1
|
Khan R, Sharma A, Ravikumar R, Sivaprasad S, Raman R. Correlation of gut microbial diversity to sight-threatening diabetic retinopathy. BMC Microbiol 2024; 24:342. [PMID: 39271995 PMCID: PMC11395485 DOI: 10.1186/s12866-024-03496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
PURPOSE To determine the association of gut microbiome diversity and sight-threatening diabetic retinopathy (STDR) amongst patients with pre-existing diabetes. METHODS A cross-sectional study was performed, wherein 54 participants selected in total were placed into cases cohort if diagnosed with STDR and those without STDR but had a diagnosis of diabetes mellitus of at least 10-year duration were taken as controls. Statistical analysis comparing the gut microbial alpha diversity between cases and control groups as well as patients differentiated based on previously hypothesized Bacteroidetes/Firmicutes(B/F) ratio with an optimal cut-off 1.05 to identify patients with STDR were performed. RESULTS Comparing gut microbial alpha diversity did not show any difference between cases and control groups. However, statistically significant difference was noted amongst patients with B/F ratio ≥1.05 when compared to B/F ratio < 1.05; ACE index [Cut-off < 1.05:773.83 ± 362.73; Cut-off > 1.05:728.03 ± 227.37; p-0.016]; Chao1index [Cut-off < 1.05:773.63 ± 361.88; Cut-off > 1.05:728.13 ± 227.58; p-0.016]; Simpson index [Cut-off < 1.05:0.998 ± 0.001; Cut-off > 1.05:0.997 ± 0.001; p-0.006]; Shannon index [Cut-off < 1.05:6.37 ± 0.49; Cut-off > 1.05:6.10 ± 0.43; p-0.003]. Sub-group analysis showed that cases with B/F ratio ≥ 1.05, divided into proliferative diabetic retinopathy (PDR) and clinically significant macular edema (CSME), showed decreased diversity compared to controls (B/F ratio < 1.05). For PDR, all four diversity indices significantly decreased (p < 0.05). However, for CSME, only Shannon and Simpson indices showed significant decrease in diversity (p < 0.05). CONCLUSIONS Based on clinical diagnosis, decreasing gut microbial diversity was observed among patients with STDR, although not statistically significant. When utilizing B/F ratio, the decreasing gut microbial diversity in STDR patients seems to be associated due to species richness and evenness in PDR when compared to decreasing species richness in CSME.
Collapse
Affiliation(s)
- Rehana Khan
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Sankara Nethralaya, 18 College Road, Chennai, 600 006, Tamil Nadu, India
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Abhishek Sharma
- Michigan State University College of Human Medicine, East Lansing, MI, USA
| | | | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, London and University College, London, UK
| | - Rajiv Raman
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Sankara Nethralaya, 18 College Road, Chennai, 600 006, Tamil Nadu, India.
| |
Collapse
|
2
|
Li DH, Li ZW, Sun Q, Wang L, Ning SB. Lower fecal microbiota transplantation ameliorates ulcerative colitis by eliminating oral-derived Fusobacterium nucleatum and virulence factor. Gut Pathog 2024; 16:42. [PMID: 39118149 PMCID: PMC11311926 DOI: 10.1186/s13099-024-00633-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Recently, the oral oncobacterium Fusobacterium nucleatum (F. nucleatum), has been linked with ulcerative colitis (UC). Here, we aim to investigate whether Fecal Microbiota Transplantation (FMT) can alleviate UC by restoring gut microbiota and eliminating oral-derived F. nucleatum and virulence factor fadA. METHOD C57BL/6J mice were randomly divided into a healthy control group (HC), Dextran Sulfate Sodium group (DSS), oral inoculation group (OR), upper FMT group (UFMT), and lower FMT group (LFMT). Disease activity index, body weight, survival rate, and histopathological scores were used to measure the severity of colitis. The function of the intestinal mucosal barrier was evaluated by performing immunohistochemical staining of the tight junction protein Occludin. Real-time PCR was used to assess the relative abundance of the nusG gene and the virulence gene fadA. Cytokine levels were detected by ELISA. Full-length sequencing of 16S rRNA was used to analyze the changes and composition of gut microbiota. FINDINGS Oral incubation of F. nucleatum further exacerbated the severity of colitis and gut dysbiosis. Peptostreptococcaceae, Enterococcaceae, and Escherichia coli were significantly enriched in OR mice. However, LFMT mice showed an obvious decrease in disease activity and were more effective in restoring gut microbiota and eliminating F. nucleatum than UFMT mice. Bacteroidota, Lachnospiraceae, and Prevotellaceae were mainly enriched bacteria in LFMT mice. In addition, Genera such as Lactobacillus, Allobaculum, and Bacteroidales were found negative correlation with TNF-α, IL-1β, and IL-6. Genera like Romboutsia, Escherichia Shigella, Enterococcus, and Clostridium were found positively correlated with TNF-α, IL-1β, and IL-6. CONCLUSIONS Oral incubation of F. nucleatum further exacerbates the severity and dysbiosis in DSS-induced colitis mice. Besides, lower tract FMT can ameliorate colitis by restoring the gut microbiota diversity and eliminating F. nucleatum and virulence factor fadA.
Collapse
Affiliation(s)
- Dong-Hao Li
- Department of Gastroenterology, Air Force Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Zong-Wei Li
- Department of Gastroenterology, Air Force Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Qi Sun
- Department of Gastroenterology, Air Force Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Lei Wang
- Department of Gastroenterology, Air Force Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Shou-Bin Ning
- Department of Gastroenterology, Air Force Medical Center of Chinese People's Liberation Army, Beijing, China.
| |
Collapse
|
3
|
Sha S, Gao H, Zeng H, Chen F, Kang J, Jing Y, Liu X, Xu B. Adherent-invasive Escherichia coli LF82 disrupts the tight junctions of Caco-2 monolayers. Arab J Gastroenterol 2024:S1687-1979(24)00073-X. [PMID: 39069423 DOI: 10.1016/j.ajg.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND STUDY AIMS Adherent invasive Escherichia coli (AIEC) are enriched in IBD (inflammatory bowel disease) patients, but the role and mechanism of AIEC in the intestinal epithelial barrier is poorly defined. We evaluated the role of the AIEC strain E. coli LF82 in vitro and investigated the role of Th17 in this process. MATERIAL AND METHODS After coincubation with AIEC, the epithelial barrier integrity was monitored by epithelial resistance measurements. The permeability of the barrier was evaluated by TEER (trans-epithelial electrical resistance) and mucosal-to-serosal flux rate. The presence of interepithelial tight junction proteins ZO-1 and Claudin-1 were determined by immunofluorescence and western blot analysis. Cytokines in the cell culture supernatant were assayed by enzyme-linked immunosorbent assay (ELISA). RESULTS AIEC infection decreased TEER and increased the mucosal-to-serosal flux rate of Lucifer yellow in the intestinal barrier model in a time- and dose-dependent manner. AIEC infection decreased the expression and changed the distribution of ZO-1 and claudin-1. It also induced the secretion of cytokines such as TNF-α and IL-17. CONCLUSION AIEC strain E. coli LF82 increased the permeability and disrupted the tight junctions of the intestinal epithelial barrier, revealing that AIEC plays an aggravative role in the inflammatory response.
Collapse
Affiliation(s)
- Sumei Sha
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province 710004, PR China
| | - Huijun Gao
- Department of Gastroenterology, No. 988 Hospital of Joint Logistic Support Force, Jiaozuo, Henan Province 454000, PR China
| | - Hong Zeng
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province 710004, PR China; Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi Province 710000, PR China
| | - Fenrong Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province 710004, PR China
| | - Junxiu Kang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province 710004, PR China
| | - Yan Jing
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province 710004, PR China
| | - Xin Liu
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province 710004, PR China.
| | - Bin Xu
- Tangdu Hospital of the Air Force Medical University, Xi'an, Shaanxi, PR China; Department of General Surgery, the Chenggong Hospital Affiliated to Xiamen University (Central Hospital of the 73th Chinese People's Liberation Army), Xiamen Fujian Province 361003, PR China.
| |
Collapse
|
4
|
Yang Y, Zhang F, Yu X, Wang L, Wang Z. Integrating microbial 16S rRNA sequencing and non-targeted metabolomics to reveal sexual dimorphism of the chicken cecal microbiome and serum metabolome. Front Microbiol 2024; 15:1403166. [PMID: 39101039 PMCID: PMC11294938 DOI: 10.3389/fmicb.2024.1403166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024] Open
Abstract
Background The gut microbiome plays a key role in the formation of livestock and poultry traits via serum metabolites, and empirical evidence has indicated these traits are sex-linked. Methods We examined 106 chickens (54 male chickens and 52 female chickens) and analyzed cecal content samples and serum samples by 16S rRNA gene sequencing and non-targeted metabolomics, respectively. Results The cecal microbiome of female chickens was more stable and more complex than that of the male chickens. Lactobacillus and Family XIII UCG-001 were enriched in male chickens, while Eubacterium_nodatum_group, Blautia, unclassified_Anaerovoraceae, Romboutsia, Lachnoclostridium, and norank_Muribaculaceae were enriched in female chickens. Thirty-seven differential metabolites were identified in positive mode and 13 in negative mode, showing sex differences. Sphingomyelin metabolites possessed the strongest association with cecal microbes, while 11β-hydroxytestosterone showed a negative correlation with Blautia. Conclusion These results support the role of sexual dimorphism of the cecal microbiome and metabolome and implicate specific gender factors associated with production performance in chickens.
Collapse
Affiliation(s)
| | | | | | | | - Zhong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Amaro-da-Cruz A, Rubio-Tomás T, Álvarez-Mercado AI. Specific microbiome patterns and their association with breast cancer: the intestinal microbiota as a potential biomarker and therapeutic strategy. Clin Transl Oncol 2024:10.1007/s12094-024-03554-w. [PMID: 38890244 DOI: 10.1007/s12094-024-03554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Breast cancer (BC) is one of the most diagnosed cancers in women. Based on histological characteristics, they are classified as non-invasive, or in situ (tumors located within the milk ducts or milk lobules) and invasive. BC may develop from in situ carcinomas over time. Determining prognosis and predicting response to treatment are essential tools to manage this disease and reduce its incidence and mortality, as well as to promote personalized therapy for patients. However, over half of the cases are not associated with known risk factors. In addition, some patients develop resistance to treatment and relapse. Therefore, it is necessary to identify new biomarkers and treatment strategies that improve existing therapies. In this regard, the role of the microbiome is being researched as it could play a role in carcinogenesis and the efficacy of BC therapies. This review aims to describe specific microbiome patterns associated with BC. For this, a literature search was carried out in PubMed database using the MeSH terms "Breast Neoplasms" and "Gastrointestinal Microbiome", including 29 publications. Most of the studies have focused on characterizing the gut or breast tissue microbiome of the patients. Likewise, studies in animal models and in vitro that investigated the impact of gut microbiota (GM) on BC treatments and the effects of the microbiome on tumor cells were included. Based on the results of the included articles, BC could be associated with an imbalance in the GM. This imbalance varied depending on molecular type, stage and grade of cancer, menopause, menarche, body mass index, and physical activity. However, a specific microbial profile could not be identified as a biomarker. On the other hand, some studies suggest that the GM may influence the efficacy of BC therapies. In addition, some microorganisms and bacterial metabolites could improve the effects of therapies or influence tumor development.
Collapse
Affiliation(s)
- Alba Amaro-da-Cruz
- Department of Chemical Engineering, Faculty of Science, University of Granada, 18071, Granada, Spain
| | - Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Ana I Álvarez-Mercado
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014, Granada, Spain.
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016, Armilla, Spain.
