1
|
Shao F, Sun X, Yu Q, Wang K, Sun C, Wang Q, Cao X, Zhang L, Fu P, Yang X, Yu J, Xu X, Deng W. Lycium barbarum oligosaccharide-derived carbon quantum dots inhibit glial scar formation while promoting neuronal differentiation of neural stem cells. Int J Biol Macromol 2024; 282:137474. [PMID: 39528198 DOI: 10.1016/j.ijbiomac.2024.137474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Overexpression of glial fibrillary acidic protein (GFAP) in activated astrocytes following spinal cord injury is closely associated with glial scar formation, which harms axonal regrowth. In this study, we prepared ultrasmall cationic carbon quantum dots (CQDs) via one-step hydrothermal carbonization. Lycium barbarum oligosaccharides were used as the carbon source for the first time, and polyetherimide (PEI) and ethylenediamine (ED) were used as cationic reagents. Interestingly, the resultant CQDs show the bioactivity of specifically inhibiting GFAP protein expression, while promoting neuronal marker expression in neural stem cells (NSCs). Furthermore, CQDs together with NSCs can remarkably improve the motor activity of animals after implantation into the transection lesion of the rat spinal cord. Histological analysis confirmed that CQDs can enhance neuronal differentiation of NSCs while inhibiting glial scar formation in vivo. Altogether, this study represents the first report of producing CQDs from oligosaccharides and investigating their impact on NSCs differentiation, thus providing a paradigm for exploring the bioactivity of quantum dots.
Collapse
Affiliation(s)
- Fengxia Shao
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China
| | - Xuan Sun
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Kaili Wang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China
| | - Congyong Sun
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Linzhi Zhang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Peng Fu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Xiufen Yang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China.
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China.
| |
Collapse
|
2
|
Li Z, Jiang YY, Long C, Peng X, Tao J, Pu Y, Yue R. Bridging metabolic syndrome and cognitive dysfunction: role of astrocytes. Front Endocrinol (Lausanne) 2024; 15:1393253. [PMID: 38800473 PMCID: PMC11116704 DOI: 10.3389/fendo.2024.1393253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Metabolic syndrome (MetS) and cognitive dysfunction pose significant challenges to global health and the economy. Systemic inflammation, endocrine disruption, and autoregulatory impairment drive neurodegeneration and microcirculatory damage in MetS. Due to their unique anatomy and function, astrocytes sense and integrate multiple metabolic signals, including peripheral endocrine hormones and nutrients. Astrocytes and synapses engage in a complex dialogue of energetic and immunological interactions. Astrocytes act as a bridge between MetS and cognitive dysfunction, undergoing diverse activation in response to metabolic dysfunction. This article summarizes the alterations in astrocyte phenotypic characteristics across multiple pathological factors in MetS. It also discusses the clinical value of astrocytes as a critical pathologic diagnostic marker and potential therapeutic target for MetS-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Zihan Li
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya-yi Jiang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyi Long
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Peng
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajing Tao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueheng Pu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Yi W, Yang D, Xu Z, Chen Z, Xiao G, Qin L. Immortalization of mouse primary astrocytes. Gene 2023; 865:147327. [PMID: 36870428 DOI: 10.1016/j.gene.2023.147327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/08/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
In cell culture studies, immortalized primary cells have become a useful tool to investigate the molecular and cellular functions of different types of cells. Several immortalization agents, such as human telomerase reverse transcriptase (hTERT) and Simian Virus 40 (SV40) T antigens, are commonly used for primary cell immortalization. Astrocytes, as the most abundant glial cell type in the central nervous system, are promising therapeutical targets for many neuronal disorders, such as Alzheimer's disease and Parkinson's disease. Immortalized primary astrocytes can provide useful information for astrocytes biology, astrocytes-neuron interactions, glial interactions and astrocytes-associated neuronal diseases. In this study, we successfully purified primary astrocytes with immuno-panning method and examined the astrocyte functions after immortalization through both hTERT and SV40 Large-T antigens. As expected, both immortalized astrocytes presented unlimited lifespan and highly expressed multiple astrocyte-specific markers. However, SV40 Large-T antigen, but not hTERT, immortalized astrocytes displayed fast ATP-induced calcium wave in culture. Hence, SV40 Large-T antigen could be a better choice for primary astrocyte immortalization, which closely mimics the cell biology of primary astrocytes in culture. In summary, the purification and immortalization of primary astrocytes presented in this study can be used for studying astrocyte biology under physiological and pathological conditions.
