1
|
Heidary M, Dashtbin S, Asadi A, Asadollahi P, Khatib A, Ebrahimi MA, Ghanbari Z, Darbandi A, Ghanavati R, Pakzad R. Prevalence of linezolid resistance in Streptococcus pneumoniae isolates: a systematic review and meta-analysis. Future Microbiol 2024; 19:449-459. [PMID: 38497912 DOI: 10.2217/fmb-2023-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/13/2023] [Indexed: 03/19/2024] Open
Abstract
Aim: This study aimed to understand the current level of linezolid (LNZ) resistance in Streptococcus pneumoniae isolates reported over the past 10 years. Material & methods: An electronic search was conducted for the following keywords: ((Streptococcus pneumoniae [title/abstract]) OR (Pneumococcus [title/abstract]) OR (Pneumococci [title/abstract]) AND (linezolid [title/abstract]) OR (Zyvox [title/abstract])) OR (Zyvoxid [title/abstract])). Result: Out of all the studies, 80 had a cross-sectional design, while 11 followed a cohort approach. The prevalence of LNZ resistance among S. pneumoniae isolates ranged from 0% to 4.86%. Discussion: Urgent, high-powered, randomized, controlled trials with participants from endemic regions are needed to gain a comprehensive understanding of the impact on and significance of LNZ treatment to patients.
Collapse
Affiliation(s)
- Mohsen Heidary
- Cellular & Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Endocrine Research Center, Institute of Endocrinology & Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Parisa Asadollahi
- Microbiology Department, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Khatib
- Department of Nursing, School of Medical Sciences, Yazd branch, Islamic Azad University, Yazd, Iran
- Department of Nursing, Faculty of Nursing and Midwifery, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | | - Zahra Ghanbari
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Atieh Darbandi
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Roya Ghanavati
- School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Reza Pakzad
- Department of Epidemiology, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
2
|
Ndukwe ARN, Qin J, Wiedbrauk S, Boase NRB, Fairfull-Smith KE, Totsika M. In Vitro Activities of Oxazolidinone Antibiotics Alone and in Combination with C-TEMPO against Methicillin-Resistant Staphylococcus aureus Biofilms. Antibiotics (Basel) 2023; 12:1706. [PMID: 38136740 PMCID: PMC10741017 DOI: 10.3390/antibiotics12121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a global health concern. The propensity of MRSA to form biofilms is a significant contributor to its pathogenicity. Strategies to treat biofilms often involve small molecules that disperse the biofilm into planktonic cells. Linezolid and, by extension, theoxazolidinones have been developed to treat infections caused by Gram-positive bacteria such as MRSA. However, the clinical development of these antibiotics has mainly assessed the susceptibility of planktonic cells to the drug. Previous studies evaluating the anti-biofilm activity of theoxazolidinones have mainly focused on the biofilm inhibition of Enterococcus faecalis and methicillin-sensitive Staphylococcus aureus, with only a few studies investigating the activity of oxazolidinones for eradicating established biofilms for these species. Very little is known about the ability of oxazolidinones to eradicate MRSA biofilms. In this work, five oxazolidinones were assessed against MRSA biofilms using a minimum biofilm eradication concentration (MBEC) assay. All oxazolidinones had inherent antibiofilm activity. However, only ranbezolid could completely eradicate MRSA biofilms at clinically relevant concentrations. The susceptibility of the MRSA biofilms to ranbezolid was synergistically enhanced by coadministration with the nitroxide biofilm dispersal agent C-TEMPO. We presume that ranbezolid acts as a dual warhead drug, which combines the mechanism of action of the oxazolidinones with a nitric oxide donor or cytotoxic drug.
Collapse
Affiliation(s)
- Audrey R. N. Ndukwe
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4001, Australia; (A.R.N.N.); (J.Q.)
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia; (S.W.); (N.R.B.B.); (K.E.F.-S.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4001, Australia; (A.R.N.N.); (J.Q.)
| | - Sandra Wiedbrauk
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia; (S.W.); (N.R.B.B.); (K.E.F.-S.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Nathan R. B. Boase
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia; (S.W.); (N.R.B.B.); (K.E.F.-S.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Kathryn E. Fairfull-Smith
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia; (S.W.); (N.R.B.B.); (K.E.F.-S.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4001, Australia; (A.R.N.N.); (J.Q.)
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
3
|
Linezolid-resistance Staphylococcus aureus – Prevalence, Emerging Resistance Mechanisms, Challenges and Perspectives. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus, an opportunistic pathogen, can root several infections viz skin and tissue infections, bacteraemia, food poisoning, pneumonia, and many other clinical conditions with some variations of virulence factors. In treatment of infections, caused by this Gram-positive pathogen, several antibiotics are being used importantly Methicillin and Vancomycin. This pathogen has high capability of antibiotic resistance development and had evolved new strains such as Methicillin-resistant Staphylococcus aureus (MRSA), and Vancomycin-resistant Staphylococcus aureus (VRSA). Meta-analysis in Ethiopia showed that pooled prevalence of MRSA in environment, food, animal, and human was 54%, 77%, 15%, and 38% respectively (2022). Risk of MRSA isolates from burn ICU was 55 % higher (2018). In Bangladesh, 37.1% isolates from frozen meat chicken (2021) were identified as MRSA. This problem is being dealt with a novel drug called Linezolid which has been proved effective against both MRSA and VRSA. Exacerbating the situation, this pathogen has shown resistance against this unprecedented drug by means of a number of drug resistance mechanisms. Its prevalence has been reporting since the adoption of the drug, but with a minute ratio at one time/place to the very high percentage at another time/place. This inconsistent prevalence must not be ignored, and its surveillance should be augmented as antibiotic treatment is critical for fighting against microbial infections. This review highlights the worldwide reports in which Staphylococcus aureus of either wildtype or Methicillin or Vancomycin resistance that have shown resistance to Linezolid drug for the past 2 decades. At the same time where incidences of Linezolid Resistant Staphylococcus aureus (LRSA) indications are reporting, there is a call for comprehensive strategies to overcome this challenge of antibiotic resistance.
Collapse
|
4
|
Schwarz S, Zhang W, Du XD, Krüger H, Feßler AT, Ma S, Zhu Y, Wu C, Shen J, Wang Y. Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Clin Microbiol Rev 2021; 34:e0018820. [PMID: 34076490 PMCID: PMC8262807 DOI: 10.1128/cmr.00188-20] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Seven mobile oxazolidinone resistance genes, including cfr, cfr(B), cfr(C), cfr(D), cfr(E), optrA, and poxtA, have been identified to date. The cfr genes code for 23S rRNA methylases, which confer a multiresistance phenotype that includes resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A compounds. The optrA and poxtA genes code for ABC-F proteins that protect the bacterial ribosomes from the inhibitory effects of oxazolidinones. The optrA gene confers resistance to oxazolidinones and phenicols, while the poxtA gene confers elevated MICs or resistance to oxazolidinones, phenicols, and tetracycline. These oxazolidinone resistance genes are most frequently found on plasmids, but they are also located on transposons, integrative and conjugative elements (ICEs), genomic islands, and prophages. In these mobile genetic elements (MGEs), insertion sequences (IS) most often flanked the cfr, optrA, and poxtA genes and were able to generate translocatable units (TUs) that comprise the oxazolidinone resistance genes and occasionally also other genes. MGEs and TUs play an important role in the dissemination of oxazolidinone resistance genes across strain, species, and genus boundaries. Most frequently, these MGEs also harbor genes that mediate resistance not only to antimicrobial agents of other classes, but also to metals and biocides. Direct selection pressure by the use of antimicrobial agents to which the oxazolidinone resistance genes confer resistance, but also indirect selection pressure by the use of antimicrobial agents, metals, or biocides (the respective resistance genes against which are colocated on cfr-, optrA-, or poxtA-carrying MGEs) may play a role in the coselection and persistence of oxazolidinone resistance genes.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Henrike Krüger
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Shizhen Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Congming Wu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Zhang L, He J, Bai L, Ruan S, Yang T, Luo Y. Ribosome-targeting antibacterial agents: Advances, challenges, and opportunities. Med Res Rev 2021; 41:1855-1889. [PMID: 33501747 DOI: 10.1002/med.21780] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/08/2020] [Accepted: 12/19/2020] [Indexed: 02/05/2023]
Abstract
Ribosomes, which synthesize proteins, are critical organelles for the survival and growth of bacteria. About 60% of approved antibiotics discovered so far combat pathogenic bacteria by targeting ribosomes. However, several issues, such as drug resistance and toxicity, have impeded the clinical use of ribosome-targeting antibiotics. Moreover, the complexity of the bacteria ribosome structure has retarded the discovery of new ribosome-targeting agents that are considered as the key to the drug-resistance and toxicity. To deal with these challenges, efforts such as medicinal chemistry optimization, combination treatment, and new drug delivery system have been developed. But not enough, the development of structural biology and new screening methods bring powerful tools, such as cryo-electron microscopy technology, advanced computer-aided drug design, and cell-free in vitro transcription/translation systems, for the discovery of novel ribosome-targeting antibiotics. Thus, in this paper, we overview the research on different aspects of bacterial ribosomes, especially focus on discussing the challenges in the discovery of ribosome-targeting antibacterial drugs and advances made to address issues such as drug-resistance and selectivity, which, we believe, provide perspectives for the discovery of novel antibiotics.
