1
|
Meyniel-Schicklin L, Amaudrut J, Mallinjoud P, Guillier F, Mangeot PE, Lines L, Aublin-Gex A, Scholtes C, Punginelli C, Joly S, Vasseur F, Manet E, Gruffat H, Henry T, Halitim F, Paparin JL, Machin P, Darteil R, Sampson D, Mikaelian I, Lane L, Navratil V, Golinelli-Cohen MP, Terzi F, André P, Lotteau V, Vonderscher J, Meldrum EC, de Chassey B. Viruses traverse the human proteome through peptide interfaces that can be biomimetically leveraged for drug discovery. Proc Natl Acad Sci U S A 2024; 121:e2308776121. [PMID: 38252831 PMCID: PMC10835127 DOI: 10.1073/pnas.2308776121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
We present a drug design strategy based on structural knowledge of protein-protein interfaces selected through virus-host coevolution and translated into highly potential small molecules. This approach is grounded on Vinland, the most comprehensive atlas of virus-human protein-protein interactions with annotation of interacting domains. From this inspiration, we identified small viral protein domains responsible for interaction with human proteins. These peptides form a library of new chemical entities used to screen for replication modulators of several pathogens. As a proof of concept, a peptide from a KSHV protein, identified as an inhibitor of influenza virus replication, was translated into a small molecule series with low nanomolar antiviral activity. By targeting the NEET proteins, these molecules turn out to be of therapeutic interest in a nonalcoholic steatohepatitis mouse model with kidney lesions. This study provides a biomimetic framework to design original chemistries targeting cellular proteins, with indications going far beyond infectious diseases.
Collapse
Affiliation(s)
| | | | | | | | - Philippe E. Mangeot
- Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon69007, France
| | | | - Anne Aublin-Gex
- Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon69007, France
| | - Caroline Scholtes
- Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon69007, France
| | - Claire Punginelli
- Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon69007, France
| | | | - Florence Vasseur
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades, Département “Croissance et Signalisation”, Paris75015, France
| | - Evelyne Manet
- Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon69007, France
| | - Henri Gruffat
- Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon69007, France
| | - Thomas Henry
- Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon69007, France
| | | | | | | | | | | | - Ivan Mikaelian
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon69373, France
| | - Lydie Lane
- Computer and Laboratory Investigation of Proteins of Human Origin Group, Swiss Institute of Bioinformatics, Lausanne1015, Switzerland
| | - Vincent Navratil
- Pôle Rhône-Alpes de bioinformatique, Rhône-Alpes Bioinformatics Center, Université Lyon 1, Villeurbanne69622, France
- European Virus Bio-informatiques Center, Jena07743, Germany
- Institut Français de Bioinformatique, IFB-core, UMS 3601, Évry91057, France
| | - Marie-Pierre Golinelli-Cohen
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Unité Propre de Recherche 2301, Gif-sur-Yvette91198, France
| | - Fabiola Terzi
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades, Département “Croissance et Signalisation”, Paris75015, France
| | - Patrice André
- Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon69007, France
| | - Vincent Lotteau
- Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon69007, France
| | | | | | | |
Collapse
|
2
|
Ali T, Klein AN, Vu A, Arifin MI, Hannaoui S, Gilch S. Peptide aptamer targeting Aβ-PrP-Fyn axis reduces Alzheimer's disease pathologies in 5XFAD transgenic mouse model. Cell Mol Life Sci 2023; 80:139. [PMID: 37149826 PMCID: PMC10164677 DOI: 10.1007/s00018-023-04785-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Currently, no effective therapeutics exist for the treatment of incurable neurodegenerative diseases such as Alzheimer's disease (AD). The cellular prion protein (PrPC) acts as a high-affinity receptor for amyloid beta oligomers (AβO), a main neurotoxic species mediating AD pathology. The interaction of AβO with PrPC subsequently activates Fyn tyrosine kinase and neuroinflammation. Herein, we used our previously developed peptide aptamer 8 (PA8) binding to PrPC as a therapeutic to target the AβO-PrP-Fyn axis and prevent its associated pathologies. Our in vitro results indicated that PA8 prevents the binding of AβO with PrPC and reduces AβO-induced neurotoxicity in mouse neuroblastoma N2a cells and primary hippocampal neurons. Next, we performed in vivo experiments using the transgenic 5XFAD mouse model of AD. The 5XFAD mice were treated with PA8 and its scaffold protein thioredoxin A (Trx) at a 14.4 µg/day dosage for 12 weeks by intraventricular infusion through Alzet® osmotic pumps. We observed that treatment with PA8 improves learning and memory functions of 5XFAD mice as compared to Trx-treated 5XFAD mice. We found that PA8 treatment significantly reduces AβO levels and Aβ plaques in the brain tissue of 5XFAD mice. Interestingly, PA8 significantly reduces AβO-PrP interaction and its downstream signaling such as phosphorylation of Fyn kinase, reactive gliosis as well as apoptotic neurodegeneration in the 5XFAD mice compared to Trx-treated 5XFAD mice. Collectively, our results demonstrate that treatment with PA8 targeting the AβO-PrP-Fyn axis is a promising and novel approach to prevent and treat AD.
Collapse
Affiliation(s)
- Tahir Ali
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Antonia N Klein
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Alex Vu
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Maria I Arifin
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Samia Hannaoui
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sabine Gilch
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Nanozymes and nanoflower: Physiochemical properties, mechanism and biomedical applications. Colloids Surf B Biointerfaces 2023; 225:113241. [PMID: 36893662 DOI: 10.1016/j.colsurfb.2023.113241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Natural enzymes possess several drawbacks which limits their application in industries, wastewater remediation and biomedical field. Therefore, in recent years researchers have developed enzyme mimicking nanomaterials and enzymatic hybrid nanoflower which are alternatives of enzyme. Nanozymes and organic inorganic hybrid nanoflower have been developed which mimics natural enzymes functionalities such as diverse enzyme mimicking activities, enhanced catalytic activities, low cost, ease of preparation, stability and biocompatibility. Nanozymes include metal and metal oxide nanoparticles mimicking oxidases, peroxidases, superoxide dismutase and catalases while enzymatic and non-enzymatic biomolecules were used for preparing hybrid nanoflower. In this review nanozymes and hybrid nanoflower have been compared in terms of physiochemical properties, common synthetic routes, mechanism of action, modification, green synthesis and application in the field of disease diagnosis, imaging, environmental remediation and disease treatment. We also address the current challenges facing nanozyme and hybrid nanoflower research and the possible way to fulfil their potential in future.
Collapse
|
4
|
Chavda VP, Solanki HK, Davidson M, Apostolopoulos V, Bojarska J. Peptide-Drug Conjugates: A New Hope for Cancer Management. Molecules 2022; 27:7232. [PMID: 36364057 PMCID: PMC9658517 DOI: 10.3390/molecules27217232] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 08/07/2023] Open
Abstract
Cancer remains the leading cause of death worldwide despite advances in treatment options for patients. As such, safe and effective therapeutics are required. Short peptides provide advantages to be used in cancer management due to their unique properties, amazing versatility, and progress in biotechnology to overcome peptide limitations. Several appealing peptide-based therapeutic strategies have been developed. Here, we provide an overview of peptide conjugates, the better equivalents of antibody-drug conjugates, as the next generation of drugs for required precise targeting, enhanced cellular permeability, improved drug selectivity, and reduced toxicity for the efficient treatment of cancers. We discuss the basic components of drug conjugates and their release action, including the release of cytotoxins from the linker. We also present peptide-drug conjugates under different stages of clinical development as well as regulatory and other challenges.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Hetvi K. Solanki
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90-924 Lodz, Poland
| |
Collapse
|
5
|
Poustforoosh A, Faramarz S, Nematollahi MH, Hashemipour H, Negahdaripour M, Pardakhty A. In silico SELEX screening and statistical analysis of newly designed 5mer peptide-aptamers as Bcl-xl inhibitors using the Taguchi method. Comput Biol Med 2022; 146:105632. [PMID: 35617726 DOI: 10.1016/j.compbiomed.2022.105632] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/03/2022]
Abstract
Drug development for cancer treatment is a complex process that requires special efforts. Targeting crucial proteins is the most essential purpose of drug design in cancers. Bcl-xl is an anti-apoptotic protein that binds to pro-apoptotic proteins and interrupts their signals. Pro-apoptotic Bcl-xl effectors are short BH3 sequences that form an alpha helix and bind to anti-apoptotic proteins to inhibit their activity. Computational systematic evolution of ligands by exponential enrichment (SELEX) is an exclusive approach for developing peptide aptamers as potential effectors. Here, the amino acids with a high tendency for constructing an alpha-helical structure were selected. Due to the enormous number of pentapeptides, Taguchi method was used to study a selected number of peptides. The binding affinity of the peptides to Bcl-xl was assessed using molecular docking, and after analysis of the obtained results, a final set of optimized peptides was arranged and constructed. For a better comparison, three chemical compounds with approved anti-Bcl-xl activity were selected for comparison with the top-ranked 5mer peptides. The optimized peptides showed considerable binding affinity to Bcl-xl. The molecular dynamics (MD) simulation indicated that the designed peptide (PO5) could create considerable interactions with the BH3 domain of Bcl-xl. The MM/GBSA calculations revealed that these interactions were even stronger than those created by chemical compounds. In silico SELEX is a novel approach to design and evaluate peptide-aptamers. The experimental design improves the SELEX process considerably. Finally, PO5 could be considered a potential inhibitor of Bcl-xl and a potential candidate for cancer treatment.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Chemical Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Sanaz Faramarz
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hassan Hashemipour
- Chemical Engineering Department, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Veselov VV, Nosyrev AE, Jicsinszky L, Alyautdin RN, Cravotto G. Targeted Delivery Methods for Anticancer Drugs. Cancers (Basel) 2022; 14:622. [PMID: 35158888 PMCID: PMC8833699 DOI: 10.3390/cancers14030622] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Several drug-delivery systems have been reported on and often successfully applied in cancer therapy. Cell-targeted delivery can reduce the overall toxicity of cytotoxic drugs and increase their effectiveness and selectivity. Besides traditional liposomal and micellar formulations, various nanocarrier systems have recently become the focus of developmental interest. This review discusses the preparation and targeting techniques as well as the properties of several liposome-, micelle-, solid-lipid nanoparticle-, dendrimer-, gold-, and magnetic-nanoparticle-based delivery systems. Approaches for targeted drug delivery and systems for drug release under a range of stimuli are also discussed.
