1
|
Danso F, Iddrisu L, Lungu SE, Zhou G, Ju X. Effects of Heat Stress on Goat Production and Mitigating Strategies: A Review. Animals (Basel) 2024; 14:1793. [PMID: 38929412 PMCID: PMC11200645 DOI: 10.3390/ani14121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Goats, versatile creatures selectively bred for various purposes, have become pivotal in shaping the socioeconomic landscape, particularly in rural and economically challenged areas. Their remarkable ability to withstand and adapt to extreme heat has proven invaluable, allowing them to flourish and reproduce in even the harshest climates on Earth. Goat farming has emerged as a reliable and sustainable solution for securing food resources. However, despite its significance, the goat-producing industry has received less attention than other ruminants. Despite goats' inherent resilience to heat, their productivity and reproductive performance suffer under high ambient temperatures, leading to heat stress. This presents a significant challenge for goat production, necessitating a comprehensive multidisciplinary approach to mitigating the adverse effects of heat stress. This review aims to explore the diverse impacts of heat stress on goats and propose effective measures to address the sector's challenges. By understanding and addressing these issues, we can enhance the resilience and sustainability of goat farming, ensuring its continued contribution to food security and socioeconomic development.
Collapse
Affiliation(s)
- Felix Danso
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (F.D.); (S.E.L.)
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lukman Iddrisu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Shera Elizabeth Lungu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (F.D.); (S.E.L.)
| | - Guangxian Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (F.D.); (S.E.L.)
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (F.D.); (S.E.L.)
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
2
|
Mota-Rojas D, Ghezzi MD, Hernández-Ávalos I, Domínguez-Oliva A, Casas-Alvarado A, Lendez PA, Ceriani MC, Wang D. Hypothalamic Neuromodulation of Hypothermia in Domestic Animals. Animals (Basel) 2024; 14:513. [PMID: 38338158 PMCID: PMC10854546 DOI: 10.3390/ani14030513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
When an organism detects decreases in their core body temperature, the hypothalamus, the main thermoregulatory center, triggers compensatory responses. These responses include vasomotor changes to prevent heat loss and physiological mechanisms (e.g., shivering and non-shivering thermogenesis) for heat production. Both types of changes require the participation of peripheral thermoreceptors, afferent signaling to the spinal cord and hypothalamus, and efferent pathways to motor and/or sympathetic neurons. The present review aims to analyze the scientific evidence of the hypothalamic control of hypothermia and the central and peripheral changes that are triggered in domestic animals.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Marcelo Daniel Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), GIB, Tandil 7000, Buenos Aires, Argentina
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Biological Sciences Department, FESC, Universidad Nacional Autónoma de México, Cuautitlán 54714, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Pamela Anahí Lendez
- Anatomy Area, Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), GIB/CISAPA, Tandil 7000, Buenos Aires, Argentina
| | - María Carolina Ceriani
- Anatomy Area, Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), GIB/CISAPA, Tandil 7000, Buenos Aires, Argentina
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Oni AI, Adeleye OO, Adebowale TO, Oke OE. The role of phytogenic feed additives in stress mitigation in broiler chickens. J Anim Physiol Anim Nutr (Berl) 2024; 108:81-98. [PMID: 37587717 DOI: 10.1111/jpn.13869] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
The increase in global temperature and consumers' welfare has increased the use of phytogenic feed additives (PFA) to mitigate the negative effects of heat stress on chickens in recent years. Various bioactive compounds capable of improving the thermotolerance of broiler chickens during exposure to thermal challenges have been identified in different plant species and parts. This review is an overview of the roles of bioactive compounds of different PFA, such as polyphenols and flavonoids, antioxidants, growth-promoting and immune-modulating agents, in heat stress management in broiler chickens. Common PFA in use, particularly in tropical environments, are also discussed. An understanding of the roles of the PFA in chickens' thermotolerance could further stimulate interest in their use, thereby improving the birds' productivity and addressing consumers' concerns. This review collates the existing data on the roles of herbs in mitigating heat stress on chickens and highlights future research perspectives.
Collapse
Affiliation(s)
- Aderanti Ifeoluwa Oni
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Oluwagbemiga O Adeleye
- Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Oyegunle Emmanuel Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
4
|
Kim S, Nakayama C, Kondoh D, Okazaki T, Yoneda E, Tomita K, Sasaki M, Muranishi Y. Seasonal adaptation of Mangalica pigs in terms of muscle morphology and metabolism. Anat Histol Embryol 2024; 53:e12982. [PMID: 37811668 DOI: 10.1111/ahe.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
The skeletal muscle plays an important role in maintaining body temperature, which is mediated by thermogenesis and glucose or lipid metabolism. Mangalica is a native Hungarian pig that has cold tolerance and can live in grazing environments throughout the year. We evaluated the morphological and genetic aspects of Mangalica using muscle tissues to elucidate the mechanisms underlying the tolerance to seasonal effects in grazing environments. The muscle tissues in each season were analysed using morphological evaluation and electron microscopy. The cross-sectional area of skeletal muscle cells in summer was significantly larger than that in winter. The thickness of myofibrils in summer was significantly higher than in winter. The thickness of the Z-line in winter was significantly higher than in summer. The expression of MYH4 and GLUT4 was significantly lower in winter than in summer. The result of ATPase staining indicated significantly increase the muscle fibre ratio of type 1 in winter than that in summer. These findings indicate that the muscle fibre in Mangalica shifts from fast-twitch to slow-twitch fibre, and the metabolic physiology of the muscle was adapted to the cold environment. This study demonstrates that Mangalica gained tolerance to both seasonal heat and cold stresses that are caused by significant changes in ambient temperature in a year because of changes in their muscle fibre type and metabolic function. This study may contribute to elucidating the mechanism of thermogenetic adaptation in cold and heat environments among mammals.
Collapse
Affiliation(s)
- Sangwoo Kim
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Chisato Nakayama
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Daisuke Kondoh
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tatsuki Okazaki
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Erina Yoneda
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Kisaki Tomita
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Motoki Sasaki
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yuki Muranishi
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Lendez PA, Martínez Cuesta L, Nieto Farías MV, Vater AA, Ghezzi MD, Mota-Rojas D, Dolcini GL, Ceriani MC. Effect of heat stress on TNF-α, TNFRI and TNFRII expression in BLV infected dairy cattle. J Therm Biol 2023; 114:103568. [PMID: 37162166 DOI: 10.1016/j.jtherbio.2023.103568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
High temperatures for extended periods, which do not allow animals to recover from heat stress, affect in particular those BLV-infected animals that carry a high proviral load. For this study, animals were discriminated between BLV (+) and BLV (-), and those belonging to the first group, were classified based on their proviral load. The expression of the inflammatory cytokine TNF-α and its receptors, which play an important role in disease progression, were quantified by qPCR in two different seasons. During the summer, average temperature was 19.8 °C, maximums higher than 30 °C were frequent. Instead, during the autumn, the average temperature was 12.63 °C, and temperatures never exceeded 27 °C. During this season, almost no periods of temperatures exceeded the comfort limit. Our results revealed that the expression levels of TNF-α and its receptors were downregulated in animals with high proviral load. This fact could affect their antiviral response and predispose to viral dissemination; over time, animals with a poorer immune system are prone to acquiring opportunistic diseases. Conversely, animals with LPL maintained their expression profile, with behavior comparable to non-infected animals. These findings should be considered by producers and researchers, given the problems that global warming is causing lately to the planet.
Collapse
Affiliation(s)
- Pamela Anahí Lendez
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - Lucía Martínez Cuesta
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - María Victoria Nieto Farías
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - Adrián Alejandro Vater
- Escuela de Educación Secundaria Agraria N°1 "DR, RAMON SANTAMARINA", Pje La Porteña, Ruta Pcial N, 30 KM 122.5, Tandil, Argentina
| | - Marcelo Daniel Ghezzi
- Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - Daniel Mota-Rojas
- Stress Physiology and Farm Animal Welfare, Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana (UAM), Ciudad de México, Mexico
| | - Guillermina Laura Dolcini
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - María Carolina Ceriani
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina.
| |
Collapse
|
6
|
Effect of gradual increase and decrease in temperature on innate, cellular and humoral immunity in striped hamsters. Mamm Biol 2023. [DOI: 10.1007/s42991-023-00351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Taborda-Charris JC, Rodríguez-Hernández R, Herrera-Sánchez MP, Uribe-García HF, Otero-Arroyo RJ, Naranjo-Gomez JS, Lozano-Villegas KJ, Rondón-Barragín IS. Expression profiling of heat shock protein genes in whole blood of Romosinuano cattle breed. Vet World 2023. [DOI: 10.14202/10.14202/vetworld.2023.601-606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Background and Aim: Heat shock proteins are highly conserved proteins that work as molecular chaperones expressed in response to thermal stress. This study aimed to determine the expression profile of genes related to the heat stress response in whole blood obtained from the Romosinuano creole breed.
Materials and Methods: Real-time polymerase chain reaction was performed to analyze the transcript of hsp90, hsp70, hsp60, and hsf1 in the whole blood of Romosinuano under different temperature-humidity indices (THIs).
Results: The expression levels of the hsp70 and hsf1 genes at the high-THI level were higher (p = 0.0011 and p = 0.0003, respectively) than those at the low-THI level. In addition, no differences in the expression levels of the hsp60 and hsP90 genes were detected between the two THIs.
Conclusion: The overexpression of hsf1 and hsp70 genes play an important role in protecting cells from damage induced by heat stress.
Keywords: climate change, external environment, heat shock proteins, heat stress, mRNA, temperature-humidity index.
Collapse
|
8
|
Taborda-Charris JC, Rodríguez-Hernández R, Herrera-Sánchez MP, Uribe-García HF, Otero-Arroyo RJ, Naranjo-Gomez JS, Lozano-Villegas KJ, Rondón-Barragán IS. Expression profiling of heat shock protein genes in whole blood of Romosinuano cattle breed. Vet World 2023; 16:601-606. [PMID: 37041848 PMCID: PMC10082753 DOI: 10.14202/vetworld.2023.601-606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/02/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim Heat shock proteins are highly conserved proteins that work as molecular chaperones expressed in response to thermal stress. This study aimed to determine the expression profile of genes related to the heat stress response in whole blood obtained from the Romosinuano creole breed. Materials and Methods Real-time polymerase chain reaction was performed to analyze the transcript of hsp90, hsp70, hsp60, and hsf1 in the whole blood of Romosinuano under different temperature-humidity indices (THIs). Results The expression levels of the hsp70 and hsf1 genes at the high-THI level were higher (p = 0.0011 and p = 0.0003, respectively) than those at the low-THI level. In addition, no differences in the expression levels of the hsp60 and hsP90 genes were detected between the two THIs. Conclusion The overexpression of hsf1 and hsp70 genes play an important role in protecting cells from damage induced by heat stress.