Collapse
Affiliation(s)
- Laiying Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Jun He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Lang Bai
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shihua Ruan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Human Diseases and Immunotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Kang HY, Moon DC, Mechesso AF, Choi JH, Kim SJ, Song HJ, Kim MH, Yoon SS, Lim SK. Emergence of cfr-Mediated Linezolid Resistance in Staphylococcus aureus Isolated from Pig Carcasses. Antibiotics (Basel) 2020; 9:E769. [PMID: 33147717 PMCID: PMC7692708 DOI: 10.3390/antibiotics9110769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
Altogether, 2547 Staphylococcus aureus isolated from cattle (n = 382), pig (n = 1077), and chicken carcasses (n = 1088) during 2010-2017 were investigated for linezolid resistance and were further characterized using molecular methods. We identified linezolid resistance in only 2.3% of pig carcass isolates. The linezolid-resistant (LR) isolates presented resistance to multiple antimicrobials, including chloramphenicol, clindamycin, and tiamulin. Molecular investigation exhibited no mutations in the 23S ribosomal RNA. Nevertheless, we found mutations in ribosomal proteins rplC (G121A) and rplD (C353T) in one and seven LR strains, respectively. All the LR isolates carried the multi-resistance gene cfr, and six of them co-carried the mecA gene. Additionally, all the LR isolates co-carried the phenicol exporter gene, fexA, and presented a high level of chloramphenicol resistance. LR S. aureus isolates represented 10 genotypes, including major genotypes ST433-t318, ST541-t034, ST5-t002, and ST9-t337. Staphylococcal enterotoxin and leukotoxin-encoding genes, alone or in combination, were detected in 68% of LR isolates. Isolates from different farms presented identical or different pulsed-field gel electrophoresis patterns. Collectively, toxigenic and LR S. aureus strains pose a crisis for public health. This study is the first to describe the mechanism of linezolid resistance in S. aureus isolated from food animal products in Korea.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea; (H.Y.K.); (D.C.M.); (A.F.M.); (J.-H.C.); (S.-J.K.); (H.-J.S.); (M.H.K.); (S.-S.Y.)
| |
Collapse
|
7
|
Shariati A, Dadashi M, Chegini Z, van Belkum A, Mirzaii M, Khoramrooz SS, Darban-Sarokhalil D. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase-negative staphylococci strains: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2020; 9:56. [PMID: 32321574 PMCID: PMC7178749 DOI: 10.1186/s13756-020-00714-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus (MRCoNS) are among the main causes of nosocomial infections, which have caused major problems in recent years due to continuously increasing spread of various antibiotic resistance features. Apparently, vancomycin is still an effective antibiotic for treatment of infections caused by these bacteria but in recent years, additional resistance phenotypes have led to the accelerated introduction of newer agents such as linezolid, tigecycline, daptomycin, and quinupristin/dalfopristin (Q/D). Due to limited data availability on the global rate of resistance to these antibiotics, in the present study, the resistance rates of S. aureus, Methicillin-resistant S. aureus (MRSA), and CoNS to these antibiotics were collected. Method Several databases including web of science, EMBASE, and Medline (via PubMed), were searched (September 2018) to identify those studies that address MRSA, and CONS resistance to linezolid, tigecycline, daptomycin, and Q/D around the world. Result Most studies that reported resistant staphylococci were from the United States, Canada, and the European continent, while African and Asian countries reported the least resistance to these antibiotics. Our results showed that linezolid had the best inhibitory effect on S. aureus. Although resistances to this antibiotic have been reported from different countries, however, due to the high volume of the samples and the low number of resistance, in terms of statistical analyzes, the resistance to this antibiotic is zero. Moreover, linezolid, daptomycin and tigecycline effectively (99.9%) inhibit MRSA. Studies have shown that CoNS with 0.3% show the lowest resistance to linezolid and daptomycin, while analyzes introduced tigecycline with 1.6% resistance as the least effective antibiotic for these bacteria. Finally, MRSA and CoNS had a greater resistance to Q/D with 0.7 and 0.6%, respectively and due to its significant side effects and drug-drug interactions; it appears that its use is subject to limitations. Conclusion The present study shows that resistance to new agents is low in staphylococci and these antibiotics can still be used for treatment of staphylococcal infections in the world.
Collapse
Affiliation(s)
- Aref Shariati
- Student Research Committee, Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Chegini
- Student Research Committee, Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alex van Belkum
- Open Innovation & Partnerships, Route de Port Michaud, 38390, La Balme Les Grottes, France
| | - Mehdi Mirzaii
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyed Sajjad Khoramrooz
- Cellular and Molecular Research Center and Department of Microbiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Folan SA, Marx KR, Tverdek FP, Raad I, Mulanovich VE, Tarrand JJ, Shelburne SA, Aitken SL. Clinical Outcomes Associated With Linezolid Resistance in Leukemia Patients With Linezolid-Resistant Staphylococcus epidermidis Bacteremia. Open Forum Infect Dis 2018; 5:ofy167. [PMID: 30090838 PMCID: PMC6061807 DOI: 10.1093/ofid/ofy167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/09/2018] [Indexed: 11/12/2022] Open
Abstract
Background Coagulase-negative staphylococci, including Staphylococcus epidermidis, are the most common cause of bloodstream infection in cancer patients. Linezolid resistance is increasingly identified in S. epidermidis, but whether such resistance alters the clinical course of S. epidermidis infections is unknown. The purpose of this study was to assess the clinical impact of linezolid resistance in leukemia patients with S. epidermidis bloodstream infection. Methods This was a retrospective, single-center cohort study of all adult leukemia patients with S. epidermidis bacteremia treated with empiric linezolid between 2012 and 2015. The primary end point was adverse clinical outcome on day 3, defined as a composite of persistent bacteremia, fever, intensive care unit admission, or death. Fourteen- and 30-day mortality were also assessed. Results Eighty-two unique leukemia patients with S. epidermidis were identified. Linezolid resistance was identified in 33/82 (40%). Patients with linezolid-resistant S. epidermidis were significantly more likely to have persistent bacteremia (41% vs 7%; adjusted relative risk [aRR], 5.15; 95% confidence interval [CI], 1.63–16.30; P = .005); however, adverse short-term clinical outcomes overall were not more common among patients with linezolid-resistant S. epidermidis (61% vs 33%; aRR, 1.46; 95% CI, 0.92–2.32; P = .108). No differences were observed in 14- or 30-day mortality. Conclusions Leukemia patients with linezolid-resistant S. epidermidis bacteremia who were treated with linezolid were significantly more likely to have persistent bacteremia compared with those with linezolid-sensitive isolates. Interventions to limit the clinical impact of linezolid-resistant S. epidermidis are warranted.