Collapse
Affiliation(s)
- Valery V. Veselov
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - Alexander E. Nosyrev
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - László Jicsinszky
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
| | - Renad N. Alyautdin
- Department of Pharmacology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia
| |
Collapse
|
7
|
Chen XF, Zhao X, Yang Z. Aptamer-Based Antibacterial and Antiviral Therapy against Infectious Diseases. J Med Chem 2021; 64:17601-17626. [PMID: 34854680 DOI: 10.1021/acs.jmedchem.1c01567] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA molecules selected in vitro that can bind to a broad range of targets with high affinity and specificity. As promising alternatives to conventional anti-infective agents, aptamers have gradually revealed their potential in the combat against infectious diseases. This article provides an overview on the state-of-art of aptamer-based antibacterial and antiviral therapeutic strategies. Diverse aptamers targeting pathogen-related components or whole pathogenic cells are summarized according to the species of microorganisms. These aptamers exhibited remarkable in vitro and/or in vivo inhibitory effect for pathogenic invasion, enzymatic activities, or viral replication, even for some highly drug-resistant strains and biofilms. Aptamer-mediated drug delivery and controlled drug release strategies are also included herein. Critical technical barriers of therapeutic aptamers are briefly discussed, followed by some future perspectives for their implementation into clinical utility.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China.,Guangzhou Laboratory, Guangzhou 510320, PR China.,Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou 510005, PR China
| |
Collapse
|
8
|
Liu X, Zhang Q, Knoll W, Liedberg B, Wang Y. Rational Design of Functional Peptide-Gold Hybrid Nanomaterials for Molecular Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000866. [PMID: 32743897 DOI: 10.1002/adma.202000866] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/21/2020] [Indexed: 05/12/2023]
Abstract
Gold nanoparticles (AuNPs) have been extensively used for decades in biosensing-related development due to outstanding optical properties. Peptides, as newly realized functional biomolecules, are promising candidates of replacing antibodies, receptors, and substrates for specific molecular interactions. Both peptides and AuNPs are robust and easily synthesized at relatively low cost. Hence, peptide-AuNP-based bio-nano-technological approaches have drawn increasing interest, especially in the field of molecular targeting, cell imaging, drug delivery, and therapy. Many excellent works in these areas have been reported: demonstrating novel ideas, exploring new targets, and facilitating advanced diagnostic and therapeutic technologies. Importantly, some of them also have been employed to address real practical problems, especially in remote and less privileged areas. This contribution focuses on the application of peptide-gold hybrid nanomaterials for various molecular interactions, especially in biosensing/diagnostics and cell targeting/imaging, as well as for the development of highly active antimicrobial/antifouling coating strategies. Rationally designed peptide-gold nanomaterials with functional properties are discussed along with future challenges and opportunities.
Collapse
Affiliation(s)
- Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Qingwen Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Wolfgang Knoll
- Austrian Institute of Technology, Giefinggasse 4, Vienna, 1210, Austria
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| |
Collapse
|
9
|
Bach S, Colas P, Blondel M. [Budding yeast, a model and a tool… also for biomedical research]. Med Sci (Paris) 2020; 36:504-514. [PMID: 32452373 DOI: 10.1051/medsci/2020077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Yeast has been used for thousands of years as a leavening agent and for alcoholic fermentation, but it is only in 1857 that Louis Pasteur described the microorganism at the basis of these two tremendously important economic activities. From there, yeast strains could be selected and modified on a rational basis to optimize these uses, thereby also allowing the development of yeast as a popular eukaryotic model system. This model led to a cornucopia of seminal discoveries in cell biology. For about two decades yeast has also been used as a model and a tool for therapeutic research, from the production of therapeutics and the development of diagnostic tools to the identification of new therapeutic targets, drug candidates and chemical probes. These diverse chemobiological applications of yeast are presented and discussed in the present review article.
Collapse
Affiliation(s)
- Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Laboratoire de Biologie Intégrative des Modèles Marins, Station Biologique de Roscoff, place Georges Teissier, 29680 Roscoff, France - Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf, Station Biologique de Roscoff, place Georges Teissier, 29680 Roscoff, France
| | - Pierre Colas
- Sorbonne Université, CNRS, UMR8227, Laboratoire de Biologie Intégrative des Modèles Marins, Station Biologique de Roscoff, place Georges Teissier, 29680 Roscoff, France
| | - Marc Blondel
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200 Brest, France - CHRU Brest, service de génétique clinique et de biologie de la reproduction, F-29200 Brest, France
| |
Collapse
|
10
|
Ilimbi D, Buess‐Herman C, Doneux T. Chronopotentiometry as a Sensitive Interfacial Characterisation Tool for Peptide Aptamer Monolayers. ELECTROANAL 2019. [DOI: 10.1002/elan.201900285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Diane Ilimbi
- Chemistry of Surfaces, Interfaces and Nanomaterials, Faculté des SciencesUniversité libre de Bruxelles (ULB) Boulevard du Triomphe 2, CP 255 B-1050 Bruxelles Belgium
| | - Claudine Buess‐Herman
- Chemistry of Surfaces, Interfaces and Nanomaterials, Faculté des SciencesUniversité libre de Bruxelles (ULB) Boulevard du Triomphe 2, CP 255 B-1050 Bruxelles Belgium
| | - Thomas Doneux
- Chemistry of Surfaces, Interfaces and Nanomaterials, Faculté des SciencesUniversité libre de Bruxelles (ULB) Boulevard du Triomphe 2, CP 255 B-1050 Bruxelles Belgium
| |
Collapse
|
11
|
Pascoe N, Seetharaman A, Teyra J, Manczyk N, Satori MA, Tjandra D, Makhnevych T, Schwerdtfeger C, Brasher BB, Moffat J, Costanzo M, Boone C, Sicheri F, Sidhu SS. Yeast Two-Hybrid Analysis for Ubiquitin Variant Inhibitors of Human Deubiquitinases. J Mol Biol 2019; 431:1160-1171. [PMID: 30763569 DOI: 10.1016/j.jmb.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 11/20/2022]
Abstract
We applied a yeast-two-hybrid (Y2H) analysis to screen for ubiquitin variant (UbV) inhibitors of a human deubiquitinase (DUB), ubiquitin-specific protease 2 (USP2). The Y2H screen used USP2 as the bait and a prey library consisting of UbVs randomized at four specific positions, which were known to interact with USP2 from phage display analysis. The screen yielded numerous UbVs that bound to USP2 both as a Y2H interaction in vivo and as purified proteins in vitro. The Y2H-derived UbVs inhibited the catalytic activity of USP2 in vitro with nanomolar-range potencies, and they bound and inhibited USP2 in human cells. Mutational and structural analysis showed that potent and selective inhibition could be achieved by just two substitutions in a UbV, which exhibited improved hydrophobic and hydrophilic contacts compared to the wild-type ubiquitin interaction with USP2. Our results establish Y2H as an effective platform for the development of UbV inhibitors of DUBs in vivo, providing an alternative strategy for the analysis of DUBs that are recalcitrant to phage display and other in vitro methods.