Collapse
Affiliation(s)
- Weihong Yi
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, 518000 Shenzhen, China
| | - Dazhi Yang
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, 518000 Shenzhen, China
| | - Zhen Xu
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, 518000 Shenzhen, China
| | - Zecai Chen
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, 518000 Shenzhen, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055 Shenzhen, China.
| | - Lei Qin
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, 518000 Shenzhen, China.
| |
Collapse
|
4
|
Michinaga S, Hishinuma S, Koyama Y. Roles of Astrocytic Endothelin ET B Receptor in Traumatic Brain Injury. Cells 2023; 12:cells12050719. [PMID: 36899860 PMCID: PMC10000579 DOI: 10.3390/cells12050719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Traumatic brain injury (TBI) is an intracranial injury caused by accidents, falls, or sports. The production of endothelins (ETs) is increased in the injured brain. ET receptors are classified into distinct types, including ETA receptor (ETA-R) and ETB receptor (ETB-R). ETB-R is highly expressed in reactive astrocytes and upregulated by TBI. Activation of astrocytic ETB-R promotes conversion to reactive astrocytes and the production of astrocyte-derived bioactive factors, including vascular permeability regulators and cytokines, which cause blood-brain barrier (BBB) disruption, brain edema, and neuroinflammation in the acute phase of TBI. ETB-R antagonists alleviate BBB disruption and brain edema in animal models of TBI. The activation of astrocytic ETB receptors also enhances the production of various neurotrophic factors. These astrocyte-derived neurotrophic factors promote the repair of the damaged nervous system in the recovery phase of patients with TBI. Thus, astrocytic ETB-R is expected to be a promising drug target for TBI in both the acute and recovery phases. This article reviews recent observations on the role of astrocytic ETB receptors in TBI.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Tokyo 204-8588, Japan
| | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Tokyo 204-8588, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe 668-8558, Japan
- Correspondence: ; Tel.: +81-78-441-7572
| |
Collapse
|
5
|
Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: In Vitro and In Silico Studies. Pharmaceuticals (Basel) 2023; 16:ph16010095. [PMID: 36678592 PMCID: PMC9864454 DOI: 10.3390/ph16010095] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The enhancement of cholinergic functions via acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition is considered a valuable therapeutic strategy for the treatment of Alzheimer's disease. This study aimed to evaluate the in vitro effect of ZINC390718, previously filtered using computational approaches, on both cholinesterases and to characterize, using a molecular dynamics (MD) simulation, the possible binding mode of this compound inside the cholinesterase enzymes. The in vitro cytotoxicity effect was also investigated using a primary astrocyte-enriched glial cell culture. ZINC390718 presented in vitro dual inhibitory activity against AChE at a high micromolar range (IC50 = 543.8 µM) and against BuChE (IC50 = 241.1 µM) in a concentration-dependent manner, with greater activity against BuChE. The MD simulation revealed that ZINC390718 performed important hydrophobic and H-bond interactions with the catalytic residue sites on both targets. The residues that promoted the hydrophobic interactions and H-bonding in the AChE target were Leu67, Trp86, Phe123, Tyr124, Ser293, Phe295, and Tyr341, and on the BuChE target, they were Asp70, Tyr332, Tyr128, Ile442, Trp82, and Glu197. The cytotoxic effect of Z390718, evaluated via cell viability, showed that the molecule has low in vitro toxicity. The in vitro and in silico results indicate that ZINC390718 can be used as chemotype for the optimization and identification of new dual cholinesterase inhibitors.
Collapse
|
6
|
Rai A, Shah K, Dewangan HK. Review on the Artificial Intelligence-based Nanorobotics Targeted Drug Delivery System for Brain-specific Targeting. Curr Pharm Des 2023; 29:3519-3531. [PMID: 38111114 DOI: 10.2174/0113816128279248231210172053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023]
Abstract
Contemporary medical research increasingly focuses on the blood-brain barrier (BBB) to maintain homeostasis in healthy individuals and provide solutions for neurological disorders, including brain cancer. Specialized in vitro modules replicate the BBB's complex structure and signalling using micro-engineered perfusion devices and advanced 3D cell cultures, thus advancing the understanding of neuropharmacology. This research explores nanoparticle-based biomolecular engineering for precise control, targeting, and transport of theranostic payloads across the BBB using nanorobots. The review summarizes case studies on delivering therapeutics for brain tumors and neurological disorders, such as Alzheimer's, Parkinson's, and multiple sclerosis. It also examines the advantages and disadvantages of nano-robotics. In conclusion, integrating machine learning and AI with robotics aims to develop safe nanorobots capable of interacting with the BBB without adverse effects. This comprehensive review is valuable for extensive analysis and is of great significance to healthcare professionals, engineers specializing in robotics, chemists, and bioengineers involved in pharmaceutical development and neurological research, emphasizing transdisciplinary approaches.