Collapse
Affiliation(s)
- Stephanie A Folan
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kayleigh R Marx
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frank P Tverdek
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Issam Raad
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Victor E Mulanovich
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey J Tarrand
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samuel A Shelburne
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for Antimicrobial Resistance and Microbial Genomics, UTHealth McGovern Medical School, Houston, Texas
| | - Samuel L Aitken
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for Antimicrobial Resistance and Microbial Genomics, UTHealth McGovern Medical School, Houston, Texas
| |
Collapse
|
9
|
Bi R, Qin T, Fan W, Ma P, Gu B. The emerging problem of linezolid-resistant enterococci. J Glob Antimicrob Resist 2017; 13:11-19. [PMID: 29101082 DOI: 10.1016/j.jgar.2017.10.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 11/19/2022] Open
Abstract
Enterococcus is a significant pathogen in numerous infections, particularly in nosocomial infections, and is thus a great challenge to clinicians. Linezolid (LNZ), an oxazolidinone antibiotic, is an important therapeutic option for infections caused by Gram-positive bacterial pathogens, especially vancomycin-resistant enterococci. A systematic review was performed of the available literature on LNZ-resistant enterococci (LRE) to characterise these infections with respect to epidemiological, microbiological and clinical features. The results validated the potency of LNZ against enterococcal infections, with a sustained susceptibility rate of 99.8% in ZAAPS and 99.2% in LEADER surveillance programmes. Patients with LRE had been predominantly exposed to LNZ prior to isolation of LRE, with a mean treatment duration of 29.8±48.8days for Enterococcus faecalis and 23.1±21.4days for Enterococcus faecium. Paradoxically, LRE could also develop in patients without prior LNZ exposure. LNZ resistance was attributed to 23S rRNA (G2576T) mutations (51.2% of E. faecalis and 80.5% of E. faecium) as well as presence of the cfr gene (4.7% and 4.8%, respectively), which could transfer horizontally among the strains. In addition to the cfr gene, 32 cases of optrA-positive LRE were identified. Further study is required to determine the prevalence of novel resistance genes. The emergence of LRE thus hampers the treatment of such infections, which warrants worldwide surveillance.
Collapse
Affiliation(s)
- Ruru Bi
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Tingting Qin
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Wenting Fan
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Ping Ma
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China; Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China; Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
10
|
Tärnberg M, Nilsson LE, Dowzicky MJ. Antimicrobial activity against a global collection of skin and skin structure pathogens: results from the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.), 2010-2014. Int J Infect Dis 2016; 49:141-8. [PMID: 27343986 DOI: 10.1016/j.ijid.2016.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND As part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) we report antimicrobial resistance among Gram-positive and Gram-negative isolates collected globally from integumentary sources between 2010 and 2014. METHODS Minimum inhibitory concentrations and antimicrobial resistance were determined according to Clinical and Laboratory Standards Institute guidelines (US Food and Drug Administration breakpoints against tigecycline). The Cochran-Armitage trend test was used to identify statistically significant changes in resistance. RESULTS Global rates of methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Acinetobacter baumannii were 38% and 43%, respectively. No S. aureus isolates were resistant to linezolid or vancomycin; all isolates were susceptible to tigecycline. Two percent of Enterococcus faecalis and 28% of Enterococcus faecium were vancomycin-resistant. Extended-spectrum β-lactamase (ESBL) producers accounted for 22% of Klebsiella pneumoniae and 16% of Escherichia coli. Resistance to minocycline among E. faecalis, E. faecium, K. pneumoniae, and E. coli decreased significantly (p<0.0001). There were significant increases (p<0.0001) in A. baumannii resistance to cefepime, ceftazidime, ceftriaxone, levofloxacin, meropenem, and piperacillin-tazobactam. CONCLUSIONS Among isolates from integumentary sources, rates of MRSA and ESBL-producing Enterobacteriaceae are stabilizing. Carbapenems and tigecycline have retained their in vitro activity against Gram-positive and Gram-negative organisms. Few agents were active against A. baumannii; its increasing resistance is cause for concern.
Collapse
Affiliation(s)
- Maria Tärnberg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Lennart E Nilsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | |
Collapse
|
11
|
Linezolid Surveillance Results for the United States (LEADER Surveillance Program 2014). Antimicrob Agents Chemother 2016; 60:2273-80. [PMID: 26833165 DOI: 10.1128/aac.02803-15] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/22/2016] [Indexed: 11/20/2022] Open
Abstract
Thelinezolidexperience andaccuratedetermination ofresistance (LEADER) surveillance program has monitored linezolid activity, spectrum, and resistance since 2004. In 2014, a total of 6,865 Gram-positive pathogens from 60 medical centers from 36 states were submitted. The organism groups evaluated wereStaphylococcus aureus(3,106), coagulase-negative staphylococci (CoNS; 797), enterococci (855),Streptococcus pneumoniae(874), viridans group streptococci (359), and beta-hemolytic streptococci (874). Susceptibility testing was performed by reference broth microdilution at the monitoring laboratory. Linezolid-resistant isolates were confirmed by repeat testing. PCR and sequencing were performed to detect mutations in 23S rRNA, L3, L4, and L22 proteins and acquired genes (cfrandoptrA). The MIC50/90forStaphylococcus aureuswas 1/1 μg/ml, with 47.2% of isolates being methicillin-resistantStaphylococcus aureus Linezolid was active against allStreptococcus pneumoniaestrains and beta-hemolytic streptococci with a MIC50/90of 1/1 μg/ml and against viridans group streptococci with a MIC50/90of 0.5/1 μg/ml. Among the linezolid-nonsusceptible MRSA strains, one strain harboredcfronly (MIC, 4 μg/ml), one harbored G2576T (MIC, 8 μg/ml), and one containedcfrand G2576T with L3 changes (MIC, ≥8 μg/ml). Among CoNS, 0.75% (six isolates) of all strains demonstrated linezolid MIC results of ≥4 μg/ml. Five of these were identified asStaphylococcus epidermidis, four of which containedcfrin addition to the presence of mutations in the ribosomal proteins L3 and L4, alone or in combination with 23S rRNA (G2576T) mutations. Six enterococci (0.7%) were linezolid nonsusceptible (≥4 μg/ml; five with G2576T mutations, including one with an additionalcfrgene, and one strain withoptrAonly). Linezolid demonstrated excellent activity and a sustained susceptibility rate of 99.78% overall.
Collapse
|
12
|
Freeman S, Okoroafor NO, Gast CM, Koval M, Nowowiejski D, O’Connor E, Harrington RD, Parks JW, Fang FC. Crowdsourced Data Indicate Widespread Multidrug Resistance in Skin Flora of Healthy Young Adults. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2016; 17:172-82. [PMID: 27047615 PMCID: PMC4798803 DOI: 10.1128/jmbe.v17i1.1008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In a laboratory exercise for undergraduate biology majors, students plated bacteria from swabs of their facial skin under conditions that selected for coagulase-negative Staphylococcus; added disks containing the antibiotics penicillin, oxacillin, tetracycline, and erythromycin; and measured zones of inhibition. Students also recorded demographic and lifestyle variables and merged this information with similar data collected from 9,000 other students who had contributed to the database from 2003 to 2011. Minimum inhibitory concentration (MIC) testing performed at the Harborview Medical Center Microbiology Laboratory (Seattle, WA) indicated a high degree of accuracy for student-generated data; species identification with a matrix-assisted laser desorption ionization (MALDI) Biotyper revealed that over 88% of the cells analyzed by students were S. epidermidis or S. capitus. The overall frequency of resistant cells was high, ranging from 13.2% of sampled bacteria resistant to oxacillin to 61.7% resistant to penicillin. Stepwise logistic regressions suggested that recent antibiotic use was strongly associated with resistance to three of the four antibiotics tested (p = 0.0003 for penicillin, p << 0.0001 for erythromycin and tetracycline), and that age, gender, use of acne medication, use of antibacterial soaps, or makeup use were associated with resistance to at least one of the four antibiotics. Furthermore, drug resistance to one antibiotic was closely linked to resistance to the other three antibiotics in every case (all p values << 0.0001), suggesting the involvement of multidrug-resistant strains. The data reported here suggest that citizen science could not only provide an important educational experience for undergraduates, but potentially play a role in efforts to expand antibiotic resistance (ABR) surveillance.