Collapse
Affiliation(s)
- Natasha Pascoe
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, M5S3E1, Canada
| | - Ashwin Seetharaman
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, M5S3E1, Canada
| | - Joan Teyra
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, M5S3E1, Canada
| | - Noah Manczyk
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Maria Augusta Satori
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, M5S3E1, Canada
| | - Donna Tjandra
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, M5S3E1, Canada
| | - Taras Makhnevych
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, M5S3E1, Canada
| | | | - Bradley B Brasher
- Boston Biochem, a Bio-Techne Brand 840 Memorial Drive, Cambridge, MA 02139, USA
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, M5S3E1, Canada; Canadian Institute for Advanced Research, Toronto, ON, M5G1Z8, Canada
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, M5S3E1, Canada; Canadian Institute for Advanced Research, Toronto, ON, M5G1Z8, Canada
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, M5S3E1, Canada; Canadian Institute for Advanced Research, Toronto, ON, M5G1Z8, Canada
| | - Frank Sicheri
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Sachdev S Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, M5S3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
12
|
Acquah C, Agyei D, Obeng EM, Pan S, Tan KX, Danquah MK. Aptamers: an emerging class of bioaffinity ligands in bioactive peptide applications. Crit Rev Food Sci Nutr 2019; 60:1195-1206. [PMID: 30714390 DOI: 10.1080/10408398.2018.1564234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The food and health applications of bioactive peptides have grown remarkably in the past few decades. Current elucidations have shown that bioactive peptides have unique structural arrangement of amino acids, conferring distinct functionalities, and molecular affinity characteristics. However, whereas interest in the biological potency of bioactive peptides has grown, cost-effective techniques for monitoring the structural changes in these peptides and how these changes affect the biological properties have not grown at the same rate. Due to the high binding affinity of aptamers for other biomolecules, they have a huge potential for use in tracking the structural, conformational, and compositional changes in bioactive peptides. This review provides an overview of bioactive peptides and their essential structure-activity relationship. The review further highlights on the types and methods of synthesis of aptamers before the discussion of the prospects, merits, and challenges in the use of aptamers for bioaffinity interactions with bioactive peptides.
Collapse
Affiliation(s)
- Caleb Acquah
- Department of Chemical Engineering, Curtin University, Sarawak, Malaysia.,School of Nutrition Sciences, Faculty of Health Sciences, Curtin University, Sarawak, Malaysia
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Eugene Marfo Obeng
- Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Victoria, Australia
| | - Sharadwata Pan
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Kei Xian Tan
- Department of Chemical Engineering, Curtin University, Sarawak, Malaysia
| | - Michael Kobina Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, Tennessee, USA
| |
Collapse
|
13
|
Interaction of Peptide Aptamers with Prion Protein Central Domain Promotes α-Cleavage of PrP C. Mol Neurobiol 2018; 55:7758-7774. [PMID: 29460268 PMCID: PMC6132731 DOI: 10.1007/s12035-018-0944-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/31/2018] [Indexed: 11/03/2022]
Abstract
Prion diseases are infectious and fatal neurodegenerative diseases affecting humans and animals. Transmission is possible within and between species with zoonotic potential. Currently, no prophylaxis or treatment exists. Prions are composed of the misfolded isoform PrPSc of the cellular prion protein PrPC. Expression of PrPC is a prerequisite for prion infection, and conformational conversion of PrPC is induced upon its direct interaction with PrPSc. Inhibition of this interaction can abrogate prion propagation, and we have previously established peptide aptamers (PAs) binding to PrPC as new anti-prion compounds. Here, we mapped the interaction site of PA8 in PrP and modeled the complex in silico to design targeted mutations in PA8 which presumably enhance binding properties. Using these PA8 variants, we could improve PA-mediated inhibition of PrPSc replication and de novo infection of neuronal cells. Furthermore, we demonstrate that binding of PA8 and its variants increases PrPC α-cleavage and interferes with its internalization. This gives rise to high levels of the membrane-anchored PrP-C1 fragment, a transdominant negative inhibitor of prion replication. PA8 and its variants interact with PrPC at its central and most highly conserved domain, a region which is crucial for prion conversion and facilitates toxic signaling of Aβ oligomers characteristic for Alzheimer's disease. Our strategy allows for the first time to induce α-cleavage, which occurs within this central domain, independent of targeting the responsible protease. Therefore, interaction of PAs with PrPC and enhancement of α-cleavage represent mechanisms that can be beneficial for the treatment of prion and other neurodegenerative diseases.
Collapse
|
14
|
Tung NT, Tue PT, Thi Ngoc Lien T, Ohno Y, Maehashi K, Matsumoto K, Nishigaki K, Biyani M, Takamura Y. Peptide aptamer-modified single-walled carbon nanotube-based transistors for high-performance biosensors. Sci Rep 2017; 7:17881. [PMID: 29263412 PMCID: PMC5738443 DOI: 10.1038/s41598-017-18169-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/05/2017] [Indexed: 11/09/2022] Open
Abstract
Biosensors employing single-walled carbon nanotube field-effect transistors (SWCNT FETs) offer ultimate sensitivity. However, besides the sensitivity, a high selectivity is critically important to distinguish the true signal from interference signals in a non-controlled environment. This work presents the first demonstration of the successful integration of a novel peptide aptamer with a liquid-gated SWCNT FET to achieve highly sensitive and specific detection of Cathepsin E (CatE), a useful prognostic biomarker for cancer diagnosis. Novel peptide aptamers that specifically recognize CatE are engineered by systemic in vitro evolution. The SWCNTs were firstly grown using the thermal chemical vapor deposition (CVD) method and then were employed as a channel to fabricate a SWCNT FET device. Next, the SWCNTs were functionalized by noncovalent immobilization of the peptide aptamer using 1-pyrenebutanoic acid succinimidyl ester (PBASE) linker. The resulting FET sensors exhibited a high selectivity (no response to bovine serum albumin and cathepsin K) and label-free detection of CatE at unprecedentedly low concentrations in both phosphate-buffered saline (2.3 pM) and human serum (0.23 nM). Our results highlight the use of peptide aptamer-modified SWCNT FET sensors as a promising platform for near-patient testing and point-of-care testing applications.
Collapse
Affiliation(s)
- Nguyen Thanh Tung
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi city, Ishikawa, 923-1292, Japan
| | - Phan Trong Tue
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi city, Ishikawa, 923-1292, Japan
| | - Truong Thi Ngoc Lien
- School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam
| | - Yasuhide Ohno
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-4 Shinkuracho, Tokushima, 770-8501, Japan
| | - Kenzo Maehashi
- Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Kazuhiko Matsumoto
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Koichi Nishigaki
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi city, Ishikawa, 923-1292, Japan.,Department of Functional Materials Science, Saitama University, 255 Shimo-okubo Sakura-ku, Saitama city, Saitama, 338-8570, Japan
| | - Manish Biyani
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi city, Ishikawa, 923-1292, Japan. .,Center for Single Nanoscale Innovative Devices, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.
| | - Yuzuru Takamura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi city, Ishikawa, 923-1292, Japan. .,Center for Single Nanoscale Innovative Devices, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.
| |
Collapse
|
15
|
Mathieu S, Cissé C, Vitale S, Ahmadova A, Degardin M, Pérard J, Colas P, Miras R, Boturyn D, Covès J, Crouzy S, Michaud-Soret I. From Peptide Aptamers to Inhibitors of FUR, Bacterial Transcriptional Regulator of Iron Homeostasis and Virulence. ACS Chem Biol 2016; 11:2519-28. [PMID: 27409249 DOI: 10.1021/acschembio.6b00360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
FUR (Ferric Uptake Regulator) protein is a global transcriptional regulator that senses iron status and controls the expression of genes involved in iron homeostasis, virulence, and oxidative stress. Ubiquitous in Gram-negative bacteria and absent in eukaryotes, FUR is an attractive antivirulence target since the inactivation of the fur gene in various pathogens attenuates their virulence. The characterization of 13-aa-long anti-FUR linear peptides derived from the variable part of the anti-FUR peptide aptamers, that were previously shown to decrease pathogenic E. coli strain virulence in a fly infection model, is described herein. Modeling, docking, and experimental approaches in vitro (activity and interaction assays, mutations) and in cells (yeast two-hybrid assays) were combined to characterize the interactions of the peptides with FUR, and to understand their mechanism of inhibition. As a result, reliable structure models of two peptide-FUR complexes are given. Inhibition sites are mapped in the groove between the two FUR subunits where DNA should also bind. Another peptide behaves differently and interferes with the dimerization itself. These results define these novel small peptide inhibitors as lead compounds for inhibition of the FUR transcription factor.