Collapse
Affiliation(s)
- Juan Camilo Taborda-Charris
- Immunobiology and Pathogenesis Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
| | - Roy Rodríguez-Hernández
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, Postal Code 730006299, Ibagué-Tolima, Colombia
| | - María Paula Herrera-Sánchez
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, Postal Code 730006299, Ibagué-Tolima, Colombia
| | - Heinner Fabian Uribe-García
- Immunobiology and Pathogenesis Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
| | - Rafael J. Otero-Arroyo
- Grupo de Investigación en Reproducción y Mejoramiento Genético Animal, Facultad de Ciencias Agropecuarias, Universidad de Sucre, Sincelejo 700001, Sucre, Colombia
- Laboratorio de Reproducción Animal, Corporación de Ciencias Biotecnológicas, Embriotecno, Montería 230029, Córdoba, Colombia
| | - Juan Sebastian Naranjo-Gomez
- Immunobiology and Pathogenesis Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
| | - Kelly Johanna Lozano-Villegas
- Immunobiology and Pathogenesis Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, Postal Code 730006299, Ibagué-Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Immunobiology and Pathogenesis Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, Postal Code 730006299, Ibagué-Tolima, Colombia
- Corresponding author: Iang Schroniltgen Rondón-Barragán, e-mail: Co-authors: JCT: , RR: , MPH: , HFU: , RJO: , JSN: , KJL:
| |
Collapse
|
9
|
Zhang D, Wang L, Ma S, Ma H, Liu D. Characterization of pig skeletal muscle transcriptomes in response to low temperature. Vet Med Sci 2022; 9:181-190. [PMID: 36480456 PMCID: PMC9857100 DOI: 10.1002/vms3.1025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The response of mammals to cold environment is a complex physiological activity, and its underlying mechanism must be analyzed from multiple perspectives. Skeletal muscle is an important thermogenic tissue that maintains body temperature in mammals. We dissected the molecular mechanism of pig skeletal muscle response to a cold environment by performing comparative transcriptome analysis in the Enshi black pig. METHODS Three pigs were subjected to acute cold stress (3 days), three pigs were subjected to cold acclimation (58 days), and three pigs were used as controls. RNA-seq was used to screen the differentially expressed genes (DEGs) of skeletal muscle. RESULTS Using RNA-seq methods, we identified 1241 DEGs within the acute cold stress group and 1886 DEGs within the cold acclimation group. Prolonged cold exposure induced more gene expression changes. A total of 540 key cold-responsive DEGs were found, and their trends were consistent within the acute cold stress group and cold acclimation group. Gene expression pattern analysis showed that there were significant differences between the low-temperature treatment groups and the control group, and there were also differences between individuals after long-term low-temperature treatment. Analysis of DEGs revealed that 134 pathways were significantly enriched in the cold adaptation group, 98 pathways were significantly enriched in the acute cold stress group, and 71 pathways were shared between the two groups. The 71 shared pathways were mainly related to lipid, amino acid, and carbohydrate metabolism; signal transduction; endocrine, immune, and nervous system; cardiovascular disease; infectious diseases caused by bacteria or viruses; and neurodegenerative disease. CONCLUSIONS In conclusion, this study provides insights into the molecular mechanism of porcine skeletal muscle response under low-temperature environment. The data may assist further research on the mechanism of pig response to cold exposure.
Collapse
Affiliation(s)
- DongJie Zhang
- Institute of Animal Husbandry ResearchHeilongjiang Academy of Agricultural SciencesHarbinChina,Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureHarbinChina
| | - Liang Wang
- Institute of Animal Husbandry ResearchHeilongjiang Academy of Agricultural SciencesHarbinChina,Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureHarbinChina
| | - ShouZheng Ma
- College of Animal Science and TechnologyInstitute of Northeast Agricultural UniversityHarbinChina
| | - Hong Ma
- Institute of Animal Husbandry ResearchHeilongjiang Academy of Agricultural SciencesHarbinChina,Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureHarbinChina
| | - Di Liu
- Institute of Animal Husbandry ResearchHeilongjiang Academy of Agricultural SciencesHarbinChina,College of Animal Science and TechnologyInstitute of Northeast Agricultural UniversityHarbinChina
| |
Collapse
|
10
|
Guo Y, Liu T, Li W, Zhang W, Cai C, Lu C, Gao P, Cao G, Li B, Guo X, Yang Y. Effects of Low-Ambient-Temperature Stimulation on Modifying the Intestinal Structure and Function of Different Pig Breeds. Animals (Basel) 2022; 12:ani12202740. [PMID: 36290125 PMCID: PMC9597737 DOI: 10.3390/ani12202740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Low ambient temperature resulted in the body’s cold stress response, while local wild boars in the middle-temperate zone performed better than commercial pigs. Therefore, three breeds—Large White (LW) pigs, a local Mashen (MS) pig breed and Jinfen White (JFW) pigs, a hybrid breed from wild boar—were investigated in an artificial climate chamber. The results implicated that low-ambient-temperature stimulation increased trypsin activity in duodenal chyme and promoted inflammatory response in Mashen pigs. The cold-resistance mechanism of MS pigs should be explored to reduce hogs’ stress caused by low-ambient-temperature stimulation. Abstract Ambient temperature (Ta) fluctuation is a key factor affecting the growth performance and economic returns of pigs. However, whether the response of intestinal structure and function are related to pig breeds in low Ta has not been investigated yet. In this study, Large White (LW) pigs, Jinfen White (JFW) pigs and Mashen (MS) pigs were raised in artificial climate chambers under normal Ta (25 °C) and low Ta (4 °C) for 96 h. Afterwards, the decrease in body temperature and complete blood counts (CBC) of all pigs were measured. Hematoxylin–eosin, immunohistochemical staining, qPCR and ELISA were used to investigate their intestinal mucosa integrity and inflammatory response. The results showed that MS pigs could maintain a normal body temperature and villus structure after 4 °C stimulation compared with those of LW and JFW pigs. Villus height and villus height/crypt depth of MS pigs were significantly higher than those of LW and JFW pigs at 4 °C. Low-Ta stimulation increased the digestion of carbohydrates of all pigs. Meanwhile, low Ta enhanced the activity of lipase in LW pigs and increased trypsin activity in MS and JFW pigs. Furthermore, low-Ta stimulation significantly downregulated the protein of tight junction and upregulated the mRNA expression of inflammatory cytokines in MS pigs. MS pigs also showed stronger spleen immune function at 4 °C. These results indicated that the local MS pig breed had stronger intestinal function in low Ta by producing a stronger inflammatory response, which lays the foundation for further study on the mechanism of cold tolerance in pigs.
Collapse
|
11
|
Santos DSD, Klauck V, Theisen C, Bordigon B, Farina R, Pereira WAB, Souza CF, Baldissera MD, Schogor ALB, Vedovatto M, Palmer EA, Silva ASDA. Addition of açai oil during the close-up dry period of Holstein cows improves colostrum quality and immune responses of their calves. AN ACAD BRAS CIENC 2022; 94:e20201592. [PMID: 35830021 DOI: 10.1590/0001-3765202220201592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/01/2021] [Indexed: 11/21/2022] Open
Abstract
This study evaluated of the effects of açai oil during the close-up dry period of Holstein cows on colostrum quality, as well as on the immune and antioxidant responses of their calves. Sixteen multiparous cows were assigned randomly to two treatments: 1) CONTROL (n = 8) - 4.48% of soybean oil/concentrate; 2) AÇAI (n =8) - 4.48% of açai oil/concentrate. Cows fed with açai oil had greater (P≤0.04) colostrum concentrations of immunoglobulins (Ig) G (1st and 2nd milking), IgG heavy chains, IgA (only at 1st milking), alpha-lactalbumin (1st milking), total protein, and antioxidant capacity against peroxyl radicals (only at 1st milking). Cows fed with açai oil had greater serum concentrations of globulin (only on the day of calving) and total protein (only on the day of calving) (P = 0.03). Calves born of cows fed with açai oil had greater serum concentrations of total protein (only 24 and 48 h after calving) and serum concentration of IgG heavy chain (only 24 h after calving) and globulin (only 24 and 48 h after calving) (P = 0.01). These data suggest that the addition of açai oil in the cow feed during the close-up dry period boosted immunity in their calves by altering the composition of colostrum.
Collapse
Affiliation(s)
- Daiane S Dos Santos
- Universidade do Estado de Santa Catarina (UDESC), Departamento de Zootecnia, Rua Beloni Trombeta Zanini, 680E, Santo Antônio, 89815-630 Chapecó, SC, Brazil
| | - Vanderlei Klauck
- Programa de Pós-Graduação em Zootecnia/UDESC, Rua Beloni Trombeta Zanini, 680E, Santo Antônio, 89815-630 Chapecó, SC, Brazil
| | - Cleiton Theisen
- Programa de Pós-Graduação em Gestão de Fazendas de Leite, Universidade do Oeste de Santa Catarina (UNOESC), Rua Dirceu Giordani, 696, Jardim Universitário, 89820-000 Xanxerê, SC, Brazil
| | - Bruna Bordigon
- Técnica Agrícola, Escola de Educação Básica Padre Vendelino Seidel, Rua 1° De Maio, 257, Centro, 89899-000, Ipora Do Oeste, SC, Brazil
| | - Renan Farina
- Curso de Medicina Veterinária, Instituto Federal Catarinense (IFC), Rodovia SC 283, Km 17, 89703-720 Concórdia, SC, Brazil
| | - Wanderson A B Pereira
- Curso de Medicina Veterinária, Instituto Federal Catarinense (IFC), Rodovia SC 283, Km 17, 89703-720 Concórdia, SC, Brazil
| | - Carine F Souza
- Faculdade IELUSC, Rua Princesa Isabel, 438, Centro, 89201-270 Joinville, SC, Brazil
| | - Matheus D Baldissera
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Ana Luiza B Schogor
- Universidade do Estado de Santa Catarina (UDESC), Departamento de Zootecnia, Rua Beloni Trombeta Zanini, 680E, Santo Antônio, 89815-630 Chapecó, SC, Brazil.,Programa de Pós-Graduação em Zootecnia/UDESC, Rua Beloni Trombeta Zanini, 680E, Santo Antônio, 89815-630 Chapecó, SC, Brazil
| | - Marcelo Vedovatto
- Universidade Estadual do Mato Grosso do Sul, Departamento de Ciência Animal, Rodovia Aquidauana, Km 12, Zona Rural, 79200-000 Aquidauana, MS, Brazil
| | - Elizabeth A Palmer
- Range Cattle Research and Education Center, University of Florida, 3401 Experiment Station, Ona, FL 33865, Florida, USA
| | - Aleksandro S DA Silva
- Universidade do Estado de Santa Catarina (UDESC), Departamento de Zootecnia, Rua Beloni Trombeta Zanini, 680E, Santo Antônio, 89815-630 Chapecó, SC, Brazil.,Programa de Pós-Graduação em Zootecnia/UDESC, Rua Beloni Trombeta Zanini, 680E, Santo Antônio, 89815-630 Chapecó, SC, Brazil
| |
Collapse
|
12
|
Ariyakumar G, Gee S, Das A, Kamdar S, Tribe RM, Gibbons DL. Activation of Lymphocytes in Healthy Neonates Within Hours of Birth. Front Immunol 2022; 13:883933. [PMID: 35711432 PMCID: PMC9195076 DOI: 10.3389/fimmu.2022.883933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
It is now established that immune maturation occurs along a defined trajectory in the weeks and months after birth, but the immediate changes that occur within immune cells following birth is less clear. In this study, we monitored the immune profile of neonates via analysis of paired samples (n= 28) of cord blood and heel prick blood taken at varying times post term delivery by planned elective caesarean section. This paired approach accounted for the between-subject variability often observed over the first week of life. We identified rapid changes in immune cell populations within hours of birth. Specifically, we observed increased proliferation in effector T cells (but not regulatory T cells) that exhibited an increase in cytokine producing ability and also an increase in the percentage of CD3 T cells over this short time frame. This indicates that the mobilisation of the immune system is immediate post birth, presumably as a response to sudden exposure to the external environment, antigen or stress. Hence, immune development may start to occur more rapidly than previously proposed and as such, to study this trajectory, blood sampling should begin as soon after birth as possible.