Collapse
Affiliation(s)
- Scott Freeman
- Department of Biology University of Washington, Seattle, WA 98195
- Corresponding author. Mailing address: Department of Biology, Box 355320, University of Washington, Seattle, WA 98195. Phone: 206-300-4448. E-mail:
| | | | - Christopher M. Gast
- Interdisciplinary Program in Quantitative Ecology and Resource Management; currently Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98195
| | - Mikhail Koval
- Department of Biology University of Washington, Seattle, WA 98195
| | - David Nowowiejski
- Department of Laboratory Medicine and Harborview Medical Center, University of Washington, Seattle, WA 98195
| | - Eileen O’Connor
- Department of Biology University of Washington, Seattle, WA 98195
| | - Robert D. Harrington
- Department of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195
| | - John W. Parks
- Department of Biology University of Washington, Seattle, WA 98195
| | - Ferric C. Fang
- Department of Laboratory Medicine and Harborview Medical Center, University of Washington, Seattle, WA 98195
| |
Collapse
|
13
|
Ray A, Malin D, Nicolau DP, Wiskirchen DE. Antibiotic Tissue Penetration in Diabetic Foot Infections A Review of the Microdialysis Literature and Needs for Future Research. J Am Podiatr Med Assoc 2015; 105:520-31. [PMID: 26667505 DOI: 10.7547/14-036.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although many antimicrobial agents display good in vitro activity against the pathogens frequently implicated in diabetic foot infections, effective treatment can be complicated by reduced tissue penetration in this population secondary to peripheral arterial disease and emerging antimicrobial resistance, which can result in clinical failure. Improved characterization of antibiotic tissue pharmacokinetics and penetration ratios in diabetic foot infections is needed. Microdialysis offers advantages over the skin blister and tissue homogenate studies historically used to define antibiotic penetration in skin and soft-tissue infections by defining antibiotic penetration into the interstitial fluid over the entire concentration versus time profile. However, only a select number of agents currently recommended for treating diabetic foot infections have been evaluated using these methods, which are described herein. Better characterization of the tissue penetration of antibiotic agents is needed for the development of methods for maximizing the pharmacodynamic profile of these agents to ultimately improve treatment outcomes for patients with diabetic foot infections.
Collapse
Affiliation(s)
- Amanda Ray
- Section of Podiatric Surgery, Department of Surgery, Saint Francis Hospital and Medical Center, Hartford, CT
| | - Danielle Malin
- Section of Podiatric Surgery, Department of Surgery, Saint Francis Hospital and Medical Center, Hartford, CT
| | - David P. Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT
- Division of Infectious Diseases, Hartford Hospital, Hartford, CT
| | - Dora E. Wiskirchen
- Department of Pharmacy Practice and Administration, School of Pharmacy, University of Saint Joseph, Hartford, CT
- Department of Pharmacy, Saint Francis Hospital and Medical Center, Hartford, CT
| |
Collapse
|
14
|
Flamm RK, Mendes RE, Hogan PA, Ross JE, Farrell DJ, Jones RN. In vitro activity of linezolid as assessed through the 2013 LEADER surveillance program. Diagn Microbiol Infect Dis 2015; 81:283-9. [DOI: 10.1016/j.diagmicrobio.2014.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 11/29/2022]
|
15
|
Identification and characterization of linezolid-resistant cfr-positive Staphylococcus aureus USA300 isolates from a New York City medical center. Antimicrob Agents Chemother 2014; 58:6949-52. [PMID: 25136008 DOI: 10.1128/aac.03380-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cfr gene was identified in three linezolid-resistant USA300 methicillin-resistant Staphylococcus aureus (MRSA) isolates collected over a 3-day period at a New York City medical center in 2011 as part of a routine surveillance program. Each isolate possessed a plasmid containing a pSCFS3-like cfr gene environment. Transformation of the cfr-bearing plasmids into the S. aureus ATCC 29213 background recapitulated the expected Cfr antibiogram, including resistance to linezolid, tiamulin, clindamycin, and florfenicol and susceptibility to tedizolid.
Collapse
|
16
|
Mechanisms of linezolid resistance among coagulase-negative staphylococci determined by whole-genome sequencing. mBio 2014; 5:e00894-14. [PMID: 24915435 PMCID: PMC4030478 DOI: 10.1128/mbio.00894-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Linezolid resistance is uncommon among staphylococci, but approximately 2% of clinical isolates of coagulase-negative staphylococci (CoNS) may exhibit resistance to linezolid (MIC, ≥8 µg/ml). We performed whole-genome sequencing (WGS) to characterize the resistance mechanisms and genetic backgrounds of 28 linezolid-resistant CoNS (21 Staphylococcus epidermidis isolates and 7 Staphylococcus haemolyticus isolates) obtained from blood cultures at a large teaching health system in California between 2007 and 2012. The following well-characterized mutations associated with linezolid resistance were identified in the 23S rRNA: G2576U, G2447U, and U2504A, along with the mutation C2534U. Mutations in the L3 and L4 riboproteins, at sites previously associated with linezolid resistance, were also identified in 20 isolates. The majority of isolates harbored more than one mutation in the 23S rRNA and L3 and L4 genes. In addition, the cfr methylase gene was found in almost half (48%) of S. epidermidis isolates. cfr had been only rarely identified in staphylococci in the United States prior to this study. Isolates of the same sequence type were identified with unique mutations associated with linezolid resistance, suggesting independent acquisition of linezolid resistance in each isolate. Linezolid is one of a limited number of antimicrobials available to treat drug-resistant Gram-positive bacteria, but resistance has begun to emerge. We evaluated the genomes of 28 linezolid-resistant staphylococci isolated from patients. Multiple mutations in the rRNA and associated proteins previously associated with linezolid resistance were found in the isolates investigated, underscoring the multifocal nature of resistance to linezolid in Staphylococcus. Importantly, almost half the S. epidermidis isolates studied harbored a plasmid-borne cfr RNA methylase gene, suggesting that the incidence of cfr may be higher in the United States than previously documented. This finding has important implications for infection control practices in the United States. Further, cfr is commonly detected in bacteria isolated from livestock, where the use of phenicols, lincosamides, and pleuromutilins in veterinary medicine may provide selective pressure and lead to maintenance of this gene in animal bacteria.
Collapse
|
17
|
Mendes RE, Deshpande LM, Jones RN. Linezolid update: stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms. Drug Resist Updat 2014; 17:1-12. [PMID: 24880801 DOI: 10.1016/j.drup.2014.04.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Linezolid, approved for clinical use since 2000, has become an important addition to the anti-Gram-positive infection armamentarium. This oxazolidinone drug has in vitro and in vivo activity against essentially all Gram-positive organisms, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). The in vitro activity of linezolid was well documented prior to its clinical application, and several ongoing surveillance studies demonstrated consistent and potent results during the subsequent years of clinical use. Emergence of resistance has been limited and associated with invasive procedures, deep organ involvement, presence of foreign material and mainly prolonged therapy. Non-susceptible organisms usually demonstrate alterations in the 23S rRNA target, which remain the main resistance mechanism observed in enterococci; although a few reports have described the detection of cfr-mediated resistance in Enterococcus faecalis. S. aureus isolates non-susceptible to linezolid remain rare in large surveillance studies. Most isolates harbour 23S rRNA mutations; however, cfr-carrying MRSA isolates have been observed in the United States and elsewhere. It is still uncertain whether the occurrences of such isolates are becoming more prevalent. Coagulase-negative isolates (CoNS) resistant to linezolid were uncommon following clinical approval. Surveillance data have indicated that CoNS isolates, mainly Staphylococcus epidermidis, currently account for the majority of Gram-positive organisms displaying elevated MIC results to linezolid. In addition, these isolates frequently demonstrate complex and numerous resistance mechanisms, such as alterations in the ribosomal proteins L3 and/or L4 and/or presence of cfr and/or modifications in 23S rRNA. The knowledge acquired during the past decades on this initially used oxazolidinone has been utilized for developing new candidate agents, such as tedizolid and radezolid, and as linezolid patents soon begin to expire, generic brands will certainly become available. These events will likely establish a new chapter for this successful class of antimicrobial agents.