- Department of Pharmacology School of Pharmacy, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
6
|
Bravo Iniguez A, Du M, Zhu MJ. α-Ketoglutarate for Preventing and Managing Intestinal Epithelial Dysfunction. Adv Nutr 2024; 15:100200. [PMID: 38438107 PMCID: PMC11016550 DOI: 10.1016/j.advnut.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
The epithelium lining the intestinal tract serves a multifaceted role. It plays a crucial role in nutrient absorption and immune regulation and also acts as a protective barrier, separating underlying tissues from the gut lumen content. Disruptions in the delicate balance of the gut epithelium trigger inflammatory responses, aggravate conditions such as inflammatory bowel disease, and potentially lead to more severe complications such as colorectal cancer. Maintaining intestinal epithelial homeostasis is vital for overall health, and there is growing interest in identifying nutraceuticals that can strengthen the intestinal epithelium. α-Ketoglutarate, a metabolite of the tricarboxylic acid cycle, displays a variety of bioactive effects, including functioning as an antioxidant, a necessary cofactor for epigenetic modification, and exerting anti-inflammatory effects. This article presents a comprehensive overview of studies investigating the potential of α-ketoglutarate supplementation in preventing dysfunction of the intestinal epithelium.
Collapse
Affiliation(s)
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, United States.
| |
Collapse
|
7
|
Zhang L, Agrawal M, Ng SC, Jess T. Early-life exposures and the microbiome: implications for IBD prevention. Gut 2024; 73:541-549. [PMID: 38123972 PMCID: PMC11150004 DOI: 10.1136/gutjnl-2023-330002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
The early-life period is one of microbiome establishment and immune maturation. Early-life exposures are increasingly being recognised to play an important role in IBD risk. The composition of functions of the gut microbiome in the prenatal, perinatal, and postnatal period may be crucial towards development of health or disease, including IBD, later in life. We herein present a comprehensive summary of the interplay between early-life factors and microbiome perturbations, and their association with risk of IBD. In addition, we provide an overview of host and external factors in early life that are known to impact gut microbiome maturation and exposures implicated in IBD risk. Considering the emerging concept of IBD prevention, we propose strategies to minimise maternal and offspring exposure to potentially harmful variables and recommend protective measures during pregnancy and the postpartum period. This holistic view of early-life factors and microbiome signatures among mothers and their offspring will help frame our current understanding of their importance towards IBD pathogenesis and frame the roadmap for preventive strategies.
Collapse
Affiliation(s)
- Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Manasi Agrawal
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York NY, New York, USA
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
8
|
Wetzel S, Müller A, Kohnert E, Mehrbarzin N, Huber R, Häcker G, Kreutz C, Lederer AK, Badr MT. Longitudinal dynamics of gut bacteriome and mycobiome interactions pre- and post-visceral surgery in Crohn's disease. Front Cell Infect Microbiol 2024; 13:1275405. [PMID: 38287975 PMCID: PMC10822897 DOI: 10.3389/fcimb.2023.1275405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/12/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction Alterations of the gut microbiome are involved in the pathogenesis of Crohn's disease (CD). The role of fungi in this context is unclear. This study aimed to determine postoperative changes in the bacterial and fungal gut communities of CD patients undergoing intestinal resection, and to evaluate interactions between the bacteriome and mycobiome and their impact on the patients' outcome. Methods We report a subgroup analysis of a prospective cohort study, focusing on 10 CD patients whose fecal samples were collected for bacterial 16S rRNA and fungal ITS2 genes next-generation sequencing the day before surgery and on the 5th or 6th postoperative day. Results No significant differences in bacterial and fungal diversity were observed between preoperative and postoperative stool samples. By in-depth analysis, significant postoperative abundance changes of bacteria and fungi and 17 interkingdom correlations were detected. Network analysis identified 13 microbial clusters in the perioperative gut communities, revealing symbiotic and competitive interactions. Relevant factors were gender, age, BMI, lifestyle habits (smoking, alcohol consumption) and surgical technique. Postoperative abundance changes and identified clusters were associated with clinical outcomes (length of hospital stay, complications) and levels of inflammatory markers. Conclusions Our findings highlight the importance of dissecting the interactions of gut bacterial and fungal communities in CD patients and their potential influence on postoperative and disease outcomes.
Collapse
Affiliation(s)
- Simon Wetzel
- Institute of Medical Microbiology and Hygiene, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Müller
- Center for Complementary Medicine, Department of Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva Kohnert
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Negin Mehrbarzin
- Institute of Medical Microbiology and Hygiene, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roman Huber
- Center for Complementary Medicine, Department of Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Ann-Kathrin Lederer
- Center for Complementary Medicine, Department of Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mohamed Tarek Badr
- Institute of Medical Microbiology and Hygiene, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Aufdecken gemeinsamer Prinzipien immunvermittelter Erkrankungen: von der Grundlagenwissenschaft zu neuen Therapien (IMM-PACT)-Program, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Pinto S, Benincà E, Galazzo G, Jonkers D, Penders J, Bogaards JA. Heterogeneous associations of gut microbiota with Crohn's disease activity. Gut Microbes 2024; 16:2292239. [PMID: 38105519 PMCID: PMC10730216 DOI: 10.1080/19490976.2023.2292239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
The multi-factorial involvement of gut microbiota with Crohn's disease (CD) necessitates robust analysis to uncover possible associations with particular microbes. CD has been linked to specific bacteria, but reported associations vary widely across studies. This inconsistency may result from heterogeneous associations across individual patients, resulting in no apparent or only weak relationships with the means of bacterial abundances. We investigated the relationship between bacterial relative abundances and disease activity in a longitudinal cohort of CD patients (n = 57) and healthy controls (n = 15). We applied quantile regression, a statistical technique that allows investigation of possible relationships outside the mean response. We found several significant and mostly negative associations with CD, especially in lower quantiles of relative abundance on family or genus level. Associations found by quantile regression deviated from the mean response in relative abundances of Coriobacteriaceae, Pasteurellaceae, Peptostreptococcaceae, Prevotellaceae, and Ruminococcaceae. For the family Streptococcaceae we found a significant elevation in relative abundance for patients experiencing an exacerbation relative to those who remained without self-reported symptoms or measurable inflammation. Our analysis suggests that specific bacterial families are related to CD and exacerbation, but associations vary between patients due to heterogeneity in disease course, medication history, therapy response, gut microbiota composition and historical contingency. Our study underscores that microbial diversity is reduced in the gut of CD patients, but suggests that the process of diversity loss is rather irregular with respect to specific taxonomic groups. This novel insight may advance our ecological understanding of this complex disease.
Collapse
Affiliation(s)
- Susanne Pinto
- Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Elisa Benincà
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Gianluca Galazzo
- School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht UMC, Maastricht, Netherlands
| | - Daisy Jonkers
- School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of Gastroenterology-Hepatology, Maastricht UMC, Maastricht, Netherlands
| | - John Penders
- School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht UMC, Maastricht, Netherlands
| | - Johannes A. Bogaards
- Epidemiology and Data Science, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute for Infection and Immunity (AII), Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
10
|
Jatkowska A, White B, Jaskolski P, Nichols B, Brownson E, Clowe J, Seenan JP, Gerasimidis K, MacDonald J. Perceptions Toward Established and Novel Dietary Therapies for Crohn's Disease Management Among Adult Patients: Results From a Questionnaire Survey. CROHN'S & COLITIS 360 2024; 6:otae008. [PMID: 38464347 PMCID: PMC10924435 DOI: 10.1093/crocol/otae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 03/12/2024] Open
Abstract
Background Exclusive enteral nutrition (EEN) and partial enteral nutrition (PEN) remain the only established dietary therapies in Crohn's disease (CD) management. We conducted a questionnaire survey to evaluate the perceptions of adults with CD toward established and emerging food-based dietary therapies. Methods A 26-question anonymous survey was mailed to 300 adults receiving biologic treatment. Two researchers independently conducted a thematic analysis of open-ended responses. Machine learning with the Random Forest-Recursive Feature Elimination algorithm identified predictors of willingness to try dietary therapies. Results One hundred and sixty patients (53% female) completed and returned the survey. Forty-two percent were following some form of exclusion diet, with low-spice and low-fiber diets being the most popular. Although only a quarter of patients believed that EEN/PEN could help with their CD, more than half believed that diet could help, with another 13% already using diet for CD management. While half of the patients were willing to try EEN, the majority were willing to try PEN instead (51% vs. 79%; P < .001). Forty-two percent of patients preferred food-based dietary plans prepared at home over EEN/PEN options. The most important predictors for willingness to try dietary therapies were age (25-65 years), recent symptoms, previous exposure to EEN/PEN, and current exclusion diet use. The top concerns about PEN were taste/palatability, satiety/hunger, and taste fatigue. Conclusions Most adults preferred to follow a food-based dietary therapy over EEN/PEN. The majority would try PEN though which allows for more flexibility to incorporate in habitual diet and may be easier to comply with than the EEN.
Collapse
Affiliation(s)
- Aleksandra Jatkowska
- Human Nutrition, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Bernadette White
- Human Nutrition, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Paige Jaskolski
- Human Nutrition, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Ben Nichols
- Human Nutrition, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Emily Brownson
- Human Nutrition, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
- Department of Gastroenterology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Jennifer Clowe
- Human Nutrition, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
- Department of Gastroenterology, Queen Elizabeth University Hospital, Glasgow, UK
| | - John Paul Seenan
- Human Nutrition, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
- Department of Gastroenterology, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Jonathan MacDonald
- Human Nutrition, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
- Department of Gastroenterology, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
11
|
Lauko S, Gancarcikova S, Hrckova G, Hajduckova V, Andrejcakova Z, Fecskeova LK, Bertkova I, Hijova E, Kamlarova A, Janicko M, Ambro L, Kvakova M, Gulasova Z, Strojny L, Strkolcova G, Mudronova D, Madar M, Demeckova V, Nemetova D, Pacuta I, Sopkova D. Beneficial Effect of Faecal Microbiota Transplantation on Mild, Moderate and Severe Dextran Sodium Sulphate-Induced Ulcerative Colitis in a Pseudo Germ-Free Animal Model. Biomedicines 2023; 12:43. [PMID: 38255150 PMCID: PMC10813722 DOI: 10.3390/biomedicines12010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Transplantation of faecal microbiota (FMT) is generally considered a safe therapeutic procedure with few adverse effects. The main factors that limit the spread of the use of FMT therapy for idiopathic inflammatory bowel disease (IBD) are the necessity of minimising the risk of infection and transfer of another disease. Obtaining the animal model of UC (ulcerative colitis) by exposure to DSS (dextran sodium sulphate) depends on many factors that significantly affect the result. Per os intake of DSS with water is individual for each animal and results in the development of a range of various forms of induced UC. For this reason, the aim of our study was to evaluate the modulation and regenerative effects of FMT on the clinical and histopathological responses and the changes in the bowel microenvironment in pseudo germ-free (PGF) mice of the BALB/c line subjected to chemical induction of mild, moderate and serious forms of UC. The goal was to obtain new data related to the safety and effectiveness of FMT that can contribute to its improved and optimised use. The animals with mild and moderate forms of UC subjected to FMT treatment exhibited lower severity of the disease and markedly lower damage to the colon, including reduced clinical and histological disease index and decreased inflammatory response of colon mucosa. However, FMT treatment failed to achieve the expected therapeutic effect in animals with the serious form of UC activity. The results of our study indicated a potential safety risk involving development of bacteraemia and also translocation of non-pathogenic representatives of bowel microbiota associated with FMT treatment of animals with a diagnosed serious form of UC.
