1
|
Basco LK. Cultivation of Asexual Intraerythrocytic Stages of Plasmodium falciparum. Pathogens 2023; 12:900. [PMID: 37513747 PMCID: PMC10384318 DOI: 10.3390/pathogens12070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Successfully developed in 1976, the continuous in vitro culture of Plasmodium falciparum has many applications in the field of malaria research. It has become an important experimental model that directly uses a human pathogen responsible for a high prevalence of morbidity and mortality in many parts of the world and is a major source of biological material for immunological, biochemical, molecular, and pharmacological studies. Until present, the basic techniques described by Trager and Jensen and Haynes et al. remain unchanged in many malaria research laboratories. Nonetheless, different factors, including culture media, buffers, serum substitutes and supplements, sources of erythrocytes, and conditions of incubation (especially oxygen concentration), have been modified by different investigators to adapt the original technique in their laboratories or enhance the in vitro growth of the parasites. The possible effects and benefits of these modifications for the continuous cultivation of asexual intraerythrocytic stages of P. falciparum, as well as future challenges in developing a serum-free cultivation system and axenic cultures, are discussed.
Collapse
Affiliation(s)
- Leonardo K Basco
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Unité Mixte de Recherche (UMR) Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Institut Hospitalo-Universitaire-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
2
|
Akinnusi PA, Olubode SO, Adebesin AO, Osadipe TJ, Nwankwo DO, Adebisi AD, Titilayo I BA, Alo YM, Owoloye A, Oyebola KM. Structure-based scoring of anthocyanins and molecular modeling of PfLDH, PfDHODH, and PfDHFR reveal novel potential P. falciparum inhibitors. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
3
|
Hoarau M, Suwanakitti N, Varatthan T, Thiabma R, Rattanajak R, Charoensetakul N, Redman EK, Khotavivattana T, Vilaivan T, Yuthavong Y, Kamchonwongpaisan S. Assay Development and Identification of the First Plasmodium falciparum 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113515. [PMID: 35684452 PMCID: PMC9182141 DOI: 10.3390/molecules27113515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
Abstract
In the fight towards eradication of malaria, identifying compounds active against new drug targets constitutes a key approach. Plasmodium falciparum 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (PfHPPK) has been advanced as a promising target, as being part of the parasite essential folate biosynthesis pathway while having no orthologue in the human genome. However, no drug discovery efforts have been reported on this enzyme. In this study, we conducted a three-step screening of our in-house antifolate library against PfHPPK using a newly designed PfHPPK-GFP protein construct. Combining virtual screening, differential scanning fluorimetry and enzymatic assay, we identified 14 compounds active against PfHPPK. Compounds’ binding modes were investigated by molecular docking, suggesting competitive binding with the HMDP substrate. Cytotoxicity and in vitro ADME properties of hit compounds were also assessed, showing good metabolic stability and low toxicity. The most active compounds displayed low micromolar IC50 against drug-resistant parasites. The reported hit compounds constitute a good starting point for inhibitor development against PfHPPK, as an alternative approach to tackle the malaria parasite.
Collapse
Affiliation(s)
- Marie Hoarau
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (N.S.); (T.V.); (R.T.); (R.R.); (N.C.); (Y.Y.); (S.K.)
- Correspondence:
| | - Nattida Suwanakitti
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (N.S.); (T.V.); (R.T.); (R.R.); (N.C.); (Y.Y.); (S.K.)
| | - Thaveechai Varatthan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (N.S.); (T.V.); (R.T.); (R.R.); (N.C.); (Y.Y.); (S.K.)
| | - Ratthiya Thiabma
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (N.S.); (T.V.); (R.T.); (R.R.); (N.C.); (Y.Y.); (S.K.)
| | - Roonglawan Rattanajak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (N.S.); (T.V.); (R.T.); (R.R.); (N.C.); (Y.Y.); (S.K.)
| | - Netnapa Charoensetakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (N.S.); (T.V.); (R.T.); (R.R.); (N.C.); (Y.Y.); (S.K.)
| | - Emily K. Redman
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (E.K.R.); (T.V.)
| | - Tanatorn Khotavivattana
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Tirayut Vilaivan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (E.K.R.); (T.V.)
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (N.S.); (T.V.); (R.T.); (R.R.); (N.C.); (Y.Y.); (S.K.)
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (N.S.); (T.V.); (R.T.); (R.R.); (N.C.); (Y.Y.); (S.K.)
| |
Collapse
|
4
|
Nadeem MF, Khattak AA, Zeeshan N, Zahid H, Awan UA, Yaqoob A, Ashraf NM, Gul S, Alam S, Ahmed W. Surveillance of molecular markers of antimalarial drug resistance in Plasmodium falciparum and Plasmodium vivax in Federally Administered Tribal Area (FATA), Pakistan. Rev Inst Med Trop Sao Paulo 2021; 63:e59. [PMID: 34407160 PMCID: PMC8323834 DOI: 10.1590/s1678-9946202163059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022] Open
Abstract
This molecular epidemiological study was designed to determine the antimalarial
drug resistance pattern, and the genetic diversity of malaria isolates collected
from a war-altered Federally Administered Tribal Area (FATA), in Pakistan.
Clinical isolates were collected from Bajaur, Mohmand, Khyber, Orakzai and
Kurram agencies of FATA region between May 2017 and May 2018, and they underwent
DNA extraction and amplification. The investigation of gene polymorphisms in
drug resistance genes (dhfr, dhps, crt, and
mdr1) of Plasmodium falciparum and
Plasmodium vivax was carried out by pyrosequencing and
Sanger sequencing, respectively. Out of 679 PCR-confirmed malaria samples, 523
(77%) were P. vivax, 121 (18%) P. falciparum,
and 35 (5%) had mixed-species infections. All P. falciparum
isolates had pfdhfr double mutants (C59R+S108N), while
pfdhfr/pfdhps triple mutants (C59R+S108N+A437G) were
detected in 11.5% of the samples. About 97.4% of P. falciparum
isolates contained pfcrt K76T mutation, while
pfmdr1 N86Y and Y184F mutations were present in 18.2% and
10.2% of the samples. P. vivax pvdhfr S58R mutation was present
in 24.9% of isolates and the S117N mutation in 36.2%, while no mutation in the
pvdhps gene was found. Pvmdr1 F1076L
mutation was found in nearly all samples, as it was observed in 98.9% of
isolates. No significant anti-folate and chloroquine resistance was observed in
P. vivax; however, mutations associated with
antifolate-resistance were found, and the chloroquine-resistant gene has been
observed in 100% of P. falciparum isolates. Chloroquine and
sulphadoxine-pyrimethamine resistance were found to be high in P.
falciparum and low in P. vivax. Chloroquine could
still be used for P. vivax infection but need to be tested
in vivo, whereas a replacement of the artemisinin
combination therapy for P. falciparum appears to be
justified.
Collapse
Affiliation(s)
- Muhammad Faisal Nadeem
- University of Gujrat, Department of Biochemistry & Biotechnology, Gujrat, Punjab, Pakistan
| | - Aamer Ali Khattak
- The University of Haripur, Department of Medical Laboratory Technology, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Nadia Zeeshan
- University of Gujrat, Department of Biochemistry & Biotechnology, Gujrat, Punjab, Pakistan
| | - Hamza Zahid
- Sandeman Provincial Hospital, Department of Surgery, Quetta, Balochistan, Pakistan
| | - Usman Ayub Awan
- The University of Haripur, Department of Medical Laboratory Technology, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Adnan Yaqoob
- University of Gujrat, Department of Biochemistry & Biotechnology, Gujrat, Punjab, Pakistan
| | - Naeem Mahmood Ashraf
- University of Gujrat, Department of Biochemistry & Biotechnology, Gujrat, Punjab, Pakistan
| | - Sana Gul
- National University of Medical Sciences, Department of Biological Sciences, Rawalpindi, Pujab, Pakistan
| | - Sadia Alam
- The University of Haripur, Department of Microbiology, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Waqas Ahmed
- The University of Haripur, Department of Microbiology, Haripur, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
5
|
Rout UK, Sanket AS, Sisodia BS, Mohapatra PK, Pati S, Kant R, Dwivedi GR. A Comparative Review on Current and Future Drug Targets Against Bacteria & Malaria. Curr Drug Targets 2021; 21:736-775. [PMID: 31995004 DOI: 10.2174/1389450121666200129103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 11/22/2022]
Abstract
Long before the discovery of drugs like 'antibiotic and anti-parasitic drugs', the infectious diseases caused by pathogenic bacteria and parasites remain as one of the major causes of morbidity and mortality in developing and underdeveloped countries. The phenomenon by which the organism exerts resistance against two or more structurally unrelated drugs is called multidrug resistance (MDR) and its emergence has further complicated the treatment scenario of infectious diseases. Resistance towards the available set of treatment options and poor pipeline of novel drug development puts an alarming situation. A universal goal in the post-genomic era is to identify novel targets/drugs for various life-threatening diseases caused by such pathogens. This review is conceptualized in the backdrop of drug resistance in two major pathogens i.e. "Pseudomonas aeruginosa" and "Plasmodium falciparum". In this review, the available targets and key mechanisms of resistance of these pathogens have been discussed in detail. An attempt has also been made to analyze the common drug targets of bacteria and malaria parasite to overcome the current drug resistance scenario. The solution is also hypothesized in terms of a present pipeline of drugs and efforts made by scientific community.