Collapse
Affiliation(s)
- Sophie Mathieu
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Cheickna Cissé
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Sylvia Vitale
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Aynur Ahmadova
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Mélissa Degardin
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
- Univ. Grenoble
Alpes, DCM UMR 5250, F-38000 Grenoble, France
- CNRS, DCM UMR
5250, F-38000 Grenoble, France
| | - Julien Pérard
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Pierre Colas
- P2I2 Group, Protein Phosphorylation
and Human Disease Unit, CNRS Unité de Service et de Recherche
USR3151, Station Biologique de Roscoff, F-29680 Roscoff, France
| | - Roger Miras
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Didier Boturyn
- Univ. Grenoble
Alpes, DCM UMR 5250, F-38000 Grenoble, France
- CNRS, DCM UMR
5250, F-38000 Grenoble, France
| | - Jacques Covès
- Univ. Grenoble
Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Serge Crouzy
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Isabelle Michaud-Soret
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| |
Collapse
|
16
|
Retout M, Valkenier H, Triffaux E, Doneux T, Bartik K, Bruylants G. Rapid and Selective Detection of Proteins by Dual Trapping Using Gold Nanoparticles Functionalized with Peptide Aptamers. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00229] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maurice Retout
- Engineering
of Molecular Nanosystems, Université libre de Bruxelles (ULB), 50 Avenue F.D. Roosevelt, CP165/64, B-1050 Bruxelles, Belgium
| | - Hennie Valkenier
- Engineering
of Molecular Nanosystems, Université libre de Bruxelles (ULB), 50 Avenue F.D. Roosevelt, CP165/64, B-1050 Bruxelles, Belgium
| | - Eléonore Triffaux
- Chimie
Analytique et Chimie des Interfaces, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe 2, CP 255, B-1050 Bruxelles, Belgium
| | - Thomas Doneux
- Chimie
Analytique et Chimie des Interfaces, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe 2, CP 255, B-1050 Bruxelles, Belgium
| | - Kristin Bartik
- Engineering
of Molecular Nanosystems, Université libre de Bruxelles (ULB), 50 Avenue F.D. Roosevelt, CP165/64, B-1050 Bruxelles, Belgium
| | - Gilles Bruylants
- Engineering
of Molecular Nanosystems, Université libre de Bruxelles (ULB), 50 Avenue F.D. Roosevelt, CP165/64, B-1050 Bruxelles, Belgium
| |
Collapse
|
17
|
Spagnoli G, Bolchi A, Cavazzini D, Pouyanfard S, Müller M, Ottonello S. Secretory production of designed multipeptides displayed on a thermostable bacterial thioredoxin scaffold in Pichia pastoris. Protein Expr Purif 2016; 129:150-157. [PMID: 27133916 DOI: 10.1016/j.pep.2016.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/15/2016] [Accepted: 04/28/2016] [Indexed: 11/19/2022]
Abstract
Internal grafting of designed peptides to scaffold proteins is a valuable strategy for a variety of applications including recombinant peptide antigen construction. A peptide epitope from human papillomavirus (HPV) minor capsid protein L2 displayed on thioredoxin (Trx) has been validated preclinically as a broadly protective and low-cost alternative HPV vaccine. Focusing on thioredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus (PfTrx) as a scaffold, we have constructed a modified Pichia pastoris expression vector and used a PfTrx fusion derivative containing three tandemly repeated copies of a 19 amino acids peptide epitope from HPV-L2 for expression optimization and biochemical-immunological characterization of the Pichia-produced PfTrx-L2 antigen. We show that PfTrx-L2 is produced at high levels (up to 100 mg from a 100 ml starting culture using a multi-cycle induction protocol) and secreted into the culture medium as a highly enriched (>70% pure), non-glycosylated polypeptide that can be purified to homogeneity in a single step. Oxidation and aggregation state, thermal stability and immunogenicity of the endotoxin-free PfTrx-L2 antigen produced in P. pastoris were tested and found to be identical to those of the same antigen produced in Escherichia coli. Secretory production of endotoxin-free PfTrx-peptides in P. pastoris represents a cost- and time-effective alternative to E. coli production. Specifically designed for peptide antigens, the PfTrx-expression vector and conditions described herein are easily transferable to a variety of applications centred on the use of structurally constrained bioactive peptides as immune as well as target-specific binder reagents.
Collapse
Affiliation(s)
- Gloria Spagnoli
- Department of Life Sciences, Biochemistry and Molecular Biology Unit, University of Parma, Italy
| | - Angelo Bolchi
- Department of Life Sciences, Biochemistry and Molecular Biology Unit, University of Parma, Italy
| | - Davide Cavazzini
- Department of Life Sciences, Biochemistry and Molecular Biology Unit, University of Parma, Italy
| | | | | | - Simone Ottonello
- Department of Life Sciences, Biochemistry and Molecular Biology Unit, University of Parma, Italy.
| |
Collapse
|
18
|
Sullivan K, Cramer-Morales K, McElroy DL, Ostrov DA, Haas K, Childers W, Hromas R, Skorski T. Identification of a Small Molecule Inhibitor of RAD52 by Structure-Based Selection. PLoS One 2016; 11:e0147230. [PMID: 26784987 PMCID: PMC4718542 DOI: 10.1371/journal.pone.0147230] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/30/2015] [Indexed: 11/18/2022] Open
Abstract
It has been reported that inhibition of RAD52 either by specific shRNA or a small peptide aptamer induced synthetic lethality in tumor cell lines carrying BRCA1 and BRCA2 inactivating mutations. Molecular docking was used to screen two chemical libraries: 1) 1,217 FDA approved drugs, and 2) 139,735 drug-like compounds to identify candidates for interacting with DNA binding domain of human RAD52. Thirty six lead candidate compounds were identified that were predicted to interfere with RAD52 –DNA binding. Further biological testing confirmed that 9 of 36 candidate compounds were able to inhibit the binding of RAD52 to single-stranded DNA in vitro. Based on molecular binding combined with functional assays, we propose a model in which the active compounds bind to a critical “hotspot” in RAD52 DNA binding domain 1. In addition, one of the 9 active compounds, adenosine 5’-monophosphate (A5MP), and also its mimic 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) 5’ phosphate (ZMP) inhibited RAD52 activity in vivo and exerted synthetic lethality against BRCA1 and BRCA2–mutated carcinomas. These data suggest that active, inhibitory RAD52 binding compounds could be further refined for efficacy and safety to develop drugs inducing synthetic lethality in tumors displaying deficiencies in BRCA1/2-mediated homologous recombination.
Collapse
Affiliation(s)
- Katherine Sullivan
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States of America
| | - Kimberly Cramer-Morales
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States of America
| | - Daniel L. McElroy
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida & Shands, Gainesville, Florida 32610, United States of America
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida & Shands, Gainesville, Florida 32610, United States of America
| | - Kimberly Haas
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140, United States of America
| | - Wayne Childers
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140, United States of America
| | - Robert Hromas
- Department of Medicine, College of Medicine, University of Florida & Shands, Gainesville, Florida 32610, United States of America
| | - Tomasz Skorski
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States of America
- * E-mail:
| |
Collapse
|
19
|
Gobbo J, Marcion G, Cordonnier M, Dias AMM, Pernet N, Hammann A, Richaud S, Mjahed H, Isambert N, Clausse V, Rébé C, Bertaut A, Goussot V, Lirussi F, Ghiringhelli F, de Thonel A, Fumoleau P, Seigneuric R, Garrido C. Restoring Anticancer Immune Response by Targeting Tumor-Derived Exosomes With a HSP70 Peptide Aptamer. J Natl Cancer Inst 2015; 108:djv330. [DOI: 10.1093/jnci/djv330] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 10/12/2015] [Indexed: 01/19/2023] Open
|
20
|
Mondal B, Ramlal S, Lavu PSR, Murali HS, Batra HV. A combinatorial systematic evolution of ligands by exponential enrichment method for selection of aptamer against protein targets. Appl Microbiol Biotechnol 2015; 99:9791-803. [PMID: 26293334 DOI: 10.1007/s00253-015-6858-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 11/29/2022]
Abstract
Aptamers are synthetic DNA recognition elements which form unique conformations that enable them to bind specifically to their targets. In the present study, an attempt was made to standardize a new modified combinatorial method comprising of Ni-NTA affinity Systematic Evolution of Ligands by Exponential Enrichment (SELEX; based on affinity between His tag protein and Ni-NTA), membrane SELEX (based on immobilization of protein on nitrocellulose membrane), and microtiter plate based SELEX (to monitor affinity and to enrich the selected aptamers) for protein targets. For experimental evaluation, staphylococcal interotoxin B was the molecule chosen. The new combinatorial method enhanced selection ability up to 51.20 % in comparison with individual conventional procedures. Employing this method following six rounds of selection, high-affinity aptamers with very different properties could be obtained with a dissociation constant (K d) value as low as 34.72 ± 25.09 nM. The optimal aptamers could be employed in fluorescence binding assay, enzyme-linked oligonucleotide assays, and aptamer-based Western blot assay for characterization and detection. These results pave a potential path without using of any robotics for high-throughput generation of aptamers with advantages in terms of rapidity, simplicity, and ease in handling.
