflict between eukaryotic cells and pathogens, lipid droplets (LDs) emerge as a choke point in the battle for nutrients. While many pathogens seek the lipids stored in LDs to fuel an expensive lifestyle, innate immunity rewires lipid metabolism and weaponizes LDs to defend cells and animals. Viruses, bacteria, and parasites directly and remotely manipulate LDs to obtain substrates for metabolic energy, replication compartments, assembly platforms, membrane blocks, and tools for host colonization and/or evasion such as anti-inflammatory mediators, lipoviroparticles, and even exosomes. Host LDs counterattack such advances by synthesizing bioactive lipids and toxic nucleotides, organizing immune signaling platforms, and recruiting a plethora of antimicrobial proteins to provide a front-line defense against the invader. Here, we review the current state of this conflict. We will discuss why, when, and how LDs efficiently coordinate and precisely execute a plethora of immune defenses. In the age of antimicrobial resistance and viral pandemics, understanding innate immune strategies developed by eukaryotic cells to fight and defeat dangerous microorganisms may inform future anti-infective strategies.
Collapse
Affiliation(s)
- Marta Bosch
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Matthew J. Sweet
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
43
|
Abstract
The gut microbiota affects the physiology and metabolism of animals and its alteration can lead to diseases such as gut dysplasia or metabolic disorders. Several reports have shown that the immune system plays an important role in shaping both bacterial community composition and abundance in Drosophila, and that immune deficit, especially during aging, negatively affects microbiota richness and diversity. However, there has been little study at the effector level to demonstrate how immune pathways regulate the microbiota. A key set of Drosophila immune effectors are the antimicrobial peptides (AMPs), which confer defense upon systemic infection. AMPs and lysozymes, a group of digestive enzymes with antimicrobial properties, are expressed in the gut and are good candidates for microbiota regulation. Here, we take advantage of the model organism Drosophila melanogaster to investigate the role of AMPs and lysozymes in regulation of gut microbiota structure and diversity. Using flies lacking AMPs and newly generated lysozyme mutants, we colonized gnotobiotic flies with a defined set of commensal bacteria and analyzed changes in microbiota composition and abundance in vertical transmission and aging contexts through 16S rRNA gene amplicon sequencing. Our study shows that AMPs and, to a lesser extent, lysozymes are necessary to regulate the total and relative abundance of bacteria in the gut microbiota. We also decouple the direct function of AMPs from the immune deficiency (IMD) signaling pathway that regulates AMPs but also many other processes, more narrowly defining the role of these effectors in the microbial dysbiosis observed in IMD-deficient flies upon aging.
Collapse
|
44
|
Heier C, Klishch S, Stilbytska O, Semaniuk U, Lushchak O. The Drosophila model to interrogate triacylglycerol biology. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158924. [PMID: 33716135 DOI: 10.1016/j.bbalip.2021.158924] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022]
Abstract
The deposition of storage fat in the form of triacylglycerol (TAG) is an evolutionarily conserved strategy to cope with fluctuations in energy availability and metabolic stress. Organismal TAG storage in specialized adipose tissues provides animals a metabolic reserve that sustains survival during development and starvation. On the other hand, excessive accumulation of adipose TAG, defined as obesity, is associated with an increasing prevalence of human metabolic diseases. During the past decade, the fruit fly Drosophila melanogaster, traditionally used in genetics and developmental biology, has been established as a versatile model system to study TAG metabolism and the etiology of lipid-associated metabolic diseases. Similar to humans, Drosophila TAG homeostasis relies on the interplay of organ systems specialized in lipid uptake, synthesis, and processing, which are integrated by an endocrine network of hormones and messenger molecules. Enzymatic formation of TAG from sugar or dietary lipid, its storage in lipid droplets, and its mobilization by lipolysis occur via mechanisms largely conserved between Drosophila and humans. Notably, dysfunctional Drosophila TAG homeostasis occurs in the context of aging, overnutrition, or defective gene function, and entails tissue-specific and organismal pathologies that resemble human disease. In this review, we summarize the physiology and biochemistry of TAG in Drosophila and outline the potential of this organism as a model system to understand the genetic and dietary basis of TAG storage and TAG-related metabolic disorders.