Collapse
Affiliation(s)
- Stanislav Lauko
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Gabriela Hrckova
- Institute of Parasitology, Slovak Academy of Sciences, 041 81 Kosice, Slovakia;
| | - Vanda Hajduckova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Zuzana Andrejcakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (Z.A.); (D.S.)
| | - Livia Kolesar Fecskeova
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital (UHLP) in Kosice, 040 11 Kosice, Slovakia;
| | - Izabela Bertkova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Emilia Hijova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Anna Kamlarova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Martin Janicko
- 2nd Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital in Kosice, 040 11 Kosice, Slovakia;
| | - Lubos Ambro
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia;
| | - Monika Kvakova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Zuzana Gulasova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Ladislav Strojny
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Gabriela Strkolcova
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Dagmar Mudronova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Marian Madar
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Vlasta Demeckova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia;
| | - Daniela Nemetova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Ivan Pacuta
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Drahomira Sopkova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (Z.A.); (D.S.)
| |
Collapse
|
12
|
Liu Y, Duan H, Chen Y, Zhang C, Zhao J, Narbad A, Tian F, Zhai Q, Yu L, Chen W. Intraspecific difference of Latilactobacillus sakei in inflammatory bowel diseases: Insights into potential mechanisms through comparative genomics and metabolomics analyses. IMETA 2023; 2:e136. [PMID: 38868211 PMCID: PMC10989848 DOI: 10.1002/imt2.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 06/14/2024]
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory diseases of the gastrointestinal tract that have become a global health burden. Studies have revealed that Latilactobacillus sakei can effectively alleviate various immune diseases, including colitis, rheumatoid arthritis, and metabolic disorders. Here, we obtained 72 strains of L. sakei from 120 fermentation and fecal samples across China. In total, 16 strains from different sources were initially screened in an in vitro Caco-2 model induced by dextran sulfate sodium. Subsequently, six strains (four exhibiting effectiveness and two exhibiting ineffectiveness) were selected for further validation in an in vivo colitis mouse model. The results demonstrated that L. sakei strains exhibited varying degrees of amelioration of the colitis disease process. Notably, L. sakei CCFM1267, the most effective strain, significantly restored colon length and tight-junction protein expression, and reduced the levels of cytokines and associated inflammatory enzymes. Moreover, L. sakei CCFM1267 upregulated the abundance of Enterorhabdus, Alloprevotella, and Roseburia, leading to increased levels of acetic acid and propionic acid. Conversely, the other four strains (L. sakei QJSSZ1L4, QJSSZ4L10, QGZZYRHMT1L6, and QGZZYRHMT2L6) only exhibited a partial remission effect, while L. sakei QJSNT1L10 displayed minimal impact. Therefore, L. sakei CCFM1267 and QJSNT1L10 were selected for further exploration of the mechanisms underlying their differential mitigating effects. Comparative genomics analysis revealed significant variations between the two strains, particularly in genes associated with carbohydrate-active enzymes, such as the glycoside hydrolase family, which potentially contribute to the diverse profiles of short-chain fatty acids in vivo. Additionally, metabolome analysis demonstrated that acetylcholine and indole-3-acetic acid were the main differentiating metabolites of the two strains. Therefore, the strains of L. sakei exhibited varying degrees of effectiveness in alleviating IBD-related symptoms, and the possible reasons for these variations were attributed to discrepancies in the carbohydrate-active enzymes and metabolites among the strains.
Collapse
Affiliation(s)
- Yaru Liu
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Hui Duan
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Ying Chen
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Jianxin Zhao
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| | - Arjan Narbad
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
- Gut Health and Microbiome Institute Strategic ProgrammeQuadram Institute BioscienceNorwichUK
| | - Fengwei Tian
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| | - Qixiao Zhai
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| | - Leilei Yu
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| | - Wei Chen
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| |
Collapse
|
13
|
Lai C, Chen L, Zhong X, Tang Z, Zhang B, Luo Y, Li C, Jin M, Chen X, Li J, Shi Y, Sun Y, Guo L. Long-term effects on liver metabolism induced by ceftriaxone sodium pretreatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122238. [PMID: 37506808 DOI: 10.1016/j.envpol.2023.122238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Ceftriaxone is an emerging contaminant due to its potential harm, while its effects on liver are still need to be clarified. In this study, we first pretreated the 8-week-old C57BL/6J mice with high dose ceftriaxone sodium (Cef, 400 mg/mL, 0.2 mL per dose) for 8 days to prepare a gut dysbiosis model, then treated with normal feed for a two-month recovery period, and applied non-targeted metabolomics (including lipidomics) to investigate the variations of fecal and liver metabolome, and coupled with targeted determination of fecal short-chain fatty acids (SCFAs) and bile acids (BAs). Lastly, the correlations and mediation analysis between the liver metabolism and gut metabolism/microbes were carried, and the potential mechanisms of the mal-effects on gut-liver axis induced by Cef pretreatment were accordingly discussed. Compared to the control group, Cef pretreatment reduced the rate of weight gain and hepatosomatic index, induced bile duct epithelial cells proliferated around the central vein and appearance of binucleated hepatocytes, decreased the ratio of total branching chains amino acids (BCAAs) to total aromatic amino acids (AAAs) in liver metabolome. In fecal metabolome, the total fecal SCFAs and BAs did not change significantly while butyric acid decreased and the primary BAs increased after Cef pretreatment. Correlation and mediation analysis revealed one potential mechanism that Cef may first change the intestinal microbiota (such as destroying its normal structure, reducing its abundance and the stability of the microbial network or certain microbe abundance like Alistipes), and then change the intestinal metabolism (such as acetate, caproate, propionate), leading to liver metabolic disorder (such as spermidine, inosine, cinnamaldehyde). This study proved the possibility of Cef-induced liver damage, displayed the overall metabolic profile of the liver following Cef pretreatment and provided a theoretical framework for further research into the mechanism of Cef-induced liver damage.
Collapse
Affiliation(s)
- Chengze Lai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Linkang Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zeli Tang
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Bin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yu Luo
- Guangzhou Liwan District Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Chengji Li
- Yunfu Disease Control and Prevention Center, Guang Dong Province, China
| | - Mengcheng Jin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xu Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jinglin Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yinying Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yanqin Sun
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Lianxian Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
14
|
Ozkan J, Majzoub ME, Coroneo M, Thomas T, Willcox M. Ocular microbiome changes in dry eye disease and meibomian gland dysfunction. Exp Eye Res 2023; 235:109615. [PMID: 37586456 DOI: 10.1016/j.exer.2023.109615] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
The most common and chronic ocular problem of aging is dry eye disease (DED) and the associated condition of meibomian gland dysfunction (MGD). The resident ocular surface bacteria may have a role in maintaining homeostasis and perturbation may contribute to disease development. The aim of this study was to compare the microbiomes of the conjunctiva and eyelid margin in humans with mild and moderate DED and controls using 16 S rRNA gene sequencing. The conjunctiva and lid margin of three cohorts (N = 60; MGD, MGD with lacrimal dysfunction [MGD + LD] and controls) were swabbed bilaterally three times over three months. Microbial communities were analysed by extracting DNA and sequencing the V3-V4 region of the 16 S ribosomal RNA gene using the Illumina MiSeq platform. Sequences were quality filtered, clustered into amplicon sequence variants (ASVs) using UNOISE algorithm and taxonomically classified using a Bayesian Last Common Ancestor (BCLA) algorithm against the GTDB 2207 database. The overall microbial communities of the MGD, MGD + LD and control groups were significantly different from each other (P = 0.001). The MGD and MGD + LD dry eye groups showed greater variability between individuals compared to the control (PERMDISP, P < 0.01). There was decreased richness and diversity in females compared to males for the conjunctiva (P < 0.04) and eyelid margin (P < 0.018). The conjunctiva in the MGD + LD group had more abundant Pseudomonas azotoformans, P. oleovorans and Caballeronia zhejiangensis compared to MGD and control (P < 0.05), while the MGD group had more abundant Corynebacterium macginleyi and C. kroppenstedtii compared to control (P < 0.05). The lid margin in MGD was more abundant in C. macginleyi, C. accolens, and C. simulans compared to the MGD + LD and control (P < 0.05). There were differences in the overall microbial community composition and certain taxa, including increased levels of lipophilic bacteria, on the conjunctiva and eyelid margin in mild to moderate DED/MGD compared to controls. DED/MGD was also associated with a reduced bacterial richness and diversity in females.
Collapse
Affiliation(s)
- Jerome Ozkan
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia; Centre for Marine Science and Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia.
| | - Marwan E Majzoub
- Host-Microbiome Interactions Group, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Minas Coroneo
- Department of Ophthalmology, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
15
|
Santos Y, Jaramillo AP. Effectiveness of Mesalamine in Patients With Ulcerative Colitis: A Systematic Review. Cureus 2023; 15:e44055. [PMID: 37638277 PMCID: PMC10449365 DOI: 10.7759/cureus.44055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 08/29/2023] Open
Abstract
Ulcerative colitis (UC) management has changed significantly in the past decade. The goal is to treat the symptoms, aid tissue healing, and change the disease course to improve future outcomes. Oral or topical mesalamine (5-ASA) is a well-known UC treatment. It is the standard for starting and maintaining recovery in mild-to-moderate illnesses. The majority of patients start the treatment in the first year after diagnosis and continue it for long periods. In this review article, PubMed/Medline, Google Scholar, and the Cochrane Library were used to search medical databases for relevant medical literature. After the articles were gathered and evaluated, 10 publications were compiled and selected using the qualifying criteria. The included articles aimed to provide an overview of 5-ASA in UC patients. According to several studies, there was no statistical relevance between various 5-ASA doses or the number of times they were taken. One study showed that 5-ASA cream preparation is better than oral preparation for patients with proctitis and proctosigmoiditis. The majority of the studies performed a follow-up to assess remission based on the use of endoscopy, fecal calprotectin, and patient symptoms during the investigations. Based on the aforementioned information, further investigation is required to ascertain the optimal approach for managing UC, with the aim of incorporating it into routine clinical procedures and enhancing our understanding of the subject matter.
Collapse
|
16
|
Majeed M, Nagabhushanam K, Mundkur L, Paulose S, Divakar H, Rao S, Arumugam S. Probiotic modulation of gut microbiota by Bacillus coagulans MTCC 5856 in healthy subjects: A randomized, double-blind, placebo-control study. Medicine (Baltimore) 2023; 102:e33751. [PMID: 37335737 DOI: 10.1097/md.0000000000033751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Probiotics are known to rebalance the gut microbiota in dysbiotic individuals, but their impact on the gut microbiome of healthy individuals is seldom studied. The current study is designed to assess the impact and safety of Bacillus coagulans (Weizmannia coagulans) microbial type culture collection 5856 (LactoSpore®) supplementation on microbiota composition in healthy Indian adults. METHODS The study participants (N = 30) received either LactoSpore (2 billion colony-forming units/capsule) or placebo for 28 days. The general and digestive health were assessed through questionnaires and safety by monitoring adverse events. Taxonomic profiling of the fecal samples was carried out by 16S rRNA amplicon sequencing using the Illumina MiSeq platform. The bacterial persistence was enumerated by quantitative reverse transcription-polymerase chain reaction. RESULTS Gut health, general health, and blood biochemical parameters remained normal in all the participants. No adverse events were reported during the study. Metataxonomic analysis revealed minimal changes to the gut microbiome of otherwise healthy subjects and balance of Bacteroidetes and Firmicutes was maintained by LactoSpore. The relative abundance of beneficial bacteria like Prevotella, Faecalibacterium, Blautia, Megasphaera, and Ruminococcus showed an increase in probiotic-supplemented individuals. The quantitative polymerase chain reaction analysis revealed highly variable numbers of B. coagulans in feces before and after the study. CONCLUSION The present study results suggest that LactoSpore is safe for consumption and does not alter the gut microbiome of healthy individuals. Minor changes in a few bacterial species may have a beneficial outcome in healthy individuals. The results reiterate the safety of B. coagulans microbial type culture collection 5856 as a dietary supplement and provide a rationale to explore its effect on gut microbiome composition in individuals with dysbiosis.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, Bangalore, Karnataka, India
- Sabinsa Corporation, East Windsor, NJ
| | | | | | - Shaji Paulose
- Sami-Sabinsa Group Limited, Bangalore, Karnataka, India
| | - Hema Divakar
- Divakars Speciality Hospital, Bangalore, Karnataka, India
| | - Sudha Rao
- Genotypic Technology Private Limited, Bangalore, Karnataka, India
| | | |
Collapse
|
17
|
Markelova M, Senina A, Khusnutdinova D, Siniagina M, Kupriyanova E, Shakirova G, Odintsova A, Abdulkhakov R, Kolesnikova I, Shagaleeva O, Lyamina S, Abdulkhakov S, Zakharzhevskaya N, Grigoryeva T. Association between Taxonomic Composition of Gut Microbiota and Host Single Nucleotide Polymorphisms in Crohn's Disease Patients from Russia. Int J Mol Sci 2023; 24:ijms24097998. [PMID: 37175705 PMCID: PMC10178390 DOI: 10.3390/ijms24097998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Crohn's disease (CD) is a chronic relapsing inflammatory bowel disease of unknown etiology. Genetic predisposition and dysbiotic gut microbiota are important factors in the pathogenesis of CD. In this study, we analyzed the taxonomic composition of the gut microbiota and genotypes of 24 single nucleotide polymorphisms (SNP) associated with the risk of CD. The studied cohorts included 96 CD patients and 24 healthy volunteers from Russia. Statistically significant differences were found in the allele frequencies for 8 SNPs and taxonomic composition of the gut microbiota in CD patients compared with controls. In addition, two types of gut microbiota communities were identified in CD patients. The main distinguishing driver of bacterial families for the first community type are Bacteroidaceae and unclassified members of the Clostridiales order, and the second type is characterized by increased abundance of Streptococcaceae and Enterobacteriaceae. Differences in the allele frequencies of the rs9858542 (BSN), rs3816769 (STAT3), and rs1793004 (NELL1) were also found between groups of CD patients with different types of microbiota communities. These findings confirm the complex multifactorial nature of CD.