Collapse
Affiliation(s)
- Usha K Rout
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar-751023, India
| | | | - Brijesh S Sisodia
- Regional Ayurveda Research Institute for Drug Development, Gwalior-474 009, India
| | | | - Sanghamitra Pati
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar-751023, India
| | - Rajni Kant
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh- 273013, India
| | - Gaurav R Dwivedi
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh- 273013, India
| |
Collapse
|
6
|
Nadeem MF, Khattak AA, Zeeshan N, Zahid H, Awan UA, Yaqoob A, Ashraf NM, Gul S, Alam S, Ahmed W. Surveillance of molecular markers of antimalarial drug resistance in Plasmodium falciparum and Plasmodium vivax in Federally Administered Tribal Area (FATA), Pakistan. Rev Inst Med Trop Sao Paulo 2021. [DOI: 10.1590/s1678-994620216305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Sana Gul
- National University of Medical Sciences, Pakistan
| | | | | |
Collapse
|
7
|
Lei ZN, Wu ZX, Dong S, Yang DH, Zhang L, Ke Z, Zou C, Chen ZS. Chloroquine and hydroxychloroquine in the treatment of malaria and repurposing in treating COVID-19. Pharmacol Ther 2020; 216:107672. [PMID: 32910933 PMCID: PMC7476892 DOI: 10.1016/j.pharmthera.2020.107672] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Chloroquine (CQ) and Hydroxychloroquine (HCQ) have been commonly used for the treatment and prevention of malaria, and the treatment of autoimmune diseases for several decades. As their new mechanisms of actions are identified in recent years, CQ and HCQ have wider therapeutic applications, one of which is to treat viral infectious diseases. Since the pandemic of the coronavirus disease 2019 (COVID-19), CQ and HCQ have been subjected to a number of in vitro and in vivo tests, and their therapeutic prospects for COVID-19 have been proposed. In this article, the applications and mechanisms of action of CQ and HCQ in their conventional fields of anti-malaria and anti-rheumatism, as well as their repurposing prospects in anti-virus are reviewed. The current trials and future potential of CQ and HCQ in combating COVID-19 are discussed.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Shaowei Dong
- Key Laboratory of medical electrophysiology of education ministry, School of Pharmacy, Southwest Medical University, China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Litu Zhang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Chang Zou
- Key Laboratory of medical electrophysiology of education ministry, School of Pharmacy, Southwest Medical University, China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
8
|
Li J, Zhao L, Huang CH, Zhang H, Zhang R, Elahi S, Sun P. Significant Effect of Evaporation Process on the Reaction of Sulfamethoxazole with Manganese Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4856-4864. [PMID: 32202772 DOI: 10.1021/acs.est.9b07455] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soil in the vadose zone is an important sink for antibiotics. However, previous studies have examined only the degradation of antibiotics in soil slurry systems, which were largely different from real-world unsaturated soil environments. Whether the same transformation mechanisms apply to unsaturated soil systems has been a question. Here, the degradation of sulfamethoxazole (SMX) by manganese dioxide (γ-MnO2) in both suspension systems and evaporation processes were examined. Results show that the slow degradation of SMX in the suspension system can be significantly promoted as the water gradually evaporates. SMX degraded differently in evaporation as compared to suspension systems because of the quenching effect of generated Mn2+. Transformation products of SMX in both systems also showed different toxicity toward Escherichia coli because of different evolutions of intermediates. This study has strong implications for the assessment and prediction of the transformation and fate of antibiotics in natural soil environments.
Collapse
Affiliation(s)
- Jingchen Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huichun Zhang
- Department of Civil Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Ruochun Zhang
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Samreen Elahi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Satuluri SH, Katari SK, Pasala C, Amineni U. Novel and potent inhibitors for dihydropteroate synthase of Helicobacter pylori. J Recept Signal Transduct Res 2020; 40:246-256. [PMID: 32098568 DOI: 10.1080/10799893.2020.1731533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An endless drug-resistant strains of Helicobacter pylori and multitudinous drug reactions are obstacles in the treatment of H. pylori infections, thereby ambitious novel proof-of-concept for inhibitor design was practiced in advancement of medication. Dihydropteroate synthase (DHPS) is an alluring target that plays a great role in folate synthesis pathway essential for amino acids biosynthesis was selected for designing novel drugs to prevent infections caused by pathogenic H. pylori. In the present study, a reliable tertiary structure of DHPS in complex with inhibitor 6MB was constructed by Modeler 9v19. DrugBank compounds of DHPS, published inhibitors, and co-crystal ligand (6MB) were docked against DHPS. The best docked compounds were screened against 28.5 million compounds resulted 1186 structural analogs. Virtual screening workflow and quantum polarized ligand dockings of these compounds against DHPS resulted three leads that showed better XP Gscores, ADME properties, and binding-free energies compared to 6MB, DrugBank compounds, and published inhibitors. The proposed leads were also validated by receiver operative characteristic (ROC) curve metrics in the presence of thousand decoys and the best docked existing compounds against DHPS. Long-range molecular dynamics (MD) simulations for 100 ns were executed after post-docking evaluations. Trajectory analysis showed the lead-DHPS docking complex's inter-molecular interactions were stable throughout the entire runtime of MD simulations than 6MB-DHPS complex and Eliglustat-DHPS complex. The study outcomes showed good competitive binding propensity and active-tunneling of leads over the existing inhibitors, thereby these leads could be ideal inhibitors against DHPS to target H. pylori.
Collapse
Affiliation(s)
- Sri Harsha Satuluri
- Bioinformatics Centre, Department of Bioinformatics, SVIMS University, Tirupati, India
| | - Sudheer Kumar Katari
- Bioinformatics Centre, Department of Bioinformatics, SVIMS University, Tirupati, India
| | - Chiranjeevi Pasala
- Bioinformatics Centre, Department of Bioinformatics, SVIMS University, Tirupati, India
| | - Umamaheswari Amineni
- Bioinformatics Centre, Department of Bioinformatics, SVIMS University, Tirupati, India
| |
Collapse
|
10
|
Sahu S, Ghosh SK, Gahtori P, Pratap Singh U, Bhattacharyya DR, Bhat HR. In silico ADMET study, docking, synthesis and antimalarial evaluation of thiazole-1,3,5-triazine derivatives as Pf-DHFR inhibitor. Pharmacol Rep 2019; 71:762-767. [PMID: 31351317 DOI: 10.1016/j.pharep.2019.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Plasmodium falciparum dihydrofolate reductase (Pf-DHFR) is an essential enzyme in the folate pathway and is an important target for antimalarial drug discovery. In this study a modern approach has been undertaken to identify new hits of thiazole-1,3,5-triazine derivatives as antimalarials targeting Pf-DHFR. METHODS The library of 378 thiazole-1,3,5-triazines were designed and subjected to ADME analysis. The compounds having optimal ADME score, was then evaluated by docking against wild and mutant Pf-DHFR complex. The resultant compound after screening from above these two methods were synthesized, and assayed for in vitro antimalarial against chloroquine-sensitive (3D-7) and chloroquine resistant (Dd-2) strains of P. falciparum. RESULTS Twenty compounds were identified from the dataset based on considerable AlogP98 vs. PSA_2D confidence ellipse, ADME filter and TOPKAT toxicity analysis. Majority of compounds showed interaction with Asp54, Arg59, Arg122 and Ile 164 in docking analysis. Entire set of tested derivatives exhibited considerable activity at the tested dose against sensitive strain with IC50 values varying from 10.03 to 54.58 μg/ml. Furthermore, against chloroquine resistant strain, eight compounds showed IC50 from 11.29 to 40.92 μg/ml. Compound A5 and H16 were found to be the most potent against both the strains of P. Falciparum. CONCLUSION Results of the study suggested the possible utility of thiazole-1,3,5-triazines as new lead for identifying new class of Pf-DHFR inhibitor.
