1
|
Florêncio GP, Xavier AR, Natal ACDC, Sadoyama LP, Röder DVDDB, Menezes RDP, Sadoyama Leal G, Patrizzi LJ, Pena GDG. Synergistic Effects of Probiotics and Lifestyle Interventions on Intestinal Microbiota Composition and Clinical Outcomes in Obese Adults. Metabolites 2025; 15:70. [PMID: 39997695 PMCID: PMC11857521 DOI: 10.3390/metabo15020070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Obesity is a growing global epidemic. The composition of the intestinal microbiota can be influenced by several factors. Studies highlight the role of intestinal bacteria in the pathophysiology of obesity. So, the objective of this study was to investigate whether the use of probiotics, together with healthy lifestyle habits, contributes to weight reduction in obese individuals by analyzing the intestinal microbiota profile. METHODS A prospective study was carried out with 45 adults with obesity. Participants underwent guidance on healthy lifestyle habits, received a probiotic component containing different microbiological strains and were followed for 60 days. Clinical parameters, body composition, biochemical analysis, and intestinal microbiota assessment were performed before and after treatment. After 60 days, it was observed that the bacterial strains present in the probiotic were present in the patients' intestinal microbiota. Participants also showed improvements in physical activity, sleep quality, and anxiety management, as well as changes in some eating habits, such as a reduction in the consumption of processed foods and a significant increase in water intake. RESULTS A reduction in BMI, fasting glucose, insulin, HOMA-IR, LDL cholesterol, and triglycerides was observed, in addition to an increase in HDL cholesterol, improvement in bowel movement frequency, and stool consistency. Analysis of the intestinal microbiota revealed an increase in microbial diversity and a better balance between the bacterial phyla Firmicutes and Bacteroidetes. CONCLUSIONS The changes related to improving the composition of the intestinal microbiota, dietary habits, increased physical activity, reduced anxiety, and better sleep quality have significantly contributed to weight loss and improvements in physiological parameters in obese individuals.
Collapse
Affiliation(s)
- Glauber Pimentel Florêncio
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Analicy Rodrigues Xavier
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Ana Catarina de Castro Natal
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Lorena Prado Sadoyama
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | | | - Ralciane de Paula Menezes
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405-318, MG, Brazil;
| | - Geraldo Sadoyama Leal
- Institute of Biotechnology, Federal University of Catalão, Catalão 75704-020, GO, Brazil;
| | - Lislei Jorge Patrizzi
- Department of Physiotherapy, Federal University of Triângulo Mineiro, Uberaba 38025-350, MG, Brazil;
| | - Geórgia das Graças Pena
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| |
Collapse
|
2
|
Savytska M, Kozyk M, Strubchevska K, Yosypenko K, Falalyeyeva T, Kobyliak N, Boccuto L, Pellicano R, Fagoonee S, Scarpellini E, Abenavoli L. Association between intestinal microflora and obesity. Minerva Gastroenterol (Torino) 2024; 70:342-352. [PMID: 36943206 DOI: 10.23736/s2724-5985.23.03379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Obesity has become one of modern society's most serious health problems. Studies from the last 30 years revealed a direct relationship between imbalanced energy intake and increased healthcare costs related to the treatment or management of obesity. Recent research has highlighted significant effects of gut microbial composition on obesity. We aimed to report the current knowledge on the definition, composition, and functions of intestinal microbiota. We have performed an extensive review of the literature searching for the following key words: metabolism, gut microbiota, dysbiosis, and obesity. There is evidence that an association between intestinal microbiota and obesity exists at any age. There are complex genetic, metabolic, and inflammatory mechanisms involved in the pathogenesis of obesity. Revision of indications for use of probiotics, prebiotics, and antibiotics in obese patients should be considered. Microbial composition of the gut may be an important factor involved in the development of obesity. Changes in the gut microbiota may result in changes in human metabolism and weight loss.
Collapse
Affiliation(s)
- Maryana Savytska
- Department of Normal Physiology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Marko Kozyk
- Corewell Health, William Beaumont Hospital, Royal Oak, MI, USA
| | | | - Kateryna Yosypenko
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Nazarii Kobyliak
- Medical Laboratory CSD, Kyiv, Ukraine
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Luigi Boccuto
- School of Nursing, Clemson University, Clemson, SC, USA
| | - Rinaldo Pellicano
- Unit of Gastroenterology, Molinette Hospital, Città della Salute e della Scienza, Turin, Italy -
| | - Sharmila Fagoonee
- National Research Council, Molecular Biotechnology Center, Institute of Biostructure and Bioimaging, Turin, Italy
| | - Emidio Scarpellini
- Department of Translational Research in Gastrointestinal Disorders (T.A.R.G.I.D.), Gasthuisberg University Hospital, KU Leuven, Leuven, Belgium
| | - Ludovico Abenavoli
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
3
|
Pires L, González-Paramás AM, Heleno SA, Calhelha RC. Exploring Therapeutic Advances: A Comprehensive Review of Intestinal Microbiota Modulators. Antibiotics (Basel) 2024; 13:720. [PMID: 39200020 PMCID: PMC11350912 DOI: 10.3390/antibiotics13080720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
The gut microbiota establishes a mutually beneficial relationship with the host starting from birth, impacting diverse metabolic and immunological processes. Dysbiosis, characterized by an imbalance of microorganisms, is linked to numerous medical conditions, including gastrointestinal disorders, cardiovascular diseases, and autoimmune disorders. This imbalance promotes the proliferation of toxin-producing bacteria, disrupts the host's equilibrium, and initiates inflammation. Genetic factors, dietary choices, and drug use can modify the gut microbiota. However, there is optimism. Several therapeutic approaches, such as probiotics, prebiotics, synbiotics, postbiotics, microbe-derived products, and microbial substrates, aim to alter the microbiome. This review thoroughly explores the therapeutic potential of these microbiota modulators, analysing recent studies to evaluate their efficacy and limitations. It underscores the promise of microbiota-based therapies for treating dysbiosis-related conditions. This article aims to ensure practitioners feel well-informed and up to date on the most influential methods in this evolving field by providing a comprehensive review of current research.
Collapse
Affiliation(s)
- Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
4
|
Nemati M, Ebrahimi B, Montazeri-Najafabady N. Probiotics ameliorate endocrine disorders via modulating inflammatory pathways: a systematic review. GENES & NUTRITION 2024; 19:7. [PMID: 38504163 PMCID: PMC10953159 DOI: 10.1186/s12263-024-00743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
Probiotics has offered a new prospect to treat and manage a variety of endocrine disorders such as obesity, diabetes, non- alcoholic fatty liver disease and metabolic syndrome. The precise mechanisms by which probiotics exert their beneficial effects on endocrine disorders and its associated problems are still indecisive. It seems that regulating the immune system and suppressing pro-inflammatory pathways like tumor necrosis factor-α and interleukin-6 or triggering anti-inflammatory pathways like interleukin-4 and 10 may be one of the potential mechanisms in the managing of endocrine disorders. In this systematic review, we hypothesized that various probiotic strains (Lactobacillus, Biofidiobacteria, Streptococcus, Entrococcus, Clostridium, and Bacillus) alone or in combination with each other could manage endocrine disorders via modulating inflammatory pathways such as suppressing pro-inflammatory cytokines (IL-6, IL-12, TNF-α, TNF-β, NFκB, and MCP-1), stimulating anti-inflammatory cytokines (IL-4,IL-6, IL-22, IL-23, IL-33, and TGF-β) and maintaining other factors like C-reactive protein, Toll like receptors, LPS, and NK cells. Data source this search was performed in PubMed and Scopus. Both human and animal studies were included. Among more than 15,000 papers, 25 studies were identified as eligible for more assessments. Quality assessment of the studies was cheeked by two researchers independently by title and abstract screening, then article which have inclusion criteria were included, and data retrieved from the included full text studies as the authors had originally reported. Results specified that Lactobacillus has been the most widely used probiotic as well as which one exhibiting the extend of the therapeutic effects on endocrine disorders, especially obesity by modulating immune responses. Also, most studies have revealed that probiotics through suppressing pro-inflammatory pathways specially via reducing levels TNF-α cytokine exhibited protective or beneficial effects on endocrine diseases particularly obesity as well as through decreasing level of IL-6 induced therapeutic effects in diabetes. This systematic review suggests that probiotics could ameliorate endocrine disorders via their immunomodulatory effects.