Collapse
Affiliation(s)
- Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Anastasia Senina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Dilyara Khusnutdinova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Maria Siniagina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Elena Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | | | | | - Rustam Abdulkhakov
- Hospital Therapy Department, Kazan State Medical University, 420012 Kazan, Russia
| | - Irina Kolesnikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Olga Shagaleeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Svetlana Lyamina
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Sayar Abdulkhakov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Natalia Zakharzhevskaya
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Tatiana Grigoryeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| |
Collapse
|
18
|
Wang Y, Qu S, Chen M, Cui Y, Shi C, Pu X, Gao W, Li Q, Han J, Zhang A. Effects of buckwheat milk Co-fermented with two probiotics and two commercial yoghurt strains on gut microbiota and production of short-chain Fatty Acids. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
19
|
Chen C, Li T, Chen G, Chen D, Peng Y, Hu B, Sun Y, Zeng X. Prebiotic effect of sialylated immunoglobulin G on gut microbiota of patients with inflammatory bowel disease by in vitro fermentation. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Song S, Jeong A, Lim J, Kim B, Park D, Oh S. Lactiplantibacillus plantarum
L67
probiotics vs paraprobiotics for reducing pro‐inflammatory responses in colitis mice. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Sooyeon Song
- Department of Animal Science Jeonbuk National University 587 Baekje‐Daero, Deojin‐Gu Jeonju‐Si Jellabuk‐Do 54896 South Korea
- Agricultural Convergence Technology Jeonbuk National University 587 Baekje‐Daero, Deojin‐Gu Jeonju‐Si Jellabuk‐Do 54896 South Korea
| | - Anna Jeong
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
| | - Jina Lim
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
- Department of Animal Biotechnology and Environment Animal Genomics and Bioinformatics National Institute of Animal Science 1500 Kongjwipatjwi‐ro Jellabuk‐do 55365 South Korea
| | - Bum‐Keun Kim
- Korea Food Research Institute 245, Nongsaengmyeong‐ro Jeollabuk‐do 55365 South Korea
| | - Dong‐June Park
- Korea Food Research Institute 245, Nongsaengmyeong‐ro Jeollabuk‐do 55365 South Korea
| | - Sejong Oh
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
| |
Collapse
|
21
|
Giri S, Uehara O, Takada A, Paudel D, Morikawa T, Arakawa T, Nagasawa T, Abiko Y, Furuichi Y. The effect of Porphyromonas gingivalis on the gut microbiome of mice in relation to aging. J Periodontal Res 2022; 57:1256-1266. [PMID: 36251393 DOI: 10.1111/jre.13062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE The translocation of oral bacteria, including Porphyromonas gingivalis, to the gut has been shown to alter gut microbiome. However, the effect of P. gingivalis on gut microbiome in relation to aging has not been demonstrated. We hypothesize that P. gingivalis has more detrimental effect on gut environment with increased age. The objective of this study is to investigate the effect of P. gingivalis on gut environment using aged mice. MATERIALS AND METHODS C57BL/6J mice aged 4 weeks (young) or 76 weeks (old) were divided into four groups: control-young, control-old, P. gingivalis-administered young, and P. gingivalis-administered old. P. gingivalis was orally administered thrice weekly for 5 weeks. At 30 days after the last P. gingivalis administration, 16S rRNA sequencing was performed to study the gut microbiome. The mRNA and protein expression of intestinal junctional barrier molecules and the levels of the inflammatory cytokines IL-1β and TNF-α in the serum were evaluated. RESULTS Significant differences in the gut microbiomes between the groups, in terms of taxonomic abundance, bacterial diversity, and predicted metagenome function, were observed. A significant reduction in the alpha diversity and in the abundance of beneficial bacteria, such as Akkermansia and Clostridiaceae, in the P. gingivalis-administered old mice was observed. The mRNA and protein levels of Claudin-1 and Claudin-2 in the intestine were significantly elevated, while E-cadherin was significantly downregulated in the P. gingivalis-administered old mice, as were the serum levels of IL-1β and TNF-α. CONCLUSION The effect of P. gingivalis on the gut environment is more pronounced in old mice than in young mice.
Collapse
Affiliation(s)
- Sarita Giri
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Ayuko Takada
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Durga Paudel
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Tetsuro Morikawa
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Toshiya Arakawa
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Toshiyuki Nagasawa
- Division of Advanced Clinical Education, Department of Integrated Dental Education, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yasushi Furuichi
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| |
Collapse
|
22
|
Householder S, Picoraro JA. Diagnosis and Classification of Fistula from Inflammatory Bowel Disease and Inflammatory Bowel Disease-Related Surgery. Gastrointest Endosc Clin N Am 2022; 32:631-650. [PMID: 36202507 DOI: 10.1016/j.giec.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fistula in inflammatory bowel disease (IBD) is a well-known yet poorly understood phenotype. Pathophysiology is largely based on the activation of the epithelial-mesenchymal transition (EMT); however, interactions with the microbiome, genetics, mechanical stress and the presence of stricturing disease, and surgical complications play a role. Perianal penetrating disease represents a more severe phenotype in IBD. Pouch-associated fistula can arise as a result of an anastomotic leak, surgical complications, or Crohn's disease (CD) of the pouch. Classification is site-dependent, includes a range of severity, and informs management. It is important to determine associated symptoms and recognize the complex interplay of underlying etiologies to form the basis of appropriate care.
Collapse
Affiliation(s)
| | - Joseph A Picoraro
- Columbia University Irving Medical Center, NewYork-Presbyterian Morgan Stanley Children's Hospital, 622 West 168th Street, PH17-105, New York, NY 10032, USA.
| |
Collapse
|
23
|
Gerasimidis K, Gkikas K, Stewart C, Neelis E, Svolos V. Microbiome and paediatric gut diseases. Arch Dis Child 2022; 107:784-789. [PMID: 34716173 DOI: 10.1136/archdischild-2020-320875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/16/2021] [Indexed: 11/04/2022]
Abstract
In the human gut resides a vast community of microorganisms which perform critical functions for the maintenance of whole body homeostasis. Changes in the composition and function of this community, termed microbiome, are believed to provoke disease onset, including non-communicable diseases. In this review, we debate the current evidence on the role of the gut microbiome in the pathogenesis, outcomes and management of paediatric gut disease. We conclude that even though the gut microbiome is altered in paediatric inflammatory bowel disease, coeliac disease, intestinal failure, necrotising enterocolitis and irritable bowel syndrome, there are currently very few implications for unravelling disease pathogenesis or guiding clinical practice. In the future, the gut microbiome may aid in disease differential diagnosis and prediction of clinical outcomes, and comprise a target for therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Christopher Stewart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Esther Neelis
- Paediatric Gastroenterology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Vaios Svolos
- Human Nutrition, University of Glasgow, Glasgow, UK
| |
Collapse
|
24
|
Sodium Butyrate Effectiveness in Children and Adolescents with Newly Diagnosed Inflammatory Bowel Diseases—Randomized Placebo-Controlled Multicenter Trial. Nutrients 2022; 14:nu14163283. [PMID: 36014789 PMCID: PMC9414716 DOI: 10.3390/nu14163283] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Butyric acid’s effectiveness has not yet been assessed in the pediatric inflammatory bowel disease (IBD) population. This study aimed to evaluate the effectiveness of oral sodium butyrate as an add-on to standard therapy in children and adolescents with newly diagnosed IBD. Methods: This was a prospective, randomized, placebo-controlled multicenter study. Patients aged 6–18 years with colonic Crohn’s disease or ulcerative colitis, who received standard therapy depending on the disease’s severity, were randomized to receive 150 mg sodium butyrate twice a day (group A) or placebo (group B). The primary outcome was the difference in disease activity and fecal calprotectin concentration between the two study groups measured at 12 weeks of the study. Results: In total, 72 patients with initially active disease completed the study, 29 patients in group A and 43 in group B. At week 12 of the study, the majority of patients achieved remission. No difference in remission rate or median disease activity was found between the two groups (p = 0.37 and 0.31, respectively). None of the patients reported adverse events. Conclusions: A 12-week supplementation with sodium butyrate, as adjunctive therapy, did not show efficacy in newly diagnosed children and adolescents with IBD.
Collapse
|
25
|
Pisani A, Rausch P, Bang C, Ellul S, Tabone T, Marantidis Cordina C, Zahra G, Franke A, Ellul P. Dysbiosis in the Gut Microbiota in Patients with Inflammatory Bowel Disease during Remission. Microbiol Spectr 2022; 10:e0061622. [PMID: 35532243 PMCID: PMC9241752 DOI: 10.1128/spectrum.00616-22] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing, inflammatory disorder which comprises two main conditions: Crohn's disease (CD) and ulcerative colitis (UC). Although the etiology of IBD has not been fully elucidated, the gut microbiota is hypothesized to play a vital role in its development. The aim of this cross-sectional study was to characterize the fecal microbiota in CD or UC patients in a state of remission to reveal potential factors sustaining residual levels of inflammation and triggering disease relapses. Ninety-eight IBD patients in a state of clinical remission (66 UC, 32 CD) and 97 controls were recruited, and stool samples, as well as detailed patient data, were collected. After DNA extraction, the variable regions V1 and V2 of the 16S rRNA gene were amplified and sequenced. Patients with IBD had a decrease in alpha diversity compared to that of healthy controls, and the beta diversity indices showed dissimilarity between the cohorts. Healthy controls were associated with the beneficial organisms unclassified Akkermansia species (Akkermansia uncl.), Oscillibacter uncl., and Coprococcus uncl., while flavonoid-degrading bacteria were associated with IBD. Network analysis identified highly central and influential disease markers and a strongly correlated network module of Enterobacteriaceae which was associated with IBD and could act as drivers for residual inflammatory processes sustaining and triggering IBD, even in a state of low disease activity. The microbiota in IBD patients is significantly different from that of healthy controls, even in a state of remission, which implicates the microbiota as an important driver of chronicity in IBD. IMPORTANCE Dysbiosis in inflammatory bowel disease (IBD) has been implicated as a causal or contributory factor to the pathogenesis of the disease. This study, done on patients in remission while accounting for various confounding factors, shows significant community differences and altered community dynamics, even after acute inflammation has subsided. A cluster of Enterobacteriaceae was linked with Crohn's disease, suggesting that this cluster, which contains members known to disrupt colonization resistance and form biofilms, persists during quiescence and can lead to chronic inflammation. Flavonoid-degrading bacteria were also associated with IBD, raising the possibility that modification of dietary flavonoids might induce and maintain remission in IBD.