Collapse
Affiliation(s)
- Supriya Sahu
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University Dehradun, Uttarakhand, India
| | - Udaya Pratap Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, India
| | | | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India.
| |
Collapse
|
11
|
Feng TY, Ren F, Fang Q, Dai GC, Li Y, Li Q, Xi HM, Li H, Hao YY, Hu JH. Effects of sulfanilamide on boar sperm quality, bacterial composition, and fertility during liquid storage at 17°C. Anim Sci J 2019; 90:1161-1169. [PMID: 31381235 DOI: 10.1111/asj.13281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/24/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022]
Abstract
Sulfanilamide (SA) is an effective broad-spectrum antibacterial agent in human and veterinary medicine. The purpose of this study was to evaluate the effects of SA on boar sperm quality during liquid storage at 17°C and determine the optimal concentration of SA and its effects on bacterial growth, microbial composition, and maternal fertility. Boar ejaculates were diluted with a basic extender, containing different concentrations of SA, and stored in a 17°C incubator for 6 days. The sperm motility, plasma membrane integrity, and acrosome integrity were measured daily. The results showed that when the concentration of SA was 0.02 g/L, the sperm quality parameters were significantly higher than those of all other treatment groups (p < .05). We also monitored the bacterial growth and compared the differences in the microbial species between the 0.02 g/L SA group and the control by 16S rDNA sequencing. The results revealed that some bacteria, such as Staphylococcus and Pseudomonas, were considerably lower in the 0.02 g/L SA group than in the control group (p < .05). In addition, preserved semen was used for artificial insemination, and results showed that 0.02 g/L SA group had a higher litter size, and its pregnancy rate was 92.5%.
Collapse
Affiliation(s)
- Tian-Yu Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fa Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qian Fang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gui-Chao Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qian Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hua-Ming Xi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yang-Yi Hao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Hong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
12
|
Santatiwongchai J, Gleeson D, Gleeson MP. Theoretical Evaluation of the Reaction Mechanism of Serine Hydroxymethyltransferase. J Phys Chem B 2019; 123:407-418. [PMID: 30522268 DOI: 10.1021/acs.jpcb.8b10196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) is a pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the reversible conversion of serine and tetrahydrofolate (THF) to glycine and 5,10-methylene THF. SHMT is a folate pathway enzyme and is therefore of considerable medical interest due to its role as an important intervention point for antimalarial, anticancer, and antibacterial treatments. Despite considerable experimental effort, the precise reaction mechanism of SHMT remains unclear. In this study, we explore the mechanism of SHMT to determine the roles of active site residues and the nature and the sequence of chemical steps. Molecular dynamics (MD) methods were employed to generate a suitable starting structure which then underwent analysis using hybrid quantum mechanical/molecular mechanical (QM/MM) simulations. The QM region consisted of 12 key residues, two substrates, and explicit solvent. Our results show that the catalytic reaction proceeds according to a retro-aldol synthetic process with His129 acting as the general base in the reaction. The rate-determining step involves the cleavage of the PLP-serine aldimine Cα-Cβ bond and the formation of formaldehyde in line with experimental evidence. The pyridyl ring of the PLP-serine aldimine substrate exists in deprotonated form, being stabilized directly by Asp208 via a strong H-bond, as well as through interactions with Arg371, Lys237, and His211, and with the surrounding protein which was electrostatically embedded. This knowledge has the potential to impact the design and development of new inhibitors.
Collapse
Affiliation(s)
- Jirapat Santatiwongchai
- Department of Chemistry, Faculty of Science , Kasetsart University , Bangkok 10900 , Thailand
| | - Duangkamol Gleeson
- Department of Chemistry, Faculty of Science , King Mongkut's Institute of Technology Ladkrabang , Bangkok 10520 , Thailand
| | - M Paul Gleeson
- Department of Chemistry, Faculty of Science , Kasetsart University , Bangkok 10900 , Thailand.,Department of Biomedical Engineering, Faculty of Engineering , King Mongkut's Institute of Technology Ladkrabang , Bangkok 10520 , Thailand
| |
Collapse
|
13
|
Das BK, Pv P, Chakraborty D. Computational insights into factor affecting the potency of diaryl sulfone analogs as Escherichia coli dihydropteroate synthase inhibitors. Comput Biol Chem 2018; 78:37-52. [PMID: 30497019 DOI: 10.1016/j.compbiolchem.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/08/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022]
Abstract
Dihydropteroate synthase (DHPS) is an alluring target for designing novel drug candidates to prevent infections caused by pathogenic Escherichia coli strains. Diaryl Sulfone (SO) compounds are found to inhibit DHPS competitively with respect to the substrate pABA (p-aminobenzoate). The extra aromatic ring of diaryl sulfone compounds found to stabilize them in highly flexible pABA binding loops. In this present study, a statistically significant 3D-QSAR model was developed using a data set of diaryl sulfone compounds. The favourable and unfavourable contributions of substitutions in sulfone compounds were illustrated by contour plot obtained from the developed 3D-QSAR model. Molecular docking calculations were performed to investigate the putative binding mode of diaryl sulfone compounds at the catalytic pocket. DFT calculations were carried out using SCF approach, B3LYP- 6-31 G (d) basis set to compute the HOMO, LUMO energies and their respective location at pABA binding pocket. Further, the developed model was validated by FEP (Free Energy Perturbation) calculations. The calculated relative free energy of binding between the highly potent and less potent sulfone compound was found to be -3.78 kcal/ mol which is comparable to the experimental value of -5.85 kcal/mol. A 10 ns molecular dynamics simulation of inhibitor and DHPS confirmed its stability at pABA catalytic site. Outcomes of the present work provide deeper insight in designing novel drug candidates for pathogenic Escherichia coli strains.
Collapse
Affiliation(s)
- Bratin Kumar Das
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India
| | - Pushyaraga Pv
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India
| | - Debashree Chakraborty
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India.
| |
Collapse
|
14
|
Review on Abyssomicins: Inhibitors of the Chorismate Pathway and Folate Biosynthesis. Molecules 2018; 23:molecules23061371. [PMID: 29882815 PMCID: PMC6100094 DOI: 10.3390/molecules23061371] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
Antifolates targeting folate biosynthesis within the shikimate-chorismate-folate metabolic pathway are ideal and selective antimicrobials, since higher eukaryotes lack this pathway and rely on an exogenous source of folate. Resistance to the available antifolates, inhibiting the folate pathway, underlines the need for novel antibiotic scaffolds and molecular targets. While para-aminobenzoic acid synthesis within the chorismate pathway constitutes a novel molecular target for antifolates, abyssomicins are its first known natural inhibitors. This review describes the abyssomicin family, a novel spirotetronate polyketide Class I antimicrobial. It summarizes synthetic and biological studies, structural, biosynthetic, and biological properties of the abyssomicin family members. This paper aims to explain their molecular target, mechanism of action, structure⁻activity relationship, and to explore their biological and pharmacological potential. Thirty-two natural abyssomicins and numerous synthetic analogues have been reported. The biological activity of abyssomicins includes their antimicrobial activity against Gram-positive bacteria and mycobacteria, antitumor properties, latent human immunodeficiency virus (HIV) reactivator, anti-HIV and HIV replication inducer properties. Their antimalarial properties have not been explored yet. Future analoging programs using the structure⁻activity relationship data and synthetic approaches may provide a novel abyssomicin structure that is active and devoid of cytotoxicity. Abyssomicin J and atrop-o-benzyl-desmethylabyssomicin C constitute promising candidates for such programs.
Collapse
|
15
|
Folate biosynthesis pathway: mechanisms and insights into drug design for infectious diseases. Future Med Chem 2018; 10:935-959. [PMID: 29629843 DOI: 10.4155/fmc-2017-0168] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Folate pathway is a key target for the development of new drugs against infectious diseases since the discovery of sulfa drugs and trimethoprim. The knowledge about this pathway has increased in the last years and the catalytic mechanism and structures of all enzymes of the pathway are fairly understood. In addition, differences among enzymes from prokaryotes and eukaryotes could be used for the design of specific inhibitors. In this review, we show a panorama of progress that has been achieved within the folate pathway obtained in the last years. We explored the structure and mechanism of enzymes, several genetic features, strategies, and approaches used in the design of new inhibitors that have been used as targets in pathogen chemotherapy.