Collapse
Affiliation(s)
- Gaayathri Ariyakumar
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Sarah Gee
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Abhishek Das
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Shraddha Kamdar
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Rachel M Tribe
- Department of Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Deena L Gibbons
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
13
|
Friend virus severity is associated with male mouse social status and environmental temperature. Anim Behav 2022; 187:221-231. [PMID: 35602411 PMCID: PMC9119425 DOI: 10.1016/j.anbehav.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pathogen virulence is highly variable within populations, and although many factors contributing to virulence differences are known, there is still much variation left unexplained. Identifying and characterizing environmental conditions associated with different virulence levels is therefore an important undertaking in infectious disease research. One factor considered to be a major determinant of overall health and susceptibility to disease in social animals is social status. Health differences associated with social status are thought to be caused by different levels of chronic stress in higher- versus lower-status individuals. There is considerable evidence that these effects extend to the standing immune profile and that social status directly influences susceptibility to pathogens. Here we examined the association between dominance status in male wild-derived house mice, Mus musculus, and susceptibility to Friend virus complex in the context of seminatural populations with intense male-male competition and no predation. Due to an interruption in our facility's heating system, we were unexpectedly presented with the opportunity to assess how reduced ambient temperature influences the association of host social status and pathogen virulence. Environmental temperature has been implicated as a contributor to pathogen virulence, giving us a unique chance to examine its role in a previously unexamined pathogen system, while the added context of social status can expand our understanding of how the interaction of different environmental conditions affects virulence. We found that pathogen virulence and replication were lower in socially dominant hosts compared to nondominant hosts. When temperature was reduced, cool enclosure-housed dominant males were more susceptible to infection than their warm enclosure-housed counterparts. The mechanistic underpinnings that link infectious disease and social status remain difficult to disentangle from their associated factors, but this study opens the door for future experiments using a novel approach in the most well-studied mammalian model available.
Collapse
|
14
|
Greene ES, Adeogun E, Orlowski SK, Nayani K, Dridi S. Effects of heat stress on cyto(chemo)kine and inflammasome gene expression and mechanical properties in isolated red and white blood cells from 4 commercial broiler lines and their ancestor jungle fowl. Poult Sci 2022; 101:101827. [PMID: 35390570 PMCID: PMC8987627 DOI: 10.1016/j.psj.2022.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 12/04/2022] Open
Abstract
Commercial broilers have been selected for high growth rate and productivity; however, this has negatively impacted their susceptibility to heat stress (HS). Insight into the molecular mechanisms underlying this vulnerability can help design targeted strategies for improvement of HS tolerance. Red blood cells (RBC) and white blood cells (WBC) were isolated from red jungle fowl and 4 lines of commercial modern broilers. Lines A and B are considered standard-yielding lines, whereas Lines C and D are high-yielding. Cells were cultured at either 37°C or 45°C for 2 h to induce heat stress (HS). Gene expression of cytokines, chemokines, and inflammasome components were measured. Heat shock proteins 27 and 70 (HSPs) in RBC were significantly affected by line (P < 0.05), whereas HSP27 and 60 were affected by temperature (P < 0.05). In WBC, there was a significant line effect on HSP gene expression (P < 0.05), and a significant increase (P < 0.05) in HSP90 in Line D in HS compared to TN conditions. In RBC, there was a main effect of HS on TNFα, CCL4, and CCLL4 (P < 0.05). HS significantly increased IL-8L1 (>30-fold, P < 0.0001) in Line C. Inflammasome genes (NLRP3, NLRC5 and NLRC3) were significantly affected by the line studied (P < 0.05). In WBC, the effect of line was significant for all cytokines, chemokines, and inflammasome components studied (P < 0.05). To examine the mechanical properties of isolated RBC from the 4 commercial lines and jungle fowl, RBC were placed into nematic liquid crystals, where Lines B and D were the most strained, and Line A and the jungle fowl were the least strained. Together, these findings indicate not only the dynamic nature of circulating cells, but the differences in the stress and inflammatory response among commercially available lines and their common ancestor. These profiles have the potential to serve as a future marker for stress responses in broilers, though further study is warranted.
Collapse
|
15
|
Boyle LA, Edwards SA, Bolhuis JE, Pol F, Šemrov MZ, Schütze S, Nordgreen J, Bozakova N, Sossidou EN, Valros A. The Evidence for a Causal Link Between Disease and Damaging Behavior in Pigs. Front Vet Sci 2022; 8:771682. [PMID: 35155642 PMCID: PMC8828939 DOI: 10.3389/fvets.2021.771682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
Damaging behaviors (DB) such as tail and ear biting are prevalent in pig production and reduce welfare and performance. Anecdotal reports suggest that health challenges increase the risk of tail-biting. The prevalence of tail damage and health problems show high correlations across batches within and between farms. There are many common risk factors for tail-biting and health problems, notably respiratory, enteric and locomotory diseases. These include suboptimal thermal climate, hygiene, stocking density and feed quality. The prevalence of tail damage and health problems also show high correlations across batches within and between farms. However, limited evidence supports two likely causal mechanisms for a direct link between DB and health problems. The first is that generalized poor health (e.g., enzootic pneumonia) on farm poses an increased risk of pigs performing DB. Recent studies indicate a possible causal link between an experimental inflammation and an increase in DB, and suggest a link between cytokines and tail-biting. The negative effects of poor health on the ingestion and processing of nutrients means that immune-stimulated pigs may develop specific nutrient deficiencies, increasing DB. The second causal mechanism involves tail-biting causing poor health. Indirectly, pathogens enter the body via the tail lesion and once infected, systemic spread of infection may occur. This occurs mainly via the venous route targeting the lungs, and to a lesser extent via cerebrospinal fluid and the lymphatic system. In carcasses with tail lesions, there is an increase in lung lesions, abscessation, arthritis and osteomyelitis. There is also evidence for the direct spread of pathogens between biters and victims. In summary, the literature supports the association between poor health and DB, particularly tail-biting. However, there is insufficient evidence to confirm causality in either direction. Nevertheless, the limited evidence is compelling enough to suggest that improvements to management and housing to enhance pig health will reduce DB. In the same way, improvements to housing and management designed to address DB, are likely to result in benefits to pig health. While most of the available literature relates to tail-biting, we suggest that similar mechanisms are responsible for links between health and other DB.
Collapse
Affiliation(s)
- Laura A. Boyle
- Teagasc Animal and Grassland Research and Innovation Centre, Cork, Ireland
- *Correspondence: Laura A. Boyle
| | - Sandra A. Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | | | - Manja Zupan Šemrov
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Ljubljana, Slovenia
| | - Sabine Schütze
- Chamber of Agriculture of North Rhine-Westphalia, Animal Health Services, Bad Sassendorf, Germany
| | - Janicke Nordgreen
- Faculty of Veterinary Medicine, Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Nadya Bozakova
- Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Evangelia N. Sossidou
- Ellinikos Georgikos Organismos-DIMITRA (ELGO-DIMITRA), Veterinary Research Institute, Thessaloniki, Greece
| | - Anna Valros
- Department of Production Animal Medicine, Research Centre for Animal Welfare, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Campler MR, Cheng TY, Schroeder DC, Yang M, Mor SK, Ferreira JB, Arruda AG. A longitudinal study on PRRSV detection in swine herds with different demographics and PRRSV management strategies. Transbound Emerg Dis 2021; 69:e1005-e1014. [PMID: 34747126 DOI: 10.1111/tbed.14386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/06/2021] [Accepted: 10/30/2021] [Indexed: 01/17/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been one of the major health-related concerns in the swine production industry. Through its rapid transmission and mutation, the simultaneous circulation of multiple PRRSV strains can be a challenge in PRRSV diagnostic, control and surveillance. The objective of this longitudinal study was to describe the temporal detection of PRRSV in swine farms with different production types and PRRS management strategies. Tonsil scraping (n = 344) samples were collected from three breeding and two growing herds for approximately one year. In addition, processing fluids (n = 216) were obtained from piglet processing batches within the three breeding farms while pen-based oral fluids (n = 125) were collected in the two growing pig farms. Viral RNA extraction and reverse-transcription quantitative PCR (RT-qPCR) were conducted for all samples. The sample positivity threshold was set at quantification cycle (Cq) of ≤ 37. Statistical analyses were performed using generalized linear modelling and post hoc pairwise comparisons with Bonferroni adjustments using R statistical software. The results suggested a higher probability of detection in processing fluids compared to tonsil scraping specimens [odds ratio (OR) = 3.86; p = .096] in breeding farms whereas oral fluids were outperformed by tonsil scrapings (OR = 0.26; p < .01) in growing pig farms. The results described herein may lead to an improvement in PRRSV diagnostic and surveillance by selecting proper specimens.
Collapse
Affiliation(s)
- Magnus R Campler
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio
| | - Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - M Yang
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Sunil K Mor
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Juliana B Ferreira
- Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Andréia G Arruda
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio
| |
Collapse
|
17
|
Yang Y, Chen N, Sun L, Zhang Y, Wu Y, Wang Y, Liao X, Mi J. Short-term cold stress can reduce the abundance of antibiotic resistance genes in the cecum and feces in a pig model. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125868. [PMID: 34492815 DOI: 10.1016/j.jhazmat.2021.125868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/13/2023]
Abstract
Comprehensive studies on the effects of cold stress on antibiotic resistance genes (ARGs) in the intestines and feces remain scarce. In this study, pigs were selected as the animal model and divided into a normal temperature group and a 48-h short-term cold stress group. The ARG profiles in fecal, cecal content and cecal mucosa samples were analyzed. The results showed that the normalized abundance of ARGs in the cecal mucosa samples in the cold stress group was significantly higher than that in the normal temperature group, while the normalized ARG abundances in the fecal and cecal content samples were significantly lower than those in the normal temperature group (P < 0.05). The bacterial community composition (especially Firmicutes) was the major driver impacting the ARG profile and accounted for 32.2% of the variation in the ARG profile, followed by metabolites (especially creatinine and oxypurinol) and mobile genetic elements (MGEs) (especially plasmids and insertion elements). And it was found that creatinine and oxypurinol can reduce the abundance of ARGs and Firmicutes in the in vitro experiment. The results indicate that short-term cold stress can reduce the abundance of ARGs in the cecum and feces of pigs, providing reference data for environmental safety.