Collapse
Affiliation(s)
- Marzieh Nemati
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Ebrahimi
- Geriatric Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nima Montazeri-Najafabady
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Zheng Y, Zhang S, Zhang Z, Zhang T, Teng X, Xiao G, Huang S. Isolation of Lactobacillus acidophilus strain and its anti-obesity effect in a diet induced obese murine model. Lett Appl Microbiol 2024; 77:ovae021. [PMID: 38400571 DOI: 10.1093/lambio/ovae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
Intestinal microbiota is a potential determinant of obesity, with probiotic bile salt hydrolase (BSH) as one of the key mechanisms in the anti-obesity effects. In this study, we present a Lactobacillus acidophilus GOLDGUT-LA100 (LA100) with high BSH activity, good gastric acid and bile salt tolerance, and a potential anti-obesity effect. LA100's anti-obesity effects were evaluated in a high-fat diet-induced, obese mouse model. LA100 administration alleviates high-fat diet-induced pathophysiological symptoms, such as body weight gain, high serum glucose and cholesterol level, hepatic lipid accumulation, and adipose inflammation. These results demonstrate concrete anti-obesity benefit in animal models and show promising applications in future clinical studies.
Collapse
Affiliation(s)
- Yanyi Zheng
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd, Shenzhen 518000, China
| | - Silu Zhang
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd, Shenzhen 518000, China
| | - Zhizhu Zhang
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd, Shenzhen 518000, China
| | | | - Xin Teng
- Bluepha Co., Ltd, Shenzhen 518000, China
| | - Guoxun Xiao
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd, Shenzhen 518000, China
| | - Song Huang
- Bluepha Co., Ltd, Shenzhen 518000, China
- Department of Chemical and Biological Engineering, Xiamen University, Xiamen 361102, China
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Apalowo OE, Adegoye GA, Obuotor TM. Microbial-Based Bioactive Compounds to Alleviate Inflammation in Obesity. Curr Issues Mol Biol 2024; 46:1810-1831. [PMID: 38534735 DOI: 10.3390/cimb46030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
The increased prevalence of obesity with several other metabolic disorders, including diabetes and non-alcoholic fatty liver disease, has reached global pandemic proportions. Lifestyle changes may result in a persistent positive energy balance, hastening the onset of these age-related disorders and consequently leading to a diminished lifespan. Although suggestions have been raised on the possible link between obesity and the gut microbiota, progress has been hampered due to the extensive diversity and complexities of the gut microbiota. Being recognized as a potential biomarker owing to its pivotal role in metabolic activities, the dysregulation of the gut microbiota can give rise to a persistent low-grade inflammatory state associated with chronic diseases during aging. This chronic inflammatory state, also known as inflammaging, induced by the chronic activation of the innate immune system via the macrophage, is controlled by the gut microbiota, which links nutrition, metabolism, and the innate immune response. Here, we present the functional roles of prebiotics, probiotics, synbiotics, and postbiotics as bioactive compounds by underscoring their putative contributions to (1) the reduction in gut hyperpermeability due to lipopolysaccharide (LPS) inactivation, (2) increased intestinal barrier function as a consequence of the upregulation of tight junction proteins, and (3) inhibition of proinflammatory pathways, overall leading to the alleviation of chronic inflammation in the management of obesity.
Collapse
Affiliation(s)
- Oladayo Emmanuel Apalowo
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Grace Adeola Adegoye
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA
| | | |
Collapse
|
7
|
Mittal RK, Mishra R, Sharma V, Purohit P. Bioactive Exploration in Functional Foods: Unlocking Nature's Treasures. Curr Pharm Biotechnol 2024; 25:1419-1435. [PMID: 38031768 DOI: 10.2174/0113892010282580231120041659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Functional foods offer an appealing way to improve health and prevent chronic diseases, and this subject has received much attention lately. They are effective in preventing chronic diseases like cancer, diabetes, heart disease, and obesity, according to research. OBJECTIVE This work presents an in-depth analysis of functional foods, covering key challenges from a scientific, legal, and commercial perspective. METHODS Multiple databases were searched to find studies on functional foods included in the systematic literature review. Various aspects of functional foods, from their classification, impact on human wellness, effectiveness in inhibiting chronic diseases, the regulatory environment, global market trends, and industry challenges, are all clarified in this thorough review. RESULTS This study aims to enhance understanding and establish a pathway for functional foods to be acknowledged as valid choices in the field of dietary supplements. It provides a thorough investigation of bioactive compounds present in functional foods, including but not limited to polyphenols, carotenoids, omega fatty acids, prebiotics, probiotics, and dietary fiber, along with an overview of their potential to mitigate chronic illnesses. We engage in an in-depth exploration of regulatory frameworks, shed light on groundbreaking research advancements, and meticulously examine strategies for commercialization and the variety of global challenges that accompany them. Establishing scientific consensus, navigating complex regulatory processes, dealing with skeptical consumers, and rising levels of competition are all problems that need to be solved in this field. CONCLUSION The field of functional foods can advance further, promoting better public health outcomes, by deeply comprehending and addressing these complex dimensions.
Collapse
Affiliation(s)
- Ravi K Mittal
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Raghav Mishra
- Department of Pharmacy, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Vikram Sharma
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Priyank Purohit
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248002, India
| |
Collapse
|
8
|
Cho H, Jo M, Oh H, Lee Y, Park Y. Synergistic antidepressant-like effect of n-3 polyunsaturated fatty acids and probiotics through the brain-gut axis in rats exposed to chronic mild stress. J Nutr Biochem 2023; 116:109326. [PMID: 36963732 DOI: 10.1016/j.jnutbio.2023.109326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
N-3 polyunsaturated fatty acids (PUFA) and probiotics have antidepressant-like effects, but the underlying mechanisms are unclear. We hypothesized that n-3 PUFA combined with live and dead probiotics synergistically improves depression by modulating the hypothalamic-pituitary-adrenal (HPA) axis and serotonergic pathways through the brain-gut axis. Rats were randomly divided into seven groups (n = 8/group): non-chronic mild stress (CMS) with n-6 PUFA, CMS with n-3 PUFA, n-6 PUFA, live probiotics, dead probiotics, n-3 PUFA and live probiotics, and n-3 PUFA and dead probiotics. Diets of n-6 and n-3 PUFA and oral supplementation of live and dead probiotics were provided for 12 weeks, and CMS was performed for the last 5 weeks. N-3 PUFA and probiotics improved depressive behaviors and modulated the brain and gut HPA axis by synergistically increasing glucocorticoid receptor expression and decreasing corticotropin-releasing factor expression and blood levels of adrenocorticotropic hormone and corticosterone. N-3 PUFA and probiotics upregulated the brain serotonergic pathway through serotonin levels and expression of brain-derived neurotrophic factor, phosphorylated cAMP response binding protein, and 5-hydroxytryptamine 1A receptor while downregulating the gut serotonergic pathway. Furthermore, n-3 PUFA and probiotics increased the abundance of Ruminococcaceae, brain and gut short chain fatty acid levels, and occludin expression while decreasing the expression of tumor necrosis factor-α, interleukin-1β, and prostaglandin E2 and blood lipopolysaccharides levels. There was no significant difference between the live and dead probiotics. In conclusion, n-3 PUFA and probiotics had synergistic antidepressant-like effects on the HPA axis and serotonergic pathways of the brain and gut through the brain-gut axis.