Collapse
|
16
|
Jongkon N, Gleeson D, Gleeson MP. Elucidation of the catalytic mechanism of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase using QM/MM calculations. Org Biomol Chem 2018; 16:6239-6249. [DOI: 10.1039/c8ob01428k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This account describes the application of QM/MM calculations to understand the reaction mechanism of HPPK, an important pharmacological target on the folate pathway for the treatment of diseases including anti-microbial resistance, malaria and cancer.
Collapse
Affiliation(s)
- Nathjanan Jongkon
- Department of Social and Applied Science
- College of Industrial Technology
- King Mongkut's University of Technology North Bangkok
- Bangkok 10800
- Thailand
| | - Duangkamol Gleeson
- Department of Chemistry
- Faculty of Science
- King Mongkut's Institute of Technology Ladkrabang
- Thailand
| | - M. Paul Gleeson
- Department of Biomedical Engineering
- Faculty of Engineering
- King Mongkut's Institute of Technology Ladkrabang
- Bangkok 10520
- Thailand
| |
Collapse
|
17
|
Verhoef H, Veenemans J, Mwangi MN, Prentice AM. Safety and benefits of interventions to increase folate status in malaria-endemic areas. Br J Haematol 2017; 177:905-918. [PMID: 28369746 PMCID: PMC5485039 DOI: 10.1111/bjh.14618] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
For decades, folic acid has routinely been given to prevent or treat anaemia in children, pregnant women and people with sickle cell disease. However, there is no conclusive evidence that folate deficiency anaemia constitutes a public health problem in any of these groups. Industrial flour fortification is recommended and implemented in many countries to combat neural tube defects. Dietary folates or folic acid can antagonise the action of antifolate drugs that play a critical role in the prevention and treatment of malaria. Randomised trials have shown that folic acid supplementation increases the rate of treatment failures with sulfadoxine-pyrimethamine. The efficacy of antifolate drugs against Plasmodium is maximized in the absence of exogenous folic acid, suggesting that there is no safe minimum dose of ingested folic acid. We here review the safety and benefits of interventions to increase folate status in malaria-endemic countries. We conclude that formal cost-benefit analyses are required.
Collapse
Affiliation(s)
- Hans Verhoef
- London School of Hygiene and Tropical Medicine, MRC International Nutrition Group, London, UK
- Nutrition Theme, MRC Unit The Gambia, Banjul, Gambia
- Cell Biology and Immunology Group, & Research, Wageningen, The Netherlands
- Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| | - Jacobien Veenemans
- Laboratory for Microbiology and Immunology, Admiral de Ruyter Hospital, Goes, The Netherlands
- Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands
| | - Martin N Mwangi
- Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| | - Andrew M Prentice
- London School of Hygiene and Tropical Medicine, MRC International Nutrition Group, London, UK
- Nutrition Theme, MRC Unit The Gambia, Banjul, Gambia
| |
Collapse
|
18
|
Balabadra S, Kotni M, Manga V, Allanki AD, Prasad R, Sijwali PS. Synthesis and evaluation of naphthyl bearing 1,2,3-triazole analogs as antiplasmodial agents, cytotoxicity and docking studies. Bioorg Med Chem 2016; 25:221-232. [PMID: 27816268 DOI: 10.1016/j.bmc.2016.10.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
Novel series of naphthyl bearing 1,2,3-triazoles (4a-t) were synthesized and evaluated for their in vitro antiplasmodial activity against pyrimethamine (Pyr)-sensitive and resistant strains of Plasmodium falciparum. The synthesized compounds were assessed for their cytotoxicity employing human embryonic kidney cell line (HEK-293), and none of them was found to be toxic. Among them 4j, 4k, 4l, 4m, 4n, 4t exhibited significant antiplasmodial activity in both strains, of which compounds 4m, 4n and 4t (∼3.0-fold) displayed superior activity to Pyr against resistant strain. Pyr and selected compounds (4n, 4p and 4t) that repressed parasite development also inhibited PfDHFR activity of the soluble parasite extract, suggesting that anti-parasitic activity of these compounds is a result of inhibition of the parasite DHFR. In silico studies suggest that activity of these compounds might be enhanced due to π-π stacking.
Collapse
Affiliation(s)
- Saikrishna Balabadra
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, Osmania University, Hyderabad 500007, Telangana, India
| | - MeenaKumari Kotni
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, Osmania University, Hyderabad 500007, Telangana, India
| | - Vijjulatha Manga
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, Osmania University, Hyderabad 500007, Telangana, India.
| | - Aparna Devi Allanki
- Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, Telangana, India
| | - Rajesh Prasad
- Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, Telangana, India
| | - Puran Singh Sijwali
- Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, Telangana, India
| |
Collapse
|
19
|
Sahu S, Ghosh SK, Ghoshal A, Kalita J, Gahtori P, Bhattacharyya DR. Microwave assisted synthesis, antimalarial screening and structure–activity-relationship exploration of some phenylthiazolyl-triazine derivatives against dihydrofolate reductase. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1714-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Abstract
Food fortified with folic acid has been available for consumption in North America for over a decade. This strategy has led to an increase in folate levels in the general population and, more importantly, a significant decrease in the incidence of neural tube defects. However, this increase in folate intake has been associated with a greater risk of cancer disease. Many African countries are now embracing this concept; however, because folate promotes malaria parasite division, as it does in cancer cells, there is a possibility of malaria exacerbation if folate intake is increased. A precedent for such a concern is the now compelling evidence showing that an increase in iron intake can lead to a higher malaria risk; as a result, mass administration of iron in malaria-endemic areas is not recommended. In this article, we review work on the effect of folate on malaria parasites. Although this topic has received little research attention, the available data suggest that the increase in folate concentration could be associated with an increase in malaria infection. Thus, the introduction of food fortification with folic acid in malaria-endemic areas should be attended by precautionary programs to monitor the risk of malaria.
Collapse
Affiliation(s)
- Alexis Nzila
- Department of Life Sciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - John Okombo
- University of Cape Town, Cape Town, South Africa
| | - John Hyde
- Manchester Institute of Biotechnology (MIB), Manchester, United Kingdom
| |
Collapse
|
21
|
Srinivasan B, Tonddast-Navaei S, Skolnick J. Ligand binding studies, preliminary structure-activity relationship and detailed mechanistic characterization of 1-phenyl-6,6-dimethyl-1,3,5-triazine-2,4-diamine derivatives as inhibitors of Escherichia coli dihydrofolate reductase. Eur J Med Chem 2015; 103:600-14. [PMID: 26414808 DOI: 10.1016/j.ejmech.2015.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/29/2015] [Accepted: 08/09/2015] [Indexed: 01/16/2023]
Abstract
Gram-negative bacteria are implicated in the causation of life-threatening hospital-acquired infections. They acquire rapid resistance to multiple drugs and available antibiotics. Hence, there is the need to discover new antibacterial agents with novel scaffolds. For the first time, this study explores the 1,3,5-triazine-2,4-diamine and 1,2,4-triazine-2,4-diamine group of compounds as potential inhibitors of Escherichia coli DHFR, a pivotal enzyme in the thymidine and purine synthesis pathway. Using differential scanning fluorimetry, DSF, fifteen compounds with various substitutions on either the 3rd or 4th positions on the benzene group of 6,6-dimethyl-1-(benzene)-1,3,5-triazine-2,4-diamine were shown to bind to the enzyme with varying affinities. Then, the dose dependence of inhibition by these compounds was determined. Preliminary quantitative structure-activity relationship analysis and docking studies implicate the alkyl linker group and the sulfonyl fluoride group in increasing the potency of inhibition. 4-[4-[3-(4,6-diamino-2,2-dimethyl-1,3,5-triazin-1-yl)phenyl]butyl]benzenesulfonyl fluoride (NSC120927), the best hit from the study and a molecule with no reported inhibition of E. coli DHFR, potently inhibits the enzyme with a Ki value of 42.50 ± 5.34 nM, followed by 4-[6-[4-(4,6-diamino-2,2-dimethyl-1,3,5-triazin-1-yl)phenyl]hexyl]benzenesulfonyl fluoride (NSC132279), with a Ki value of 100.9 ± 12.7 nM. Detailed kinetic characterization of the inhibition brought about by five small-molecule hits shows that these inhibitors bind to the dihydrofolate binding site with preferential binding to the NADPH-bound binary form of the enzyme. Furthermore, in search of novel diaminotriazine scaffolds, it is shown that lamotrigine, a 1,2,4-triazine-3,5-diamine and a sodium-ion channel blocker class of antiepileptic drug, also inhibits E. coli DHFR. This is the first comprehensive study on the binding and inhibition brought about by diaminotriazines of a gram-negative prokaryotic enzyme and provides valuable insights into the SAR as an aid to the discovery of novel antibiotics.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950, Atlantic Drive, Atlanta, GA 30332, United States.
| | - Sam Tonddast-Navaei
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950, Atlantic Drive, Atlanta, GA 30332, United States.