Collapse
Affiliation(s)
- Yiwen Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ningxue Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Lan Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yu Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Oliva-Cárdenas A, Fernández-Zamora F, Santana-Rodríguez E, Sordo-Puga Y, Vargas-Hernández MDLC, Rodríguez-Moltó MP, Pérez-Pérez D, Sardina-González T, Duarte CA, León-Goñi A, Blanco -Gámez D, Contreras-Pérez F, Valdés-Faure O, Hernández-Prado R, Acosta-Lago E, Sosa-Testé I, Suárez-Pedroso MF. Safety and immunogenicity in piglets of two immunization schedules initiated at two or three weeks of age with PorvacÒ, a classical swine fever subunit marker vaccine. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Classical swine fever is a highly contagious viral disease with a significant impact on food production worldwide. It currently represents one of the main limitations for the development of the pig industry in Cuba. PorvacÒ is a subunit marker vaccine that confers a very rapid onset of protection. Since there are different production systems in pig breeding, readjustments in the vaccination program are often required. This study compares the safety and efficacy in piglets of two vaccination schedules with PorvacÒ (0-2 weeks and 0-3 weeks), initiated at two or three weeks of age. Clinical monitoring was conducted, and a neutralization peroxidase-linked assay was used to measure the neutralization titers. All immunization regimens were safe and well-tolerated, without local or systemic adverse reactions in the vaccinated animals. Geometric mean neutralizing antibody titers higher than 1/1500 were detected in all groups during the six months of the trial. One month after the second immunization, piglets primed at two weeks of age, and boostered three weeks later, developed significantly higher neutralization titers (1/15644) compared to those vaccinated at a similar age but with a two-week interval between doses (1/5760). However, no significant differences in the titers were found three and six months after vaccination among the four regimens. In summary, all the variants studied are effective, but it is recommended to start vaccination at two weeks old, with the second dose at either two or three weeks later, depending on the production system and the purpose of the farm.
Collapse
Affiliation(s)
- Aymé Oliva-Cárdenas
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Fé Fernández-Zamora
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Elaine Santana-Rodríguez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Yusmel Sordo-Puga
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | | | - María P. Rodríguez-Moltó
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Danny Pérez-Pérez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Talia Sardina-González
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Carlos A. Duarte
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Avelina León-Goñi
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Diurys Blanco -Gámez
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Francisco Contreras-Pérez
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Odalys Valdés-Faure
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Rosmery Hernández-Prado
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Eric Acosta-Lago
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Ileana Sosa-Testé
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Marisela F. Suárez-Pedroso
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| |
Collapse
|
19
|
Vitali M, Santolini E, Bovo M, Tassinari P, Torreggiani D, Trevisi P. Behavior and Welfare of Undocked Heavy Pigs Raised in Buildings with Different Ventilation Systems. Animals (Basel) 2021; 11:ani11082338. [PMID: 34438795 PMCID: PMC8388702 DOI: 10.3390/ani11082338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to evaluate animal welfare of pigs from the same farm, raised with two ventilation systems. The study involved 60 pens of fattening pigs, raised in two buildings: one naturally ventilated (NV) and the other mechanically ventilated (MV). Pigs were assessed on three observation days: at 40 kg (T1), 100 kg (T2), and 160 kg (T3) of live weight. Animal-based measures were used such as qualitative behavioral analysis (QBA), behavioral measures (BMs), and lesion and health measures (LHMs). Housing conditions (HCs) measured at each observation day were the number of pigs per pen, space allowance, temperature, light, and CO2. The association study was performed using a general linear model and analysis of variance. Ventilation effect was analyzed by performing computational fluid dynamics. Results showed that overall pigs raised in the MV were in a more positive affective state. Despite that, with hot temperatures, the higher occurrence of pig soiling indicated heat stress in pigs and consequent welfare impairment. The higher frequency of pigs showing dog sitting behavior at T2 and T3 suggest welfare worsening in the last phases of fattening. The study concludes that ventilation system influences animal behavior and overall animal welfare, especially during the warmer season.
Collapse
|
20
|
Sejian V, Silpa MV, Reshma Nair MR, Devaraj C, Krishnan G, Bagath M, Chauhan SS, Suganthi RU, Fonseca VFC, König S, Gaughan JB, Dunshea FR, Bhatta R. Heat Stress and Goat Welfare: Adaptation and Production Considerations. Animals (Basel) 2021; 11:ani11041021. [PMID: 33916619 PMCID: PMC8065958 DOI: 10.3390/ani11041021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/30/2022] Open
Abstract
This review attempted to collate and synthesize information on goat welfare and production constraints during heat stress exposure. Among the farm animals, goats arguably are considered the best-suited animals to survive in tropical climates. Heat stress was found to negatively influence growth, milk and meat production and compromised the immune response, thereby significantly reducing goats' welfare under extensive conditions and transportation. Although considered extremely adapted to tropical climates, their production can be compromised to cope with heat stress. Therefore, information on goat adaptation and production performance during heat exposure could help assess their welfare. Such information would be valuable as the farming communities are often struggling in their efforts to assess animal welfare, especially in tropical regions. Broadly three aspects must be considered to ensure appropriate welfare in goats, and these include (i) housing and environment; (ii) breeding and genetics and (iii) handling and transport. Apart from these, there are a few other negative welfare factors in goat rearing, which differ across the production system being followed. Such negative practices are predominant in extensive systems and include nutritional stress, limited supply of good quality water, climatic extremes, parasitic infestation and lameness, culminating in low production, reproduction and high mortality rates. Broadly two types of methodologies are available to assess welfare in goats in these systems: (i) animal-based measures include behavioral measurements, health and production records and disease symptoms; (ii) resources based and management-based measures include stocking density, manpower, housing conditions and health plans. Goat welfare could be assessed based on several indicators covering behavioral, physical, physiological and productive responses. The important indicators of goat welfare include agonistic behavior, vocalization, skin temperature, body condition score (BCS), hair coat conditions, rectal temperature, respiration rate, heart rate, sweating, reduced growth, reduced milk production and reduced reproductive efficiency. There are also different approaches available by which the welfare of goats could be assessed, such as naturalistic, functional and subjective approaches. Thus, assessing welfare in goats at every production stage is a prerequisite for ensuring appropriate production in this all-important species to guarantee optimum returns to the marginal and subsistence farmers.
Collapse
Affiliation(s)
- Veerasamy Sejian
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore 560030, India; (M.V.S.); (M.R.R.N.); (C.D.); (G.K.); (M.B.); (R.U.S.); (R.B.)
- Correspondence:
| | - Mullakkalparambil V. Silpa
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore 560030, India; (M.V.S.); (M.R.R.N.); (C.D.); (G.K.); (M.B.); (R.U.S.); (R.B.)
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität Gießen, 35390 Gießen, Germany;
| | - Mini R. Reshma Nair
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore 560030, India; (M.V.S.); (M.R.R.N.); (C.D.); (G.K.); (M.B.); (R.U.S.); (R.B.)
- Academy of Climate Change Education and Research, Kerala Agricultural University, Vellanikkara 680656, India
| | - Chinnasamy Devaraj
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore 560030, India; (M.V.S.); (M.R.R.N.); (C.D.); (G.K.); (M.B.); (R.U.S.); (R.B.)
| | - Govindan Krishnan
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore 560030, India; (M.V.S.); (M.R.R.N.); (C.D.); (G.K.); (M.B.); (R.U.S.); (R.B.)
| | - Madiajagan Bagath
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore 560030, India; (M.V.S.); (M.R.R.N.); (C.D.); (G.K.); (M.B.); (R.U.S.); (R.B.)
| | - Surinder S. Chauhan
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (S.S.C.); (F.R.D.)
| | - Rajendran U. Suganthi
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore 560030, India; (M.V.S.); (M.R.R.N.); (C.D.); (G.K.); (M.B.); (R.U.S.); (R.B.)
| | - Vinicius F. C. Fonseca
- Innovation Group of Biometeorology and Animal Welfare, Animal Science Department, Universidade Federal da Paraíba, Areia 58397-000, Brazil;
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität Gießen, 35390 Gießen, Germany;
| | - John B. Gaughan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (S.S.C.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Raghavendra Bhatta
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore 560030, India; (M.V.S.); (M.R.R.N.); (C.D.); (G.K.); (M.B.); (R.U.S.); (R.B.)
| |
Collapse
|
21
|
Aksel EG, Akyüz B. Effect of LPS and LTA stimulation on the expression of TLR-pathway genes in PBMCs of Akkaraman lambs in vivo. Trop Anim Health Prod 2021; 53:65. [PMID: 33392825 PMCID: PMC7779097 DOI: 10.1007/s11250-020-02491-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
This is the first study investigating the changes in some gene expressions related to the TLR pathway in vivo in sheep. Lipopolysaccharide (LPS) and lipoteichoic acid (LTA) molecules were administrated separately and in combination to the Akkaraman lambs via intranasal route. For this purpose, 28 lambs were distributed into four groups (LPS, LTA, LPS + LTA, and control, n = 7). Blood samples were collected to isolate the peripheral blood mononuclear cells (PBMCs) at 24 h and on day 7. Expression levels of TLR2, TLR4, MyD88, TRAF6, TNF-α, IL-1ß, IL-6, IL-10, NF-κß, and IFN-γ genes were determined by qRT-PCR. Increases were determined in the expression data of TLR2 [LPS (P < 0.05) and LTA + LPS (P < 0.01)], TLR4 [LTA + LPS (P < 0.05)], TNF-α, IL-10 [LTA + LPS (P < 0.05)], and IFN-γ genes in all groups in the mRNA expression analysis of PBMCs isolated at 24 h whereas decreases were determined in the expression levels of these genes on day 7. The combination of LPS + LTA stimulated lamb PBMCs more effectively than separate administration of LPS and LTA at 24 h. Therefore, this article may contribute to the understanding the host-pathogen interaction of respiratory-transmitted bacterial diseases concerning PBMCs at 24 h and on day 7. Also this study may contribute to the dose adjustment for bacterial vaccine studies in sheep. Experimental application doses will be helpful for in vivo and in vitro drug and vaccine development studies in the fields of pharmacology and microbiology.
Collapse
Affiliation(s)
- Esma Gamze Aksel
- Department of Genetic, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey.
| | - Bilal Akyüz
- Department of Genetic, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|
22
|
Vialard F, Olivier M. Thermoneutrality and Immunity: How Does Cold Stress Affect Disease? Front Immunol 2020; 11:588387. [PMID: 33329571 PMCID: PMC7714907 DOI: 10.3389/fimmu.2020.588387] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
One of the major challenges the scientific community faces today is the lack of translational data generated from mouse trials for human health application. Housing temperature-dependent chronic cold stress in laboratory rodents is one of the key factors contributing to lack of translatability because it reveals major metabolic differences between humans and rodents. While humans tend to operate at temperatures within their thermoneutral zone, most laboratory rodents are housed at temperatures below this zone and have an increased energy demand to generate heat. This has an impact on the immune system of mice and thus affects results obtained using murine models of human diseases. A limited number of studies and reviews have shown that results obtained on mice housed at thermoneutrality were different from those obtained from mice housed in traditional housing conditions. Most of those studies, focused on obesity and cancer, found that housing mice at thermoneutrality changed the outcomes of the diseases negatively and positively, respectively. In this review, we describe how thermoneutrality impacts the immune system of rodents generally and in the context of different disease models. We show that thermoneutrality exacerbates cardiovascular and auto-immune diseases; alleviates asthma and Alzheimer’s disease; and, changes gut microbiome populations. We also show that thermoneutrality can have exacerbating or alleviating effects on the outcome of infectious diseases. Thus, we join the call of others in this field to urge researchers to refine murine models of disease and increase their translational capacity by considering housing at thermoneutrality for trials involving rodents.