Collapse
Affiliation(s)
| | | | - Ronald N Jones
- JMI Laboratories, North Liberty, IA 52317, USA; Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
18
|
Mutations within the rplD Gene of Linezolid-Nonsusceptible Streptococcus pneumoniae Strains Isolated in the United States. Antimicrob Agents Chemother 2014; 58:2459-62. [PMID: 24492357 DOI: 10.1128/aac.02630-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Three invasive Streptococcus pneumoniae strains nonsusceptible to linezolid were isolated in the United States between 2001 and 2012 from the CDC's Active Bacterial Core surveillance. Linezolid binds ribosomal proteins where structural changes within its target site may confer resistance. Our study identified mutations and deletions near the linezolid binding pocket of two of these strains within the rplD gene, which encodes ribosomal protein L4. Mutations in the 23S rRNA alleles or the rplV gene were not detected.
Collapse
|
19
|
Abstract
Staphylococcus aureus is an important pathogen linked to serious infections both in the hospital and the community settings. The challenge to treat infections caused by S. aureus has increased because of the emergence of multidrug-resistant strains such as methicillin-resistant S. aureus (MRSA). A limited spectrum of antibiotics is available to treat MRSA infections. This chapter reviews antimicrobial agents currently in use for the treatment of MRSA infections as well as agents that are in various stages of development. This chapter also reviews the alternate approaches that are being explored for the treatment of staphylococcal infections.
Collapse
Affiliation(s)
- Anu Daniel
- Cubist Pharmaceuticals, Lexington, MA, USA
| |
Collapse
|
20
|
Summary of linezolid activity and resistance mechanisms detected during the 2012 LEADER surveillance program for the United States. Antimicrob Agents Chemother 2013; 58:1243-7. [PMID: 24323470 DOI: 10.1128/aac.02112-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study summarizes the linezolid susceptibility testing results for 7,429 Gram-positive pathogens from 60 U.S. sites collected during the 2012 sampling year for the LEADER Program. Linezolid showed potent activity when tested against 2,980 Staphylococcus aureus isolates, inhibiting all but 3 at ≤2 μg/ml. Similarly, linezolid showed coverage against 99.5% of enterococci, as well as for all streptococci tested. These results confirm a long record of linezolid activity against U.S. Gram-positive isolates since regulatory approval in 2000.
Collapse
|
21
|
Edelsberg J, Weycker D, Barron R, Li X, Wu H, Oster G, Badre S, Langeberg WJ, Weber DJ. Prevalence of antibiotic resistance in US hospitals. Diagn Microbiol Infect Dis 2013; 78:255-62. [PMID: 24360267 DOI: 10.1016/j.diagmicrobio.2013.11.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 09/20/2013] [Accepted: 11/01/2013] [Indexed: 12/17/2022]
Abstract
The percentage of isolates resistant to essential antibiotics among clinically significant bacterial pathogens was evaluated using data from 80089 qualifying admissions in 19 US hospitals (2007-2010). Percentage resistant was highest for the following pathogen/antibiotic pairs: Enterococcus faecium/vancomycin (87.1% [95% CI 86.0-88.1] of 4024 isolates), Staphylococcus aureus/oxacillin-methicillin (56.8% [56.1-57.4] of 23477 isolates), S. aureus/clindamycin (39.7% [39.1-40.4] of 21133 isolates), Pseudomonas aeruginosa/fluoroquinolones (32.6% [31.8-33.5] of 10982 isolates), and Escherichia coli/fluoroquinolones (31.3% [30.8-31.8] of 30715 isolates). The percentage resistant was 3.9% (3.2-4.9) for E. faecium/daptomycin (n = 2029 isolates). While these results are consistent with those from earlier studies in many respects, the percentage of E. faecium isolates resistant to daptomycin, while still small, is higher than has been reported to date.
Collapse
Affiliation(s)
| | | | | | | | - Hongsheng Wu
- Policy Analysis Inc. (PAI), Brookline, MA, USA; Wentworth Institute of Technology, Department of Computer Science and Networking, Boston, MA, USA
| | - Gerry Oster
- Policy Analysis Inc. (PAI), Brookline, MA, USA
| | | | | | - David J Weber
- University of North Carolina at Chapel Hill, Schools of Medicine and Public Health, Chapel Hill, NC, USA
| |
Collapse
|
22
|
Flamm RK, Farrell DJ, Mendes RE, Ross JE, Sader HS, Jones RN. ZAAPS Program results for 2010: an activity and spectrum analysis of linezolid using clinical isolates from 75 medical centres in 24 countries. J Chemother 2013; 24:328-37. [DOI: 10.1179/1973947812y.0000000039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: molecular epidemiology and resistance mechanisms. Int J Antimicrob Agents 2013; 42:317-21. [DOI: 10.1016/j.ijantimicag.2013.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 11/18/2022]
|
24
|
Staphylococcus coagulasa negativos resistentes al linezolid: características fenotípicas, genotípicas y sensibilidad a combinaciones de antibióticos. Enferm Infecc Microbiol Clin 2013; 31:442-7. [DOI: 10.1016/j.eimc.2012.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/24/2012] [Accepted: 10/30/2012] [Indexed: 11/21/2022]
|
25
|
Characterization and monitoring of linezolid-resistant clinical isolates of Staphylococcus epidermidis in an intensive care unit 4 years after an outbreak of infection by cfr-mediated linezolid-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 2013; 76:325-9. [DOI: 10.1016/j.diagmicrobio.2013.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/28/2013] [Accepted: 04/09/2013] [Indexed: 11/24/2022]
|
26
|
Flamm RK, Mendes RE, Ross JE, Sader HS, Jones RN. An international activity and spectrum analysis of linezolid: ZAAPS Program results for 2011. Diagn Microbiol Infect Dis 2013; 76:206-13. [DOI: 10.1016/j.diagmicrobio.2013.01.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/31/2013] [Indexed: 12/18/2022]
|
27
|
Grove TL, Livada J, Schwalm EL, Green MT, Booker SJ, Silakov A. A substrate radical intermediate in catalysis by the antibiotic resistance protein Cfr. Nat Chem Biol 2013; 9:422-7. [PMID: 23644479 PMCID: PMC3897224 DOI: 10.1038/nchembio.1251] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 04/02/2013] [Indexed: 01/08/2023]
Abstract
Cfr-dependent methylation of C8 of adenosine 2503 (A2503) in 23S rRNA confers bacterial resistance to an array of clinically important antibiotics that target the large subunit of the ribosome, including the synthetic oxazolidinone antibiotic linezolid. The key element of the proposed mechanism for Cfr, a radical S-adenosylmethionine (SAM) enzyme, is the addition of a methylene radical — generated by hydrogen-atom abstraction from the methyl group of an S-methylated cysteine residue (mCys) — onto C8 of A2503 to form a protein – nucleic acid cross-linked species containing an unpaired electron. Herein we use continuous-wave and pulsed electron paramagnetic resonance (EPR) techniques to provide direct spectroscopic evidence for this intermediate, showing a spin-delocalized radical with maximum spin density at N7 of the adenine ring. In addition, we use rapid-freeze quench EPR to show that the radical forms and decays with rate constants that are consistent with the rate of formation of the methylated product.
Collapse
Affiliation(s)
- Tyler L Grove
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
28
|
An MM, Shen H, Zhang JD, Xu GT, Jiang YY. Linezolid versus vancomycin for meticillin-resistant Staphylococcus aureus infection: a meta-analysis of randomised controlled trials. Int J Antimicrob Agents 2013; 41:426-33. [DOI: 10.1016/j.ijantimicag.2012.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 12/20/2012] [Indexed: 11/15/2022]
|
29
|
Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 2013; 26:185-230. [PMID: 23554414 PMCID: PMC3623377 DOI: 10.1128/cmr.00059-12] [Citation(s) in RCA: 633] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria.