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950, Atlantic Drive, Atlanta, GA 30332, United States.
| |
Collapse
|
22
|
Blaszczyk J, Lu Z, Li Y, Yan H, Ji X. Crystallographic and molecular dynamics simulation analysis of Escherichia coli dihydroneopterin aldolase. Cell Biosci 2014; 4:52. [PMID: 25264482 PMCID: PMC4176595 DOI: 10.1186/2045-3701-4-52] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/26/2014] [Indexed: 11/26/2022] Open
Abstract
Background Dihydroneopterin aldolase (DHNA) catalyzes the conversion of 7,8-dihydroneopterin to 6-hydroxymethyl-7,8-dihydropterin and also the epimerization of DHNP to 7,8-dihydromonapterin. Previously, we determined the crystal structure of Staphylococcus aureus DHNA (SaDHNA) in complex with the substrate analogue neopterin (NP). We also showed that Escherichia coli DHNA (EcDHNA) and SaDHNA have significantly different binding and catalytic properties by biochemical analysis. On the basis of these structural and functional data, we proposed a catalytic mechanism involving two proton wires. Results To understand the structural basis for the biochemical differences and further investigate the catalytic mechanism of DHNA, we have determined the structure of EcDHNA complexed with NP at 1.07-Å resolution [PDB:2O90], built an atomic model of EcDHNA complexed with the substrate DHNP, and performed molecular dynamics (MD) simulation analysis of the substrate complex. EcDHNA has the same fold as SaDHNA and also forms an octamer that consists of two tetramers, but the packing of one tetramer with the other is significantly different between the two enzymes. Furthermore, the structures reveal significant differences in the vicinity of the active site, particularly in the loop that connects strands β3 and β4, mainly due to the substitution of nearby residues. The building of an atomic model of the complex of EcDHNA and the substrate DHNP and the MD simulation of the complex show that some of the hydrogen bonds between the substrate and the enzyme are persistent, whereas others are transient. The substrate binding model and MD simulation provide the molecular basis for the biochemical behaviors of the enzyme, including noncooperative substrate binding, indiscrimination of a pair of epimers as the substrates, proton wire switching during catalysis, and formation of epimerization product. Conclusions The EcDHNA and SaDHNA structures, each in complex with NP, reveal the basis for the biochemical differences between EcDHNA and SaDHNA. The atomic substrate binding model and MD simulation offer insights into substrate binding and catalysis by DHNA. The EcDHNA structure also affords an opportunity to develop antimicrobials specific for Gram-negative bacteria, as DHNAs from Gram-negative bacteria are highly homologous and E. coli is a representative of this class of bacteria.
Collapse
Affiliation(s)
- Jaroslaw Blaszczyk
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702 USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA ; Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Zhenwei Lu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA ; Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 USA
| | - Yue Li
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Honggao Yan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Xinhua Ji
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| |
Collapse
|
23
|
Mokmak W, Chunsrivirot S, Hannongbua S, Yuthavong Y, Tongsima S, Kamchonwongpaisan S. Molecular dynamics of interactions between rigid and flexible antifolates and dihydrofolate reductase from pyrimethamine-sensitive and pyrimethamine-resistant Plasmodium falciparum. Chem Biol Drug Des 2014; 84:450-61. [PMID: 24716467 DOI: 10.1111/cbdd.12334] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/04/2014] [Accepted: 04/03/2014] [Indexed: 01/16/2023]
Abstract
Currently, the usefulness of antimalarials such as pyrimethamine (PYR) is drastically reduced due to the emergence of resistant Plasmodium falciparum (Pf) caused by its dihydrofolate reductase (PfDHFR) mutations, especially the quadruple N51I/C59R/S108N/I164L mutations. The resistance was due to the steric conflict of PYR with S108N. WR99210 (WR), a dihydrotriazine antifolate with a flexible side chain that can avoid such conflict, can overcome this resistance through tight binding with the mutant. To understand factors contributing to different binding affinities of PYR/WR to the wild type (WT) and quadruple mutant (QM), we performed simulations on WR-WT, WR-QM, PYR-WT, and PYR-QM complexes and found that Ile14 and Asp54 were crucial for PYR/WR binding to PfDHFR due to strong hydrogen bonds. The quadruple mutations cause PYR to form, on average, fewer hydrogen bonds with Ile14 and Leu164, and to be displaced from its optimal orientation for Asp54 interaction. The predicted binding affinity ranking (WR-QM ≈ WR-WT ≈ PYR-WT >> PYR-QM) reasonably agrees with the inhibition constant (K(i)) ranking. Our results reveal important residues for tight binding of PYR/WR to WT/QM, which may be used to evaluate the inhibition effectiveness of antimalarials and to provide fundamental information for designing new drugs effective against drug-resistant P. falciparum.
Collapse
Affiliation(s)
- Wanwimon Mokmak
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Klong Luang, Pathum Thani, 12120, Thailand
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
More research effort needs to be invested in antimicrobial drug development to address the increasing threat of multidrug-resistant organisms. The enzyme DHPS has been a validated drug target for over 70 years as the target for the highly successful sulfa drugs. The use of sulfa drugs has been compromised by the widespread presence of resistant organisms and the adverse side effects associated with their use. Despite the large amount of structural information available for DHPS, few recent publications address the possibility of using this knowledge for novel drug design. This article reviews the relevant papers and patents that report promising new small-molecule inhibitors of DHPS, and discuss these data in light of new insights into the DHPS catalytic mechanism and recently determined crystal structures of DHPS bound to potent small-molecule inhibitors. This new functional understanding confirms that DHPS deserves further consideration as an antimicrobial drug target.
Collapse
|
25
|
Utility of the Biosynthetic Folate Pathway for Targets in Antimicrobial Discovery. Antibiotics (Basel) 2014; 3:1-28. [PMID: 27025730 PMCID: PMC4790348 DOI: 10.3390/antibiotics3010001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 01/07/2023] Open
Abstract
The need for new antimicrobials is great in face of a growing pool of resistant pathogenic organisms. This review will address the potential for antimicrobial therapy based on polypharmacological activities within the currently utilized bacterial biosynthetic folate pathway. The folate metabolic pathway leads to synthesis of required precursors for cellular function and contains a critical node, dihydrofolate reductase (DHFR), which is shared between prokaryotes and eukaryotes. The DHFR enzyme is currently targeted by methotrexate in anti-cancer therapies, by trimethoprim for antibacterial uses, and by pyrimethamine for anti-protozoal applications. An additional anti-folate target is dihyropteroate synthase (DHPS), which is unique to prokaryotes as they cannot acquire folate through dietary means. It has been demonstrated as a primary target for the longest standing antibiotic class, the sulfonamides, which act synergistically with DHFR inhibitors. Investigations have revealed most DHPS enzymes possess the ability to utilize sulfa drugs metabolically, producing alternate products that presumably inhibit downstream enzymes requiring the produced dihydropteroate. Recent work has established an off-target effect of sulfonamide antibiotics on a eukaryotic enzyme, sepiapterin reductase, causing alterations in neurotransmitter synthesis. Given that inhibitors of both DHFR and DHPS are designed to mimic their cognate substrate, which contain shared substructures, it is reasonable to expect such “off-target” effects. These inhibitors are also likely to interact with the enzymatic neighbors in the folate pathway that bind products of the DHFR or DHPS enzymes and/or substrates of similar substructure. Computational studies designed to assess polypharmacology reiterate these conclusions. This leads to hypotheses exploring the vast utility of multiple members of the folate pathway for modulating cellular metabolism, and includes an appealing capacity for prokaryotic-specific polypharmacology for antimicrobial applications.