Collapse
Affiliation(s)
- Anthea Pisani
- Department of Medicine, Mater Dei Hospital, Msida, Malta
| | - Philipp Rausch
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sarah Ellul
- Department of Surgery, Mater Dei Hospital, Msida, Malta
| | - Trevor Tabone
- Department of Medicine, Mater Dei Hospital, Msida, Malta
| | | | | | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Pierre Ellul
- Department of Medicine, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
26
|
Adamkova P, Hradicka P, Kupcova Skalnikova H, Cizkova V, Vodicka P, Farkasova Iannaccone S, Kassayova M, Gancarcikova S, Demeckova V. Dextran Sulphate Sodium Acute Colitis Rat Model: A Suitable Tool for Advancing Our Understanding of Immune and Microbial Mechanisms in the Pathogenesis of Inflammatory Bowel Disease. Vet Sci 2022; 9:238. [PMID: 35622766 PMCID: PMC9147231 DOI: 10.3390/vetsci9050238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders causing inflammation in the digestive tract. Recent data suggest that dysbiosis may play a pivotal role in the IBD pathogenesis. As microbiome-based therapeutics that modulate the gut ecology have been proposed as a novel strategy for preventing IBD, the aim of presenting study was to evaluate the dextran sulphate sodium (DSS) rat model mainly in terms of microbial shifts to confirm its suitability for dysbiosis study in IBD. Acute colitis was induced using 5% DSS solution for seven days and rats were euthanized five days after DSS removal. The faecal/caecal microbiota was analyzed by next generation sequencing. Disease activity index (DAI) score was evaluated daily. Blood and colon tissue immunophenotyping was assessed by flow cytometry and histological, haematological, and biochemical parameters were also evaluated. The colitis induction was reflected in a significantly higher DAI score and changes in all parameters measured. This study demonstrated significant shifts in the colitis-related microbial species after colitis induction. The characteristic inflammation-associated microbiota could be detected even after a five day-recovery period. Moreover, the DSS-model might contribute to an understanding of the effect of different treatments on extraintestinal organ impairments. The observation that certain bacterial species in the gut microbiota are associated with colitis raises the question of whether these organisms are contributors to, or a consequence of the disease. Despite some limitations, we confirmed the suitability of DSS-induced colitis model to monitor microbial changes during acute colitis, in order to test attractive new microbiome-based therapies.
Collapse
Affiliation(s)
- Petra Adamkova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Petra Hradicka
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Veronika Cizkova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Petr Vodicka
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Silvia Farkasova Iannaccone
- Department of Forensic Medicine, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia;
| | - Monika Kassayova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Vlasta Demeckova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| |
Collapse
|
27
|
Ozkan J, Willcox M, Coroneo M. A comparative analysis of the cephalic microbiome: The ocular, aural, nasal/nasopharyngeal, oral and facial dermal niches. Exp Eye Res 2022; 220:109130. [DOI: 10.1016/j.exer.2022.109130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/08/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
|
28
|
Hartmann P. Editorial: The Microbiome in Hepatobiliary and Intestinal Disease. Front Physiol 2022; 13:893074. [PMID: 35492588 PMCID: PMC9044070 DOI: 10.3389/fphys.2022.893074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Phillipp Hartmann
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Rady Children’s Hospital San Diego, San Diego, CA, United States
- *Correspondence: Phillipp Hartmann,
| |
Collapse
|
29
|
Cortes GM, Marcialis MA, Bardanzellu F, Corrias A, Fanos V, Mussap M. Inflammatory Bowel Disease and COVID-19: How Microbiomics and Metabolomics Depict Two Sides of the Same Coin. Front Microbiol 2022; 13:856165. [PMID: 35391730 PMCID: PMC8981987 DOI: 10.3389/fmicb.2022.856165] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
The integrity of the gastrointestinal tract structure and function is seriously compromised by two pathological conditions sharing, at least in part, several pathogenetic mechanisms: inflammatory bowel diseases (IBD) and coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. IBD and COVID-19 are marked by gut inflammation, intestinal barrier breakdown, resulting in mucosal hyperpermeability, gut bacterial overgrowth, and dysbiosis together with perturbations in microbial and human metabolic pathways originating changes in the blood and fecal metabolome. This review compared the most relevant metabolic and microbial alterations reported from the literature in patients with IBD with those in patients with COVID-19. In both diseases, gut dysbiosis is marked by the prevalence of pro-inflammatory bacterial species and the shortfall of anti-inflammatory species; most studies reported the decrease in Firmicutes, with a specific decrease in obligately anaerobic producers short-chain fatty acids (SCFAs), such as Faecalibacterium prausnitzii. In addition, Escherichia coli overgrowth has been observed in IBD and COVID-19, while Akkermansia muciniphila is depleted in IBD and overexpressed in COVID-19. In patients with COVID-19, gut dysbiosis continues after the clearance of the viral RNA from the upper respiratory tract and the resolution of clinical symptoms. Finally, we presented and discussed the impact of gut dysbiosis, inflammation, oxidative stress, and increased energy demand on metabolic pathways involving key metabolites, such as tryptophan, phenylalanine, histidine, glutamine, succinate, citrate, and lipids.
Collapse
Affiliation(s)
- Gian Mario Cortes
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Antonietta Marcialis
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Angelica Corrias
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Michele Mussap
- Laboratory Medicine, Department of Surgical Sciences, School of Medicine, University of Cagliari, Monserrato, Italy
| |
Collapse
|
30
|
Xu P, Lv T, Dong S, Cui Z, Luo X, Jia B, Jeon CO, Zhang J. Association between intestinal microbiome and inflammatory bowel disease: insights from bibliometric analysis. Comput Struct Biotechnol J 2022; 20:1716-1725. [PMID: 35495114 PMCID: PMC9019919 DOI: 10.1016/j.csbj.2022.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal microbiota has been increasingly studied in the field of IBD over the last 20 years. The gut microbiome, metabolites, and their corresponding host signaling pathways are highly associated with IBD. Probiotics may relieve IBD as a complementary therapy. The pathogenesis and treatment strategies of IBD need to be further studied.
The gut microbiome is highly linked to inflammatory bowel disease (IBD). A total of 3890 publications related to the two terms from 2000 to 2020 were extracted from the Web of Science Core Collection to study the association from a bibliometric perspective. Publications on this topic have grown rapidly since 2008. The United States and Harvard University are the country and institution with the largest number of publications, respectively. Inflammatory Bowel Diseases is the most productive journal with 211 published articles. The most influential journal in this field is Gut with 13,359 citations. The co-citation analysis of references showed that the IBD-related topics with the highest focus are “gut microbiota,” “metagenomics,” “bacterial community,” “fecal microbiota transplantation,” “probiotics,” and “colitis-associated colorectal cancer.” Keyword cluster and keyword burst analyses showed that “gut microbiota,” “metagenomics,” and “fecal microbiota transplantation” are currently the most researched topics in the field of IBD. The literature in this field is mainly distributed between alterations of the intestinal microbiota, microbial metabolites, and related host signaling pathways. Probiotic treatment also frequently appears in literature. This bibliometric analysis can guide future research and promote the development of the field of gut microbiome and IBD.
Collapse
|
31
|
Patil RD, Ellison MJ, Austin KJ, Lamberson WR, Cammack KM, Conant GC. A metagenomic analysis of the effect of antibiotic feed additives on the ovine rumen metabolism. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Li XX, Chen SG, Yue GGL, Kwok HF, Lee JKM, Zheng T, Shaw PC, Simmonds MSJ, Lau CBS. Natural flavone tricin exerted anti-inflammatory activity in macrophage via NF-κB pathway and ameliorated acute colitis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153625. [PMID: 34256329 DOI: 10.1016/j.phymed.2021.153625] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/30/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Ulcerative colitis is a subtype of inflammatory bowel disease, characterized by relapsing inflammation in the gastrointestinal tract with limited treatment options. Previous studies suggested that the natural compound tricin, a flavone isolated from rice bran, could suppress chemically-induced colitis in mice, while our recent study also demonstrated the anti-metastatic effect of tricin in colon tumor-bearing mice. HYPOTHESIS/PURPOSE Here we further investigated the underlying mechanism of the inhibitory effects of tricin on lipopolysaccharides-activated macrophage RAW264.7 cells and explored the efficacy of tricin in acute colitis mouse model induced by 4.5% dextran sulfate sodium (DSS) for 7 days. METHODS Tricin (75, 100, and 150 mg/kg) or the positive control drug sulfasalazine (200 mg/kg) were orally administered to mice for 7 days. Stool consistency scores, stool blood scores, and body weight were recorded daily. Disease activity index (DAI) was examined on day 7, and colon tissues were collected for biochemical analyses. The fecal microbiome of colitis mice after tricin treatment was characterized for the first time in this study using 16S rDNA amplicon sequencing. RESULTS Results showed that tricin (50 µM) remarkably reduced nitric oxide production in lipopolysaccharides-activated RAW264.7 cells and the anti-inflammatory activity of tricin was shown to act through the NF-κB pathway. Besides, tricin treatment at 150 mg/kg significantly reversed colon length reduction, reduced myeloperoxidase activities and DAI scores, as well as restored the elevated myeloid-derived suppressive cells population in acute colitis mice. The influence from DSS on gut microbiota, such as the increased population of Proteobacteria phylum and Ruminococcaceae family, was shown to be relieved after tricin treatment. CONCLUSION Our present study firstly demonstrated that tricin ameliorated acute colitis by improving colonic inflammation and modulating gut microbiota profile, which supports the potential therapeutic use of tricin for colitis treatment.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Sin-Guang Chen
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Hin-Fai Kwok
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Julia Kin-Ming Lee
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Tao Zheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Pang-Chui Shaw
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | | - Clara Bik-San Lau
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
33
|
Li N, Zhan S, Tian Z, Liu C, Xie Z, Zhang S, Chen M, Zeng Z, Zhuang X. Alterations in Bile Acid Metabolism Associated With Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:1525-1540. [PMID: 33399195 DOI: 10.1093/ibd/izaa342] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder closely related to gut dysbiosis, which is associated with alterations in an important bacterial metabolite, bile acids (BAs). Although certain findings pertinent to BA changes in IBD vary among studies owing to the differences in sample type, quantitated BA species, study methodology, and patient characteristics, a specific trend concerning variations of BAs in IBD has been identified. In elaborating on this observation, it was noted that primary BAs and conjugated BAs are augmented in fecal samples but there is a reduction in secondary BAs in fecal samples. It is not entirely clear why patients with IBD manifest these changes and what role these changes play in the onset and development of IBD. Previous studies have shown that IBD-associated BA changes may be caused by alterations in BA absorption, synthesis, and bacterial modification. The complex relationship between bacteria and BAs may provide additional and deeper insight into host-gut microbiota interactions in the pathogenesis of IBD. The characteristic BA changes may generate profound effects in patients with IBD by shaping the gut microbiota community, affecting inflammatory processes, causing BA malabsorption associated with diarrhea, and even leading to intestinal dysplasia and cancer. Thus, therapeutic strategies correcting the alterations in the composition of BAs, including the elimination of excess BAs and the supplementation of deficient BAs, may prove promising in IBD.