Collapse
|
30
|
Alternative Agents to Vancomycin for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections. Am J Ther 2013; 20:200-12. [DOI: 10.1097/mjt.0b013e31821109ec] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Gu B, Kelesidis T, Tsiodras S, Hindler J, Humphries RM. The emerging problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother 2013; 68:4-11. [PMID: 22949625 PMCID: PMC8445637 DOI: 10.1093/jac/dks354] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The oxazolidinone antibiotic linezolid has demonstrated potent antimicrobial activity against Gram-positive bacterial pathogens, including methicillin-resistant staphylococci. This article systematically reviews the published literature for reports of linezolid-resistant Staphylococcus (LRS) infections to identify epidemiological, microbiological and clinical features for these infections. Linezolid remains active against >98% of Staphylococcus, with resistance identified in 0.05% of Staphylococcus aureus and 1.4% of coagulase-negative Staphylococcus (CoNS). In all reported cases, patients were treated with linezolid prior to isolation of LRS, with mean times of 20.0 ± 47.0 months for S. aureus and 11.0 ± 8.0 days for CoNS. The most common mechanisms for linezolid resistance were mutation (G2576T) to the 23S rRNA (63.5% of LRSA and 60.2% of LRCoNS) or the presence of a transmissible cfr ribosomal methyltransferase (54.5% of LRSA and 15.9% of LRCoNS). The emergence of linezolid resistance in Staphylococcus poses significant challenges to the clinical treatment of infections caused by these organisms, and in particular CoNS.
Collapse
Affiliation(s)
- Bing Gu
- Department of Laboratory Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
- UCLA David Geffen School of Medicine, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| | - Theodoros Kelesidis
- UCLA David Geffen School of Medicine, Division of Infectious Diseases, Los Angeles, California, USA
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, University of Athens Medical School, Athens, Greece
| | - Janet Hindler
- UCLA David Geffen School of Medicine, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| | - Romney M. Humphries
- UCLA David Geffen School of Medicine, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| |
Collapse
|
32
|
Linezolid surveillance results for the United States: LEADER surveillance program 2011. Antimicrob Agents Chemother 2012; 57:1077-81. [PMID: 23254424 DOI: 10.1128/aac.02112-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LEADER surveillance program monitors the in vitro activity of linezolid and comparator agents against Gram-positive bacteria in the United States. In its eighth consecutive year (2011), a total of 60 medical centers from the United States, including seven medical centers specializing in children's health care contributed a total of 7,303 Gram-positive pathogens. The MIC(90) value for Staphylococcus aureus was 2 μg/ml, and for coagulase-negative staphylococci, enterococci, Streptococcus pneumoniae, β-hemolytic streptococci, and viridans group streptococci, the MIC(90) was 1 μg/ml. The "all organism" linezolid-resistant and nonsusceptible rate was only 0.19%.
Collapse
|
33
|
The genetic environment of the cfr gene and the presence of other mechanisms account for the very high linezolid resistance of Staphylococcus epidermidis isolate 426-3147L. Antimicrob Agents Chemother 2012; 57:1173-9. [PMID: 23254434 DOI: 10.1128/aac.02047-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The clinical Staphylococcus epidermidis isolate 426-3147L exhibits an unusually high resistance to linezolid that exceeds 256 μg/ml. The presence of the cfr gene, encoding the RNA methyltransferase targeting an rRNA nucleotide located in the linezolid binding site, accounts for a significant fraction of resistance. The association of cfr with a multicopy plasmid is one of the factors that contribute to its elevated expression. Mapping of the cfr transcription start sites identified the native cfr promoter. Furthermore, analysis of the cfr transcripts in Staphylococcus epidermidis 426-3147L showed that some of them originate from the upstream plasmid-derived promoters whose activity contributes to efficient cfr transcription. The genetic environment of the cfr gene and its idiosyncratic transcription pattern result in increased activity of Cfr methyltransferase, leading to a high fraction of the ribosomes being methylated at A2503 of the 23S rRNA. Curing of the Staphylococcus epidermidis 426-3147L isolate from the cfr-containing plasmid reduced the linezolid MIC to 64 μg/ml, indicating that other determinants contribute to resistance. Nucleotide sequence analysis revealed the presence of the C2534T mutation in two of the six 23S rRNA gene alleles as well as the presence of mutations in the genes of ribosomal proteins L3 and L4, which were previously implicated in linezolid resistance. Thus, the combination of resistance mechanisms operating through alteration of the drug target site appears to cause an unusually high level of linezolid resistance in the isolate.
Collapse
|
34
|
Ager S, Gould K. Clinical update on linezolid in the treatment of Gram-positive bacterial infections. Infect Drug Resist 2012; 5:87-102. [PMID: 22787406 PMCID: PMC3392139 DOI: 10.2147/idr.s25890] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gram-positive pathogens are a significant cause of morbidity and mortality in both community and health care settings. Glycopeptides have traditionally been the antibiotics of choice for multiresistant Gram-positive pathogens but there are problems with their use, including the emergence of glycopeptide-resistant strains, tissue penetration, and achieving and monitoring adequate serum levels. Newer antibiotics such as linezolid, a synthetic oxazolidinone, are available for the treatment of resistant Gram-positive bacteria. Linezolid is active against a wide range of Gram-positive bacteria and has been generally available for the treatment of Gram-positive infections since 2000. There are potential problems with linezolid use, including its bacteriostatic action and the relatively high incidence of reported adverse effects, particularly with long-term use. Long-term use may also be complicated by the development of resistance. However, linezolid has been shown to be clinically useful in the treatment of several serious infections where traditionally bacteriocidal agents have been required and many of its adverse effects are reversible on cessation. It has also been shown to be a cost-effective treatment option in several studies, with its high oral bioavailability allowing an early change from intravenous to oral formulations with consequent earlier patient discharge and lower inpatient costs.
Collapse
Affiliation(s)
- Sally Ager
- Department of Microbiology, Newcastle upon Tyne Hospitals Trust, Freeman Hospital, High Heaton, Newcastle upon Tyne, UK
| | | |
Collapse
|
35
|
Flamm RK, Farrell DJ, Mendes RE, Ross JE, Sader HS, Jones RN. LEADER surveillance program results for 2010: an activity and spectrum analysis of linezolid using 6801 clinical isolates from the United States (61 medical centers). Diagn Microbiol Infect Dis 2012; 74:54-61. [PMID: 22704791 DOI: 10.1016/j.diagmicrobio.2012.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/11/2012] [Indexed: 11/16/2022]
Abstract
The LEADER program monitors the in vitro activity of linezolid and comparator agents across the United States using reference broth microdilution and supportive molecular susceptibility-based investigations. This report summarizes the data from the 2010 program, the seventh consecutive year. A total of 61 medical centers from the USA including 7 medical centers specializing in children's healthcare provided a total of 6801 Gram-positive pathogens. The medical centers represented all 9 US Bureau of Census geographic regions. The organisms tested by reference broth microdilution were 3105 Staphylococcus aureus, 944 coagulase-negative staphylococci (CoNS), 934 Enterococci, 803 Streptococcus pneumoniae, 604 β-haemolytic streptococci, and 411 viridans group and other streptococci. The MIC(90) value for each of the above 6 targeted groups of organisms was 1 μg/mL. The "all organism" linezolid-resistant and nonsusceptible rate was 0.38%, which has been constant at 0.34% (2009) to 0.45% (2006) for the last 4 years. For Staphylococcus aureus, only 0.06% of the isolates were linezolid-resistant (MIC, ≥8 μg/mL); however, 2 additional methicillin-resistant Staphylococcus aureus had a cfr and a MIC of only 4 μg/mL. Resistance to linezolid was detected in 7 enterococci (0.75%) and 14 CoNS isolates (1.48%). This also represents a stable rate of resistance noted since the 2006 LEADER program report. Of note, for the first time in the 7 years of the Leader Program a linezolid-resistant Streptococcus pneumoniae was encountered. Overall, the results of the LEADER program demonstrate that linezolid maintains excellent in vitro activity against target Gram-positive pathogens across the USA. The LEADER program continues to provide valuable reference and molecular-level monitoring of linezolid activity.