Collapse
|
26
|
Phytochemical Analysis and Antimalarial Activity Aqueous Extract of Lecaniodiscus cupanioides Root. J Trop Med 2013; 2013:605393. [PMID: 23983718 PMCID: PMC3747395 DOI: 10.1155/2013/605393] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/26/2013] [Accepted: 07/14/2013] [Indexed: 11/17/2022] Open
Abstract
Root aqueous extract of Lecaniodiscus cupanioides was evaluated for antimalarial activity and analyzed for its phytochemical constituents. Twenty-four (24) albino mice were infected by intraperitoneal injection of standard inoculum of chloroquine sensitive Plasmodium berghei (NK 65). The animals were randomly divided into 6 groups of 3 mice each. Group 1 served as the control while groups II-IV were orally administered 50, 150, and 250 mg/kg body weights of extract. Groups 5 and 6 received 1.75 and 5 mg/kg of artesunate and chloroquine, respectively. The results of the phytochemical analysis showed the presence of alkaloids (2.37%), saponin (0.336), tannin (0.012 per cent), phenol (0.008 per cent), and anthraquinone (0.002 per cent). There was 100 per cent parasite inhibition in the chloroquine group and 70 per cent in the 50 mg/kg body weight on day 12, respectively. The mean survival time (MST), for the control group was 14 days, artesunate 16 days, and chloroquine 30 days, while the groups that received 50 and 250 mg/kg body weight recorded similar MST of 17 days and the 150 mg/kg body weight group recorded 19 days. The results obtained indicated that the aqueous extract of Lecaniodiscus cupanioides may provide an alternative antimalarial.
Collapse
|
27
|
Salcedo-Sora JE, Ward SA. The folate metabolic network of Falciparum malaria. Mol Biochem Parasitol 2013; 188:51-62. [PMID: 23454873 DOI: 10.1016/j.molbiopara.2013.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 02/04/2013] [Accepted: 02/11/2013] [Indexed: 01/07/2023]
Abstract
The targeting of key enzymes in the folate pathway continues to be an effective chemotherapeutic approach that has earned antifolate drugs a valuable position in the medical pharmacopoeia. The successful therapeutic use of antifolates as antimalarials has been a catalyst for ongoing research into the biochemistry of folate and pterin biosynthesis in malaria parasites. However, our understanding of the parasites folate metabolism remains partial and patchy, especially in relation to the shikimate pathway, the folate cycle, and folate salvage. A sizeable number of potential folate targets remain to be characterised. Recent reports on the parasite specific transport of folate precursors that would normally be present in the human host awaken previous hypotheses on the salvage of folate precursors or by-products. As the parasite progresses through its life-cycle it encounters very contrasting host cell environments that present radically different metabolic milieus and biochemical challenges. It would seem probable that as the parasite encounters differing environments it would need to modify its biochemistry. This would be reflected in the folate homeostasis in Plasmodium. Recent drug screening efforts and insights into folate membrane transport substantiate the argument that folate metabolism may still offer unexplored opportunities for therapeutic attack.
Collapse
Affiliation(s)
- J Enrique Salcedo-Sora
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | |
Collapse
|
28
|
Navarrete O, Van Daele J, Stove C, Lambert W, Storozhenko S, Van Der Straeten D. Isolation and characterisation of an antifolate insensitive (afi1) mutant of Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:37-44. [PMID: 22672761 DOI: 10.1111/j.1438-8677.2012.00602.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Antifolates can impair the synthesis and/or function of folates in living organisms. Mechanisms of resistance or tolerance to antifolates have been mainly described in plants using the drug methotrexate. In this work, the antifolate trimethoprim (TMP) was used with the aim of revealing a novel mechanism of resistance. EMS mutagenised seeds from Arabidopsis were screened to isolate individuals insensitive to TMP. Genetic analysis revealed a homozygous recessive mutation that segregates with the phenotype of tolerance to 50 μm TMP. Mapping analysis localised the mutation at the end of the short arm of chromosome 3. Preliminary characterisation demonstrated up-regulation of several genes from the folate biosynthetic pathway in the TMP insensitive mutant, and a slight increase in total folate content in the mutant as compared with the Col-0 control. Moreover, sequence analysis of the DHFR (dihydrofolate reductase) genes, which encode a known target for resistance to antifolates, did not reveal any changes. This study is the first report of a stable mutant insensitive (afi1) to the antifolate trimethoprim in plants, and suggests the existence of a novel mechanism of resistance to antifolates.
Collapse
Affiliation(s)
- O Navarrete
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, Gent, Belgium
| | | | | | | | | | | |
Collapse
|
29
|
Butt AM, Nasrullah I, Tahir S, Tong Y. Comparative genomics analysis of Mycobacterium ulcerans for the identification of putative essential genes and therapeutic candidates. PLoS One 2012; 7:e43080. [PMID: 22912793 PMCID: PMC3418265 DOI: 10.1371/journal.pone.0043080] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium ulcerans, the causative agent of Buruli ulcer, is the third most common mycobacterial disease after tuberculosis and leprosy. The present treatment options are limited and emergence of treatment resistant isolates represents a serious concern and a need for better therapeutics. Conventional drug discovery methods are time consuming and labor-intensive. Unfortunately, the slow growing nature of M. ulcerans in experimental conditions is also a barrier for drug discovery and development. In contrast, recent advancements in complete genome sequencing, in combination with cheminformatics and computational biology, represent an attractive alternative approach for the identification of therapeutic candidates worthy of experimental research. A computational, comparative genomics workflow was defined for the identification of novel therapeutic candidates against M. ulcerans, with the aim that a selected target should be essential to the pathogen, and have no homology in the human host. Initially, a total of 424 genes were predicted as essential from the M. ulcerans genome, via homology searching of essential genome content from 20 different bacteria. Metabolic pathway analysis showed that the most essential genes are associated with carbohydrate and amino acid metabolism. Among these, 236 proteins were identified as non-host and essential, and could serve as potential drug and vaccine candidates. Several drug target prioritization parameters including druggability were also calculated. Enzymes from several pathways are discussed as potential drug targets, including those from cell wall synthesis, thiamine biosynthesis, protein biosynthesis, and histidine biosynthesis. It is expected that our data will facilitate selection of M. ulcerans proteins for successful entry into drug design pipelines.
Collapse
Affiliation(s)
- Azeem Mehmood Butt
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
- * E-mail: (AMB); (YT)
| | - Izza Nasrullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shifa Tahir
- National Center for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
- * E-mail: (AMB); (YT)
| |
Collapse
|
30
|
Dihydrofolate reductase as a therapeutic target for infectious diseases: opportunities and challenges. Future Med Chem 2012; 4:1335-65. [DOI: 10.4155/fmc.12.68] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Infectious diseases caused by parasites continue to take a massive toll on human health in the poor regions of the world. Filling the anti-infective drug-discovery pipeline has never been as challenging as it is now. The organisms responsible for these diseases have interesting biology with many potential biochemical targets. Inhibition of metabolic enzymes has been established as an attractive strategy for anti-infectious drug development. In this field, dihydrofolate reductase (DHFR) is an important enzyme in nucleic and amino acid synthesis and an extensively studied drug target over the past 50 years. The challenges for novel DHFR inhibition-based chemotherapeutics for the treatment of infectious diseases are now focused on overcoming the resistance problem as well as cost–effectiveness. Each year, the large number of literature citations attest the continued popularity of DHFR. It becomes truly the ‘enzyme of choice for all seasons and almost all reasons’. Herein, we summarize the opportunities and challenges in developing novel lead based on this target.
Collapse
|
31
|
Camara D, Bisanz C, Barette C, Van Daele J, Human E, Barnard B, Van der Straeten D, Stove CP, Lambert WE, Douce R, Maréchal E, Birkholtz LM, Cesbron-Delauw MF, Dumas R, Rébeillé F. Inhibition of p-aminobenzoate and folate syntheses in plants and apicomplexan parasites by natural product rubreserine. J Biol Chem 2012; 287:22367-76. [PMID: 22577137 DOI: 10.1074/jbc.m112.365833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glutamine amidotransferase/aminodeoxychorismate synthase (GAT-ADCS) is a bifunctional enzyme involved in the synthesis of p-aminobenzoate, a central component part of folate cofactors. GAT-ADCS is found in eukaryotic organisms autonomous for folate biosynthesis, such as plants or parasites of the phylum Apicomplexa. Based on an automated screening to search for new inhibitors of folate biosynthesis, we found that rubreserine was able to inhibit the glutamine amidotransferase activity of the plant GAT-ADCS with an apparent IC(50) of about 8 μM. The growth rates of Arabidopsis thaliana, Toxoplasma gondii, and Plasmodium falciparum were inhibited by rubreserine with respective IC(50) values of 65, 20, and 1 μM. The correlation between folate biosynthesis and growth inhibition was studied with Arabidopsis and Toxoplasma. In both organisms, the folate content was decreased by 40-50% in the presence of rubreserine. In both organisms, the addition of p-aminobenzoate or 5-formyltetrahydrofolate in the external medium restored the growth for inhibitor concentrations up to the IC(50) value, indicating that, within this range of concentrations, rubreserine was specific for folate biosynthesis. Rubreserine appeared to be more efficient than sulfonamides, antifolate drugs known to inhibit the invasion and proliferation of T. gondii in human fibroblasts. Altogether, these results validate the use of the bifunctional GAT-ADCS as an efficient drug target in eukaryotic cells and indicate that the chemical structure of rubreserine presents interesting anti-parasitic (toxoplasmosis, malaria) potential.