Collapse
Affiliation(s)
- Na Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shukai Zhan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhenyi Tian
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Caiguang Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zonglin Xie
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Bobin-Dubigeon C, Luu HT, Leuillet S, Lavergne SN, Carton T, Le Vacon F, Michel C, Nazih H, Bard JM. Faecal Microbiota Composition Varies between Patients with Breast Cancer and Healthy Women: A Comparative Case-Control Study. Nutrients 2021; 13:nu13082705. [PMID: 34444865 PMCID: PMC8399700 DOI: 10.3390/nu13082705] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023] Open
Abstract
The intestinal microbiota plays an essential role in many diseases, such as obesity, irritable bowel disease (IBD), and cancer. This study aimed to characterize the faecal microbiota from early-stage breast cancer (BC) patients and healthy controls. Faeces from newly diagnosed breast cancer patients, mainly for an invasive carcinoma of no specific type (HR+ and HER2−), before any therapeutic treatment and healthy controls were collected for metabarcoding analyses. We show that the Shannon index, used as an index of diversity, was statistically lower in the BC group compared to that of controls. This work highlights a reduction of microbial diversity, a relative enrichment in Firmicutes, as well as a depletion in Bacteroidetes in patients diagnosed with early BC compared to those of healthy women. A tendency towards a decreased relative abundance of Odoribacter sp., Butyricimonas sp., and Coprococcus sp. was observed. This preliminary study suggests that breast cancer patients may differ from healthy subjects in their intestinal bacterial composition.
Collapse
Affiliation(s)
- Christine Bobin-Dubigeon
- Institut de Cancérologie de l’Ouest, 44805 Saint-Herblain, France;
- EA 2160—IUML FR3473 CNRS, Nantes University, 44035 Nantes, France; (H.T.L.); (H.N.)
- Research Center of Human Nutrition CRNH Ouest, 44093 Nantes, France;
- Correspondence:
| | - Huyen Trang Luu
- EA 2160—IUML FR3473 CNRS, Nantes University, 44035 Nantes, France; (H.T.L.); (H.N.)
- Research Center of Human Nutrition CRNH Ouest, 44093 Nantes, France;
| | - Sébastien Leuillet
- Biofortis Mérieux NutriSciences, 3 Route de la Chatterie, 44800 Saint-Herblain, France; (S.L.); (S.N.L.); (T.C.); (F.L.V.)
| | - Sidonie N. Lavergne
- Biofortis Mérieux NutriSciences, 3 Route de la Chatterie, 44800 Saint-Herblain, France; (S.L.); (S.N.L.); (T.C.); (F.L.V.)
| | - Thomas Carton
- Biofortis Mérieux NutriSciences, 3 Route de la Chatterie, 44800 Saint-Herblain, France; (S.L.); (S.N.L.); (T.C.); (F.L.V.)
| | - Françoise Le Vacon
- Biofortis Mérieux NutriSciences, 3 Route de la Chatterie, 44800 Saint-Herblain, France; (S.L.); (S.N.L.); (T.C.); (F.L.V.)
| | - Catherine Michel
- Research Center of Human Nutrition CRNH Ouest, 44093 Nantes, France;
- UMR 1280, 44035 Nantes, France
| | - Hassane Nazih
- EA 2160—IUML FR3473 CNRS, Nantes University, 44035 Nantes, France; (H.T.L.); (H.N.)
- Research Center of Human Nutrition CRNH Ouest, 44093 Nantes, France;
| | - Jean-Marie Bard
- Institut de Cancérologie de l’Ouest, 44805 Saint-Herblain, France;
- EA 2160—IUML FR3473 CNRS, Nantes University, 44035 Nantes, France; (H.T.L.); (H.N.)
- Research Center of Human Nutrition CRNH Ouest, 44093 Nantes, France;
| |
Collapse
|
35
|
Yoon K, Kim N. Roles of Sex Hormones and Gender in the Gut Microbiota. J Neurogastroenterol Motil 2021; 27:314-325. [PMID: 33762473 PMCID: PMC8266488 DOI: 10.5056/jnm20208] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The distribution of gut microbiota varies according to age (childhood, puberty, pregnancy, menopause, and old age) and sex. Gut microbiota are known to contribute to gastrointestinal (GI) diseases such as irritable bowel syndrome, inflammatory bowel disease, and colon cancer; however, the exact etiology remains elusive. Recently, sex and gender differences in GI diseases and their relation to gut microbiota has been suggested. Furthermore, the metabolism of estrogen and androgen was reported to be related to the gut microbiome. As gut microbiome is involved in the excretion and circulation process of sex hormones, the concept of “microgenderome” indicating the role of sex hormone on the gut microbiota has been suggested. However, further research is needed for this concept to be universally accepted. In this review, we summarize sex- and gender-differences in gut microbiota and the interplay of microbiota and GI diseases, focusing on sex hormones. We also describe the metabolic role of the microbiota in this regard. Finally, current subjects, such as medication including probiotics, are briefly discussed.
Collapse
Affiliation(s)
- Kichul Yoon
- Department of Internal Medicine, Wonkwang University Sanbon Medical Center, Gunpo, Gyeonggi-do, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Chang TE, Luo JC, Yang UC, Huang YH, Hou MC, Lee FY. Fecal microbiota profile in patients with inflammatory bowel disease in Taiwan. J Chin Med Assoc 2021; 84:580-587. [PMID: 33871395 DOI: 10.1097/jcma.0000000000000532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory disease associated with complicated interaction between immune, gut microbiota, and environmental factors in a genetically vulnerable host. Dysbiosis is often seen in patients with IBD. We aimed to investigate the fecal microbiota in patients with IBD and compared them with a control group in Taiwan. METHODS In this cross-sectional study, we investigated fecal microbiota in 20 patients with IBD and 48 healthy controls. Fecal samples from both IBD patients and controls were analyzed by the next-generation sequencing method and relevant software. RESULTS The IBD group showed lower bacterial richness and diversity compared with the control group. The principal coordinate analysis also revealed the significant structural differences between the IBD group and the control group. These findings were consistent whether the analysis was based on an operational taxonomic unit or amplicon sequence variant. However, no significant difference was found when comparing the composition of fecal microbiota between ulcerative colitis (UC) and Crohn's disease (CD). Further analysis showed that Lactobacillus, Enterococcus, and Bifidobacterium were dominant in the IBD group, whereas Faecalibacterium and Subdoligranulum were dominant in the control group at the genus level. When comparing UC, CD, and control group, Lactobacillus, Bifidobacterium, and Enterococcus were identified as dominant genera in the UC group. Fusobacterium and Escherichia_Shigella were dominant in the CD group. CONCLUSION Compared with the healthy control, the IBD group showed dysbiosis with a significant decrease in both richness and diversity of gut microbiota.
Collapse
Affiliation(s)
- Tien-En Chang
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Endoscopic Center for Diagnosis and Therapy, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
| | - Jiing-Chyuan Luo
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
- Keelung Hospital, Ministry of Health Welfare, Keelung, Taiwan, ROC
| | - Ueng-Cheng Yang
- National Yang Ming Chiao Tung University, School of Medicine, Institute of Biomedical Informatics, Taipei, Taiwan, ROC
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
| | - Fa-Yauh Lee
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
| |
Collapse
|
37
|
Li H, Christman LM, Li R, Gu L. Synergic interactions between polyphenols and gut microbiota in mitigating inflammatory bowel diseases. Food Funct 2021; 11:4878-4891. [PMID: 32490857 DOI: 10.1039/d0fo00713g] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic and recurring inflammatory conditions in the colon and intestine. Their etiology is not fully understood but involves the combination of gut dysbiosis, genetics, immune functions, and environmental factors including diet. Polyphenols from plant-based food synergistically interact with gut microbiota to suppress inflammation and alleviate symptoms of IBD. Polyphenols increase the diversity of gut microbiota, improve the relative abundance of beneficial bacteria, and inhibit the pathogenic species. Polyphenols not absorbed in the small intestine are catabolized in the colon by microbiota into microbial metabolites, many of which have higher anti-inflammatory activity and bioavailability than their precursors. The polyphenols and their microbial metabolites alleviate IBD through reduction of oxidative stress, inhibition of inflammatory cytokines secretion (TNF-α, IL-6, IL-8, and IL-1β), suppression of NF-κB, upregulation of Nrf2, gut barrier protection, and modulation of immune function. Future studies are needed to discover unknown microbial metabolites of polyphenols and correlate specific gut microbes with microbial metabolites and IBD mitigating activity. A better knowledge of the synergistic interactions between polyphenols and gut microbiota will help to devise more effective prevention strategies for IBD. This review focuses on the role of polyphenols, gut microbiota and their synergistic interactions on the alleviation of IBD as well as current trends and future directions of IBD management.
Collapse
Affiliation(s)
- Hao Li
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA.
| | - Lindsey M Christman
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA.
| | - Ruiqi Li
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA.
| | - Liwei Gu
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
38
|
Maldonado-Arriaga B, Sandoval-Jiménez S, Rodríguez-Silverio J, Lizeth Alcaráz-Estrada S, Cortés-Espinosa T, Pérez-Cabeza de Vaca R, Licona-Cassani C, Gámez-Valdez JS, Shaw J, Mondragón-Terán P, Hernández-Cortez C, Suárez-Cuenca JA, Castro-Escarpulli G. Gut dysbiosis and clinical phases of pancolitis in patients with ulcerative colitis. Microbiologyopen 2021; 10:e1181. [PMID: 33970546 PMCID: PMC8087925 DOI: 10.1002/mbo3.1181] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Ulcerative colitis (UC) is a frequent type of inflammatory bowel disease, characterized by periods of remission and exacerbation. Gut dysbiosis may influence pathophysiology and clinical response in UC. The purpose of this study was to evaluate whether gut microbiota is related to the active and remission phases of pancolitis in patients with UC as well as in healthy participants. Fecal samples were obtained from 18 patients with UC and clinical‐endoscopic evidenced pancolitis (active phase n = 9 and remission phase n = 9), as well as 15 healthy participants. After fecal DNA extraction, the 16S rRNA gene was amplified and sequenced (Illumina MiSeq), operational taxonomic units were analyzed with the QIIME software. Gut microbiota composition revealed a higher abundance of the phyla Proteobacteria and Fusobacteria in active pancolitis, as compared with remission and healthy participants. Likewise, a marked abundance of the genus Bilophila and Fusobacteria were present in active pancolitis, whereas a higher abundance of Faecalibacterium characterized both remission and healthy participants. LEfSe analysis showed that the genus Roseburia and Faecalibacterium were enriched in remission pancolitis, and genera Bilophila and Fusobacterium were enriched in active pancolitis. The relative abundance of Fecalibacterium and Roseburia showed a higher correlation with fecal calprotectin, while Bilophila and Fusobacterium showed AUCs (area under the curve) of 0.917 and 0.988 for active vs. remission pancolitis. The results of our study highlight the relation of gut dysbiosis with clinically relevant phases of pancolitis in patients with UC. Particularly, Fecalibacterium, Roseburia, Bilophila, and Fusobacterium were identified as genera highly related to the different clinical phases of pancolitis.