Collapse
Affiliation(s)
- Fiorella Vialard
- Department of Microbiology and Immunology, Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Greene ES, Emami NK, Dridi S. Research Note: Phytobiotics modulate the expression profile of circulating inflammasome and cyto(chemo)kine in whole blood of broilers exposed to cyclic heat stress. Poult Sci 2020; 100:100801. [PMID: 33518325 PMCID: PMC7936152 DOI: 10.1016/j.psj.2020.10.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/07/2020] [Accepted: 10/20/2020] [Indexed: 12/23/2022] Open
Abstract
Heat stress (HS) is a critical concern to the poultry industry as it affects both productivity and well-being. Various managerial and nutritional strategies have been proposed to mitigate the negative effects of HS in chickens, with plant-based additives showing promise. Recently, we reported the positive effect of a phytogenic feed additive (PFA) on growth performance in HS birds. Owing to the antioxidant nature of these compounds, we sought to further explore the effect of PFA on whole blood circulating chemokines, cytokines, and inflammasomes in HS broilers. Broilers (600 males, 1 d) were randomly assigned to 12 environmental chambers, subjected to 2 environmental conditions (12 h cyclic heat stress, HS, 35°C vs. thermoneutral condition [TN], 24°C) and fed 3 diets (control, PFA-C 250 ppm, PFA-C 400 ppm) in a 2 × 3 factorial design. After 21 d of cyclic HS, blood samples were collected for target gene expression analysis. HS upregulated the expression of superoxide dismutase 1 (SOD1) and downregulated glutathione peroxidase-3 (GPX-3), and there was diet × temperature interaction for SOD2, GPX-1, and GPX-3, where gene expression was increased by PFA-C250 during HS but was unchanged for PFA-C400. Plasma total antioxidant capacity (TAC) and malondialdehyde (MDA) content were increased by HS. Gene expression of interleukin-18 (IL-18) was decreased by HS, without further effect of PFA. HS increased tumor necrosis factor α (TNFα), but this effect was mitigated by PFA-C400. C-C motif chemokine ligands 4 and 20 (CCL4 and CCL20) showed a similar pattern to TNFα, with PFA-C400 ameliorating the negative effect of HS. The nucleotide-binding, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome was decreased by HS and further lowered by PFA-C400, but the nucleotide-binding oligomerization domain, leucine-rich repeat, and CARD domain containing 3 (NLRC3) and nucleotide-binding, leucine-rich repeat containing X1 (NLRX1) inflammasomes were increased by PFA under TN conditions, with no effects of HS. Heat shock proteins (HSP) and heat shock factors (HSF) were unaffected by PFA or HS. Together these data indicate that gene expression of circulating inflammatory factors are dysregulated during HS, and supplemental dietary PFA may be protective.
Collapse
Affiliation(s)
- Elizabeth S Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701, USA
| | - Nima K Emami
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701, USA.
| |
Collapse
|
24
|
Bell DJ, Macrae AI, Mitchell MA, Mason CS, Jennings A, Haskell MJ. Comparison of thermal imaging and rectal temperature in the diagnosis of pyrexia in pre-weaned calves using on farm conditions. Res Vet Sci 2020; 131:259-265. [PMID: 32442726 DOI: 10.1016/j.rvsc.2020.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 10/24/2022]
Abstract
Measuring core body temperature is used as part of the diagnostic process in assessing the health of animals. Typically in calves, this is carried out using a rectal thermometer which can be time consuming, stressful to the calf and is invasive by nature. A non-invasive technique that is gaining recognition is thermal imaging. This study investigated the use of thermal imaging as a technique to assess core body temperature in pre-weaned artificially reared calves. A total of 125 male and female calves had rectal temperatures measured daily from day 7 until day 40 of life, and at the same time had a thermal image taken of the area around the medial canthus of the eye. A weak correlation (r = 0.28) was found between calf rectal temperature and thermal image temperature. A multivariable predictive model for core body temperature increased the correlation (r = 0.32) when including the environmental parameters of air temperature (p < .001) and wind speed (p < .001) as well as reconstituted milk replacer consumption (p < .01). The effectiveness of a predictive model including these parameters for the detection of calves with a core body temperature ≥ 39.5 °C was examined and found to have a sensitivity of 0% and a specificity of 100%. The results of this study demonstrate the need to take thermal environmental parameters into consideration when using thermal imaging to assess body temperature. However, the results suggest that accurate measures of core body temperature using thermal imaging cannot be achieved under commercial farm conditions. Further research is needed to determine what other factors could be measured to increase predictive ability.
Collapse
Affiliation(s)
- D J Bell
- Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, Scotland, United Kingdom; Royal (Dick) School of Veterinary Studies and Roslin Institute, Easter Bush, Midlothian EH25 9JG, Scotland, United Kingdom.
| | - A I Macrae
- Royal (Dick) School of Veterinary Studies and Roslin Institute, Easter Bush, Midlothian EH25 9JG, Scotland, United Kingdom
| | - M A Mitchell
- Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, Scotland, United Kingdom
| | - C S Mason
- Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, Scotland, United Kingdom
| | - A Jennings
- Royal (Dick) School of Veterinary Studies and Roslin Institute, Easter Bush, Midlothian EH25 9JG, Scotland, United Kingdom
| | - M J Haskell
- Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, Scotland, United Kingdom
| |
Collapse
|
25
|
McAfee JM, Kattesh HG, Lindemann MD, Voy BH, Kojima CJ, Burdick Sanchez NC, Carroll JA, Gillespie BE, Saxton AM. Effect of omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation to lactating sows on growth and indicators of stress in the postweaned pig1,2. J Anim Sci 2020; 97:4453-4463. [PMID: 31545382 DOI: 10.1093/jas/skz300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Dietary omega-3 polyunsaturated fatty acids (n-3 PUFA) are precursors for lipid metabolites that reduce inflammation. Two experiments were conducted to test the hypothesis that enriching the sow diet in n-3 PUFA during late gestation and throughout lactation reduces stress and inflammation and promotes growth in weaned pigs. A protected fish oil product (PFO; Gromega) was used to enrich the diet in n-3 PUFA. In the initial experiment, time-bred gilts were fed a gestation and lactation diet supplemented with 0% (control; n = 5), 0.25% (n = 4), 0.5% (n = 4), or 1% (n = 5) PFO from 101 ± 2 d of gestation to day 16 of lactation. Adding 1% PFO to the diet increased the n-3:n-6 PUFA ratio in colostrum and milk compared with controls (P = 0.05). A subsequent experiment was performed to determine whether supplementing the sow diet with 1% PFO improved growth and reduced circulating markers of acute inflammation and stress in the offspring. Plasma was harvested from piglets (16 per treatment group) on day 0 (d of weaning) and days 1 and 3 postweaning. Pigs from the 1% PFO treatment group weighed more (P = 0.03) on day 3 postweaning and had a greater (P ˂ 0.05) n-3:n-6 PUFA ratio in plasma on each day sampled compared with 0% PFO controls. There was an overall treatment effect on plasma total cortisol (P = 0.03) and haptoglobin (P = 0.04), with lesser concentrations in pigs on the 1% PFO diet. Plasma corticosteroid-binding globulin (CBG) concentrations were not different between treatment groups but were less (P ˂ 0.001) on days 1 and 3 when compared with day 0. The resultant free cortisol index [FCI (cortisol/CBG)] was less (P = 0.02) on days 1 and 3 for pigs from the 1% treatment group compared with the controls. An ex vivo lipopolysaccharide (LPS) challenge of whole blood collected on days 0 and 1 was used to determine whether 1% PFO attenuated release of inflammatory cytokines (IL-1β, IL-6, and TNF-α). Blood from pigs within the 1% PFO treatment group tended (P = 0.098) to have a lesser mean concentration of TNF-α in response to LPS compared with blood from controls. These results suggest that providing a PFO supplement as 1% of the diet to sows beginning in late gestation and during lactation can increase the n-3:n-6 PUFA ratio in their offspring, which may improve growth and reduce the acute physiological stress response in the pigs postweaning.
Collapse
Affiliation(s)
- John M McAfee
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Henry G Kattesh
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Merlin D Lindemann
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY
| | - Brynn H Voy
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Cheryl J Kojima
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | | | | | | | - Arnold M Saxton
- Department of Animal Science, University of Tennessee, Knoxville, TN
| |
Collapse
|
26
|
Wei Y, Li W, Meng X, Zhang L, Shen M, Liu H. Corticosterone Injection Impairs Follicular Development, Ovulation and Steroidogenesis Capacity in Mice Ovary. Animals (Basel) 2019; 9:ani9121047. [PMID: 31795468 PMCID: PMC6941055 DOI: 10.3390/ani9121047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Researchers have hitherto established hundreds of animal stress models. However, these models have some limitations due to the complexity in operation and large differences between individual animals. In particular, there are few stress models that are specifically applied in mammalian ovaries. In this study, using intraperitoneal injection of cortisol/corticosterone (CORT), we successfully established a stress model that acts on the ovarian function. Our data showed that CORT inhibits ovarian and follicular development and blocks ovulation. The establishment of this model might provide a living platform for studying ovarian stress in future research. Abstract The aim of this study is to establish an ovarian stress model, and to investigate the effects of stress on follicular development. Our data showed that continuous intraperitoneal injection of CORT successfully created a stressful environment in the ovary. To assess the effects of CORT on ovarian functions, 80 three-week-old ICR (Institute of Cancer Research) female mice were randomly divided into control group and treatment group. All mice were injected intraperitoneally with pregnant horse serum gonadotropin (PMSG). At the same time, the treatment group were injected with CORT (1 mg/mouse) at intervals of 8 h; while the control group was injected with same volume of methyl sulfoxide (DMSO). Blood, ovaries, or ovarian granulosa cell samples were collected at 24 h, 48 h, and 55 h after PMSG injection. The results showed that, compared with the control group, CORT-injected mice revealed a significant decrease in ovulation rates, ovarian weight, ovarian index, the number of secondary follicles and mature follicles, levels of estrogen and progesterone, and mRNA expression of steroid synthase-related genes. Collectively, our findings clearly demonstrated that CORT injection could represent an effective practice to simulate stresses that inhibit ovarian functions by reducing follicular development and ovulation.