Collapse
Affiliation(s)
- Djeneb Camara
- Laboratoire de Physiologie Cellulaire Végétale, Commissariat à l'Energie Atomique/CNRS UMR5168/INRA USC1200/Université Joseph Fourier Grenoble I, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Muñoz-Durango K, Maciuk A, Harfouche A, Torijano-Gutiérrez S, Jullian JC, Quintin J, Spelman K, Mouray E, Grellier P, Figadère B. Detection, characterization, and screening of heme-binding molecules by mass spectrometry for malaria drug discovery. Anal Chem 2012; 84:3324-9. [PMID: 22409647 DOI: 10.1021/ac300065t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Drug screening for antimalarials uses heme biocrystallization inhibition methods as an alternative to parasite cultures, but they involve complex processes and cannot detect artemisinin-like molecules. The described method detects heme-binding compounds by mass spectrometry, using dissociation of the drug-heme adducts to evaluate putative antiplasmodial activity. Applied to a chemical library, it showed a good hit-to-lead ratio and is an efficient early stage screening for complex mixtures like natural extracts.
Collapse
Affiliation(s)
- Katalina Muñoz-Durango
- Laboratoire de Pharmacognosie, UMR 8076 CNRS BioCIS, Faculté de Pharmacie, Université Paris-Sud, 5 rue J.-B. Clément, 92296 Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Adane L, Bharatam PV. Binding modes of 2,4-diaminoquinazoline and 2,4-diaminopteridine analogs to P. falciparum dihydrofolate reductase enzyme: Molecular docking studies. Indian J Pharm Sci 2011; 72:324-33. [PMID: 21188041 PMCID: PMC3003165 DOI: 10.4103/0250-474x.70478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 02/03/2010] [Accepted: 04/20/2010] [Indexed: 11/30/2022] Open
Abstract
A molecular docking study was carried out on 28 compounds belonging to 2,4-diaminoquinazoline and 2,4-diaminopteridine analogs using Glide, FlexX and GOLD programs and the X-ray crystallographic structures of the quadruple mutant (1J3K:pdb) and wild type (1J3I:pdb) Plasmodium falciparum dihydrofolate reductase enzyme. The experimental conformation the bound ligand WR99210 was precisely reproduced by the docking procedures as demonstrated by low (<2.00 Å) root-mean-square deviations. The results indicated that most of the compounds dock into the active sites of both the wild type and quadruple mutant P. falciparum dihydrofolate reductase enzymes. Visual inspection of the binding modes also demonstrated that most of the compounds could form H-bond interactions with the key amino acid residues (Asp54, Ile14 and Leu/Ile164) and with better docking scores than the bound compound (5). Their long side chains orient in the hydrophobic portion of the active site which is occupied by trichloro aryloxy side chain of WR99210 (5). Thus, avoid potential steric clashes with Asn108 (mutated from Ser108). Such a clash is known to be responsible for the resistance of the P. falciparum to pyrimethamine and cycloguanil.
Collapse
Affiliation(s)
- L Adane
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar-160 062, India
| | | |
Collapse
|
34
|
Morgan RE, Batot GO, Dement JM, Rao VA, Eadsforth TC, Hunter WN. Crystal structures of Burkholderia cenocepacia dihydropteroate synthase in the apo-form and complexed with the product 7,8-dihydropteroate. BMC STRUCTURAL BIOLOGY 2011; 11:21. [PMID: 21554707 PMCID: PMC3098144 DOI: 10.1186/1472-6807-11-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/09/2011] [Indexed: 11/22/2022]
Abstract
Background The enzyme dihydropteroate synthase (DHPS) participates in the de novo synthesis of folate cofactors by catalyzing the formation of 7,8-dihydropteroate from condensation of p-aminobenzoic acid with 6-hydroxymethyl-7,8-dihydropteroate pyrophosphate. DHPS is absent from humans, who acquire folates from diet, and has been validated as an antimicrobial therapeutic target by chemical and genetic means. The bacterium Burkholderia cenocepacia is an opportunistic pathogen and an infective agent of cystic fibrosis patients. The organism is highly resistant to antibiotics and there is a recognized need for the identification of new drugs against Burkholderia and related Gram-negative pathogens. Our characterization of the DHPS active site and interactions with the enzyme product are designed to underpin early stage drug discovery. Results An efficient recombinant protein expression system for DHPS from B. cenocepacia (BcDHPS) was prepared, the dimeric enzyme purified in high yield and crystallized. The structure of the apo-enzyme and the complex with the product 7,8-dihydropteroate have been determined to 2.35 Å and 1.95 Å resolution respectively in distinct orthorhombic crystal forms. The latter represents the first crystal structure of the DHPS-pterin product complex, reveals key interactions involved in ligand binding, and reinforces data generated by other structural studies. Comparisons with orthologues identify plasticity near the substrate-binding pocket and in particular a range of loop conformations that contribute to the architecture of the DHPS active site. These structural data provide a foundation for hit discovery. An intriguing observation, an artifact of the analysis, that of a potential sulfenamide bond within the ligand complex structure is mentioned. Conclusion Structural similarities between BcDHPS and orthologues from other Gram-negative species are evident as expected on the basis of a high level of sequence identity. The presence of 7,8-dihydropteroate in the binding site provides details about ligand recognition by the enzyme and the different states of the enzyme allow us to visualize distinct conformational states of loops adjacent to the active site. Improved drugs to combat infections by Burkholderia sp. and related Gram-negative bacteria are sought and our study now provides templates to assist that process and allow us to discuss new ways of inhibiting DHPS.
Collapse
Affiliation(s)
- Rachel E Morgan
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
35
|
Adane L, Bharatam PV, Sharma V. A common feature-based 3D-pharmacophore model generation and virtual screening: identification of potential PfDHFR inhibitors. J Enzyme Inhib Med Chem 2011; 25:635-45. [PMID: 19995305 DOI: 10.3109/14756360903393817] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A four-feature 3D-pharmacophore model was built from a set of 24 compounds whose activities were reported against the V1/S strain of the Plasmodium falciparum dihydrofolate reductase (PfDHFR) enzyme. This is an enzyme harboring Asn51Ile + Cys59Arg + Ser108Asn + Ile164Leu mutations. The HipHop module of the Catalyst program was used to generate the model. Selection of the best model among the 10 hypotheses generated by HipHop was carried out based on rank and best-fit values or alignments of the training set compounds onto a particular hypothesis. The best model (hypo1) consisted of two H-bond donors, one hydrophobic aromatic, and one hydrophobic aliphatic features. Hypo1 was used as a query to virtually screen Maybridge2004 and NCI2000 databases. The hits obtained from the search were subsequently subjected to FlexX and Glide docking studies. Based on the binding scores and interactions in the active site of quadruple-mutant PfDHFR, a set of nine hits were identified as potential inhibitors.