Collapse
Affiliation(s)
- Brenda Maldonado-Arriaga
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación Clínica, C.M.N. "20 de Noviembre", ISSSTE and Hospital General de 2A Troncoso, Instituto Mexicano del Seguro Social, Ciudad de México, México.,Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Sergio Sandoval-Jiménez
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación Clínica, C.M.N. "20 de Noviembre", ISSSTE and Hospital General de 2A Troncoso, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | | | | | - Tomás Cortés-Espinosa
- Clínica de Enfermedad Inflamatoria Intestinal, Servicio de Gastroenterología, C.M.N. "20 de Noviembre", ISSSTE, Ciudad de México, México
| | - Rebeca Pérez-Cabeza de Vaca
- Coordinación de Investigación y División de Investigación Biomédica, C.M.N. "20 de Noviembre", ISSSTE, Ciudad de México, México
| | - Cuauhtémoc Licona-Cassani
- Laboratorio de Genómica Industrial, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - July Stephany Gámez-Valdez
- Laboratorio de Genómica Industrial, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - Jonathan Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Paul Mondragón-Terán
- Coordinación de Investigación y División de Investigación Biomédica, C.M.N. "20 de Noviembre", ISSSTE, Ciudad de México, México
| | - Cecilia Hernández-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Juan Antonio Suárez-Cuenca
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación Clínica, C.M.N. "20 de Noviembre", ISSSTE and Hospital General de 2A Troncoso, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
39
|
Aldars-García L, Chaparro M, Gisbert JP. Systematic Review: The Gut Microbiome and Its Potential Clinical Application in Inflammatory Bowel Disease. Microorganisms 2021; 9:microorganisms9050977. [PMID: 33946482 PMCID: PMC8147118 DOI: 10.3390/microorganisms9050977] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing-remitting systemic disease of the gastrointestinal tract. It is well established that the gut microbiome has a profound impact on IBD pathogenesis. Our aim was to systematically review the literature on the IBD gut microbiome and its usefulness to provide microbiome-based biomarkers. A systematic search of the online bibliographic database PubMed from inception to August 2020 with screening in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted. One-hundred and forty-four papers were eligible for inclusion. There was a wide heterogeneity in microbiome analysis methods or experimental design. The IBD intestinal microbiome was generally characterized by reduced species richness and diversity, and lower temporal stability, while changes in the gut microbiome seemed to play a pivotal role in determining the onset of IBD. Multiple studies have identified certain microbial taxa that are enriched or depleted in IBD, including bacteria, fungi, viruses, and archaea. The two main features in this sense are the decrease in beneficial bacteria and the increase in pathogenic bacteria. Significant differences were also present between remission and relapse IBD status. Shifts in gut microbial community composition and abundance have proven to be valuable as diagnostic biomarkers. The gut microbiome plays a major role in IBD, yet studies need to go from casualty to causality. Longitudinal designs including newly diagnosed treatment-naïve patients are needed to provide insights into the role of microbes in the onset of intestinal inflammation. A better understanding of the human gut microbiome could provide innovative targets for diagnosis, prognosis, treatment and even cure of this relevant disease.
Collapse
Affiliation(s)
- Laila Aldars-García
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - María Chaparro
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - Javier P. Gisbert
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
- Correspondence: ; Tel.: +34-913-093-911; Fax: +34-915-204-013
| |
Collapse
|
40
|
Aldars-García L, Marin AC, Chaparro M, Gisbert JP. The Interplay between Immune System and Microbiota in Inflammatory Bowel Disease: A Narrative Review. Int J Mol Sci 2021; 22:ijms22063076. [PMID: 33802883 PMCID: PMC8002696 DOI: 10.3390/ijms22063076] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
The importance of the gut microbiota in human health is currently well established. It contributes to many vital functions such as development of the host immune system, digestion and metabolism, barrier against pathogens or brain–gut communication. Microbial colonization occurs during infancy in parallel with maturation of the host immune system; therefore, an adequate cross-talk between these processes is essential to generating tolerance to gut microbiota early in life, which is crucial to prevent allergic and immune-mediated diseases. Inflammatory bowel disease (IBD) is characterized by an exacerbated immune reaction against intestinal microbiota. Changes in abundance in the gut of certain microorganisms such as bacteria, fungi, viruses, and archaea have been associated with IBD. Microbes that are commonly found in high abundance in healthy gut microbiomes, such as F. prausnitzii or R. hominis, are reduced in IBD patients. E. coli, which is usually present in a healthy gut in very low concentrations, is increased in the gut of IBD patients. Microbial taxa influence the immune system, hence affecting the inflammatory status of the host. This review examines the IBD microbiome profile and presents IBD as a model of dysbiosis.
Collapse
Affiliation(s)
- Laila Aldars-García
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (A.C.M.); (M.C.); (J.P.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
- Correspondence:
| | - Alicia C. Marin
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (A.C.M.); (M.C.); (J.P.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - María Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (A.C.M.); (M.C.); (J.P.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - Javier P. Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (A.C.M.); (M.C.); (J.P.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| |
Collapse
|
41
|
Internal connections between dietary intake and gut microbiota homeostasis in disease progression of ulcerative colitis: a review. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Manandhar I, Alimadadi A, Aryal S, Munroe PB, Joe B, Cheng X. Gut microbiome-based supervised machine learning for clinical diagnosis of inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol 2021; 320:G328-G337. [PMID: 33439104 PMCID: PMC8828266 DOI: 10.1152/ajpgi.00360.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite the availability of various diagnostic tests for inflammatory bowel diseases (IBD), misdiagnosis of IBD occurs frequently, and thus, there is a clinical need to further improve the diagnosis of IBD. As gut dysbiosis is reported in patients with IBD, we hypothesized that supervised machine learning (ML) could be used to analyze gut microbiome data for predictive diagnostics of IBD. To test our hypothesis, fecal 16S metagenomic data of 729 subjects with IBD and 700 subjects without IBD from the American Gut Project were analyzed using five different ML algorithms. Fifty differential bacterial taxa were identified [linear discriminant analysis effect size (LEfSe): linear discriminant analysis (LDA) score > 3] between the IBD and non-IBD groups, and ML classifications trained with these taxonomic features using random forest (RF) achieved a testing area under the receiver operating characteristic curves (AUC) of ∼0.80. Next, we tested if operational taxonomic units (OTUs), instead of bacterial taxa, could be used as ML features for diagnostic classification of IBD. Top 500 high-variance OTUs were used for ML training, and an improved testing AUC of ∼0.82 (RF) was achieved. Lastly, we tested if supervised ML could be used for differentiating Crohn's disease (CD) and ulcerative colitis (UC). Using 331 CD and 141 UC samples, 117 differential bacterial taxa (LEfSe: LDA score > 3) were identified, and the RF model trained with differential taxonomic features or high-variance OTU features achieved a testing AUC > 0.90. In summary, our study demonstrates the promising potential of artificial intelligence via supervised ML modeling for predictive diagnostics of IBD using gut microbiome data.NEW & NOTEWORTHY Our study demonstrates the promising potential of artificial intelligence via supervised machine learning modeling for predictive diagnostics of different types of inflammatory bowel diseases using fecal gut microbiome data.
Collapse
Affiliation(s)
- Ishan Manandhar
- 1Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Ahmad Alimadadi
- 1Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Sachin Aryal
- 1Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Patricia B. Munroe
- 2Clinical Pharmacology, William Harvey Research Institute &
National Institute of Health Research Barts Cardiovascular Biomedical Research Centre, Barts
and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Bina Joe
- 1Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Xi Cheng
- 1Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
43
|
Zhou Y, He Y, Liu L, Zhou W, Wang P, Hu H, Nie Y, Chen Y. Alterations in Gut Microbial Communities Across Anatomical Locations in Inflammatory Bowel Diseases. Front Nutr 2021; 8:615064. [PMID: 33718417 PMCID: PMC7952524 DOI: 10.3389/fnut.2021.615064] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
We previously discovered that gut microbiota can serve as universal microbial biomarkers for diagnosis, disease activity assessment, and predicting the response to infliximab treatment for inflammatory bowel diseases (IBD). Much still remains unknown about the relationship between alterations in gut microbiota and IBD affected bowel region, in particular in the case of ulcerative colitis (UC) and colonic Crohn's disease (cCD) without endoscopic and biopsy data. In the current study gut microbiota from a population in China was found to be distinct from that of the Western world [Human Microbiome Project (HMP) data]. Furthermore, both gut microbiota greatly differed from microbiota of other anatomical locations (oral, skin, airway, and vagina), with higher alpha-diversity (Chinese gut > HMP gut > oral microbiome > airway microbiome > skin microbiome > vaginal microbiome), and marked differences in microbiome composition. In patients with IBD in China, UC was characterized by the presence of Gardnerella, while cCD was characterized by the presence of Fusobacterium. Moreover, gut microbiota, such as Gardnerella and Fusobacterium, may be potential biomarkers for identifying UC from cCD. Together, this study revealed crucial differences in microbial communities across anatomical locations, and demonstrated that there was an important association between IBD affected bowel region and gut microbiota.
Collapse
Affiliation(s)
- Youlian Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan He
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Le Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyan Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pu Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Han Hu
- Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ye Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
44
|
Banfi D, Moro E, Bosi A, Bistoletti M, Cerantola S, Crema F, Maggi F, Giron MC, Giaroni C, Baj A. Impact of Microbial Metabolites on Microbiota-Gut-Brain Axis in Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:1623. [PMID: 33562721 PMCID: PMC7915037 DOI: 10.3390/ijms22041623] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The complex bidirectional communication system existing between the gastrointestinal tract and the brain initially termed the "gut-brain axis" and renamed the "microbiota-gut-brain axis", considering the pivotal role of gut microbiota in sustaining local and systemic homeostasis, has a fundamental role in the pathogenesis of Inflammatory Bowel Disease (IBD). The integration of signals deriving from the host neuronal, immune, and endocrine systems with signals deriving from the microbiota may influence the development of the local inflammatory injury and impacts also more distal brain regions, underlying the psychophysiological vulnerability of IBD patients. Mood disorders and increased response to stress are frequently associated with IBD and may affect the disease recurrence and severity, thus requiring an appropriate therapeutic approach in addition to conventional anti-inflammatory treatments. This review highlights the more recent evidence suggesting that alterations of the microbiota-gut-brain bidirectional communication axis may concur to IBD pathogenesis and sustain the development of both local and CNS symptoms. The participation of the main microbial-derived metabolites, also defined as "postbiotics", such as bile acids, short-chain fatty acids, and tryptophan metabolites in the development of IBD-associated gut and brain dysfunction will be discussed. The last section covers a critical evaluation of the main clinical evidence pointing to the microbiome-based therapeutic approaches for the treatment of IBD-related gastrointestinal and neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Davide Banfi
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti 2, 35131 Padova, Italy; (S.C.); (M.C.G.)
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti 2, 35131 Padova, Italy; (S.C.); (M.C.G.)
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
- Centre of Neuroscience, University of Insubria, 21100 Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| |
Collapse
|
45
|
Caenepeel C, Sadat Seyed Tabib N, Vieira-Silva S, Vermeire S. Review article: how the intestinal microbiota may reflect disease activity and influence therapeutic outcome in inflammatory bowel disease. Aliment Pharmacol Ther 2020; 52:1453-1468. [PMID: 32969507 DOI: 10.1111/apt.16096] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/08/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intestinal bacteria produce metabolites and by-products necessary for homeostasis. Imbalance in this equilibrium is linked to multiple pathologies including inflammatory bowel disease (IBD). The role of the gut microbiota in determining treatment response is becoming apparent, and may act as biomarker for efficacy. AIM To describe knowledge about the intestinal microbiota on disease severity and treatment outcomes in IBD METHODS: Descriptive review using PubMed to identify literature on the intestinal microbiota in IBD RESULTS: Severe IBD has a less diverse microbiota with fewer commensal microbiota communities and more opportunistic pathogenic bacteria originating from the oral cavity or respiratory tract. IBD treatments can alter gut microbiota composition, but in vitro/in vivo studies are needed to prove causation. A diversification of the microbiota is observed during remission. Patients with a more diverse baseline microbiome and higher microbial diversity show better response to anti-tumour necrosis factor-α, vedolizumab and ustekinumab therapy. Higher abundance of short chain fatty acid-producing bacteria, fewer mucus-colonising bacteria and lower abundance of pro-inflammatory bacteria have also been associated with a favourable outcome. Predictive models, based on a combination of microbiota, clinical data and serological markers, have good accuracy for treatment outcome and disease severity. CONCLUSION The intestinal microbiota in IBD carries a set of promising biomarkers of disease activity and prediction of therapeutic outcome. Current insights may also help in designing microbiota modulation strategies to improve outcomes in IBD.