Collapse
Affiliation(s)
- Hyunji Cho
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea
| | - Miyea Jo
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea
| | - Haemin Oh
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea
| | - Yunjung Lee
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
9
|
Rudyk M, Hurmach Y, Serhiichuk T, Akulenko I, Skivka L, Berehova T, Ostapchenko L. Multi-probiotic consumption sex-dependently interferes with MSG-induced obesity and concomitant phagocyte pro-inflammatory polarization in rats: Food for thought about personalized nutrition. Heliyon 2023; 9:e13381. [PMID: 36816299 PMCID: PMC9932736 DOI: 10.1016/j.heliyon.2023.e13381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Epidemic scope which obesity has reached in many countries necessitates shifting the emphasis in medicine from traditional reaction to individualized and personalized prevention. Numerous trials convincingly prove sexual dimorphism of obesity in morbidity, pathophysiology, comorbidity, outcomes and prophylaxis efficacy. Obesity is characterized by chronic systemic low-grade inflammation that creates the preconditions for the emergence of numerous comorbidities. Leading role in the initiation, propagation and resolution of inflammation belongs to tissue resident and circulating phagocytes. The outcome of inflammation largely depends on phagocyte functional polarization, which in turn is governed by environmental stimuli. Gut microbiota (GM), whose disturbances are one of the key pathogenetic features in obesity, substantially affect phagocyte functions and can either aggravate or calm obesity-associated inflammation. Probiotics possess promising physiological functions, including microbiota-restoring and anti-inflammatory traits, that may possibly help prevent obesity. However, sex-specific effects of probiotic supplementation for targeted obesity prevention remain unknown. The aim of the current study was aimed to compare the effect of multi-probiotic preparation used in prophylactic regimen on the adiposity, profile of culturable GM and its short-chain fatty acids as well as on functional profile of phagocytes from different locations in male and female rats with monosodium glutamate (MSG)-induced obesity. Obesity was induced by neonatal MSG injections in male and female rats, who were given the multi-species probiotic during juvenile and adult developmental stages. Culturable fecal and mucosa-associated microbiota of the intestine were examined using selective diagnostic media. Short-chain fatty acid profile in fecal samples was determined by GC-MS. Phagocyte functional profile was evaluated using flow cytometry and colorimetric methods. Probiotic supplementation after the administration of MSG prevented weight gain and fat accumulation, inflammatory phagocyte activation and alterations in GM in female rats. In male MSG-injected rats, probiotic supplementation restricted but did not prevent weight gain and fat deposition, alleviated but did not prevent systemic inflammation, prevented the alterations in GM, but with residual imbalance in the ratio of obligate anaerobic to facultative anaerobic bacteria. Our findings emphasize the necessity of sex-centered approaches to the prophylactic use of probiotics in obesity in the context of predictive preventive and personalized medicine.
Collapse
Affiliation(s)
- Mariia Rudyk
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine,Corresponding author.
| | - Yevheniia Hurmach
- Bogomolets National Medical University, 13, T. Shevchenko Blvd, Kyiv, 01601, Ukraine
| | - Tetiana Serhiichuk
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine
| | - Iryna Akulenko
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine
| | - Larysa Skivka
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine
| | - Tetiana Berehova
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine
| | - Liudmyla Ostapchenko
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine
| |
Collapse
|
10
|
Brito Sampaio K, Luiz de Brito Alves J, Mangueira do Nascimento Y, Fechine Tavares J, Sobral da Silva M, dos Santos Nascimento D, dos Santos Lima M, Priscila de Araújo Rodrigues N, Fernandes Garcia E, Leite de Souza E. Nutraceutical formulations combining Limosilactobacillus fermentum, quercetin, and or resveratrol with beneficial impacts on the abundance of intestinal bacterial populations, metabolite production, and antioxidant capacity during colonic fermentation. Food Res Int 2022; 161:111800. [DOI: 10.1016/j.foodres.2022.111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
|
11
|
Kobyliak N, Falalyeyeva T, Kyriachenko Y, Tseyslyer Y, Kovalchuk O, Hadiliia O, Eslami M, Yousefi B, Abenavoli L, Fagoonee S, Pellicano R. Akkermansia muciniphila as a novel powerful bacterial player in the treatment of metabolic disorders. Minerva Endocrinol (Torino) 2022; 47:242-252. [PMID: 35103461 DOI: 10.23736/s2724-6507.22.03752-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Akkermansia muciniphila (A. muciniphila) is a mucin-degrading bacterium that commonly lives in the intestinal mucus layer. It is normally detected in human faecal specimens and is one of the few bacteria potentially associated to obesity development. In this narrative review, possible mechanisms that support how A. muciniphila is implicated in the pathogenesis of obesity and metabolic-associated disease are described with the evaluation of its role as an intermediary or independent agent whose manipulation could be useful in the management of metabolic disorders. The ampleness of A. muciniphila is notably diminished in obesity, type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), cardiometabolic diseases and low-grade inflammation. Furthermore, an inverse relationship between A. muciniphila, body weight and insulin sensitivity has been observed in both humans and animals. Antidiabetic drugs, gastric bypass surgery, prebiotics and biologically active compounds, such as polyphenols or saponins, have been shown to be associated with A. muciniphila relative abundance and thus could have favourable effects on metabolic disorders. Furthermore, A. muciniphila supplementation alone has been correlated with weight reduction and improvement of metabolic disorders, including fat mass gain, adipose tissue inflammation, metabolic endotoxaemia, and insulin resistance. Nevertheless, since the primary beneficial impacts of this bacterium have been predominantly investigated in various preclinical models, these results need to be confirmed in randomized clinical trials.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine -
- Medical Laboratory, CSD Health Care, Kyiv, Ukraine -
| | - Tetyana Falalyeyeva
- Medical Laboratory, CSD Health Care, Kyiv, Ukraine
- Taras Shevchenko National University, Kyiv, Ukraine
| | | | | | - Oleksandr Kovalchuk
- Taras Shevchenko National University, Kyiv, Ukraine
- Department of Human Anatomy, Bogomolets National Medical University, Kyiv, Ukraine
| | | | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ludovico Abenavoli
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Sharmila Fagoonee
- Institute of Biostructures and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Rinaldo Pellicano
- Unit of Gastroenterology, Molinette-S. Giovanni Antica Sede Hospital, Turin, Italy
| |
Collapse
|
12
|
Hor PK, Pal S, Mondal J, Halder SK, Ghosh K, Santra S, Ray M, Goswami D, Chakrabarti S, Singh S, Dwivedi SK, Takó M, Bera D, Mondal KC. Antiobesity, Antihyperglycemic, and Antidepressive Potentiality of Rice Fermented Food Through Modulation of Intestinal Microbiota. Front Microbiol 2022; 13:794503. [PMID: 35607594 PMCID: PMC9122802 DOI: 10.3389/fmicb.2022.794503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
The present study has been aimed at evaluating the antiobesity, antihyperglycemic, and antidepressive potentials of Asparagus racemosus starter-based rice fermented foods. High-throughput NGS technology has revealed a number of bacterial genera in the prepared fermented rice, such as Lactobacillus (29.44%), Brevundimonas (16.21%), Stenotrophomonas (6.18%), Pseudomonas (3.11%), Bacillus (2.88%), and others (<2%). Eight-week administration of rice fermented food has increased food intake, whole-body weight, organ weight, different fat masses, serum lipid profiles, and histology of liver and adipose tissues in HFD-induced obese mice. In addition, upregulation of fatty acid oxidation and downregulation of adipocytogenesis- and lypogenesis-related genes along with the expression of their regulatory nuclear factors such as PPARα, PPARγ, PPARδ, and SREBP-1c have also been noted. Moreover, fermented food decreases fasting blood glucose level and improves glucose and insulin tolerance as well as the expression of GLUT4 receptor. Antiobesity and antihyperglycemic effects are also supported by the changes in insulin, leptin, and adiponectin hormone levels. The real-time polymerase chain reaction (RT-PCR) and denaturing gradient gel electrophoresis (DGGE) analyses have clearly demonstrated the intense colonization of Bacteroides, Lactobacillus, and Bifidobacterium, as well as the suppressed growth rate of γ- and δ-Proteobacteria and Firmicutes in the gut after fermented food intake. In the intestine, the latter group of microorganisms possibly modulate short-chain fatty acid (SCFA) levels such as acetate, butyrate, and propionate more than twofold. The impairment of memory-learning and anxiety-like obesity-associated cognitive phenotypes is mitigated significantly (p < 0.01) by fermented food as well. Thus, the formulated fermented food could be used as a natural therapeutic to alleviate obesity and its associated psychological and pathophysiological ailments.