Collapse
Affiliation(s)
- Legesse Adane
- National Institute of Pharmacuetical Education and Research, S.A.S. Nagar, Mohali, India
| | | | | |
Collapse
|
36
|
Camara D, Richefeu-Contesto C, Gambonnet B, Dumas R, Rébeillé F. The synthesis of pABA: Coupling between the glutamine amidotransferase and aminodeoxychorismate synthase domains of the bifunctional aminodeoxychorismate synthase from Arabidopsis thaliana. Arch Biochem Biophys 2011; 505:83-90. [DOI: 10.1016/j.abb.2010.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/09/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
|
37
|
Wang H, Bei ZC, Wang JY, Cao WC. Plasmodium berghei K173: selection of resistance to naphthoquine in a mouse model. Exp Parasitol 2010; 127:436-9. [PMID: 20868687 DOI: 10.1016/j.exppara.2010.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 08/27/2010] [Accepted: 08/31/2010] [Indexed: 11/19/2022]
Abstract
Naphthoquine (NQ), as a component of ARCO® which composed of NQ and artemisinin, is a new 4-aminoquinoline antimalarial synthesized by our institute. Here, a naphthoquine-resistant line of rodent malaria parasite was selected through exposing Plasmodium berghei Keyberg 173 strain to progressively increased drug pressure. The selected strain showed a more than 200-fold decreased susceptibility to NQ with a stable resistance phenotype after 10 serial passages without drug pressure or when cryopreserved over a period of 12 months. In a cross-resistance assay, the susceptibility of NQ-resistant parasites to chloroquine was decreased by 14.5-fold. These findings imply NQ-resistant parasites might be selected by long-term usage of NQ in epidemic areas and the efficacy of NQ or ARCO® in chloroquine-resistant Plasmodium falciparum epidemic areas should be monitored closely.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pharmacy, Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, 100071 Beijing, PR China
| | | | | | | |
Collapse
|
38
|
Adane L, Bharatam PV. Computer-aided molecular design of 1H-imidazole-2,4-diamine derivatives as potential inhibitors of Plasmodium falciparum DHFR enzyme. J Mol Model 2010; 17:657-67. [DOI: 10.1007/s00894-010-0756-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 05/12/2010] [Indexed: 11/30/2022]
|
39
|
Preclinical evaluation of the antifolate QN254, 5-chloro- N'6'-(2,5-dimethoxy-benzyl)-quinazoline-2,4,6-triamine, as an antimalarial drug candidate. Antimicrob Agents Chemother 2010; 54:2603-10. [PMID: 20350951 DOI: 10.1128/aac.01526-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Drug resistance against dihydrofolate reductase (DHFR) inhibitors-such as pyrimethamine (PM)-has now spread to almost all regions where malaria is endemic, rendering antifolate-based malaria treatments highly ineffective. We have previously shown that the di-amino quinazoline QN254 [5-chloro-N'6'-(2,5-dimethoxy-benzyl)-quinazoline-2,4,6-triamine] is active against the highly PM-resistant Plasmodium falciparum V1S strain, suggesting that QN254 could be used to treat malaria in regions with a high prevalence of antifolate resistance. Here, we further demonstrate that QN254 is highly active against Plasmodium falciparum clinical isolates, displaying various levels of antifolate drug resistance, and we provide biochemical and structural evidence that QN254 binds and inhibits the function of both the wild-type and the quadruple-mutant (V1S) forms of the DHFR enzyme. In addition, we have assessed QN254 oral bioavailability, efficacy, and safety in vivo. The compound displays favorable pharmacokinetic properties after oral administration in rodents. The drug was remarkably efficacious against Plasmodium berghei and could fully cure infected mice with three daily oral doses of 30 mg/kg. In the course of these efficacy studies, we have uncovered some dose limiting toxicity at higher doses that was confirmed in rats. Thus, despite its relative in vitro selectivity toward the Plasmodium DHFR enzyme, QN254 does not show the adequate therapeutic index to justify its further development as a single agent.
Collapse
|
40
|
Adane L, Patel DS, Bharatam PV. Shape- and Chemical Feature-Based 3D-Pharmacophore Model Generation and Virtual Screening: Identification of Potential Leads forP. falciparumDHFR Enzyme Inhibition. Chem Biol Drug Des 2010; 75:115-26. [DOI: 10.1111/j.1747-0285.2009.00908.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Probing the roles of non-homologous insertions in the N-terminal domain of Plasmodium falciparum hydroxymethylpterin pyrophosphokinase–dihydropteroate synthase. Mol Biochem Parasitol 2009; 168:135-42. [DOI: 10.1016/j.molbiopara.2009.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/29/2009] [Accepted: 07/09/2009] [Indexed: 11/19/2022]
|
42
|
Adane L, Bharatam PV. 3D-QSAR analysis of cycloguanil derivatives as inhibitors of A16V+S108T mutant Plasmodium falciparum dihydrofolate reductase enzyme. J Mol Graph Model 2009; 28:357-67. [DOI: 10.1016/j.jmgm.2009.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/27/2009] [Accepted: 09/01/2009] [Indexed: 12/17/2022]
|
43
|
Kiboi DM, Irungu BN, Langat B, Wittlin S, Brun R, Chollet J, Abiodun O, Nganga JK, Nyambati VCS, Rukunga GM, Bell A, Nzila A. Plasmodium berghei ANKA: selection of resistance to piperaquine and lumefantrine in a mouse model. Exp Parasitol 2009; 122:196-202. [PMID: 19318094 PMCID: PMC2691925 DOI: 10.1016/j.exppara.2009.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 03/08/2009] [Accepted: 03/16/2009] [Indexed: 10/24/2022]
Abstract
We have selected piperaquine (PQ) and lumefantrine (LM) resistant Plasmodium berghei ANKA parasite lines in mice by drug pressure. Effective doses that reduce parasitaemia by 90% (ED(90)) of PQ and LM against the parent line were 3.52 and 3.93 mg/kg, respectively. After drug pressure (more than 27 passages), the selected parasite lines had PQ and LM resistance indexes (I(90)) [ED(90) of resistant line/ED(90) of parent line] of 68.86 and 63.55, respectively. After growing them in the absence of drug for 10 passages and cryo-preserving them at -80 degrees C for at least 2 months, the resistance phenotypes remained stable. Cross-resistance studies showed that the PQ-resistant line was highly resistant to LM, while the LM-resistant line remained sensitive to PQ. Thus, if the mechanism of resistance is similar in P. berghei and Plasmodium falciparum, the use of LM (as part of Coartem) should not select for PQ resistance.
Collapse
Affiliation(s)
- D M Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Maitarad P, Kamchonwongpaisan S, Vanichtanankul J, Vilaivan T, Yuthavong Y, Hannongbua S. Interactions between cycloguanil derivatives and wild type and resistance-associated mutant Plasmodium falciparum dihydrofolate reductases. J Comput Aided Mol Des 2009; 23:241-52. [PMID: 19156529 DOI: 10.1007/s10822-008-9254-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 11/20/2008] [Indexed: 11/29/2022]
Abstract
Comparative molecular field analysis (CoMFA) and quantum chemical calculations were performed on cycloguanil (Cyc) derivatives of the wild type and the quadruple mutant (Asn51Ile, Cys59Arg, Ser108Asn, Ile164Leu) of Plasmodium falciparum dihydrofolate reductase (PfDHFR). The represented CoMFA models of wild type (r(2) = 0.727 and r(2) = 0.985) and mutant type (r(2) = 0.786 and r(2) = 0.979) can describe the differences of the Cyc structural requirements for the two types of PfDHFR enzymes and can be useful to guide the design of new inhibitors. Moreover, the obtained particular interaction energies between the Cyc and the surrounding residues in the binding pocket indicated that Asn108 of mutant enzyme was the cause of Cyc resistance by producing steric clash with p-Cl of Cyc. Consequently, comparing the energy contributions with the potent flexible WR99210 inhibitor, it was found that the key mutant residue, Asn108, demonstrates attractive interaction with this inhibitor and some residues, Leu46, Ile112, Pro113, Phe116, and Leu119, seem to perform as second binding site with WR99210. Therefore, quantum chemical calculations can be useful for investigating residue interactions to clarify the cause of drug resistance.
Collapse
Affiliation(s)
- Phornphimon Maitarad
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | | | | | | | | | | |
Collapse
|
45
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Smith AG, Croft MT, Moulin M, Webb ME. Plants need their vitamins too. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:266-75. [PMID: 17434786 DOI: 10.1016/j.pbi.2007.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 04/04/2007] [Indexed: 05/14/2023]
Abstract
Over recent years, the pathways for the biosynthesis of many vitamins have been elucidated at the molecular level in plants, and several unique features are emerging. One is that the mitochondrion plays an important role in the synthesis of folate (vitamin B9), biotin (B7), pantothenate (B5), ascorbate (C), and possibly thiamin (B1). Second, the production of some of these cofactors is regulated by developmental cues, and perhaps more surprisingly, by environmental signals such as high light and salinity. Moreover, the biosynthesis of thiamin in Arabidopsis may be negatively regulated by a riboswitch, a novel method of gene regulation that is characteristic of cofactor biosynthesis in bacteria. Vitamin B12 is unique in that it is not found in vascular plants, but is abundant in algae; recent molecular work has revealed that algae do not synthesise the vitamin but instead obtain it from bacteria.
Collapse
Affiliation(s)
- Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| | | | | | | |
Collapse
|