Collapse
Affiliation(s)
- Christoph Heier
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstrasse 50, A-8010 Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Svitlana Klishch
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Olha Stilbytska
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Uliana Semaniuk
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
45
|
Vandehoef C, Molaei M, Karpac J. Dietary Adaptation of Microbiota in Drosophila Requires NF-κB-Dependent Control of the Translational Regulator 4E-BP. Cell Rep 2021; 31:107736. [PMID: 32521261 DOI: 10.1016/j.celrep.2020.107736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/22/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Dietary nutrients shape complex interactions between hosts and their commensal gut bacteria, further promoting flexibility in host-microbiota associations that can drive nutritional symbiosis. However, it remains less clear if diet-dependent host signaling mechanisms also influence these associations. Using Drosophila, we show here that nuclear factor κB (NF-κB)/Relish, an innate immune transcription factor emerging as a signaling node linking nutrient-immune-metabolic interactions, is vital to adapt gut microbiota species composition to host diet macronutrient composition. We find that Relish is required within midgut enterocytes to amplify host-Lactobacillus associations, an important bacterial mediator of nutritional symbiosis, and thus modulate microbiota composition in response to dietary adaptation. Relish limits diet-dependent transcriptional inducibility of the cap-dependent translation inhibitor 4E-BP/Thor to control microbiota composition. Furthermore, maintaining cap-dependent translation in response to dietary adaptation is critical to amplify host-Lactobacillus associations. These results highlight that NF-κB-dependent host signaling mechanisms, in coordination with host translation control, shape diet-microbiota interactions.
Collapse
Affiliation(s)
- Crissie Vandehoef
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Maral Molaei
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Jason Karpac
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA.
| |
Collapse
|
46
|
Bajgar A, Krejčová G, Doležal T. Polarization of Macrophages in Insects: Opening Gates for Immuno-Metabolic Research. Front Cell Dev Biol 2021; 9:629238. [PMID: 33659253 PMCID: PMC7917182 DOI: 10.3389/fcell.2021.629238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance and cachexia represent severe metabolic syndromes accompanying a variety of human pathological states, from life-threatening cancer and sepsis to chronic inflammatory states, such as obesity and autoimmune disorders. Although the origin of these metabolic syndromes has not been fully comprehended yet, a growing body of evidence indicates their possible interconnection with the acute and chronic activation of an innate immune response. Current progress in insect immuno-metabolic research reveals that the induction of insulin resistance might represent an adaptive mechanism during the acute phase of bacterial infection. In Drosophila, insulin resistance is induced by signaling factors released by bactericidal macrophages as a reflection of their metabolic polarization toward aerobic glycolysis. Such metabolic adaptation enables them to combat the invading pathogens efficiently but also makes them highly nutritionally demanding. Therefore, systemic metabolism has to be adjusted upon macrophage activation to provide them with nutrients and thus support the immune function. That anticipates the involvement of macrophage-derived systemic factors mediating the inter-organ signaling between macrophages and central energy-storing organs. Although it is crucial to coordinate the macrophage cellular metabolism with systemic metabolic changes during the acute phase of bacterial infection, the action of macrophage-derived factors may become maladaptive if chronic or in case of infection by an intracellular pathogen. We hypothesize that insulin resistance evoked by macrophage-derived signaling factors represents an adaptive mechanism for the mobilization of sources and their preferential delivery toward the activated immune system. We consider here the validity of the presented model for mammals and human medicine. The adoption of aerobic glycolysis by bactericidal macrophages as well as the induction of insulin resistance by macrophage-derived factors are conserved between insects and mammals. Chronic insulin resistance is at the base of many human metabolically conditioned diseases such as non-alcoholic steatohepatitis, atherosclerosis, diabetes, and cachexia. Therefore, revealing the original biological relevance of cytokine-induced insulin resistance may help to develop a suitable strategy for treating these frequent diseases.
Collapse
Affiliation(s)
- Adam Bajgar
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| | - Gabriela Krejčová
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| | - Tomáš Doležal
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
47
|
Polan DM, Alansari M, Lee B, Grewal SS. Early-life hypoxia alters adult physiology and reduces stress resistance and lifespan in Drosophila. J Exp Biol 2020; 223:jeb226027. [PMID: 32988998 PMCID: PMC10668336 DOI: 10.1242/jeb.226027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/18/2020] [Indexed: 08/25/2023]
Abstract
In many animals, short-term fluctuations in environmental conditions in early life often exert long-term effects on adult physiology. In Drosophila, one ecologically relevant environmental variable is hypoxia. Drosophila larvae live on rotting, fermenting food rich in microorganisms, an environment characterized by low ambient oxygen. They have therefore evolved to tolerate hypoxia. Although the acute effects of hypoxia in larvae have been well studied, whether early-life hypoxia affects adult physiology and fitness is less clear. Here, we show that Drosophila exposed to hypoxia during their larval period subsequently show reduced starvation stress resistance and shorter lifespan as adults, with these effects being stronger in males. We find that these effects are associated with reduced whole-body insulin signaling but elevated TOR kinase activity, a manipulation known to reduce lifespan. We also identify a sexually dimorphic effect of larval hypoxia on adult nutrient storage and mobilization. Thus, we find that males, but not females, show elevated levels of lipids and glycogen. Moreover, we see that both males and females exposed to hypoxia as larvae show defective lipid mobilization upon starvation stress as adults. These data demonstrate how early-life hypoxia can exert persistent, sexually dimorphic, long-term effects on Drosophila adult physiology and lifespan.