Collapse
|
36
|
Long KS, Vester B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother 2012; 56:603-12. [PMID: 22143525 PMCID: PMC3264260 DOI: 10.1128/aac.05702-11] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Linezolid is an oxazolidinone antibiotic in clinical use for the treatment of serious infections of resistant Gram-positive bacteria. It inhibits protein synthesis by binding to the peptidyl transferase center on the ribosome. Almost all known resistance mechanisms involve small alterations to the linezolid binding site, so this review will therefore focus on the various changes that can adversely affect drug binding and confer resistance. High-resolution structures of linezolid bound to the 50S ribosomal subunit show that it binds in a deep cleft that is surrounded by 23S rRNA nucleotides. Mutation of 23S rRNA has for some time been established as a linezolid resistance mechanism. Although ribosomal proteins L3 and L4 are located further away from the bound drug, mutations in specific regions of these proteins are increasingly being associated with linezolid resistance. However, very little evidence has been presented to confirm this. Furthermore, recent findings on the Cfr methyltransferase underscore the modification of 23S rRNA as a highly effective and transferable form of linezolid resistance. On a positive note, detailed knowledge of the linezolid binding site has facilitated the design of a new generation of oxazolidinones that show improved properties against the known resistance mechanisms.
Collapse
Affiliation(s)
- Katherine S. Long
- Department of Systems Biology and Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Birte Vester
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
37
|
Ross JE, Farrell DJ, Mendes RE, Sader HS, Jones RN. Eight-year (2002-2009) summary of the linezolid (Zyvox® Annual Appraisal of Potency and Spectrum; ZAAPS) program in European countries. J Chemother 2012; 23:71-6. [PMID: 21571621 DOI: 10.1179/joc.2011.23.2.71] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The linezolid surveillance network (ZAAPS program) has been monitoring linezolid activity and susceptibility rates for eight years (2002-2009) in european medical centers. Samples from 12-24 sites annually in 11 countries were monitored by a central laboratory design using reference MIC methods with international and regional interpretations (EUCAST). A total of 13,404 gram-positive pathogens were tested from 6 pathogen groups. Linezolid remained without documented resistance from 2002 through 2005, but beginning in 2006 resistant strains emerged at very low rates among Staphylococcus aureus (G2576T mutant in ireland, 2007), coagulase-negative staphylococci (CoNS; usually Staphylococcus epidermidis, France and Italy in 2006-2009) and enterococci (Enterococcus faecium in Germany [2006, 2008, 2009] and E. faecalis in Sweden [2008], United Kingdom [2008] and Germany [2009]); all but one strain having a target mutation. A mobile cfr was detected in an italian CoNS strain (2008 and 2009), and clonal spread was noted for linezolid-resistant strains (PFGE results). Overall the linezolid susceptibility rates were >99.9, 99.7 and 99.6% for S. aureus, CoNS and enterococci, respectively; and all streptococcal strains were susceptible (MIC(90), 1 mg/l). In conclusion, the ZAAPS program surveillance confirmed high, sustained levels of linezolid activity from 2002-2009 and without evidence of MIC creep or escalating resistance in gram-positive pathogens across monitored european nations.
Collapse
Affiliation(s)
- J E Ross
- JMI Laboratories, 345 Beaver Kreek Centre, Suite A, North Liberty, Iowa 52317, USA.
| | | | | | | | | |
Collapse
|
38
|
Rodríguez-Rojas L, Castellanos-Monedero J, Gálvez-González J. Linezolid resistant Staphylococcus epidermidis in a patient with a knee replacement. Rev Esp Cir Ortop Traumatol (Engl Ed) 2012. [DOI: 10.1016/j.recote.2011.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Staphylococcus epidermidis resistente a linezolid en paciente portador de prótesis de rodilla. Rev Esp Cir Ortop Traumatol (Engl Ed) 2012. [DOI: 10.1016/j.recot.2011.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
Spread of cfr gene among staphylococci conferring resistance to linezolid in a patient under treatment. J Antibiot (Tokyo) 2011; 65:151-152. [PMID: 22186596 DOI: 10.1038/ja.2011.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Rivera AM, Boucher HW. Current concepts in antimicrobial therapy against select gram-positive organisms: methicillin-resistant Staphylococcus aureus, penicillin-resistant pneumococci, and vancomycin-resistant enterococci. Mayo Clin Proc 2011; 86:1230-43. [PMID: 22134942 PMCID: PMC3228624 DOI: 10.4065/mcp.2011.0514] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gram-positive bacteria cause a broad spectrum of disease in immunocompetent and immunocompromised hosts. Despite increasing knowledge about resistance transmission patterns and new antibiotics, these organisms continue to cause significant morbidity and mortality, especially in the health care setting. Methicillin-resistant Staphylococcus aureus poses major problems worldwide as a cause of nosocomial infection and has emerged as a cause of community-acquired infections. This change in epidemiology affects choices of empirical antibiotics for skin and skin-structure infections and community-acquired pneumonia in many settings. Throughout the world, the treatment of community-acquired pneumonia and other respiratory tract infections caused by penicillin-resistant Streptococcus pneumoniae has been complicated by resistance to β-lactam and macrolide antibacterial drugs. Vancomycin-resistant enterococci are a major cause of infection in the hospital setting and remain resistant to treatment with most standard antibiotics. Treatment of diseases caused by resistant gram-positive bacteria requires appropriate use of available antibiotics and stewardship to prolong their effectiveness. In addition, appropriate and aggressive infection control efforts are vital to help prevent the spread of resistant pathogens.
Collapse
Affiliation(s)
- Ana Maria Rivera
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA
| | | |
Collapse
|
42
|
Billal DS, Feng J, Leprohon P, Légaré D, Ouellette M. Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations. BMC Genomics 2011; 12:512. [PMID: 22004526 PMCID: PMC3212830 DOI: 10.1186/1471-2164-12-512] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/17/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several mutations were present in the genome of Streptococcus pneumoniae linezolid-resistant strains but the role of several of these mutations had not been experimentally tested. To analyze the role of these mutations, we reconstituted resistance by serial whole genome transformation of a novel resistant isolate into two strains with sensitive background. We sequenced the parent mutant and two independent transformants exhibiting similar minimum inhibitory concentration to linezolid. RESULTS Comparative genomic analyses revealed that transformants acquired G2576T transversions in every gene copy of 23S rRNA and that the number of altered copies correlated with the level of linezolid resistance and cross-resistance to florfenicol and chloramphenicol. One of the transformants also acquired a mutation present in the parent mutant leading to the overexpression of an ABC transporter (spr1021). The acquisition of these mutations conferred a fitness cost however, which was further enhanced by the acquisition of a mutation in a RNA methyltransferase implicated in resistance. Interestingly, the fitness of the transformants could be restored in part by the acquisition of altered copies of the L3 and L16 ribosomal proteins and by mutations leading to the overexpression of the spr1887 ABC transporter that were present in the original linezolid-resistant mutant. CONCLUSIONS Our results demonstrate the usefulness of whole genome approaches at detecting major determinants of resistance as well as compensatory mutations that alleviate the fitness cost associated with resistance.
Collapse
Affiliation(s)
- Dewan S Billal
- Centre de recherche en Infectiologie du Centre de recherche du CHUL, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
43
|
Daptomycin: evaluation of a high-dose treatment strategy. Int J Antimicrob Agents 2011; 38:192-6. [DOI: 10.1016/j.ijantimicag.2011.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/22/2022]
|
44
|
Mazzariol A, Lo Cascio G, Kocsis E, Maccacaro L, Fontana R, Cornaglia G. Outbreak of linezolid-resistant Staphylococcus haemolyticus in an Italian intensive care unit. Eur J Clin Microbiol Infect Dis 2011; 31:523-7. [DOI: 10.1007/s10096-011-1343-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 07/11/2011] [Indexed: 11/24/2022]
|
45
|
Nailor MD, Sobel JD. Antibiotics for gram-positive bacterial infection: vancomycin, teicoplanin, quinupristin/dalfopristin, oxazolidinones, daptomycin, telavancin, and ceftaroline. Med Clin North Am 2011; 95:723-42, vii. [PMID: 21679789 DOI: 10.1016/j.mcna.2011.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An overview of the mechanism of action, dosing, clinical indications, and toxicities of the glycopeptide vancomycin is provided. The emerging gram-positive bacterial resistance to antimicrobials and its mechanisms are reviewed. Strategies to control this emergence of resistance are expected to be proposed. Newer antimicrobial agents that have activity against vancomycin-resistant organisms are now available and play a critical role in the treatment of life-threatening infections.