Collapse
|
27
|
Rutherford NH, Gordon AW, Arnott G, Lively FO. The effect of calf jackets on the health, performance, and skin temperature of dairy origin beef calves. Transl Anim Sci 2019; 4:316-323. [PMID: 32704991 PMCID: PMC7200583 DOI: 10.1093/tas/txz172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/05/2019] [Indexed: 11/14/2022] Open
Abstract
Variations and extremities in climatic conditions can result in cold stress for dairy calves during the preweaning period. The objective of this study was to investigate the effect of calf jackets on the health, performance, and skin temperature of dairy-origin beef calves. This study took place in a designated calf rearing unit, spanned for a duration of 1 yr, and consisted of five batches of calves. Calves (30.9 ± 1.68 d of age; 55.9 ± 0.20 kg live weight) were assigned to one of four treatment groups on arrival at the rearing unit. Treatments consisted of control (no jacket), arrival (jacket for 2 wk postarrival), weight (jacket for a minimum of 2 wk and until 65 kg live weight), and wean (jacket until 5 d postweaning). Ambient conditions differed significantly (P < 0.001) during each of the five batches; batch 4 was the coldest with a mean ambient temperature of 6.16 °C. Significant differences were observed between the five batches for day 50 weight (P < 0.01) and disease incidence (P < 0.05). However, treatment had no significant effect on calf health or performance (P > 0.05) during any of the five batches. Skin temperature was significantly greater (P < 0.001) for calves wearing a jacket. Furthermore, there was a significant (P < 0.001) relationship between ambient temperature-humidity index and skin temperature for calves with and without a calf jacket. Therefore, although calf jackets had no benefit in terms of health or performance, they did act as a barrier to environmental conditions.
Collapse
Affiliation(s)
- Naomi H Rutherford
- Agri-Food and Biosciences Institute, Hillsborough, United Kingdom.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Alan W Gordon
- Agri-Food and Biosciences Institute, Newforge Lane, Belfast, United Kingdom
| | - Gareth Arnott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Francis O Lively
- Agri-Food and Biosciences Institute, Hillsborough, United Kingdom
| |
Collapse
|
28
|
Kim S, Park HT, Soh SH, Oh MW, Shim S, Yoo HS. Evaluation of the immunobiological effects of a regenerative far-infrared heating system in pigs. J Vet Sci 2019; 20:e61. [PMID: 31775188 PMCID: PMC6883191 DOI: 10.4142/jvs.2019.20.e61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 11/20/2022] Open
Abstract
Thermal conditions are an important environmental factor in maintaining healthy pigs because they affect feed intake, growth efficiency, reproduction and immune responses in pigs. RAVI, a regenerative far-infrared heating system, can effect pig production by emitting an optimal far-infrared wavelength. Far-infrared radiation has been reported to increase microvascular dilation and vascular flow volume. The purpose of this study was to evaluate the immunobiological differences between pigs raised with the RAVI system and the gasoline heater system. Twenty-six-week-old weaned pigs were raised in two rooms that were equipped with a RAVI system or a gasoline heater for 8 weeks. A porcine atrophic rhinitis vaccine was administered after two weeks and transcriptome analysis in whole blood were analyzed at 2-week intervals. Signaling pathway analyses of the RAVI group at 8 weeks showed the activation of pathways related to nitric oxide (NO) production. This suggests that the application of RAVI might induce the production of NO and iNOS, which are important for increasing the immune activity. Similar to the result of microarray, phenotypic changes were also observed at a later period of the experiment. The increase in body weight in the RAVI group was significantly higher than the gasoline heater group at 8 weeks. The antibody titer against the vaccine in the RAVI group was also higher than that the gasoline heater group at 4 weeks and 8 weeks. This evaluation of the use of a far-infrared heating system with pigs will be helpful for applications in the pig farm industry and pig welfare.
Collapse
Affiliation(s)
- Suji Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hong Tae Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sang Hee Soh
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Myung Whan Oh
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Soojin Shim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
29
|
Nasrollahi SM, Zali A, Ghorbani GR, Khani M, Maktabi H, Beauchemin KA. Effects of increasing diet fermentability on intake, digestion, rumen fermentation, blood metabolites and milk production of heat-stressed dairy cows. Animal 2019; 13:2527-2535. [PMID: 31115287 DOI: 10.1017/s1751731119001113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat stress is a major problem for dairy cows in hot climates, thus coping strategies are essential. This study evaluated the effects of increasing diet fermentability on intake, total tract digestibility, ruminal pH and volatile fatty acids (VFA) profile, blood metabolite profile and milk production and composition of lactating dairy cows managed under conditions of ambient heat stress. Nine multiparous cows (650 ± 56 kg BW; mean ± SD) averaging 102 ± 13 days in milk and producing 54 ± 6 kg/day were randomly assigned to a triplicate 3 × 3 Latin square. During each 21-day period, cows were offered one of three total mixed rations that varied in diet fermentability. The three levels of diet fermentability were achieved by increasing the proportion of pellets containing ground wheat and barley in the dietary DM from 11.7% (low), to 23.3% (moderate), and 35.0% (high) by replacing ground corn grain. Each period had 14 day of adaptation and 7 day of sampling. The ambient temperature-humidity index ( ≥ 72) indicated that the cows were in heat stress almost the entire duration of the study. Also, rectal temperature of cows was elevated at 39.2°C, another indication of heat stress. Increasing diet fermentability linearly decreased dry matter intake (22.8, 22.5, 21.8 kg/day for low, moderate and high, respectively; P ≤ 0.05) but increased non-fibre carbohydrate digestibility (P ≤ 0.05) and tended to increase digestibility of DM (P = 0.10) and crude protein (P = 0.06). As a result, the intake of digestible DM was not affected by the treatments. The production of 3.5% fat corrected milk (32.6, 33.7, and 31.5 kg/day) was quadratically (P ≤ 0.05) affected by diet fermentability with lower production for the high diet compared with the other two, which were similar. Rumen pH (ruminocentesis) and proportions of butyrate and isovalerate linearly decreased whereas propionate proportion linearly increased with increasing diet fermentability (P ≤ 0.05). The rumen concentration of NH3-N (11.0, 9.0, and 8.7 mg/dL) and blood concentration of urea linearly decreased with increasing diet fermentability (P ≤ 0.05). The activity of alkaline phosphatase increased (65.1, 83.2, and 84.9 U/l) and concentration of malondialdehyde decreased (2.39, 1.90 and 1.87 µmol/l) linearly with increasing diet fermentability (P ≤ 0.05), which indicated possible attenuation of the effects of oxidative stress with increasing diet fermentability. Overall, a modest increase of diet fermentability improved nitrogen metabolism, milk protein production and oxidative stress of heat-stressed dairy cows, but a further increase in diet fermentability decreased milk yield.
Collapse
Affiliation(s)
- S M Nasrollahi
- Young Researchers Club, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran
| | - A Zali
- Department of Animal Science, Campus of Agriculture and Natural Resources, University of Tehran, Karaj, Tehran 31587-77871, Iran
| | - G R Ghorbani
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - M Khani
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - H Maktabi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - K A Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
30
|
Espinosa C, Fry R, Usry J, Stein H. Effects of copper hydroxychloride and choice white grease on growth performance and blood characteristics of weanling pigs kept at normal ambient temperature or under heat stress. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Xu DL, Xu MM, Wang DH. Effects of air temperatures on antioxidant defense and immunity in Mongolian gerbils. J Therm Biol 2019; 84:111-120. [DOI: 10.1016/j.jtherbio.2019.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022]
|
32
|
Xu DL, Xu MM, Wang DH. Effect of temperature on antioxidant defense and innate immunity in Brandt's voles. Zool Res 2019; 40:305-316. [PMID: 31310064 PMCID: PMC6680122 DOI: 10.24272/j.issn.2095-8137.2019.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/22/2019] [Indexed: 11/23/2022] Open
Abstract
Ambient temperature is an important factor influencing many physiological processes, including antioxidant defense and immunity. In the present study, we tested the hypothesis that antioxidant defense and immunity are suppressed by high and low temperature treatment in Brandt's voles (Lasiopodomys brandtii). Thirty male voles were randomly assigned into different temperature groups (4, 23, and 32 °C, n=10 for each group), with the treatment course lasting for 27 d. Results showed that low temperature increased gross energy intake (GEI) and liver, heart, and kidney mass, but decreased body fat mass and dry carcass mass. With the decline in temperature, hydrogen peroxide (H2O2) concentration, which is indicative of reactive oxygen species (ROS) levels, increased in the liver, decreased in the heart, and was unchanged in the kidney, testis, and small intestine. Lipid peroxidation indicated by malonaldehyde (MDA) content in the liver, heart, kidney, testis, and small intestine did not differ among groups, implying that high and low temperature did not cause oxidative damage. Similarly, superoxide dismutase (SOD) and catalase (CAT) activities and total antioxidant capacity (T-AOC) in the five tissues did not respond to low or high temperature, except for elevation of CAT activity in the testis upon cold exposure. Bacteria killing capacity, which is indicative of innate immunity, was nearly suppressed in the 4 °C group in contrast to the 23 °C group, whereas spleen mass and white blood cells were unaffected by temperature treatment. The levels of testosterone, but not corticosterone, were influenced by temperature treatment, though neither were correlated with innate immunity, H2O2 and MDA levels, or SOD, CAT, and T-AOC activity in any detected tissues. Overall, these results showed that temperature had different influences on oxidative stress, antioxidant enzymes, and immunity, which depended on the tissues and parameters tested. Up-regulation or maintenance of antioxidant defense might be an important mechanism for voles to survive highly variable environmental temperatures.
Collapse
Affiliation(s)
- De-Li Xu
- College of Life Sciences, Qufu Normal University, Qufu Shandong 273165, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Meng Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
33
|
Yadav B, Singh G, Wankar A. Acclimatization dynamics to extreme heat stress in crossbred cattle. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1610627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Brijesh Yadav
- Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, Veterinary University, Mathura, India
| | - Gyanendra Singh
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Alok Wankar
- Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, Parbhani, Veterinary University, Nagpur, India
| |
Collapse
|
34
|
Shan CH, Guo J, Sun X, Li N, Yang X, Gao Y, Qiu D, Li X, Wang Y, Feng M, Wang C, Zhao JJ. Effects of fermented Chinese herbal medicines on milk performance and immune function in late-lactation cows under heat stress conditions. J Anim Sci 2019; 96:4444-4457. [PMID: 30032262 DOI: 10.1093/jas/sky270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022] Open
Abstract
Heat stress (HS) causes significant economic losses and has become a continual challenge in the dairy industry worldwide. The objective of this study was to evaluate the effects of a dietary supplement on milk performance and immune function in late-lactation cows under HS conditions. The supplement was a fermented Chinese herbal medicines (CHMs) mixture consisting of 18 herbs. Forty lactating Holstein cows (560 ± 51.0 kg of initial BW, 230 ± 10.0 DIM, 16 ± 3.0 kg of milk per day) were randomly assigned into 4 treatment groups (10 cows per group). Each group was fed a dietary supplemented with 0, 25, 50, or 100 g CHMs per cow per day. Cows were housed at high ambient temperature-humidity index (average 74.5) for an experimental period of 42 d during the summer months. Milk yield, composition, immune responses involving blood lymphocyte apoptosis rate, serum biochemical parameters, and genes expression in lymphocytes were evaluated on days 14, 28, and 42, respectively. Results showed that milk yield, milk fat, and protein content were greater (all P < 0.05) for 50 or 100 g/d CHMs compared with the group without CHMs supplements throughout the experimental period. On the other hand, increasing CHMs dose demonstrated a greater lymphocyte or leukocyte count (P < 0.01). By flow cytometry analysis, early or late apoptosis rate of the lymphocytes was decreased (P < 0.05) by CHMs supplements. The immunity-related biochemistry and genes transcript responses involving cytokines (IL-1, IL-2, IL-6, and IL-12), apoptosis (Bak, Mcl-1, Bax, Bcl-2, Bcl-xl, and P53), and immunoglobulins (IgA, IgG, and IgM) were investigated. Compared with the unsupplemented group, the serum IL-2 and IL-6 levels, as well as IL-2 mRNA expression, increased (P < 0.05) for 100 g/d. However, the serum IL-1 level tended to decrease (P = 0.08) with increasing CHMs dose, and IL-1 mRNA expression was down-regulated (P = 0.02) by up to 24% for 100 g/d. Additionally, the serum Bax level decreased (P < 0.01) and Bcl-2 level increased (P = 0.01) for 100 g/d. Bax and Bak mRNA expressions were down-regulated (P < 0.05), and Bcl-2 and Bcl-xl expression were up-regulated (P < 0.05) for 50 or 100 g/d. The mRNA expressions of P53 and Mcl-1 were not affected by CHMs (P > 0.10). Besides, serum IgG levels were greater (P < 0.01) for 50 or 100 g/d, compared with unsupplemented group. In conclusion, CHMs supplements may improve milk performance and immune function in dairy cows under HS conditions.