Collapse
Affiliation(s)
- Danielle M Polan
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| | - Mohammed Alansari
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| | - Byoungchun Lee
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| | - Savraj S Grewal
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
48
|
Koyama T, Texada MJ, Halberg KA, Rewitz K. Metabolism and growth adaptation to environmental conditions in Drosophila. Cell Mol Life Sci 2020; 77:4523-4551. [PMID: 32448994 PMCID: PMC7599194 DOI: 10.1007/s00018-020-03547-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/19/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Organisms adapt to changing environments by adjusting their development, metabolism, and behavior to improve their chances of survival and reproduction. To achieve such flexibility, organisms must be able to sense and respond to changes in external environmental conditions and their internal state. Metabolic adaptation in response to altered nutrient availability is key to maintaining energy homeostasis and sustaining developmental growth. Furthermore, environmental variables exert major influences on growth and final adult body size in animals. This developmental plasticity depends on adaptive responses to internal state and external cues that are essential for developmental processes. Genetic studies have shown that the fruit fly Drosophila, similarly to mammals, regulates its metabolism, growth, and behavior in response to the environment through several key hormones including insulin, peptides with glucagon-like function, and steroid hormones. Here we review emerging evidence showing that various environmental cues and internal conditions are sensed in different organs that, via inter-organ communication, relay information to neuroendocrine centers that control insulin and steroid signaling. This review focuses on endocrine regulation of development, metabolism, and behavior in Drosophila, highlighting recent advances in the role of the neuroendocrine system as a signaling hub that integrates environmental inputs and drives adaptive responses.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth A Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
49
|
Sellin J, Fülle JB, Thiele C, Bauer R, Bülow MH. Free fatty acid determination as a tool for modeling metabolic diseases in Drosophila. JOURNAL OF INSECT PHYSIOLOGY 2020; 126:104090. [PMID: 32730782 DOI: 10.1016/j.jinsphys.2020.104090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Free or non-esterified fatty acids are the product of lipolysis of storage fat, i.e. triacylglyceroles. When the amount of fat exceeds the capacity of lipid-storing organs, free fatty acids affect and damage other non-lipid-storing organs. This process is termed lipotoxicity. Within a cell, free fatty acids can damage mitochondria, and lipotoxicity-induced mitochondrial damage has been associated recently with Peroxisomal Biogenesis Disorders. Drosophila melanogaster has a rising popularity as a model organism for metabolic diseases, but an optimized assay for measuring free fatty acids in Drosophila tissue samples is missing. Here we present a detailed protocol highlighting technical requirements and pitfalls to determine free fatty acids in samples of Drosophila tissue. The colorimetric assay allows the reproducible and cost-efficient measurement of free fatty acids in a 96 well plate format. We used our assay to determine changes in free fatty acid levels in different developmental stages and feeding conditions, and found that larvae and adults have different patterns of free fatty acid formation during starvation. Our assay is a valuable tool in the modeling of metabolic diseases with Drosophila melanogaster.
Collapse
Affiliation(s)
- Julia Sellin
- University of Bonn, Life & Medical Sciences Institute (LIMES), Molecular Developmental Biology, Carl-Troll-Straße 31, 53115 Bonn, Germany.
| | - Judith B Fülle
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK; Skin Research Institute of Singapore, A*STAR, 8A Biomedical Grove, Immunos #06-06, Singapore, Singapore
| | - Christoph Thiele
- University of Bonn, Life & Medical Sciences Institute (LIMES), Biochemistry & Cell Biology of Lipids, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Reinhard Bauer
- University of Bonn, Life & Medical Sciences Institute (LIMES), Molecular Developmental Biology, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Margret H Bülow
- University of Bonn, Life & Medical Sciences Institute (LIMES), Molecular Developmental Biology, Carl-Troll-Straße 31, 53115 Bonn, Germany.
| |
Collapse
|
50
|
Tolerance to Hypoxia Is Promoted by FOXO Regulation of the Innate Immunity Transcription Factor NF-κB/Relish in Drosophila. Genetics 2020; 215:1013-1025. [PMID: 32513813 DOI: 10.1534/genetics.120.303219] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Exposure of tissues and organs to low oxygen (hypoxia) occurs in both physiological and pathological conditions in animals. Under these conditions, organisms have to adapt their physiology to ensure proper functioning and survival. Here, we define a role for the transcription factor Forkhead Box-O (FOXO) as a mediator of hypoxia tolerance in Drosophila We find that upon hypoxia exposure, FOXO transcriptional activity is rapidly induced in both larvae and adults. Moreover, we see that foxo mutant animals show misregulated glucose metabolism in low oxygen and subsequently exhibit reduced hypoxia survival. We identify the innate immune transcription factor, NF-κB/Relish, as a key FOXO target in the control of hypoxia tolerance. We find that expression of Relish and its target genes is increased in a FOXO-dependent manner in hypoxia, and that relish mutant animals show reduced survival in hypoxia. Together, these data indicate that FOXO is a hypoxia-inducible factor that mediates tolerance to low oxygen by inducing immune-like responses.
Collapse
|