Collapse
Affiliation(s)
- Michael D Nailor
- University of Connecticut School of Pharmacy, 69 North Eagleville Road Unit 3092, Storrs, CT 06269, USA
| | | |
Collapse
|
46
|
Determination of tissue penetration and pharmacokinetics of linezolid in patients with diabetic foot infections using in vivo microdialysis. Antimicrob Agents Chemother 2011; 55:4170-5. [PMID: 21709078 DOI: 10.1128/aac.00445-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus and other Gram-positive organisms, including methicillin-resistant S. aureus, continue to be the predominant pathogens associated with diabetic foot infections. Consequently, linezolid is often used to treat these infections. The purpose of the current study was to describe the pharmacokinetic profile and determine the level of penetration of linezolid into healthy thigh tissue and infected wound tissue of the same extremity in 9 diabetic patients with chronic lower limb infections by use of in vivo microdialysis. Hourly plasma and dialysate samples were obtained over a 12-h dosing interval following 3 to 4 doses of linezolid (600 mg intravenously every 12 h). Plasma protein binding was also assessed at 1, 6, and 12 h postdose. The means ± standard deviations (SD) for the maximum concentration in serum (C(max)), the volume of distribution at terminal phase (V(z)), and the half-life (t(1/2)) for linezolid in plasma were 11.99 ± 3.67 μg/ml, 0.71 ± 0.25 liters/kg of body weight, and 4.71 ± 1.23 h, respectively. Mean protein binding was 14.78% (range, 3.85 to 32.03%). The mean areas under the concentration-time curves from 0 to 12 h for the free, unbound fraction of linezolid (fAUC(0-12) values) ± SD for plasma, wound tissue, and thigh tissue were 51.24 ± 12.72, 82.76 ± 59.01, and 92.52 ± 60.44 μg · h/ml, respectively. Tissue penetration ratios (tissue fAUC to plasma fAUC) were similar for thigh (1.42; range, 1.08 to 2.23) and wound (1.27; range, 0.86 to 2.26) tissues (P = 0.648). With the currently approved dosing regimen, linezolid penetrated well into both healthy thigh tissue and infected wound tissue in these diabetic patients.
Collapse
|
47
|
LEADER Program results for 2009: an activity and spectrum analysis of linezolid using 6,414 clinical isolates from 56 medical centers in the United States. Antimicrob Agents Chemother 2011; 55:3684-90. [PMID: 21670176 DOI: 10.1128/aac.01729-10] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LEADER Program monitors the in vitro activity of linezolid in sampled U.S. medical centers using reference broth microdilution methods with supporting molecular investigations in a central laboratory design. This report summarizes data obtained in 2009, the 6th consecutive year of this longitudinal study. A total of 6,414 isolates from 56 medical centers in all nine Census regions across the United States participated in 2009. For the six leading species/groups, the following linezolid MIC(90) values were observed: Staphylococcus aureus, 2 μg/ml; coagulase-negative staphylococci (CoNS), 1 μg/ml; Enterococcus spp., 2 μg/ml; Streptococcus pneumoniae, 1 μg/ml; viridans group streptococci, 1 μg/ml; and beta-hemolytic streptococci, 1 μg/ml. Linezolid resistance was only 0.34% overall, with no evidence of significant increase in the LEADER Program since 2006. The predominant linezolid resistant mechanism found was a G2576T mutation in the 23S rRNA. L3/L4 riboprotein mutations were also found. The mobile multidrug-resistant cfr gene was found in four strains (two S. aureus strains and one strain each of S. epidermidis and S. capitis) from four different states, suggesting persistence but a lack of dissemination. Linezolid continues to exhibit excellent activity and spectrum, and this study documents the need for continued monitoring of emerging mechanisms of resistance over a wide geographic area.
Collapse
|
48
|
Abstract
The recently described rRNA methyltransferase Cfr that methylates the conserved 23S rRNA residue A2503, located in a functionally critical region of the ribosome, confers resistance to an array of ribosomal antibiotics, including linezolid. A number of reports of linezolid-resistant cfr-positive clinical strains indicate the possible rapid spread of this resistance mechanism. Since the rate of dissemination and the efficiency of maintenance of a resistance gene depend on the fitness cost associated with its acquisition, we investigated the fitness cost of cfr expression in a laboratory Staphylococcus aureus strain. We found that acquisition of the cfr gene does not produce any appreciable reduction in the cell growth rate. Only in a cogrowth competition experiment was some loss of fitness observed because Cfr-expressing cells slowly lose to the cfr-negative control strain. Interestingly, cells expressing wild-type and catalytically inactive Cfr had very similar growth characteristics, indicating that the slight fitness cost associated with cfr acquisition stems from expression of the Cfr polypeptide rather than from the modification of the conserved rRNA residue. In some clinical isolates, cfr is coexpressed with the erm gene, which encodes a methyltransferase targeting another 23S rRNA residue, A2058. Dimethylation of A2058 by Erm notably increases the fitness cost associated with the Cfr-mediated methylation of A2503. The generally low fitness cost of cfr acquisition observed in our experiments with the laboratory S. aureus strain offers a microbiological explanation for the apparent spread of the cfr gene among pathogens.
Collapse
|
49
|
JNJ-Q2, a new fluoroquinolone with potent in vitro activity against Staphylococcus aureus, including methicillin- and fluoroquinolone-resistant strains. Antimicrob Agents Chemother 2011; 55:3631-4. [PMID: 21555765 DOI: 10.1128/aac.00162-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
JNJ-Q2 is a broad-spectrum bactericidal fluoroquinolone with potent activity against Gram-positive and -negative pathogens. In this study, the in vitro activity of JNJ-Q2 was evaluated against 511 selected Staphylococcus aureus samples isolated in 2008-2009 from patients with acute bacterial skin and skin structure infections in the United States by using reference methodology. JNJ-Q2 was the most potent fluoroquinolone tested overall (MIC(50) and MIC(90), 0.12 and 0.5 μg/ml, respectively) and against methicillin- and fluoroquinolone-resistant subgroups in direct comparisons to moxifloxacin, levofloxacin, and ciprofloxacin (each being ≥ 16-fold less potent than JNJ-Q2).
Collapse
|
50
|
Pharmacokinetics of intravenous and oral linezolid in adults with cystic fibrosis. Antimicrob Agents Chemother 2011; 55:3393-8. [PMID: 21518837 DOI: 10.1128/aac.01797-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Linezolid is a treatment option for methicillin-resistant Staphylococcus aureus (MRSA) infections in cystic fibrosis (CF) patients. Little is known, however, about its pharmacokinetics in this population. Eight adults with CF were randomized to receive intravenous (i.v.) and oral linezolid at 600 mg twice daily for 9 doses in a crossover design with a 9-day washout. Plasma samples were collected after the first and ninth doses of each phase. Population pharmacokinetic analyses were performed by nonlinear mixed-effects modeling using a previously described 2-compartment model with time-dependent clearance inhibition. Monte Carlo simulation was performed to assess the activities of the linezolid dosing regimens against 42 contemporary MRSA isolates recovered from CF patients. The following pharmacokinetic parameter estimates were observed for the population: absorption rate constant, 1.91 h(-1); clearance, 9.54 liters/h; volume of central compartment, 26.8 liters; volume of peripheral compartment, 17.3 liters; and intercompartmental clearance, 104 liters/h. Linezolid demonstrated nonlinear clearance after 9 doses, which was reduced by a mean of 38.9% (range, 28.8 to 59.9%). Mean bioavailability was 85% (range, 47 to 131%). At steady state, 600 mg given twice daily produced 93.0% and 87.2% probabilities of obtaining the target pharmacodynamic exposure against the MRSA isolates for the i.v. and oral formulations, respectively. Thrice-daily dosing increased the probabilities to 97.0% and 95.6%, respectively. Linezolid pharmacokinetics in these adults with CF were well described by a 2-compartment model with time-dependent clearance inhibition. Standard i.v. and oral dosing regimens should be sufficient to reliably attain pharmacodynamic targets against most MRSA isolates; however, more frequent dosing may be required for isolates with MICs of ≥ 2 μg/ml.
Collapse
|