Collapse
Affiliation(s)
- Bhairab Mondal
- Defence Food Research Laboratory (DFRL), Mysore, 570011, India.
| | - Shylaja Ramlal
- Defence Food Research Laboratory (DFRL), Mysore, 570011, India.
| | | | | | | |
Collapse
|
21
|
Hamdi A, Lesnard A, Suzanne P, Robert T, Miteva MA, Pellerano M, Didier B, Ficko-Blean E, Lobstein A, Hibert M, Rault S, Morris MC, Colas P. Tampering with Cell Division by Using Small-Molecule Inhibitors of CDK-CKS Protein Interactions. Chembiochem 2015; 16:432-9. [DOI: 10.1002/cbic.201402579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 11/07/2022]
|
22
|
Peyressatre M, Prével C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors. Cancers (Basel) 2015; 7:179-237. [PMID: 25625291 PMCID: PMC4381256 DOI: 10.3390/cancers7010179] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/12/2015] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported.
Collapse
Affiliation(s)
- Marion Peyressatre
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Camille Prével
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Morgan Pellerano
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - May C Morris
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| |
Collapse
|
23
|
Rhinehardt KL, Mohan RV, Srinivas G. Computational modeling of peptide-aptamer binding. Methods Mol Biol 2015; 1268:313-33. [PMID: 25555731 DOI: 10.1007/978-1-4939-2285-7_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Evolution is the progressive process that holds each living creature in its grasp. From strands of DNA evolution shapes life with response to our ever-changing environment and time. It is the continued study of this most primitive process that has led to the advancement of modern biology. The success and failure in the reading, processing, replication, and expression of genetic code and its resulting biomolecules keep the delicate balance of life. Investigations into these fundamental processes continue to make headlines as science continues to explore smaller scale interactions with increasing complexity. New applications and advanced understanding of DNA, RNA, peptides, and proteins are pushing technology and science forward and together. Today the addition of computers and advances in science has led to the fields of computational biology and chemistry. Through these computational advances it is now possible not only to quantify the end results but also visualize, analyze, and fully understand mechanisms by gaining deeper insights. The biomolecular motion that exists governing the physical and chemical phenomena can now be analyzed with the advent of computational modeling. Ever-increasing computational power combined with efficient algorithms and components are further expanding the fidelity and scope of such modeling and simulations. This chapter discusses computational methods that apply biological processes, in particular computational modeling of peptide-aptamer binding.
Collapse
Affiliation(s)
- Kristen L Rhinehardt
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E. Lee Street, Greensboro, NC, 27401, USA
| | | | | |
Collapse
|
24
|
Fluorescent biosensors for drug discovery new tools for old targets--screening for inhibitors of cyclin-dependent kinases. Eur J Med Chem 2014; 88:74-88. [PMID: 25314935 DOI: 10.1016/j.ejmech.2014.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 12/12/2022]
Abstract
Cyclin-dependent kinases play central roles in regulation of cell cycle progression, transcriptional regulation and other major biological processes such as neuronal differentiation and metabolism. These kinases are hyperactivated in most human cancers and constitute attractive pharmacological targets. A large number of ATP-competitive inhibitors of CDKs have been identified from natural substances, in high throughput screening assays, or through structure-guided approaches. Alternative strategies have been explored to target essential protein/protein interfaces and screen for allosteric inhibitors that trap inactive intermediates or prevent conformational activation. However this remains a major challenge given the highly conserved structural features of these kinases, and calls for new and alternative screening technologies. Fluorescent biosensors constitute powerful tools for the detection of biomolecules in complex biological samples, and are well suited to study dynamic processes and highlight molecular alterations associated with pathological disorders. They further constitute sensitive and selective tools which can be readily implemented to high throughput and high content screens in drug discovery programmes. Our group has developed fluorescent biosensors to probe cyclin-dependent kinases and gain insight into their molecular behaviour in vitro and in living cells. These tools provide a means of monitoring subtle alterations in the abundance and activity of CDK/Cyclins and can respond to compounds that interfere with the conformational dynamics of these kinases. In this review we discuss the different strategies which have been devised to target CDK/Cyclins, and describe the implementation of our CDK/Cyclin biosensors to develop HTS/HCS assays in view of identifying new classes of inhibitors for cancer therapeutics.
Collapse
|
25
|
Larsen AC, Gillig A, Shah P, Sau SP, Fenton KE, Chaput JC. General approach for characterizing in vitro selected peptides with protein binding affinity. Anal Chem 2014; 86:7219-23. [PMID: 24970615 PMCID: PMC4215864 DOI: 10.1021/ac501614d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
In
vitro selection technologies are important tools for identifying
high affinity peptides to proteins of broad medical and biological
interest. However, the technological advances that have made it possible
to generate long lists of candidate peptides have far outpaced our
ability to characterize the binding properties of individual peptides.
Here, we describe a low cost strategy to rapidly synthesize, purify,
screen, and characterize peptides for high binding affinity. Peptides
are assayed in a 96-well dot blot apparatus using membranes that enable
partitioning of bound and unbound peptide–protein complexes.
We have validated the binding affinity constants produced by this
method using known peptide ligands and applied this process to discover
five new peptides with nanomolar affinity to human α-thrombin.
Given the need for new analytical tools that can accelerate peptide
discovery and characterization, we feel that this approach would be
useful to a wide range of technologies that utilize high affinity
peptides.
Collapse
Affiliation(s)
- Andrew C Larsen
- Department of Chemistry and Biochemistry and ‡The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | | | |
Collapse
|
26
|
A high-performance thioredoxin-based scaffold for peptide immunogen construction: proof-of-concept testing with a human papillomavirus epitope. Sci Rep 2014; 4:4729. [PMID: 24751665 PMCID: PMC3994442 DOI: 10.1038/srep04729] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/19/2014] [Indexed: 12/26/2022] Open
Abstract
Escherichia coli thioredoxin has been previously exploited as a scaffold for the presentation/stabilization of peptide aptamers as well as to confer immunogenicity to peptide epitopes. Here we focused on other key features of thioredoxin that are of general interest for the production of safer and more effective peptide immunogens, such as a high thermal stability, lack of cross-reactivity and a low-cost of production. We identified thioredoxin from the archaebacterium Pyrococcus furiosus (PfTrx) as a novel scaffold meeting all the above criteria. PfTrx is a highly thermostable and protease-resistant scaffold with a strong (poly)peptide solubilisation capacity. Anti-PfTrx antibodies did not cross-react with mouse, nor human thioredoxin. Untagged PfTrx bearing a previously identified HPV16-L2 peptide epitope was obtained in a >90% pure form with a one-step thermal purification procedure and effectively elicited the production of neutralizing anti-HPV antibodies. We thus propose PfTrx as a superior, general-purpose scaffold for the construction of safe, stable, and low-cost peptide immunogens.
Collapse
|
27
|
Leśniewska K, Warbrick E, Ohkura H. Peptide aptamers define distinct EB1- and EB3-binding motifs and interfere with microtubule dynamics. Mol Biol Cell 2014; 25:1025-36. [PMID: 24478452 PMCID: PMC3967968 DOI: 10.1091/mbc.e13-08-0504] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study isolated many peptide aptamers containing the SxIP motif that binds to Drosophila EB1 and human EB1 and EB3. Interaction sequences are similar to but distinct from each other. Aptamers can competitively displace endogenous EB1-interacting proteins from microtubule plus ends, and their expression in developing flies alters microtubule dynamics. EB1 is a conserved protein that plays a central role in regulating microtubule dynamics and organization. It binds directly to microtubule plus ends and recruits other plus end–localizing proteins. Most EB1-binding proteins contain a Ser–any residue–Ile-Pro (SxIP) motif. Here we describe the isolation of peptide aptamers with optimized versions of this motif by screening for interaction with the Drosophila EB1 protein. The use of small peptide aptamers to competitively inhibit protein interaction and function is becoming increasingly recognized as a powerful technique. We show that SxIP aptamers can bind microtubule plus ends in cells and functionally act to displace interacting proteins by competitive binding. Their expression in developing flies can interfere with microtubules, altering their dynamics. We also identify aptamers binding to human EB1 and EB3, which have sequence requirements similar to but distinct from each other and from Drosophila EB1. This suggests that EB1 paralogues within one species may interact with overlapping but distinct sets of proteins in cells.