Collapse
Affiliation(s)
- Akriti Rai
- School of Pharmacy, Lingayas Vidyapeeth, Nachauli, Jasana Road, Faridabad, Haryana 121002, India
| | - Kamal Shah
- Institute of Pharmaceutical Research (IPR), GLA University Mathura, NH-2 Delhi Mathura Road, Po Chaumuhan, Mathura, Uttar Pradesh 281406, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University, NH-95, Chandigarh Ludhiana Highway, Mohali, Punjab, India
| |
Collapse
|
7
|
Prunell G, Olivera-Bravo S. A Focus on Astrocyte Contribution to Parkinson's Disease Etiology. Biomolecules 2022; 12:biom12121745. [PMID: 36551173 PMCID: PMC9775515 DOI: 10.3390/biom12121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disease of high prevalence, characterized by the prominent death of dopaminergic neurons in the substantia nigra pars compacta, which produces dopamine deficiency, leading to classic motor symptoms. Although PD has traditionally been considered as a neuronal cell autonomous pathology, in which the damage of vulnerable neurons is responsible for the disease, growing evidence strongly suggests that astrocytes might have an active role in the neurodegeneration observed. In the present review, we discuss several studies evidencing astrocyte implications in PD, highlighting the consequences of both the loss of normal homeostatic functions and the gain in toxic functions for the wellbeing of dopaminergic neurons. The revised information provides significant evidence that allows astrocytes to be positioned as crucial players in PD etiology, a factor that needs to be taken into account when considering therapeutic targets for the treatment of the disease.
Collapse
Affiliation(s)
- Giselle Prunell
- Laboratorio de Neurodegeneración y Neuroprotección, Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
- Correspondence: (G.P.); (S.O.-B.); Tel.: +598-24871616 (ext. 121 or 123 or 171) (G.P. & S.O.-B.)
| | - Silvia Olivera-Bravo
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
- Correspondence: (G.P.); (S.O.-B.); Tel.: +598-24871616 (ext. 121 or 123 or 171) (G.P. & S.O.-B.)
| |
Collapse
|
8
|
Piavchenko G, Soldatov V, Venediktov A, Kartashkina N, Novikova N, Gorbunova M, Boronikhina T, Yatskovskiy A, Meglinski I, Kuznetsov S. A combined use of silver pretreatment and impregnation with consequent Nissl staining for cortex and striatum architectonics study. Front Neuroanat 2022; 16:940993. [PMID: 36312299 PMCID: PMC9615244 DOI: 10.3389/fnana.2022.940993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Despite a rapid growth in the application of modern techniques for visualization studies in life sciences, the classical methods of histological examination are yet to be outdated. Herein, we introduce a new approach that involves combining silver nitrate pretreatment and impregnation with consequent Nissl (cresyl violet) staining for cortex and striatum architectonics study on the same microscopy slide. The developed approach of hybrid staining provides a high-quality visualization of cellular and subcellular structures, including impregnated neurons (about 10%), Nissl-stained neurons (all the remaining ones), and astrocytes, as well as chromatophilic substances, nucleoli, and neuropil in paraffin sections. We provide a comparative study of the neuronal architectonics in both the motor cortex and striatum based on the differences in their tinctorial properties. In addition to a comparative study of the neuronal architectonics in both the motor cortex and striatum, the traditional methods to stain the cortex (motor and piriform) and the striatum are considered. The proposed staining approach compiles the routine conventional methods for thin sections, expanding avenues for more advanced examination of neurons, blood–brain barrier components, and fibers both under normal and pathological conditions. One of the main hallmarks of our method is the ability to detect changes in the number of glial cells. The results of astrocyte visualization in the motor cortex obtained by the developed technique agree well with the alternative studies by glial fibrillary acidic protein (GFAP) immunohistochemical reaction. The presented approach of combined staining has great potential in current histological practice, in particular for the evaluation of several neurological disorders in clinical, pre-clinical, or neurobiological animal studies.