Collapse
Affiliation(s)
- Papan Kumar Hor
- Department of Microbiology, Vidyasagar University, Midnapore, India
| | - Shilpee Pal
- Bioinformatics Infrastructure Facility Center, Department of Microbiology, Vidyasagar University, Midnapore, India
| | - Joy Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, India
| | | | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Paschim Medinipur, India
| | - Sourav Santra
- Bioinformatics Infrastructure Facility Center, Department of Microbiology, Vidyasagar University, Midnapore, India
| | - Mousumi Ray
- Department of Microbiology, Vidyasagar University, Midnapore, India
| | | | - Sudipta Chakrabarti
- Department of Biological Sciences, Midnapore City College, Paschim Medinipur, India
| | - Somnath Singh
- Division of Nutrition, Defense Institute of Physiology and Allied Sciences, New Delhi, India
| | - Sanjai K. Dwivedi
- Defence Research Laboratory (Defence Research and Development Organisation), Tezpur, India
| | - Miklós Takó
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Debabrata Bera
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, India
- Bioinformatics Infrastructure Facility Center, Department of Microbiology, Vidyasagar University, Midnapore, India
| |
Collapse
|
13
|
Current Status and Future Therapeutic Options for Fecal Microbiota Transplantation. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58010084. [PMID: 35056392 PMCID: PMC8780626 DOI: 10.3390/medicina58010084] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
The intestinal microbiota plays an important role in maintaining human health, and its alteration is now associated with the development of various gastrointestinal (ulcerative colitis, irritable bowel syndrome, constipation, etc.) and extraintestinal diseases, such as cancer, metabolic syndrome, neuropsychiatric diseases. In this context, it is not surprising that gut microbiota modification methods may constitute a therapy whose potential has not yet been fully investigated. In this regard, the most interesting method is thought to be fecal microbiota transplantation, which consists of the simultaneous replacement of the intestinal microbiota of a sick recipient with fecal material from a healthy donor. This review summarizes the most interesting findings on the application of fecal microbiota transplantation in gastrointestinal and extraintestinal pathologies.
Collapse
|
14
|
Kerry RG, Das G, Golla U, Del Pilar Rodriguez-Torres M, Shin HS, Patra JK. Engineered Probiotic and Prebiotic Nutraceutical Supplementations in Combating Non-communicable Disorders: A Review. Curr Pharm Biotechnol 2022; 23:72-97. [PMID: 33050862 DOI: 10.2174/1389201021666201013153142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Nutritional supplementations are a form of nutrition sources that may help in improving the health complexities of a person throughout his or her life span. Being also categorized as food supplementations, nutraceuticals are products that are extracted from edible sources with medical benefits as well as primary nutritional values. Nutraceuticals can be considered as functional foods. There are evidences that nutraceutical supplementations can alter the commensal gut microbiota and help to prevent or fight against chronic non-communicable degenerative diseases in adults, including neurological disorders (Autism Spectrum Disorder [ASD], Parkinson's disease [PD], Multiple sclerosis [MS]) and metabolic disorders (Type-II diabetes, obesity and non-alcoholic fatty liver disease). They can even lessen the complexities of preterm babies like extra-uterine growth restriction, necrotizing enterocolitis, infant eczema and allergy (during pregnancy) as well as bronchopulmonary dysplasia. Molecular perception of inflammatory and apoptotic modulators regulating the pathogenesis of these health risks, their control and management by probiotics and prebiotics could further emphasize the scientific overview of their utility. In this study, the pivotal role of nutraceutical supplementations in regulating or modulating molecular pathways in the above non-communicable diseases is briefly described. This work also gives an overall introduction of the sophisticated genome-editing techniques and advanced delivery systems in therapeutic activities applicable under these health risks.
Collapse
Affiliation(s)
- Rout George Kerry
- Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar-751004, Odisha,India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi 10326,Korea
| | - Upendarrao Golla
- Division of Hematology and Oncology, Penn State College of Medicine, Hershey, PA 17033,United States
| | - Maria Del Pilar Rodriguez-Torres
- Departamento de Ingenieria Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autonoma de Mexico, Campus UNAM Juriquilla Boulevard Juriquilla no. 3001, Santiago de Queretaro, Qro., C.P. 76230,Mexico
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyangsi 10326,Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi 10326,Korea
| |
Collapse
|
15
|
Incorporation of Sukkari Date in Probiotic-Enriched Fermented Camel Milk Improves the Nutritional, Physicochemical, and Organoleptical Characteristics. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation8010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Camel milk and dates are well-known for their great nutritional and therapeutical benefits. Therefore, the study aimed to combine the benefits of fermented camel milk (FCM) and Sukkari date (SKD) in a naturally sweetened FCM. Six treatments of FCM using ABT-5 cultures with 0, 5, 7.5, 10, 12.5, and 15% SKD were carried out. Chemical, physicochemical, rheological properties were studied, while organoleptical attributes and probiotic strains viability were monitored during cold storage (4 °C) up to 15 days. Results showed that fortification with SKD increased total solids (TS), ash, dietary fiber, and carbohydrate content compared to plain FCM. Water holding capacity (WHC) values increased with low and medium SKD levels then decreased with high SKD levels. Minerals such as K, P, Mg, Zn, Fe, and Cu were significantly increased, while Na was significantly decreased. Increased SKD levels in FCM resulted in significant increases in total phenolic content (TPC), total flavonoids (TF), total flavonols (TFL), and antioxidant activity (AOA). Instrumental color analysis exhibited a significant change in L*, b*, BI, and ∆E due to adding SKD in a dose-dependent manner. The viability of Streptococcus thermophiles, Lactobacillus acidophilus, and Bifidobacterium bifidum was increased by adding low and medium SKD levels, resulting in a higher number than the accepted threshold for a probiotic effect. Adding 10 and 12.5% SKD recorded the best-balanced flavor score at the beginning and after up to 15 days of storage, respectively. Conclusively, the current study revealed that fortification with SKD at 7.5–12.5% improved the nutritional quality without adverse effects on the technological, organoleptic characteristics, and probiotics viability and provided acceptable, nutritious, and healthy benefits to FCM.
Collapse
|
16
|
Li HY, Zhou DD, Gan RY, Huang SY, Zhao CN, Shang A, Xu XY, Li HB. Effects and Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota: A Narrative Review. Nutrients 2021; 13:nu13093211. [PMID: 34579087 PMCID: PMC8470858 DOI: 10.3390/nu13093211] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic diseases are serious threats to public health and related to gut microbiota. Probiotics, prebiotics, synbiotics, and postbiotics (PPSP) are powerful regulators of gut microbiota, thus possessing prospects for preventing metabolic diseases. Therefore, the effects and mechanisms of PPSP on metabolic diseases targeting gut microbiota are worth discussing and clarifying. Generally, PPSP benefit metabolic diseases management, especially obesity and type 2 diabetes mellitus. The underlying gut microbial-related mechanisms are mainly the modulation of gut microbiota composition, regulation of gut microbial metabolites, and improvement of intestinal barrier function. Moreover, clinical trials showed the benefits of PPSP on patients with metabolic diseases, while the clinical strategies for gestational diabetes mellitus, optimal formula of synbiotics and health benefits of postbiotics need further study. This review fully summarizes the relationship between probiotics, prebiotics, synbiotics, postbiotics, and metabolic diseases, presents promising results and the one in dispute, and especially attention is paid to illustrates potential mechanisms and clinical effects, which could contribute to the next research and development of PPSP.