Collapse
Affiliation(s)
- Karolina Leśniewska
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom Division of Molecular Medicine, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | |
Collapse
|
28
|
Ruiz-Mirazo K, Briones C, de la Escosura A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chem Rev 2013; 114:285-366. [DOI: 10.1021/cr2004844] [Citation(s) in RCA: 563] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kepa Ruiz-Mirazo
- Biophysics
Unit (CSIC-UPV/EHU), Leioa, and Department of Logic and Philosophy
of Science, University of the Basque Country, Avenida de Tolosa 70, 20080 Donostia−San Sebastián, Spain
| | - Carlos Briones
- Department
of Molecular Evolution, Centro de Astrobiología (CSIC−INTA, associated to the NASA Astrobiology Institute), Carretera de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Andrés de la Escosura
- Organic
Chemistry Department, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
29
|
Conidi A, van den Berghe V, Leslie K, Stryjewska A, Xue H, Chen YG, Seuntjens E, Huylebroeck D. Four amino acids within a tandem QxVx repeat in a predicted extended α-helix of the Smad-binding domain of Sip1 are necessary for binding to activated Smad proteins. PLoS One 2013; 8:e76733. [PMID: 24146916 PMCID: PMC3795639 DOI: 10.1371/journal.pone.0076733] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 08/28/2013] [Indexed: 12/20/2022] Open
Abstract
The zinc finger transcription factor Smad-interacting protein-1 (Sip1; Zeb2, Zfhx1b) plays an important role during vertebrate embryogenesis in various tissues and differentiating cell types, and during tumorigenesis. Previous biochemical analysis suggests that interactions with several partner proteins, including TGFβ family receptor-activated Smads, regulate the activities of Sip1 in the nucleus both as a DNA-binding transcriptional repressor and activator. Using a peptide aptamer approach we mapped in Sip1 its Smad-binding domain (SBD), initially defined as a segment of 51 amino acids, to a shorter stretch of 14 amino acids within this SBD. Modelling suggests that this short SBD stretch is part of an extended α-helix that may fit the binding to a hydrophobic corridor within the MH2 domain of activated Smads. Four amino acids (two polar Q residues and two non-polar V residues) that form the tandem repeat (QxVx)2 in this 14-residue stretch were found to be crucial for binding to both TGFβ/Nodal/Activin-Smads and BMP-Smads. A full-length Sip1 with collective mutation of these Q and V residues (to A) no longer binds to Smads, while it retains its binding activity to its cognate bipartite target DNA sequence. This missense mutant Sip1(AxAx)2 provides a new molecular tool to identify SBD (in)dependent target genes in Sip1-controlled TGFβ and/or BMP (de)regulated cellular, developmental and pathological processes.
Collapse
Affiliation(s)
- Andrea Conidi
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Veronique van den Berghe
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Kris Leslie
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Agata Stryjewska
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Hua Xue
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Beijing Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ye-Guang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Beijing Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Eve Seuntjens
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
30
|
The inhibition of stat5 by a Peptide aptamer ligand specific for the DNA binding domain prevents target gene transactivation and the growth of breast and prostate tumor cells. Pharmaceuticals (Basel) 2013; 6:960-87. [PMID: 24276378 PMCID: PMC3817735 DOI: 10.3390/ph6080960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 12/05/2022] Open
Abstract
The signal transducer and activator of transcription Stat5 is transiently activated by growth factor and cytokine signals in normal cells, but its persistent activation has been observed in a wide range of human tumors. Aberrant Stat5 activity was initially observed in leukemias, but subsequently also found in carcinomas. We investigated the importance of Stat5 in human tumor cell lines. shRNA mediated downregulation of Stat5 revealed the dependence of prostate and breast cancer cells on the expression of this transcription factor. We extended these inhibition studies and derived a peptide aptamer (PA) ligand, which directly interacts with the DNA-binding domain of Stat5 in a yeast-two-hybrid screen. The Stat5 specific PA sequence is embedded in a thioredoxin (hTRX) scaffold protein. The resulting recombinant protein S5-DBD-PA was expressed in bacteria, purified and introduced into tumor cells by protein transduction. Alternatively, S5-DBD-PA was expressed in the tumor cells after infection with a S5-DBD-PA encoding gene transfer vector. Both strategies impaired the DNA-binding ability of Stat5, suppressed Stat5 dependent transactivation and caused its intracellular degradation. Our experiments describe a peptide based inhibitor of Stat5 protein activity which can serve as a lead for the development of a clinically useful compound for cancer treatment.
Collapse
|
31
|
Abstract
Small G proteins of the Rho family and their activators the guanine nucleotide exchange factors (RhoGEFs) regulate essential cellular functions and their deregulation has been associated with an amazing variety of human disorders, including cancer, inflammation, vascular diseases, and mental retardation. Rho GTPases and RhoGEFs therefore represent important targets for inhibition, not only in basic research but also for therapeutic purposes, and strategies to inhibit their function are actively being sought. Our lab has been very active in this field and has used the peptide aptamer technology to develop the first RhoGEF inhibitor, using the RhoGEF Trio as a model. Trio function has been described mainly in cell motility and axon growth in the nervous system via Rac1 GTPase activation, but recent findings suggest it to play also a role in the aggressive phenotype of various cancers, making it an attractive target for drug discovery. The object of this chapter is to demonstrate that targeting a RhoGEF using the peptide aptamer technology represents a valid and efficient approach to inhibit cellular processes in which Rho GTPase activity is upregulated. This is illustrated here by the first description of a peptide inhibitor of the oncogenic RhoGEF Tgat, TRIP(E32G), which is functional in vivo. On a long-term perspective, these peptide inhibitors can also serve as therapeutic tools or as guides for the discovery of small-molecule drugs, using an aptamer displacement screen.
Collapse
Affiliation(s)
- Susanne Schmidt
- Centre de Recherche en Biochimie Macromoléculaire, CNRS-UMR 5237, Universités Montpellier I et II, 1919 Route de Mende, Montpellier, France.
| | - Anne Debant
- Centre de Recherche en Biochimie Macromoléculaire, CNRS-UMR 5237, Universités Montpellier I et II, 1919 Route de Mende, Montpellier, France.
| |
Collapse
|
32
|
Reverdatto S, Rai V, Xue J, Burz DS, Schmidt AM, Shekhtman A. Combinatorial library of improved peptide aptamers, CLIPs to inhibit RAGE signal transduction in mammalian cells. PLoS One 2013; 8:e65180. [PMID: 23785412 PMCID: PMC3681763 DOI: 10.1371/journal.pone.0065180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/23/2013] [Indexed: 01/28/2023] Open
Abstract
Peptide aptamers are small proteins containing a randomized peptide sequence embedded into a stable protein scaffold, such as Thioredoxin. We developed a robust method for building a Combinatorial Library of Improved Peptide aptamers (CLIPs) of high complexity, containing ≥3×1010 independent clones, to be used as a molecular tool in the study of biological pathways. The Thioredoxin scaffold was modified to increase solubility and eliminate aggregation of the peptide aptamers. The CLIPs was used in a yeast two-hybrid screen to identify peptide aptamers that bind to various domains of the Receptor for Advanced Glycation End products (RAGE). NMR spectroscopy was used to identify interaction surfaces between the peptide aptamers and RAGE domains. Cellular functional assays revealed that in addition to directly interfering with known binding sites, peptide aptamer binding distal to ligand sites also inhibits RAGE ligand-induced signal transduction. This finding underscores the potential of using CLIPs to select allosteric inhibitors of biological targets.
Collapse
Affiliation(s)
- Sergey Reverdatto
- Department of Chemistry, State University of New York at Albany, Albany, New York, United States of America
| | - Vivek Rai
- Langone Medical Center, New York University, New York, New York, United States of America
| | - Jing Xue
- Department of Chemistry, State University of New York at Albany, Albany, New York, United States of America
| | - David S. Burz
- Department of Chemistry, State University of New York at Albany, Albany, New York, United States of America
| | - Ann Marie Schmidt
- Langone Medical Center, New York University, New York, New York, United States of America
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York at Albany, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
Conidi A, van den Berghe V, Huylebroeck D. Aptamers and their potential to selectively target aspects of EGF, Wnt/β-catenin and TGFβ-smad family signaling. Int J Mol Sci 2013; 14:6690-719. [PMID: 23531534 PMCID: PMC3645661 DOI: 10.3390/ijms14046690] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 02/07/2023] Open
Abstract
The smooth identification and low-cost production of highly specific agents that interfere with signaling cascades by targeting an active domain in surface receptors, cytoplasmic and nuclear effector proteins, remain important challenges in biomedical research. We propose that peptide aptamers can provide a very useful and new alternative for interfering with protein–protein interactions in intracellular signal transduction cascades, including those emanating from activated receptors for growth factors. By their targeting of short, linear motif type of interactions, peptide aptamers have joined nucleic acid aptamers for use in signaling studies because of their ease of production, their stability, their high specificity and affinity for individual target proteins, and their use in high-throughput screening protocols. Furthermore, they are entering clinical trials for treatment of several complex, pathological conditions. Here, we present a brief survey of the use of aptamers in signaling pathways, in particular of polypeptide growth factors, starting with the published as well as potential applications of aptamers targeting Epidermal Growth Factor Receptor signaling. We then discuss the opportunities for using aptamers in other complex pathways, including Wnt/β-catenin, and focus on Transforming Growth Factor-β/Smad family signaling.