Collapse
Affiliation(s)
- Chun-Hua Shan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, PR China
| | - Jianjun Guo
- Animal Husbandry Research Institute of Chengde, Chengde, Hebei Province, PR China
| | - Xinsheng Sun
- College of Information Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, PR China
| | - Nan Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, PR China
| | - Xinyu Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, PR China
| | - Yuhong Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, PR China
| | - Dianrui Qiu
- Animal Husbandry Research Institute of Chengde, Chengde, Hebei Province, PR China
| | - Xuemei Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, PR China
| | - Yanan Wang
- Animal Husbandry Research Institute of Chengde, Chengde, Hebei Province, PR China
| | - Man Feng
- Animal Husbandry Research Institute of Chengde, Chengde, Hebei Province, PR China
| | - Chao Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, PR China
| | - Juan Juan Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, PR China
| |
Collapse
|
35
|
Leite da Silva A, dos Santos SGCG, Saraiva EP, Fonsêca VDFC, Givisiez PEN, Pascoal LAF, Martins TDD, de Amorim MLCM. Supplementation of diets with glutamine and glutamic acid attenuated the effects of cold stress on intestinal mucosa and performance of weaned piglets. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study we investigated the effect of glutamine and glutamic acid inclusion in the diet of weaned piglets subjected to cold stress and thermoneutral environment. Sixty-four weaned piglets were assessed from 28 to 65 days of age. A completely randomised design consisting of a 2 × 2 factorial arrangement was tested – environments (thermoneutral and cold stress) and diets (control and L-glutamine + L-glutamic acid (G + GA)). Performance, relative organ weight and carcass yield, and morphology of the intestinal mucosa were assessed. Supplementing the diets with G + GA reduced feed intake under both environments. This was associated with a decline in growth rate for piglets in the thermoneutral environment but not in the cold environment (P < 0.002). Feed efficiency was lower for piglets offered the control diets in the cold environment, but was significantly improved (24.6%) by G + GA supplementation in the cold but not the thermoneutral environment (P < 0.001). G + GA supplementation decreased small intestinal length and altered intestinal morphology with the highest villus/crypt depth ratio observed in piglets offered the G + GA supplemented diet in the cold environment. In summary, glutamine and glutamic acid diets mitigated the effects of cold stress on the intestinal mucosa and performance of weaned piglets.
Collapse
|
36
|
Scoley GE, Gordon AW, Morrison SJ. Use of thermal imaging in dairy calves: exploring the repeatability and accuracy of measures taken from different anatomical regions. Transl Anim Sci 2018; 3:564-576. [PMID: 32704827 PMCID: PMC7200435 DOI: 10.1093/tas/txy126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/15/2018] [Indexed: 11/30/2022] Open
Abstract
Three experiments were undertaken to 1) quantify the repeatability and reproducibility of thermal imaging across day and operator experience and 2) assess the correlation between descriptive infrared (IR) temperature parameters from different anatomical areas and core body temperature in dairy calves under 12 wk of age. In experiment 1, a single operator captured 30 replicate images of both the left and right eyes (defined as the whole eye + 1 cm margin) and the rectal area (defined as the anus +1.5 cm margin) from each of 16 calves. In experiment 2, three operators of varying experience captured images from both the left and right eyes and the rectal area of each of 12 calves. In experiment 3, a single operator captured images of the right eye and rectal area for a period of 5 consecutive days for each of 205 calves. All images were captured between 0900 and 1300 h. Core body temperature, obtained via rectal thermometer, was recorded every day for each of the 205 calves following completion of IR image capture. Ambient temperature and relative humidity were adjusted for each thermal image prior to manual extraction of maximum, minimum, and average temperature parameters. In experiment 1, lowest error variance was found within the maximum temperature parameter and the right eye was determined as the most repeatable anatomical area, with 80.48% of the total proportion of variance attributed to the calf. Results indicated that capturing at least three replicate images would provide the precision required to identify ill-health in calves. In experiment 2, operator variance was low across anatomical areas, with values of ≤0.01°C2 for the right and left eyes and ≤0.04°C2 for the rectal area. In experiment 3, day to day variation of thermal image measurements and core body temperature were minimal across anatomical areas with values of ≤0.008°C2. Correlations ranging from 0.16 to 0.32, and from 0.31 to 0.47 were found between maximum eye and core body temperature and maximum rectal area and core body temperature, respectively. Results of the present study indicate a low level of variability and high level of repeatability within IR temperature measurements in calves under 12 wk of age, particularly within maximum temperature parameters. Providing operators of varying abilities with a basic standardized protocol is sufficient to limit between-operator variation. Further research is required to investigate whether correlation between IR and core body temperature can be improved.
Collapse
Affiliation(s)
- Gillian E Scoley
- Agri-Food and Biosciences Institute, Hillsborough, Northern Ireland, Northern Ireland.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland
| | - Alan W Gordon
- Agri-Food and Biosciences Institute, Newforge Lane, Belfast, Northern Ireland
| | - Steven J Morrison
- Agri-Food and Biosciences Institute, Hillsborough, Northern Ireland, Northern Ireland
| |
Collapse
|
37
|
Sun Y, Liu J, Ye G, Gan F, Hamid M, Liao S, Huang K. Protective effects of zymosan on heat stress-induced immunosuppression and apoptosis in dairy cows and peripheral blood mononuclear cells. Cell Stress Chaperones 2018; 23:1069-1078. [PMID: 29860708 PMCID: PMC6111079 DOI: 10.1007/s12192-018-0916-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 11/26/2022] Open
Abstract
Dairy cows exposed to heat stress (HS) show decreased performance and immunity, but increased heat shock protein expressions and apoptosis. Zymosan, an extract from yeast cell walls, has been shown to modulate immune responses and defense against oxidative stress. However, few literatures are available about the effects of zymosan on immune responses and other parameters of the dairy cows under HS. Here, both primary peripheral blood mononuclear cell (PBMC) and dairy cow models were established to assess the effects of zymosan on performance, immunity, heat shock protein, and apoptosis-related gene expressions of dairy cows under HS. In vitro study showed that proliferation, IL-2 production, and Bcl-2/Bax-α ratio of cow primary PBMC were reduced, whereas hsp70 mRNA and protein expressions, as well as Annexin V-bing, were increased when PBMCs were exposed to heat. In contrast, zymosan significantly reversed these above changes induced by the HS. In the in vivo study, 40 Holstein dairy cows were randomly selected and assigned into zymosan group (supplemental zymosan; n = 20) and control group (no supplemental zymosan; n = 20). The results showed that zymosan improved significantly the dry matter intake and milk yield, increased IgA, IL-2, and tumor necrosis factor-α (TNF-α) contents in sera, as well as hepatic Bcl-2/Bax-α ratio, but decreased respiration rate and hepatic hsp70 expressions in the dairy cows under HS. Taken together, zymosan could alleviate HS-induced immunosuppression and apoptosis and improve significantly the productive performance and immunity of dairy cows under HS.
Collapse
Affiliation(s)
- Yuhang Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gengping Ye
- Shanghai Bright Holstein Co., Ltd., Shanghai, 200436, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mohammed Hamid
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengfa Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, 39762, USA
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
38
|
Seelenbinder KM, Zhao LD, Hanigan MD, Hulver MW, McMillan RP, Baumgard LH, Selsby JT, Ross JW, Gabler NK, Rhoads RP. Effects of heat stress during porcine reproductive and respiratory syndrome virus infection on metabolic responses in growing pigs. J Anim Sci 2018; 96:1375-1387. [PMID: 29474563 PMCID: PMC6140946 DOI: 10.1093/jas/sky057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/20/2018] [Indexed: 01/15/2023] Open
Abstract
Heat stress (HS) and immune challenges negatively impact nutrient allocation and metabolism in swine, especially due to elevated heat load. In order to assess the effects of HS during Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection on metabolism, 9-wk old crossbred barrows were individually housed, fed ad libitum, divided into four treatments: thermo-neutral (TN), thermo-neutral PRRSV infected (TP), HS, and HS PRRSV infected (HP), and subjected to two experimental phases. Phase 1 occurred in TN conditions (22 °C) where half the animals were infected with PRRS virus (n = 12), while the other half (n = 11) remained uninfected. Phase 2 began, after 10 d with half of the uninfected (n = 6) and infected groups (n = 6) transported to heated rooms (35 °C) for 3 d of continuous heat, while the rest remained in TN conditions. Blood samples were collected prior to each phase and at trial completion before sacrifice. PPRS viral load indicated only infected animals were infected. Individual rectal temperature (Tr), respiration rates (RR), and feed intakes (FI) were determined daily. Pigs exposed to either challenge had an increased Tr, (P < 0.0001) whereas RR increased (P < 0.0001) with HS, compared to TN. ADG and BW decreased with challenges compared to TN, with the greatest loss to HP pigs. Markers of muscle degradation such as creatine kinase, creatinine, and urea nitrogen were elevated during challenges. Blood glucose levels tended to decrease in HS pigs. HS tended to decrease white blood cell (WBC) and lymphocytes and increase monocytes and eosinophils during HS. However, neutrophils were significantly increased (P < 0.01) during HP. Metabolic flexibility tended to decrease in PRRS infected pigs as well as HS pigs. Fatty acid oxidation measured by CO2 production decreased in HP pigs. Taken together, these data demonstrate the additive effects of the HP challenge compared to either PRRSV or HS alone.
Collapse
Affiliation(s)
| | - Lidan D Zhao
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| | - Mark D Hanigan
- Department of Dairy Science, Virginia Tech, Blacksburg, VA
| | - Matthew W Hulver
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA
| | | | | | - Josh T Selsby
- Department of Animal Science, Iowa State University, Ames, IA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| |
Collapse
|
39
|
Association of Melatonin Production with Seasonal Changes, Low Temperature, and Immuno-Responses in Hamsters. Molecules 2018; 23:molecules23030703. [PMID: 29558391 PMCID: PMC6017911 DOI: 10.3390/molecules23030703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 01/14/2023] Open
Abstract
Seasonal changes impact the melatonin production and immuno-activities in vertebrates. This is believed due to the photoperiodic alterations of the different seasons which impact the functions of pineal gland. The short photoperiod promotes pineal melatonin production. As a result, during the winter, animals have significantly higher levels of melatonin than in summer. However, the seasonal changes also include temperature changes. This factor has never been systemically investigated in animals. In the current study, we observed that increased temperature had limited influence on melatonin production. In contrast, cold temperature is the major factor to induce melatonin production in hamsters. Cold temperature per se can upregulate the expressions of melatonin synthetic gene AANAT and ASMT, which are the important enzymes for melatonin biosynthesis. The elevated melatonin levels induced by the cold exposure in hamster in turn, improve the immuno-responses of the animals with increased levels of IL1, 6, and 10 as well CD3. In addition, melatonin as a potent antioxidant and thermogenic agent would improve the survival chance of animals during cold weather.