Collapse
Affiliation(s)
- Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China;
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- Correspondence: ; Tel.: +86-20-8733-2391
| |
Collapse
|
17
|
Zare M, Dziemidowicz K, Williams GR, Ramakrishna S. Encapsulation of Pharmaceutical and Nutraceutical Active Ingredients Using Electrospinning Processes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1968. [PMID: 34443799 PMCID: PMC8399548 DOI: 10.3390/nano11081968] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Electrospinning is an inexpensive and powerful method that employs a polymer solution and strong electric field to produce nanofibers. These can be applied in diverse biological and medical applications. Due to their large surface area, controllable surface functionalization and properties, and typically high biocompatibility electrospun nanofibers are recognized as promising materials for the manufacturing of drug delivery systems. Electrospinning offers the potential to formulate poorly soluble drugs as amorphous solid dispersions to improve solubility, bioavailability and targeting of drug release. It is also a successful strategy for the encapsulation of nutraceuticals. This review aims to briefly discuss the concept of electrospinning and recent progress in manufacturing electrospun drug delivery systems. It will further consider in detail the encapsulation of nutraceuticals, particularly probiotics.
Collapse
Affiliation(s)
- Mina Zare
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Karolina Dziemidowicz
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore
| |
Collapse
|
18
|
Co-Encapsulated Synbiotics and Immobilized Probiotics in Human Health and Gut Microbiota Modulation. Foods 2021; 10:foods10061297. [PMID: 34200108 PMCID: PMC8230215 DOI: 10.3390/foods10061297] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Growing interest in the development of innovative functional products as ideal carriers for synbiotics, e.g., nutrient bars, yogurt, chocolate, juice, ice cream, and cheese, to ensure the daily intake of probiotics and prebiotics, which are needed to maintain a healthy gut microbiota and overall well-being, is undeniable and inevitable. This review focuses on the modern approaches that are currently being developed to modulate the gut microbiota, with an emphasis on the health benefits mediated by co-encapsulated synbiotics and immobilized probiotics. The impact of processing, storage, and simulated gastrointestinal conditions on the viability and bioactivity of probiotics together with prebiotics such as omega-3 polyunsaturated fatty acids, phytochemicals, and dietary fibers using various delivery systems are considered. Despite the proven biological properties of synbiotics, research in this area needs to be focused on the proper selection of probiotic strains, their prebiotic counterparts, and delivery systems to avoid suppression of their synergistic or complementary effect on human health. Future directions should lead to the development of functional food products containing stable synbiotics tailored for different age groups or specifically designed to fulfill the needs of adjuvant therapy.
Collapse
|
19
|
Probiotic Composition and Chondroitin Sulfate Regulate TLR-2/4-Mediated NF-κB Inflammatory Pathway and Cartilage Metabolism in Experimental Osteoarthritis. Probiotics Antimicrob Proteins 2021; 13:1018-1032. [PMID: 33459997 DOI: 10.1007/s12602-020-09735-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
The therapeutic potential of using probiotics to treat osteoarthritis (OA) has only recently been recognized, with a small number of animal and human studies having been undertaken. The aim of this study was to describe the effect of a probiotic composition (PB) and chondroitin sulfate (CS), administered separately or in combination, on Tlr2, Tlr4, Nfkb1, and Comp gene expression in cartilage and levels of cytokines (IL-6, IL-8, TGF-β1, IGF-1) and COMP, ACAN, CHI3L1, CTSK, and TLR-2 in serum during monoiodoacetate (MIA)-induced OA in rats. Expression of Tlr2, Tlr4, Nfkb1, and Comp in cartilage was analyzed using one-step SYBR Green real-time RT-PCR. The levels of IL-6, IL-8, TGF-β1, IGF-1, COMP, ACAN, CHI3L1, CTSK, and TLR-2 were measured in serum by enzyme-linked immunosorbent assay. Experimental OA caused an upregulation in Tlr2, Tlr4, Nfkb1, and downregulation of Comp expression in the cartilage. MIA-OA caused a significant increase of TLR-2 soluble form and IL-6, IL-8, TGF-β1, COMP, ACAN, CHI3L1, and CTSK levels in the blood serum; the level of IGF-1, on contrary, decreased. Separate administration of PB and CS raised expression of Comp and reduced Tlr2, Tlr4, and Nfkb1 expressions in cartilage. The levels of the studied markers of cartilage metabolism in serum were decreased or increased (IGF-1). The combined use of PB and CS was more effective than separate application approaching above-mentioned parameters to control. The outcomes of our research prove that multistrain live probiotic composition amplifies the positive action of CS in osteoarthritis attenuation and necessitates further investigation with large-scale randomized controlled trial.
Collapse
|
20
|
Osman A, El-Gazzar N, Almanaa TN, El-Hadary A, Sitohy M. Lipolytic Postbiotic from Lactobacillus paracasei Manages Metabolic Syndrome in Albino Wistar Rats. Molecules 2021; 26:molecules26020472. [PMID: 33477482 PMCID: PMC7831067 DOI: 10.3390/molecules26020472] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
The current study investigates the capacity of a lipolytic Lactobacillus paracasei postbiotic as a possible regulator for lipid metabolism by targeting metabolic syndrome as a possibly safer anti-obesity and Anti-dyslipidemia agent replacing atorvastatin (ATOR) and other drugs with proven or suspected health hazards. The high DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS [2,2'-azino-bis (3-ethyl benzothiazoline-6-sulphonic acid)] scavenging activity and high activities of antioxidant enzyme such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-px) of the Lactobacillus paracasei postbiotic (cell-free extract), coupled with considerable lipolytic activity, may support its action against metabolic syndrome. Lactobacillus paracasei isolate was obtained from an Egyptian cheese sample, identified and used for preparing the postbiotic. The postbiotic was characterized and administered to high-fat diet (HFD) albino rats (100 and 200 mg kg-1) for nine weeks, as compared to atorvastatin (ATOR; 10 mg kg-1). The postbiotic could correct the disruption in lipid metabolism and antioxidant enzymes in HFD rats more effectively than ATOR. The two levels of the postbiotic (100 and 200 mg kg-1) reduced total serum lipids by 29% and 34% and serum triglyceride by 32-45% of the positive control level, compared to only 25% and 35% in ATOR's case, respectively. Both ATOR and the postbiotic (200 mg kg-1) equally decreased total serum cholesterol by about 40% and 39%, while equally raising HDL levels by 28% and 30% of the positive control. The postbiotic counteracted HFD-induced body weight increases more effectively than ATOR without affecting liver and kidney functions or liver histopathology, at the optimal dose of each. The postbiotic is a safer substitute for ATOR in treating metabolic syndrome.
Collapse
Affiliation(s)
- Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Nashwa El-Gazzar
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdalla El-Hadary
- Biochemistry Department, Faculty of Agriculture, Benha University, Benha 13736, Egypt;
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
- Correspondence: ; Tel.: +20-106-527-2667
| |
Collapse
|
21
|
Abenavoli L, Falalyeyeva T, Pellicano R, Fagoonee S, Kobyliak N. Next generation of strain specific probiotics in diabetes treatment: the case of Prevotella copri. MINERVA ENDOCRINOL 2020; 45:277-279. [PMID: 33213123 DOI: 10.23736/s0391-1977.20.03376-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy -
| | | | - Rinaldo Pellicano
- Unit of Gastroenterology, Molinette Hospital, Città della Salute e della Scienza, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Turin, Italy
| | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
22
|
Aponte M, Murru N, Shoukat M. Therapeutic, Prophylactic, and Functional Use of Probiotics: A Current Perspective. Front Microbiol 2020; 11:562048. [PMID: 33042069 PMCID: PMC7516994 DOI: 10.3389/fmicb.2020.562048] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Probiotics are considered as the twenty-first century panpharmacon due to their competent remedial power to cure from gastrointestinal dysbiosis, systematic metabolic diseases, and genetic impairments up to complicated neurodegenerative disorders. They paved the way for an innovative managing of various severe diseases through palatable food products. The probiotics' role as a "bio-therapy" increased their significance in food and medicine due to many competitive advantages over traditional treatment therapies. Their prophylactic and therapeutic potential has been assessed through hundreds of preclinical and clinical studies. In addition, the food industry employs probiotics as functional and nutraceutical ingredients to enhance the added value of food product in terms of increased health benefits. However, regardless of promising health-boosting effects, the probiotics' efficacy still needs an in-depth understanding of systematic mechanisms and factors supporting the healthy actions.