Collapse
Affiliation(s)
- Andrea Conidi
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Campus Gasthuisberg, Building Ond & Nav4 p.o.box 812, room 05.313, Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
34
|
PAPTi: a peptide aptamer interference toolkit for perturbation of protein-protein interaction networks. Sci Rep 2013; 3:1156. [PMID: 23362456 PMCID: PMC3557448 DOI: 10.1038/srep01156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/11/2012] [Indexed: 01/11/2023] Open
Abstract
Signaling proteins often form dynamic protein-protein interaction (PPI) complexes to achieve multi-functionality. Methods to abrogate a subset of PPI interfaces without depleting the full-length protein will be valuable for structure-function relationship annotations. Here, we describe the use of Peptide Aptamer Interference (PAPTi) approach for structure-function network studies. We identified peptide aptamers against Dishevelled (Dsh) and β-catenin (β-cat) to target the Wnt signaling pathway and demonstrate that these FN3-based MONOBODYs (FNDYs) can be used to perturb protein activities both in vitro and in vivo. Further, to investigate the crosstalk between the Wnt and Notch pathways, we isolated FNDYs against the Notch Ankyrin (ANK) region and demonstrate that perturbing the ANK domain of Notch increases the inhibitory activity of Notch towards Wnt signaling. Altogether, these studies demonstrate the power of the PAPTi approach to dissect specific PPI interactions within signaling networks.
Collapse
|
35
|
A simple and sensitive electrochemical aptasensor for determination of Chloramphenicol in honey based on target-induced strand release. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2012.10.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Flusin O, Saccucci L, Contesto-Richefeu C, Hamdi A, Bardou C, Poyot T, Peinnequin A, Crance JM, Colas P, Iseni F. A small molecule screen in yeast identifies inhibitors targeting protein-protein interactions within the vaccinia virus replication complex. Antiviral Res 2012; 96:187-95. [PMID: 22884885 DOI: 10.1016/j.antiviral.2012.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 12/20/2022]
Abstract
Genetic and biochemical data have identified at least four viral proteins essential for vaccinia virus (VACV) DNA synthesis: the DNA polymerase E9, its processivity factor (the heterodimer A20/D4) and the primase/helicase D5. These proteins are part of the VACV replication complex in which A20 is a central subunit interacting with E9, D4 and D5. We hypothesised that molecules able to modulate protein-protein interactions within the replication complex may represent a new class of compounds with anti-orthopoxvirus activities. In this study, we adapted a forward duplex yeast two-hybrid assay to screen more than 27,000 molecules in order to identify inhibitors of A20/D4 and/or A20/D5 interactions. We identified two molecules that specifically inhibited both interactions in yeast. Interestingly, we observed that these compounds displayed a similar antiviral activity to cidofovir (CDV) against VACV in cell culture. We further showed that these molecules were able to inhibit the replication of another orthopoxvirus (i.e. cowpox virus), but not the herpes simplex virus type 1 (HSV-1), an unrelated DNA virus. We also demonstrated that the antiviral activity of both compounds correlated with an inhibition of VACV DNA synthesis. Hence, these molecules may represent a starting point for the development of new anti-orthopoxvirus drugs.
Collapse
Affiliation(s)
- Olivier Flusin
- Unité de virologie, Institut de Recherche Biomédicale des Armées (IRBA), 24 avenue des Maquis du Grésivaudan, 38702 La Tronche, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Xiao P, Lv X, Deng Y. Immobilization of Chymotrypsin on Silica Beads Based on High Affinity and Specificity Aptamer and Its Applications. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.673103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Mardilovich K, Olson MF, Baugh M. Targeting Rho GTPase signaling for cancer therapy. Future Oncol 2012; 8:165-77. [PMID: 22335581 DOI: 10.2217/fon.11.143] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Accumulating evidence from basic and clinical studies supports the concept that signaling pathways downstream of Rho GTPases play important roles in tumor development and progression. As a result, there has been considerable interest in the possibility that specific proteins in these signal transduction pathways could be potential targets for cancer therapy. A number of inhibitors targeting critical effector proteins, activators or the Rho GTPases themselves, have been developed. We will review the strategies currently being used to develop inhibitors of Rho GTPases and downstream signaling kinases and discuss candidate entities. Although molecularly targeted drugs that inhibit Rho GTPase signaling have not yet been widely adopted for clinical use, their potential value as cancer therapeutics continues to drive considerable pharmaceutical research and development.
Collapse
Affiliation(s)
- Katerina Mardilovich
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | | |
Collapse
|
39
|
Zhang XX, Eden HS, Chen X. Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. J Control Release 2012; 159:2-13. [PMID: 22056916 PMCID: PMC3288222 DOI: 10.1016/j.jconrel.2011.10.023] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/18/2011] [Indexed: 01/22/2023]
Abstract
Peptides are attracting increasing attention as therapeutic agents, as the technologies for peptide development and manufacture continue to mature. Concurrently, with booming research in nanotechnology for biomedical applications, peptides have been studied as an important class of components in nanomedicine, and they have been used either alone or in combination with nanomaterials of every reported composition. Peptides possess many advantages, such as smallness, ease of synthesis and modification, and good biocompatibility. Their functions in cancer nanomedicine, discussed in this review, include serving as drug carriers, as targeting ligands, and as protease-responsive substrates for drug delivery.
Collapse
Affiliation(s)
- Xiao-Xiang Zhang
- Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
40
|
Abstract
A major endeavour in cancer chemotherapy is to develop agents that specifically target a biomolecule of interest. There are two main classes of targeting agents: small molecules and biologics. Among biologics (e.g.: antibodies), DNA, RNA but also peptide aptamers are relatively recent agents. Peptide aptamers are seldom described but represent attractive agents that can inhibit a growing panel of oncotargets including Heat Shock Proteins. Potential pitfalls and coming challenges towards successful clinical trials are presented such as optimizing the delivery of peptide aptamers thanks to Nanotechnology.
Collapse
|
41
|
Mascini M, Palchetti I, Tombelli S. Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed Engl 2011; 51:1316-32. [PMID: 22213382 DOI: 10.1002/anie.201006630] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Indexed: 12/11/2022]
Abstract
In recent years new nucleic acid and protein-based combinatorial molecules have attracted the attention of researchers working in various areas of science, ranging from medicine to analytical chemistry. These molecules, called aptamers, have been proposed as alternatives to antibodies in many different applications. The aim of this Review is to illustrate the peculiarities of these combinatorial molecules which have initially been explored for their importance in molecular medicine, but have enormous potential in other biotechnological fields historically dominated by antibodies, such as bioassays. A description of these molecules is given, and the methods for their selection and production are also summarized. Moreover, critical aspects related to these molecules are discussed.
Collapse
Affiliation(s)
- Marco Mascini
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | | | | |
Collapse
|
42
|
Mascini M, Palchetti I, Tombelli S. Nucleinsäure- und Peptidaptamere: Grundlagen und bioanalytische Aspekte. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Thibaut J, Mérieux Y, Rigal D, Gillet G. A novel assay for the detection of anti-human platelet antigen antibodies (HPA-1a) based on peptide aptamer technology. Haematologica 2011; 97:696-704. [PMID: 22133781 DOI: 10.3324/haematol.2011.051276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Neonatal alloimmune thrombocytopenia is mostly due to the presence of maternal antibodies against the fetal platelet antigen HPA-1a on the platelet integrin GPIIb-IIIa. Accurate detection of anti-HPA-1a antibodies in the mother is, therefore, critical. Current diagnostic assays rely on the availability of pools of human platelets that vary according to donors and blood centers. There is still no satisfactory standardization of these assays. DESIGN AND METHODS Peptide aptamer was used to detect and identify HPA-1a-specific antibodies in human serum that do not require human platelets. A peptide aptamer library was screened using an anti-HPA-1a human monoclonal antibody as a bait to isolate an aptamer that mimics the human platelet antigen HPA-1a. RESULTS This is the first report in platelet immunology of the use of a peptide aptamer for diagnostic purposes. This assay gives better results than the MAIPA currently in use, detecting around 90% of the expected alloantibodies. CONCLUSIONS This assay could help define a standard for the quantitation of anti-HPA antibodies. This report also demonstrates that peptide aptamers can potentially detect a variety of biomarkers in body fluids; this is of particular interest for diagnostic purposes.