Collapse
Affiliation(s)
| | | | - Sara Vieira-Silva
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute for Medical Research, VIB, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases & Metabolism, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Facchin S, Vitulo N, Calgaro M, Buda A, Romualdi C, Pohl D, Perini B, Lorenzon G, Marinelli C, D’Incà R, Sturniolo GC, Savarino EV. Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease. Neurogastroenterol Motil 2020; 32:e13914. [PMID: 32476236 PMCID: PMC7583468 DOI: 10.1111/nmo.13914] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Butyrate has shown anti-inflammatory and regenerative properties, providing symptomatic relief when orally supplemented in patients suffering from various colonic diseases. We investigated the effect of a colonic-delivery formulation of butyrate on the fecal microbiota of patients with inflammatory bowel diseases (IBDs). METHODS In this double-blind, placebo-controlled, pilot study, 49 IBD patients (n = 19 Crohn's disease, CD and n = 30 ulcerative colitis, UC) were randomized to oral administration of microencapsulated-sodium-butyrate (BLM) or placebo for 2 months, in addition to conventional therapy. Eighteen healthy volunteers (HVs) were recruited to provide a healthy microbiota model of the local people. Fecal microbiota from stool samples was assessed by 16S sequencing. Clinical disease activity and quality of life (QoL) were evaluated before and after treatment. KEY RESULTS At baseline, HVs showed a different microbiota composition compared with IBD patients. Sodium-butyrate altered the gut microbiota of IBD patients by increasing bacteria able to produce SCFA in UC patients (Lachnospiraceae spp.) and the butyrogenic colonic bacteria in CD patients (Butyricicoccus). In UC patients, QoL was positively affected by treatment. CONCLUSIONS AND INFERENCES Sodium-butyrate supplementation increases the growth of bacteria able to produce SCFA with potentially anti-inflammatory action. The clinical impact of this finding requires further investigation.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology (DISCOG)University Hospital of PaduaPaduaItaly
| | - Nicola Vitulo
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Matteo Calgaro
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Andrea Buda
- Department of Surgery, Oncology and Gastroenterology (DISCOG)University Hospital of PaduaPaduaItaly
| | | | - Daniel Pohl
- Department of GastroenterologyUniversity Hospital ZurichZurichSwitzerland
| | - Barbara Perini
- Department of Surgery, Oncology and Gastroenterology (DISCOG)University Hospital of PaduaPaduaItaly
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DISCOG)University Hospital of PaduaPaduaItaly
| | - Carla Marinelli
- Department of Surgery, Oncology and Gastroenterology (DISCOG)University Hospital of PaduaPaduaItaly
| | - Renata D’Incà
- Department of Surgery, Oncology and Gastroenterology (DISCOG)University Hospital of PaduaPaduaItaly
| | - Giacomo Carlo Sturniolo
- Department of Surgery, Oncology and Gastroenterology (DISCOG)University Hospital of PaduaPaduaItaly
| | | |
Collapse
|
47
|
Al KF, Denstedt JD, Daisley BA, Bjazevic J, Welk BK, Pautler SE, Gloor GB, Reid G, Razvi H, Burton JP. Ureteral Stent Microbiota Is Associated with Patient Comorbidities but Not Antibiotic Exposure. Cell Rep Med 2020; 1:100094. [PMID: 33205072 PMCID: PMC7659606 DOI: 10.1016/j.xcrm.2020.100094] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/29/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
Ureteral stents are commonly used to prevent urinary obstruction but can become colonized by bacteria and encrusted, leading to clinical complications. Despite recent discovery and characterization of the healthy urinary microbiota, stent-associated bacteria and their impact on encrustation are largely underexplored. We profile the microbiota of patients with typical short-term stents, as well as over 30 atypical cases (all with paired mid-stream urine) from 241 patients. Indwelling time, age, and various patient comorbidities correlate with alterations to the stent microbiota composition, whereas antibiotic exposure, urinary tract infection (UTI), and stent placement method do not. The stent microbiota most likely originates from adhesion of resident urinary microbes but subsequently diverges to a distinct, reproducible population, thereby negating the urine as a biomarker for stent encrustation or microbiota. Urological practice should reconsider standalone prophylactic antibiotics in favor of tailored therapies based on patient comorbidities in efforts to minimize bacterial burden, encrustation, and complications of ureteral stents.
Collapse
Affiliation(s)
- Kait F. Al
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - John D. Denstedt
- Division of Urology, Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Brendan A. Daisley
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Jennifer Bjazevic
- Division of Urology, Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Blayne K. Welk
- Division of Urology, Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Stephen E. Pautler
- Division of Urology, Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Gregory B. Gloor
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Gregor Reid
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
- Division of Urology, Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Hassan Razvi
- Division of Urology, Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Jeremy P. Burton
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
- Division of Urology, Department of Surgery, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
48
|
Montrose DC, Nishiguchi R, Basu S, Staab HA, Zhou XK, Wang H, Meng L, Johncilla M, Cubillos-Ruiz JR, Morales DK, Wells MT, Simpson KW, Zhang S, Dogan B, Jiao C, Fei Z, Oka A, Herzog JW, Sartor RB, Dannenberg AJ. Dietary Fructose Alters the Composition, Localization, and Metabolism of Gut Microbiota in Association With Worsening Colitis. Cell Mol Gastroenterol Hepatol 2020; 11:525-550. [PMID: 32961355 PMCID: PMC7797369 DOI: 10.1016/j.jcmgh.2020.09.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The incidence of inflammatory bowel diseases has increased over the last half century, suggesting a role for dietary factors. Fructose consumption has increased in recent years. Recently, a high fructose diet (HFrD) was shown to enhance dextran sodium sulfate (DSS)-induced colitis in mice. The primary objectives of the current study were to elucidate the mechanism(s) underlying the pro-colitic effects of dietary fructose and to determine whether this effect occurs in both microbially driven and genetic models of colitis. METHODS Antibiotics and germ-free mice were used to determine the relevance of microbes for HFrD-induced worsening of colitis. Mucus thickness and quality were determined by histologic analyses. 16S rRNA profiling, in situ hybridization, metatranscriptomic analyses, and fecal metabolomics were used to determine microbial composition, spatial distribution, and metabolism. The significance of HFrD on pathogen and genetic-driven models of colitis was determined by using Citrobacter rodentium infection and Il10-/- mice, respectively. RESULTS Reducing or eliminating bacteria attenuated HFrD-mediated worsening of DSS-induced colitis. HFrD feeding enhanced access of gut luminal microbes to the colonic mucosa by reducing thickness and altering the quality of colonic mucus. Feeding a HFrD also altered gut microbial populations and metabolism including reduced protective commensal and bile salt hydrolase-expressing microbes and increased luminal conjugated bile acids. Administration of conjugated bile acids to mice worsened DSS-induced colitis. The HFrD also worsened colitis in Il10-/- mice and mice infected with C rodentium. CONCLUSIONS Excess dietary fructose consumption has a pro-colitic effect that can be explained by changes in the composition, distribution, and metabolic function of resident enteric microbiota.
Collapse
Affiliation(s)
| | | | - Srijani Basu
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Hannah A. Staab
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Xi Kathy Zhou
- Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, New York
| | - Hanhan Wang
- Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, New York
| | - Lingsong Meng
- Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, New York
| | | | | | - Diana K. Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York
| | - Martin T. Wells
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York
| | | | - Shiying Zhang
- Department of Clinical Sciences, Cornell University, Ithaca, New York
| | - Belgin Dogan
- Department of Clinical Sciences, Cornell University, Ithaca, New York
| | - Chen Jiao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York
| | - Akihiko Oka
- Departments of Medicine, Microbiology, and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Jeremy W. Herzog
- Departments of Medicine, Microbiology, and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - R. Balfour Sartor
- Departments of Medicine, Microbiology, and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Andrew J. Dannenberg
- Department of Medicine, Weill Cornell Medicine, New York, New York,Correspondence Address correspondence to: Andrew J. Dannenberg, MD, Department of Medicine, Weill Cornell Medicine, 525 East 68th Street, Room E-803, New York, New York 10065. fax: (646) 962-0891.
| |
Collapse
|
49
|
The Effectiveness of Multi-Session FMT Treatment in Active Ulcerative Colitis Patients: A Pilot Study. Biomedicines 2020; 8:biomedicines8080268. [PMID: 32756350 PMCID: PMC7459721 DOI: 10.3390/biomedicines8080268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The modification of the microbiome through fecal microbiota transplantation (FMT) is becoming a very promising therapeutic option for inflammatory bowel disease (IBD) patients. Our pilot study aimed to assess the effectiveness of multi-session FMT treatment in active ulcerative colitis (UC) patients. Ten patients with UC were treated with multi-session FMT (200 mL) from healthy donors, via colonoscopy/gastroscopy. Patients were evaluated as follows: at baseline, at week 7, and after 6 months, routine blood tests (including C reactive protein (CRP) and calprotectin) were performed. 16S rRNA gene (V3V4) sequencing was used for metagenomic analysis. The severity of UC was classified based on the Truelove–Witts index. The assessment of microbial diversity showed significant differences between recipients and healthy donors. FMT contributed to long-term, significant clinical and biochemical improvement. Metagenomic analysis revealed an increase in the amount of Lactobacillaceaea, Micrococcaceae, Prevotellaceae, and TM7 phylumsp.oral clone EW055 during FMT, whereas Staphylococcaceae and Bacillaceae declined significantly. A positive increase in the proportion of the genera Bifidobacterium, Lactobacillus, Rothia, Streptococcus, and Veillonella and a decrease in Bacillus, Bacteroides, and Staphylococcus were observed based on the correlation between calprotectin and Bacillus and Staphylococcus; ferritin and Lactobacillus, Veillonella, and Bifidobacterium abundance was indicated. A positive change in the abundance of Firmicutes was observed during FMT and after 6 months. The application of multi-session FMT led to the restoration of recipients’ microbiota and resulted in the remission of patients with active UC.
Collapse
|
50
|
The Efficacy and Safety of Mesalamine and Probiotics in Mild-to-Moderate Ulcerative Colitis: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6923609. [PMID: 32308714 PMCID: PMC7142348 DOI: 10.1155/2020/6923609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/19/2020] [Accepted: 02/15/2020] [Indexed: 12/19/2022]
Abstract
Objective To evaluate the efficacy and safety of mesalamine in conjunction with probiotics for ulcerative colitis. Methods Random controlled trials (RCTs) were searched in PubMed, EMBASE, Cochrane Library, China National Knowledge Infrastructure, Wanfang, and VIP (VIP Database for Chinese Technical Periodicals) from inception to October 2019. Methodological quality was assessed by the Cochrane Collaboration tool. The quality of evidence was rated by the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE). Data analysis was carried out in Review Manager 5.3. Results A total of fifteen studies met the criteria for inclusion. Thirteen studies reported the clinical efficacy, three studies provided data on the clinical symptom scores, two trials reported disease activity index, four studies evaluated endoscopic score, and twelve studies reported adverse events. For ulcerative colitis (UC), mesalamine and probiotics had better clinical efficacy than mesalamine alone (≤8 weeks: RR = 1.12, 95% CI: 1.07–1.18, P < 0.0001; >8 weeks: RR = 1.25, 95% CI: 1.11–1.41, P=0.0003). On the clinical symptom scores, disease activity index, and endoscopic score, UC patients receiving mesalamine and probiotics had significant difference than patients receiving mesalazine alone (MD = −2.02, 95% CI: −3.28 to −0.76, P=0.002; MD = −1.20, 95% CI: −1.76 to −0.65, P < 0.001; and MD = −0.42, 95% CI: −0.61 to −0.23, P < 0.0001, respectively). There was no statistically significant difference in adverse events between the two groups (RR = 0.88, 95% CI: 0.54 to 1.43, P=0.60). Conclusion Our meta-analysis results supported that mesalamine and probiotics were effective and safe in treating ulcerative colitis.
Collapse
|