Collapse
Affiliation(s)
- Maria Aponte
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nicoletta Murru
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Mahtab Shoukat
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
23
|
Kobyliak N, Falalyeyeva T, Mykhalchyshyn G, Molochek N, Savchuk O, Kyriienko D, Komisarenko I. Probiotic and omega-3 polyunsaturated fatty acids supplementation reduces insulin resistance, improves glycemia and obesity parameters in individuals with type 2 diabetes: A randomised controlled trial. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.obmed.2020.100248] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Kobyliak N, Falalyeyeva T, Tsyryuk O, Eslami M, Kyriienko D, Beregova T, Ostapchenko L. New insights on strain-specific impacts of probiotics on insulin resistance: evidence from animal study. J Diabetes Metab Disord 2020; 19:289-296. [PMID: 32550178 PMCID: PMC7270447 DOI: 10.1007/s40200-020-00506-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS сomparative animal study of effectiveness of intermittent administration of lyophilized single-, three- and alive multistrain probiotic in short courses on insulin resistance (IR) in rats with experimental obesity. METHODS 70 rats were divided into 7 groups (n = 10 in each). Rats of group I were left intact. Newborn rats in groups II-VII were administered monosodium glutamate (MSG) (4 mg/g) by injection. Rats in group II (MSG-obesity group) were left untreated. The rats in groups III-V received lyophilized mono-probiotics B.animalis VKL, B.animalis VKB, L.casei IMVB-7280 respectively. The rats in group VI received all three of these probiotic strains mixed together. Group VII was treated with multi-probiotic "Symbiter", containing 14 different live probiotic strains (Lactobacillus, Bifidobacterium, Propionibacterium, Acetobacter genera). RESULTS Treatment of newborn rats with MSG lead to the development of obesity in all MSG-obesity rats and up to 20-70% after probiotic administration. Additions to probiotic composition, with preference to alive strains (group VII), led to significantly lower rates of obesity, decrease in HOMA-IR (p < 0.001), proinflammatory cytokines levels - IL-1β (p = 0.003), IL-12Bp40 (p < 0.001) and elevation of adiponectin (p = 0.003), TGF-β (p = 0.010) in comparison with MSG-obesity group. Analysis of results in groups treated with single-strain probiotics (groups III-V) shows significant decrease in HOMA-IR, but changes were less pronounced as compared to mixture groups and did not achieve intact rats level. Other metabolic parameters were not affected significantly by single strains. CONCLUSION Our findings provide major clues for how to design and use probiotics with more efficient compositions in obesity and IR management and may bring new insights into how host-microbe interactions contribute to such protective effects.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Department Endocrinology, Bogomolets National Medical University, T. Shevchenko boulevard, 13, Kyiv, 01601 Ukraine
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601 Ukraine
| | - Olena Tsyryuk
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601 Ukraine
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Tetyana Beregova
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601 Ukraine
| | - Liudmila Ostapchenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601 Ukraine
| |
Collapse
|
25
|
Korotkyi O, Dvorshchenko K, Falalyeyeva T, Sulaieva O, Kobyliak N, Abenavoli L, Fagoonee S, Pellicano R, Ostapchenko L. Combined effects of probiotic and chondroprotector during osteoarthritis in rats. Panminerva Med 2020; 62:93-101. [PMID: 32192320 DOI: 10.23736/s0031-0808.20.03841-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a joint affection, defined by articular cartilage demolition, risks of which rise with age. The aim of this study was to compare the efficacy of chondroitin sulfate (CS) course and multistrain live probiotic (LP) administered alone or in combination on the expression of TLR-2, TLR-4, TNF-α and NF-κB in articular cartilage, subchondral bone and synovial membrane during OA in rats. METHODS OA was induced in male rats by injecting monoiodoacetate (MIA) in right hind knee. Therapeutic groups received 3 mg/kg of chondroprotector (ChP) CS for 28 days and/or 140 mg/kg of LP diet for 14 days. The expression of TLR-2, TLR-4, TNF-α and NF-κB in articular cartilage, subchondral bone and synovial membrane were determined with immunohistochemical staining kits (Thermo Fisher Scientific). RESULTS It was established that MIA injection is associated with long-term structural changes in joint tissues that corresponded to OA-like features and associated with activation of pathogen-recognizing molecules and proinflammatory signaling pathways expression. Separate therapy with ChP and probiotics slightly decreased OA score limiting cell death and subchondral bone resorption. However, these changes were not associated with a significant decrease in TLR-2, TLR-4, NF-kB and TNF-α expression. On the other hand, the combination of ChP and LP treatment significantly decreased OA score. This correlated with a decrease in TLR-2, TLR-4, NF-kB and TNF-α expression in chondrocytes and synovial cells. CONCLUSIONS The outcomes of our research prove that ChPs amplify the positive action of LPs in OA attenuation.
Collapse
Affiliation(s)
| | | | | | | | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Ludovico Abenavoli
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Sharmila Fagoonee
- Institute of Biostructures and Bioimaging, Molecular Biotechnology Center, National Research Council (CNR), Turin, Italy
| | | | | |
Collapse
|
26
|
|
27
|
da Silva TF, Casarotti SN, de Oliveira GLV, Penna ALB. The impact of probiotics, prebiotics, and synbiotics on the biochemical, clinical, and immunological markers, as well as on the gut microbiota of obese hosts. Crit Rev Food Sci Nutr 2020; 61:337-355. [PMID: 32156153 DOI: 10.1080/10408398.2020.1733483] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obesity is currently considered a global epidemic and it leads to several alterations on the human body and its metabolism. There are evidences showing that the intestinal microbiota can influence on the pathogenesis of obesity. Microbiota plays a vital role not only in the digestion and absorption of nutrients, but also in the homeostatic maintenance of host immunity, metabolism, and gut barrier. Its dietary alteration is an important target in the treatment of obesity. Emerging evidence suggests that modifying the composition of the gut microbiota through probiotic, prebiotic, and synbiotic supplementation may be a viable adjuvant treatment option for obese individuals. In this review, the impact of probiotics, prebiotics, and synbiotics on the anthropometric profile, biochemical regulation, clinical, and immunological markers, as well as on the gut microbiota of obese hosts is described. It also emphasizes how changes in the composition and/or metabolic activity of the gut microbiota through the administration of nutrients with probiotic, prebiotic, or synbiotic properties can modulate the host's gene expression and metabolism, and thereby positively influence on the host's adipose tissue development and related metabolic disorders. The beneficial effects on the host's metabolism promoted by prebiotics, probiotics, and synbiotics have been successfully demonstrated by several studies. However, further investigation is needed to fully explain the cellular mechanisms of action of probiotics and prebiotics on human health, and also to elucidate the relationship between microbiota and obesity etiology, using well-designed, long-term, and large-scale clinical interventions.