Collapse
Affiliation(s)
- Julien Thibaut
- Université de Lyon, IBCP, UMR 5086 CNRS-Université Lyon, Lyon, France
| | | | | | | |
Collapse
|
44
|
Reeb CA, Gerlach C, Heinssmann M, Prade I, Ceraline J, Roediger J, Roell D, Baniahmad A. A designed cell-permeable aptamer-based corepressor peptide is highly specific for the androgen receptor and inhibits prostate cancer cell growth in a vector-free mode. Endocrinology 2011; 152:2174-83. [PMID: 21486935 DOI: 10.1210/en.2011-0149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The repression of the androgen receptor (AR) activity is a major objective to inhibit prostate cancer growth. One underlying mechanism for efficient hormone therapy is based on corepressors that inactivate the AR. In line with this, castration-resistant prostate cancer is associated with malfunction or reduced corepressor action. To overcome this, the overexpression of endogenous corepressors, however, affects many other transcription factors. Therefore, an AR-specific corepressor could be of advantage. Using a yeast peptide aptamer two-hybrid screen with the full-length human AR, we identified a short amino acid-stretch that binds specifically to the human AR in yeast and in mammalian cells and not to the closely related progesterone or glucocorticoid receptors. Furthermore, fused to a silencing domain, this aptamer-based corepressor (AB-CoR) exhibits corepressor activity by inhibiting both the AR-mediated transactivation and expression of the AR target gene PSA. Furthermore, stable expression of the AB-CoR inhibits growth of human LNCaP prostate cancer cells. Moreover, we generated a cell-permeable AB-CoR by fusing a protein transduction domain to establish a vector-free transport system. Treatment of LNCaP cells with the bacterially expressed and affinity-purified cell-permeable AB-CoR peptide resulted in a significant inhibition of both AR-mediated transactivation and prostate cancer cell proliferation. Thus, generation of a novel AR-specific aptamer-based corepressor may present a vector-free inhibition of AR-dependent prostate cancer growth as a novel approach.
Collapse
Affiliation(s)
- Christina A Reeb
- Institute of Human Genetics, Jena University Hospital, Kollegiengasse 10, 07743 Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Gibert B, Hadchity E, Czekalla A, Aloy MT, Colas P, Rodriguez-Lafrasse C, Arrigo AP, Diaz-Latoud C. Inhibition of heat shock protein 27 (HspB1) tumorigenic functions by peptide aptamers. Oncogene 2011; 30:3672-81. [PMID: 21423207 DOI: 10.1038/onc.2011.73] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human heat shock protein 27 (Hsp27, HspB1) is an anti-apoptotic protein characterized for its tumorigenic and metastatic properties, and now referenced as a major therapeutic target in many types of cancer. Hsp27 biochemical properties rely on a structural oligomeric and dynamic organization. Downregulation by small interfering RNA or inhibition with dominant-negative mutant have proven their efficiency to counteract the anti-apoptotic and protective properties of Hsp27. In this study, we report the isolation and characterization of Hsp27-targeted molecules interfering with its structural organization. Using the peptide aptamer (PA) strategy, we isolated PAs that specifically interact with Hsp27 and not with the other members of the small heat shock protein family. In mammalian cell cultures, PAs expression perturbed the dimerization and oligomerization of Hsp27, and acted as negative regulators of the anti-apoptotic and cytoprotective activities of this protein. Further studies analyzing SQ20B cell xenografts in immunocompromised mice showed that PAs strongly reduced tumor development through cell cycle arrest. Our data suggest that PAs could provide a potential tool to develop strategies for the discovery of Hsp27 chemical inhibitors.
Collapse
Affiliation(s)
- B Gibert
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR5534, Université Lyon 1, Université de Lyon, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Peptide aptamer: a powerful potential tool in plant functional genomics. YI CHUAN = HEREDITAS 2010; 32:548-54. [DOI: 10.3724/sp.j.1005.2010.00548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Yao C, Zhu T, Qi Y, Zhao Y, Xia H, Fu W. Development of a quartz crystal microbalance biosensor with aptamers as bio-recognition element. SENSORS 2010; 10:5859-71. [PMID: 22219691 PMCID: PMC3247736 DOI: 10.3390/s100605859] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/20/2010] [Accepted: 05/15/2010] [Indexed: 11/30/2022]
Abstract
The ultimate goal in any biosensor development project is its use for actual sample detection. Recently, there has been an interest in biosensors with aptamers as bio-recognition elements, but reported examples all deal with standards, not human serum. In order to verify the differences of aptamer-based biosensor and antibody-based biosensor in clinical detection, a comparison of the performance of aptamer-based and antibody-based quartz crystal microbalance (QCM) biosensors for the detection of immunoglobulin E (IgE) in human serum was carried out. Aptamers (or antibodies) specific to IgE were immobilized on the gold surface of a quartz crystal. The frequency shifts of the QCM were measured. The linear range with the antibody (10–240 μg/L) compared to that of the aptamer (2.5–200 μg/L), but a lower detection limit could be observed in the aptamer-based biosensor. The reproducibility of the two biosensors was comparable. The aptamers were equivalent or superior to antibodies in terms of specificity and sensitivity. In addition, the aptamer receptors could tolerate repeated affine layer regeneration after ligand binding and recycling of the biosensor with little loss of sensitivity. When stored for three weeks, the frequency shifts of the aptamer-coated crystals were all greater than 90% of those on the response at the first day.
Collapse
Affiliation(s)
- Chunyan Yao
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; E-Mails (C.-Y.Y.); (Y.-H.Z.); (H.X.)
| | - Tangyou Zhu
- Department of Dermatology, Daping Hospital, Third Military Medical University, Chongqing 400042, China; E-Mail:
| | - Yongzhi Qi
- Department of Laboratory Medicine, the General Navy Hospital, Beijing 100037, China; E-Mail:
| | - Yuhui Zhao
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; E-Mails (C.-Y.Y.); (Y.-H.Z.); (H.X.)
| | - Han Xia
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; E-Mails (C.-Y.Y.); (Y.-H.Z.); (H.X.)
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; E-Mails (C.-Y.Y.); (Y.-H.Z.); (H.X.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-23-68754429; Fax: +86-23-65460909
| |
Collapse
|
48
|
Crnković-Mertens I, Bulkescher J, Mensger C, Hoppe-Seyler F, Hoppe-Seyler K. Isolation of peptides blocking the function of anti-apoptotic Livin protein. Cell Mol Life Sci 2010; 67:1895-905. [PMID: 20177953 PMCID: PMC11115742 DOI: 10.1007/s00018-010-0300-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/02/2010] [Indexed: 11/27/2022]
Abstract
Livin (ML-IAP) is a cancer-associated member of the inhibitor of apoptosis protein (IAP) family. By yeast two-hybrid screening of a randomized peptide expression library, we isolated short linear peptides that specifically bind to Livin, but not to other IAPs. Intracellular expression of the peptides sensitized livin-expressing cancer cells toward different pro-apoptotic stimuli. The bioactive peptides neither showed sequence homologies to Smac-derived IAP inhibitors, nor did they interfere with the binding of Livin to Smac. Intracellular expression of the peptides did not affect the levels or the subcellular distribution of Livin. Growth of livin-expressing tumor cells was inhibited in colony formation assays by the Livin-targeting peptides. These findings provide evidence that the targeted inhibition of Livin by peptides represents a viable approach for the apoptotic sensitization and growth inhibition of tumor cells. The inhibitory peptides isolated here could form a novel basis for the development of therapeutically useful Livin inhibitors.
Collapse
Affiliation(s)
- Irena Crnković-Mertens
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Julia Bulkescher
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Christina Mensger
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| |
Collapse
|
49
|
Kamiya T, Ojima T, Sugimoto K, Nakano H, Kawarasaki Y. Quantitative Y2H screening: Cloning and signal peptide engineering of a fungal secretory LacA gene and its application to yeast two-hybrid system as a quantitative reporter. J Biotechnol 2010; 146:151-9. [DOI: 10.1016/j.jbiotec.2010.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 02/07/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
|
50
|
Mayer G, Faulhammer D, Grättinger M, Fessele S, Blind M. A RNA-based approach towards small-molecule inhibitors. Chembiochem 2009; 10:1993-6. [PMID: 19575374 DOI: 10.1002/cbic.200900325] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Günter Mayer
- LIMES, University of Bonn, c/o Kekulé-Institut für Org. Chemie und Biochemie, 53121 Bonn (Germany).
| | | | | | | | | |
Collapse
|