Collapse
|
40
|
Manriquez D, Valenzuela H, Paudyal S, Velasquez A, Pinedo P. Effect of aluminized reflective hutch covers on calf health and performance. J Dairy Sci 2018; 101:1464-1477. [DOI: 10.3168/jds.2017-13045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/26/2017] [Indexed: 01/17/2023]
|
41
|
Xie Q, Ni JQ, Su Z. Fuzzy comprehensive evaluation of multiple environmental factors for swine building assessment and control. JOURNAL OF HAZARDOUS MATERIALS 2017; 340:463-471. [PMID: 28759867 DOI: 10.1016/j.jhazmat.2017.07.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
In confined swine buildings, temperature, humidity, and air quality are all important for animal health and productivity. However, the current swine building environmental control is only based on temperature; and evaluation and control methods based on multiple environmental factors are needed. In this paper, fuzzy comprehensive evaluation (FCE) theory was adopted for multi-factor assessment of environmental quality in two commercial swine buildings using real measurement data. An assessment index system and membership functions were established; and predetermined weights were given using analytic hierarchy process (AHP) combined with knowledge of experts. The results show that multi-factors such as temperature, humidity, and concentrations of ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) can be successfully integrated in FCE for swine building environment assessment. The FCE method has a high correlation coefficient of 0.737 compared with the method of single-factor evaluation (SFE). The FCE method can significantly increase the sensitivity and perform an effective and integrative assessment. It can be used as part of environmental controlling and warning systems for swine building environment management to improve swine production and welfare.
Collapse
Affiliation(s)
- Qiuju Xie
- Institute of Information Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Ji-Qin Ni
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zhongbin Su
- Institute of Electrical and Information, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
42
|
Bissonnette N, Jiang X, Matte J, Guay F, Talbot G, Bontempo V, Gong J, Wang Q, Lessard M. Effect of a post-weaning diet supplemented with functional feed additives on ileal transcriptome activity and serum cytokines in piglets challenged with lipopolysaccharide. Vet Immunol Immunopathol 2016; 182:136-149. [DOI: 10.1016/j.vetimm.2016.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 09/26/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
|
43
|
Hill T, Bateman H, Suarez-Mena F, Dennis T, Schlotterbeck R. Short communication: Changes in body temperature of calves up to 2 months of age as affected by time of day, age, and ambient temperature. J Dairy Sci 2016; 99:8867-8870. [DOI: 10.3168/jds.2016-10994] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/17/2016] [Indexed: 11/19/2022]
|
44
|
Feeding rumen-protected gamma-aminobutyric acid enhances the immune response and antioxidant status of heat-stressed lactating dairy cows. J Therm Biol 2016; 60:103-8. [DOI: 10.1016/j.jtherbio.2016.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022]
|
45
|
Bhat S, Kumar P, Kashyap N, Deshmukh B, Dige MS, Bhushan B, Chauhan A, Kumar A, Singh G. Effect of heat shock protein 70 polymorphism on thermotolerance in Tharparkar cattle. Vet World 2016; 9:113-7. [PMID: 27051194 PMCID: PMC4819358 DOI: 10.14202/vetworld.2016.113-117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 12/05/2015] [Accepted: 12/18/2015] [Indexed: 11/25/2022] Open
Abstract
AIM Out of various members of heat shock protein (HSP) superfamily which act a molecular chaperon by binding to the denaturing protein thus stabilizing them and preserving their activity, HSP70 are of major importance in thermotolerance development. Thus, present investigation aimed at a screening of HSP70 gene for polymorphisms and possible differences in thermotolerance in Tharparkar breed of cattle. MATERIALS AND METHODS A 295 bp fragment of HSP70 gene was subjected to polymerase chain reaction-single-strand conformation polymorphism (SSCP) followed by sequencing of different SSCP patterns in 64 Tharparkar cattle. A comparative thermotolerance of identified genotypes was analyzed using heat tolerance coefficients (HTCs) of animals for different seasons. RESULTS Three SSCP patterns and consequently two alleles namely A and B were documented in one fragment of HSP70 gene. On sequencing, one single-nucleotide polymorphism with G > T substitution was found at a position that led to a change of amino acid aspartate to tyrosine in allele A. It was found that in maintaining near normal average rectal temperature, genotype AA was superior (p≤0.01). Genotype AA, thus, was found to be most thermotolerant genotype with the highest HTC (p≤0.01). CONCLUSION The polymorphism at HSP70 is expected to be a potent determinant for heat tolerance in cattle, which may aid in selection for thermotolerance in cattle.
Collapse
Affiliation(s)
- Sandip Bhat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Pushpendra Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Neeraj Kashyap
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Bharti Deshmukh
- Department of Animal Genetics and Breeding, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Mahesh Shivanand Dige
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Anuj Chauhan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Amit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Gyanendra Singh
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
46
|
Lee Y, Bok JD, Lee HJ, Lee HG, Kim D, Lee I, Kang SK, Choi YJ. Body Temperature Monitoring Using Subcutaneously Implanted Thermo-loggers from Holstein Steers. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:299-306. [PMID: 26732455 PMCID: PMC4698711 DOI: 10.5713/ajas.15.0353] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/06/2015] [Accepted: 06/11/2015] [Indexed: 11/27/2022]
Abstract
Body temperature (BT) monitoring in cattle could be used to early detect fever from infectious disease or physiological events. Various ways to measure BT have been applied at different locations on cattle including rectum, reticulum, milk, subcutis and ear canal. In other to evaluate the temperature stability and reliability of subcutaneous temperature (ST) in highly fluctuating field conditions for continuous BT monitoring, long term ST profiles were collected and analyzed from cattle in autumn/winter and summer season by surgically implanted thermo-logger devices. Purposes of this study were to assess ST in the field condition as a reference BT and to determine any location effect of implantation on ST profile. In results, ST profile in cattle showed a clear circadian rhythm with daily lowest at 05:00 to 07:00 AM and highest around midnight and rather stable temperature readings (mean±standard deviation [SD], 37.1°C to 37.36°C±0.91°C to 1.02°C). STs are 1.39°C to 1.65°C lower than the rectal temperature and sometimes showed an irregular temperature drop below the normal physiologic one: 19.4% or 36.4% of 54,192 readings were below 36.5°C or 37°C, respectively. Thus, for BT monitoring purposes in a fever-alarming-system, a correction algorithm is necessary to remove the influences of ambient temperature and animal resting behavior especially in winter time. One way to do this is simply discard outlier readings below 36.5°C or 37°C resulting in a much improved mean±SD of 37.6°C±0.64°C or 37.8°C±0.55°C, respectively. For location the upper scapula region seems the most reliable and convenient site for implantation of a thermo-sensor tag in terms of relatively low influence by ambient temperature and easy insertion compared to lower scapula or lateral neck.
Collapse
Affiliation(s)
- Y Lee
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - J D Bok
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - H J Lee
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - H G Lee
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - D Kim
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - I Lee
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - S K Kang
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Y J Choi
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
47
|
Chen Y, Arsenault R, Napper S, Griebel P. Models and Methods to Investigate Acute Stress Responses in Cattle. Animals (Basel) 2015; 5:1268-95. [PMID: 26633525 PMCID: PMC4693215 DOI: 10.3390/ani5040411] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/09/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
There is a growing appreciation within the livestock industry and throughout society that animal stress is an important issue that must be addressed. With implications for animal health, well-being, and productivity, minimizing animal stress through improved animal management procedures and/or selective breeding is becoming a priority. Effective management of stress, however, depends on the ability to identify and quantify the effects of various stressors and determine if individual or combined stressors have distinct biological effects. Furthermore, it is critical to determine the duration of stress-induced biological effects if we are to understand how stress alters animal production and disease susceptibility. Common stress models used to evaluate both psychological and physical stressors in cattle are reviewed. We identify some of the major gaps in our knowledge regarding responses to specific stressors and propose more integrated methodologies and approaches to measuring these responses. These approaches are based on an increased knowledge of both the metabolic and immune effects of stress. Finally, we speculate on how these findings may impact animal agriculture, as well as the potential application of large animal models to understanding human stress.
Collapse
Affiliation(s)
- Yi Chen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada.
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Ryan Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Scott Napper
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada.
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Philip Griebel
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada.
- School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada.
| |
Collapse
|
48
|
Li M, Wu J, Chen Z. Effects of Heat Stress on the Daily Behavior of Wenchang Chickens. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2015. [DOI: 10.1590/1516-635x1704559-566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- M Li
- Hainan Normal University, China
| | - J Wu
- Hainan Normal University, China
| | - Z Chen
- Hainan Normal University, China
| |
Collapse
|
49
|
Zhang ZW, Bi MY, Yao HD, Fu J, Li S, Xu SW. Effect of Cold Stress on Expression of AMPKα–PPARα Pathway and Inflammation Genes. Avian Dis 2014; 58:415-26. [DOI: 10.1637/10763-010814-reg.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Ciepielewski ZM, Stojek W, Glac W, Myślińska D, Kwaczyńska A, Kamyczek M. The effects of ryanodine receptor 1 (RYR1) mutation on plasma cytokines and catecholamines during prolonged restraint in pigs. Vet Immunol Immunopathol 2013; 156:176-81. [PMID: 24176615 DOI: 10.1016/j.vetimm.2013.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/26/2013] [Accepted: 10/02/2013] [Indexed: 01/15/2023]
Abstract
In the current study, plasma cytokines, including interleukin (IL) 1, IL-2, IL-6, IL-10, IL-12, interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) and catecholamines (adrenaline and noradrenaline) were evaluated during 4h restraint and recovery phase in 60 male pigs. Blood samples were collected from three groups of pigs representing different RYR1 genotypes, namely NN homozygotes (wild-type), Nn heterozygous and nn homozygous (mutant). The 4h restraint evoked an increase in plasma cytokine concentrations in each of the RYR1 genotype groups. During the restraint, the greatest concentrations of plasma IL-6, IL-10, IL-12 and TNF-α in nn homozygous pigs and IFN-γ in NN homozygous were observed. Interleukin 1, IL-2, IL-10, and TNF-α measures were positively intercorrelated in each of the three RYR1 genotype group. A positive correlation was seen between all measured cytokines (with the exception of IL-6) and plasma catecholamine concentrations in Nn heterozygous and nn homozygous pigs. The results suggest that of the cytokine parameters evaluated, IL-6, IL-10, IL-12 and TNF-α of the nn homozygous group seem to show a stronger stress-related response as compared with those of the other two (NN and Nn) groups.
Collapse
|