Collapse
Affiliation(s)
- Tatiane Ferreira da Silva
- Departamento de Engenharia e Tecnologia de Alimentos, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Sabrina Neves Casarotti
- Instituto de Ciências Naturais e Exatas, Universidade Federal de Rondonópolis (UFR), Rondonópolis, Brazil
| | | | - Ana Lúcia Barretto Penna
- Departamento de Engenharia e Tecnologia de Alimentos, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| |
Collapse
|
28
|
Khursheed R, Singh SK, Wadhwa S, Kapoor B, Gulati M, Kumar R, Ramanunny AK, Awasthi A, Dua K. Treatment strategies against diabetes: Success so far and challenges ahead. Eur J Pharmacol 2019; 862:172625. [DOI: 10.1016/j.ejphar.2019.172625] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/11/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022]
|
29
|
Korotkyi OH, Vovk AA, Dranitsina AS, Falalyeyeva TM, Dvorshchenko KO, Fagoonee S, Ostapchenko LI. The influence of probiotic diet and chondroitin sulfate administration on Ptgs2, Tgfb1 and Col2a1 expression in rat knee cartilage during monoiodoacetate-induced osteoarthritis. Minerva Med 2019; 110:419-424. [PMID: 30938133 DOI: 10.23736/s0026-4806.19.06063-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
BACKGROUND Osteoarthritis (OA) is a common worldwide disease induced by a wide range of biochemical processes, mainly inflammation and degradation of collagen. The aim of this study, was to describe the effect of a multistrain probiotic (PB) and chondroitin sulfate (CS), administered separately or in combination, on the expression of Ptgs2, Tgfb1 and Col2a1 during monoiodoacetate-induced OA in male rats. METHODS OA was induced in male rats by injecting monoiodoacetate in right hind knee. Therapeutic groups received 3 mg/kg of CS for 28 days and/or 1.4 g/kg of multistrain PB for 14 days. Knee cartilage were taken 30 days after monoiodoacetate injection. RNA was extracted and the expression of Ptgs2, Tgfb1 and Col2a1 were analyzed using SYBR Green 1-step real-time quantitative polymerase chain reaction. RESULTS Induction of OA caused an upregulation in Ptgs2, Tgfb1 expression, and downregulation of Col2a1. Separate administration of PB and CS reduced Ptgs2 and Tgfb1 expressions. Their combined administration significantly decreased the expression of these pro-inflammatory cytokines, comparable to controls. Expression of Col2a1 showed similar behavior, with upregulation in therapeutic group with separate administration and the cumulative effects in case of co-administration. CONCLUSIONS The multistrain PB diet may offer a perspective to improve the standard treatment of OA and, necessitates further investigation with clinical trials.
Collapse
Affiliation(s)
| | - Andrii A Vovk
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | | | | | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| | | |
Collapse
|
30
|
Santos JG, Alves BC, Hammes TO, Dall'Alba V. Dietary interventions, intestinal microenvironment, and obesity: a systematic review. Nutr Rev 2019; 77:601-613. [PMID: 31188447 DOI: 10.1093/nutrit/nuz022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CONTEXT Obesity has been linked to the intestinal microenvironment. Diet plays an important role in obesity and has been associated with microbiota. OBJECTIVE This systematic review sought to evaluate the scientific evidence on the effect of dietary modification, including supplementation with prebiotics and probiotics, on microbiota diversity in obesity. DATA SOURCES A systematic search was performed in the MEDLINE and EMBASE databases. Studies were considered eligible if they were clinical trials evaluating dietary intervention and microbiota, body weight, or clinical parameters in obesity. DATA EXTRACTION Data were extracted by 2 independent reviewers. RESULTS From 168 articles identified, 20 were included (n = 931 participants). Increased phyla abundance after food interventions was the main finding in relation to microbiota. Regarding the impact of interventions, increased insulin sensitivity, reduced levels of inflammatory markers, and reduced body mass index were shown in several studies. CONCLUSIONS Interventions that modulate microbiota, especially prebiotics, show encouraging results in treating obesity, improving insulin levels, inflammatory markers, and body mass index. Because the studies included in this review were heterogeneous, it is difficult to achieve conclusive and definitive results.
Collapse
Affiliation(s)
- Johnny G Santos
- Graduate Program in Food, Nutrition and Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna C Alves
- Graduate Program: Sciences of Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thais O Hammes
- Nutrition and Dietetics Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil. V. Dall'Alba is with Department of Nutrition, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Valesca Dall'Alba
- Graduate Program in Food, Nutrition and Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Graduate Program: Sciences of Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Nutrition and Dietetics Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil. V. Dall'Alba is with Department of Nutrition, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
31
|
Immunomodulatory effects of dietary IMUNO-2865 in mice, pre-and post-vaccine challenge with parainfluenza virus 5. Int Immunopharmacol 2019; 76:105846. [PMID: 31470267 DOI: 10.1016/j.intimp.2019.105846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 11/23/2022]
Abstract
Herbal remedies and nutraceuticals continue to be used as treatments for a variety of maladies ranging from joint disease to obesity. IMUNO-2865 is a natural nutraceutical supplement that has been advertised to modulate inflammation, boost cytokine activity promoting a robust immunity, but has yet to be evaluated as an adjuvant. In the present study, 4-week-old C57BL/6 female mice (n = 45) were fed 0, 5 or 50 mg/5 g tablet IMUNO-2865 (I-2865) in a tablet formulated feed. One group of mice (n = 15, 5 mice/diet) were placed on a feed diet for 14 days, while the other group of 30 mice (10 mice/diet) were placed on the diet for 28 days. Five mice from each diet group in the 28-day feeding trial were vaccinated on day 7 with a mouse recombinant parainfluenza virus to mimic viral challenge. On days 0, 14 and 28 blood samples were collected. Mice were humanely euthanized on days 14 and 28. Spleens were collected to analyze organ weight/body weight ratios, cell recovery, T cell and B cell phenotype, cell proliferation, antibody titers and cytokine production. Administration of dietary I-2865 for 14 days had no effect on murine immunity. In the 28-day dietary vaccine trial, I-2865 supplementation did not enhance vaccine response, based on vaccine antigen-specific IgG titers, nor did it alter T cell and B cell phenotype, function or cytokine response, but it did decrease splenocyte numbers in the vaccinated mice.
Collapse
|
32
|
Zhang M, Zhang Y, Terkeltaub R, Chen C, Neogi T. Effect of Dietary and Supplemental Omega-3 Polyunsaturated Fatty Acids on Risk of Recurrent Gout Flares. Arthritis Rheumatol 2019; 71:1580-1586. [PMID: 30908893 DOI: 10.1002/art.40896] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/19/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the relationship between omega-3 polyunsaturated fatty acid (n-3 PUFA) consumption (dietary or supplemental) and risk of gout flares. METHODS We used data from the Boston University Online Gout Study, an internet-based case-crossover study conducted from February 2003 to January 2012. At the times of gout flares (hazard period) and during gout flare-free periods (control periods), participants completed questionnaires regarding exposures, including supplements and diet, during the preceding 48 hours. We examined the relationship of self-reported n-3 PUFA-rich supplements and fish intake with the risk of recurrent gout flares using conditional logistic regression, adjusting for total purine intake, diuretic use, and other urate-lowering or flare prophylactic medications (allopurinol, nonsteroidal antiinflammatory drugs, or colchicine). RESULTS Of the 724 participants, 85% met the 1977 American College of Rheumatology preliminary criteria for the classification of the acute arthritis of primary gout. Twenty-two percent of the participants reported some form of n-3 PUFA consumption (supplements, 4.6%; dietary fatty fish, 19%) in the 48 hours preceding a gout flare or flare-free period. The adjusted odds ratios were 1.01 (95% confidence interval [95% CI] 0.63-1.60; P = 0.98) for all 3 supplements combined and 0.74 (95% CI 0.54-0.99; P = 0.04) for consumption of ≥2 n-3 PUFA-rich fish servings. CONCLUSION Dietary n-3 PUFA-rich fish consumption, when adjusted for total purine intake, was associated with lower risk of recurrent gout flares, whereas n-3 PUFA supplementation alone, as taken in a self-directed manner, was not. Consumption of specific sources and adequate doses of n-3 PUFA for gout flare prevention warrants further study in an adequately powered clinical trial.
Collapse
Affiliation(s)
- MaryAnn Zhang
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yuqing Zhang
- Boston University School of Medicine, Boston, Massachusetts
| | - Robert Terkeltaub
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California
| | - Clara Chen
- Boston University School of Medicine, Boston, Massachusetts
| | - Tuhina Neogi
- Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
33
|
Korotkyi O, Vovk A, Galenova T, Vovk T, Dvorschenko K, Luzza F, Abenavoli L, Kobyliak N, Falalyeyeva T, Ostapchenko L. Effect of probiotic on serum cytokines and matrix metalloproteinases profiles during monoiodoacetate-induced osteoarthritis in rats. MINERVA BIOTECNOL 2019. [DOI: 10.23736/s1120-4826.19.02548-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Kyriachenko Y, Falalyeyeva T, Korotkyi O, Molochek N, Kobyliak N. Crosstalk between gut microbiota and antidiabetic drug action. World J Diabetes 2019; 10:154-168. [PMID: 30891151 PMCID: PMC6422856 DOI: 10.4239/wjd.v10.i3.154] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes (T2D) is a disorder characterized by chronic inflated blood glucose levels (hyperglycemia), at first due to insulin resistance and unregulated insulin secretion but with tendency towards global spreading. The gut microbiota is recognized to have an influence on T2D, although surveys have not formed a clear overview to date. Because of the interactions between gut microbiota and host homeostasis, intestinal bacteria are believed to play a large role in various diseases, including metabolic syndrome, obesity and associated disease. In this review, we highlight the animal and human studies which have elucidated the roles of metformin, α-glucosidase inhibitors, glucagon-like peptide-1 agonists, peroxisome proliferator-activated receptors γ agonists, inhibitors of dipeptidyl peptidase-4, sodium/glucose cotransporter inhibitors, and other less studied medications on gut microbiota. This review is dedicated to one of the most widespread diseases, T2D, and the currently used antidiabetic drugs and most promising new findings. In general, the gut microbiota has been shown to have an influence on host metabolism, food consumption, satiety, glucose homoeostasis, and weight gain. Altered intestinal microbiota composition has been noticed in cardiovascular diseases, colon cancer, rheumatoid arthritis, T2D, and obesity. Therefore, the main effect of antidiabetic drugs is on the microbiome composition, basically increasing the short-chain fatty acids-producing bacteria, responsible for losing weight and suppressing inflammation.
Collapse
Affiliation(s)
- Yevheniia Kyriachenko
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Tetyana Falalyeyeva
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Oleksandr Korotkyi
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Nataliia Molochek
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv 01601, Ukraine
| |
Collapse
|
35
|
Kobyliak N, Abenavoli L, Falalyeyeva T, Mykhalchyshyn G, Boccuto L, Kononenko L, Kyriienko D, Komisarenko I, Dynnyk O. Beneficial effects of probiotic combination with omega-3 fatty acids in NAFLD: a randomized clinical study. Minerva Med 2018; 109:418-428. [PMID: 30221912 DOI: 10.23736/s0026-4806.18.05845-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The manipulation of gut microbiota via administration of probiotics has been proposed as a potential strategy for the treatment of non-alcoholic fatty liver disease (NAFLD). Hence, we performed a double-blind single center randomized placebo-controlled trial (RCT) to evaluate the efficacy of coadministration of probiotics with omega-3 vs. placebo in type-2 diabetic patients with NAFLD. METHODS A total of 48 patients met the criteria for inclusion. They were randomly assigned to receive "Symbiter Omega" combination of probiotic biomass supplemented with flax and wheat germ oil (250 mg of each, concentration of omega-3 fatty acids 1-5%) or placebo for 8-weeks. The primary main outcomes were the change in fatty liver index (FLI) and liver stiffness (LS) measured by Shear Wave Elastography (SWE). Secondary outcomes were the changes in transaminases level, serum lipids and cytokines levels. RESULTS In probiotic-omega group, FLI significantly decreased from 83.53±2.60 to 76.26±2.96 (P<0.001) while no significant changes were observed in the placebo group (82.86±2.45 to 81.09±2.84; P=0.156). Changes of LS in both groups were insignificant. Analysis of secondary outcomes showed that the coadministration of probiotics with omega-3 lead to significant reduction of serum gamma-glutamyl transpeptidase, triglycerides, and total cholesterol. Chronic systemic inflammatory markers after intervention decrease significantly only in Symbiter Omega group: IL-1β (P=0.029), TNF-α (P<0.001), IL-8 (P=0.029), IL-6 (P=0.003), and INF-γ (P=0.016). CONCLUSIONS Coadministration of a live multi-strain probiotic mixture with omega-3 fatty acids once daily for 8 weeks to patients with NAFLD can reduce liver fat, improve serum lipids, metabolic profile, and reduce chronic systemic inflammatory state.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine -
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Galyna Mykhalchyshyn
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Luigi Boccuto
- Research Department, Greenwood Genetic Center, Greenwood School of Health Research, Clemson University, Clemson, SC, USA
| | - Liudmyla Kononenko
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Dmytro Kyriienko
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
- Kyiv City Clinical Endocrinology Center, Kyiv, Ukraine
| | - Iuliia Komisarenko
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Oleg Dynnyk
- Bogomolets Institute of Physiology of the Ukrainian National Academy of Science, Kyiv, Ukraine
| |
Collapse
|
36
|
Belemets N, Kobyliak N, Falalyeyeva T, Kuryk O, Sulaieva O, Vovk T, Beregova T, Ostapchenko L. Polyphenol Compounds Melanin Prevented Hepatic Inflammation in Rats with Experimental Obesity. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Melanin produced by yeast Nadsoniella nigra strain X-1 lead to significant reduction of steatosis, lobular inflammation and ballooning degeneration, according to NAFLD activity score (NAS), in liver of rats with monosodium glutamate (MSG) induced obesity. These histological changes were associated with substantial decrease of TNF-α expression in sinusoid cells that prevented NF-kB activation in hepatocytes.
Collapse
Affiliation(s)
- Natalia Belemets
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine
| | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, 01610, Pushkinska 22a, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine
| | - Olena Kuryk
- Scientific-Practical Center for Prophylactic and Clinical Medicine, Kyiv, Ukraine
| | | | - Tetyana Vovk
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine
| | - Tetyana Beregova
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine
| | - Liudmila Ostapchenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine
| |
Collapse
|
37
|
Abenavoli L, Falalyeyeva T, Boccuto L, Tsyryuk O, Kobyliak N. Obeticholic Acid: A New Era in the Treatment of Nonalcoholic Fatty Liver Disease. Pharmaceuticals (Basel) 2018; 11:104. [PMID: 30314377 PMCID: PMC6315965 DOI: 10.3390/ph11040104] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
The main treatments for patients with nonalcoholic fatty liver disease (NAFLD) are currently based on lifestyle changes, including ponderal decrease and dietary management. However, a subgroup of patients with nonalcoholic steatohepatitis (NASH), who are unable to modify their lifestyle successfully, may benefit from pharmaceutical support. Several drugs targeting pathogenic mechanisms of NAFLD have been evaluated in clinical trials for the treatment of NASH. Farnesoid X receptor (FXR) is a nuclear key regulator controlling several processes of the hepatic metabolism. NAFLD has been proven to be associated with abnormal FXR activity. Obeticholic acid (OCA) is a first-in-class selective FXR agonist with anticholestatic and hepato-protective properties. Currently, OCA is registered for the treatment of primary biliary cholangitis. However, promising effects of OCA on NASH and its metabolic features have been reported in several studies.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia", Viale Europa-Germaneto, 8810 Catanzaro, Italy.
| | - Tetyana Falalyeyeva
- School of Medicine, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64/13, 01601 Kiev, Ukraine.
| | - Luigi Boccuto
- Greenwood Genetic Center, Greenwood, SC 29646, USA.
- School of Health Research, Clemson University, Clemson, SC 29646, USA.
| | - Olena Tsyryuk
- School of Medicine, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64/13, 01601 Kiev, Ukraine.
| | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Pushkinska 22a, 01610 Kiev, Ukraine.
| |
Collapse
|