Collapse
Affiliation(s)
- Gennadii Piavchenko
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- *Correspondence: Gennadii Piavchenko,
| | - Vladislav Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod National Research University, Belgorod, Russia
| | - Artem Venediktov
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalia Kartashkina
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalia Novikova
- Laboratory of Pathophysiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Marina Gorbunova
- Department of Histology, Cytology, and Embryology, Orel State University named after I.S. Turgenev, Orel, Russia
| | - Tatiana Boronikhina
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander Yatskovskiy
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Igor Meglinski
- Opto-Electronics and Measurement Techniques, Faculty of Information and Electrical Engineering, University of Oulu, Oulu, Finland
- College of Engineering and Applied Science, Aston University, Birmingham, United Kingdom
- Igor Meglinski,
| | - Sergey Kuznetsov
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
9
|
Dehghan M, Fathinejad F, Farzaei MH, Barzegari E. In silico unraveling of molecular anti-neurodegenerative profile of Citrus medica flavonoids against novel pharmaceutical targets. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Lee DW, Ryu YK, Chang DH, Park HY, Go J, Maeng SY, Hwang DY, Kim BC, Lee CH, Kim KS. Agathobaculum butyriciproducens Shows Neuroprotective Effects in a 6-OHDA-Induced Mouse Model of Parkinson's Disease. J Microbiol Biotechnol 2022; 32:1168-1177. [PMID: 36168204 PMCID: PMC9628974 DOI: 10.4014/jmb.2205.05032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative disease and is characterized by dopaminergic neuronal death in the midbrain. Recently, the association between alterations in PD pathology and the gut microbiota has been explored. Microbiota-targeted interventions have been suggested as a novel therapeutic approach for PD. Agathobaculum butyriciproducens SR79T (SR79) is an anaerobic bacterium. Previously, we showed that SR79 treatment induced cognitive improvement and reduced Alzheimer's disease pathologies in a mouse model. In this study, we hypothesized that SR79 treatment may have beneficial effects on PD pathology. To investigate the therapeutic effects of SR79 on PD, 6-hydroxydopamine (6-OHDA)-induced mouse models were used. D-Amphetamine sulfate (d-AMPH)-induced behavioral rotations and dopaminergic cell death were analyzed in unilateral 6-OHDA-lesioned mice. Treatment with SR79 significantly decreased ipsilateral rotations induced by d-AMPH. Moreover, SR79 treatment markedly activated the AKT/GSK3β signaling pathway in the striatum. In addition, SR79 treatment affected the Nrf2/ARE signaling pathway and its downstream target genes in the striatum of 6-OHDA-lesioned mice. Our findings suggest a protective role of SR79 in 6-OHDA-induced toxicity by regulating the AKT/Nrf2/ARE signaling pathway and astrocyte activation. Thus, SR79 may be a potential microbe-based intervention and therapeutic strategy for PD.
Collapse
Affiliation(s)
- Da Woon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Biomaterials Science, College of Natural Resources and Life Science and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Dong-Ho Chang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - So-Young Maeng
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,College of Biosciences and Biotechnology, Chung-Nam National University, Daejeon 34134, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Byoung-Chan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,HealthBiome, Inc., Daejeon 34141, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea,Corresponding authors C.H. Lee E-mail:
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,
K.S. Kim Phone: 82-42-860-4634 Fax : 82-42-860-4609 E-mail:
| |
Collapse
|
11
|
Tyler SEB, Tyler LDK. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer's disease. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:34. [PMID: 35996065 PMCID: PMC9395556 DOI: 10.1007/s13659-022-00354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge the most common threat. Our findings suggest that the documented plants provide a large resource of AD therapeutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to preserve ethnomedical knowledge, and the habitats on which this knowledge depends.
Collapse
Affiliation(s)
| | - Luke D K Tyler
- School of Natural Sciences, Bangor University, Gwynedd, UK
| |
Collapse
|
12
|
Liu D, Zhang Q, Luo P, Gu L, Shen S, Tang H, Zhang Y, Lyu M, Shi Q, Yang C, Wang J. Neuroprotective Effects of Celastrol in Neurodegenerative Diseases-Unscramble Its Major Mechanisms of Action and Targets. Aging Dis 2022; 13:815-836. [PMID: 35656110 PMCID: PMC9116906 DOI: 10.14336/ad.2021.1115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
There are rarely new therapeutic breakthroughs present for neurodegenerative diseases in the last decades. Thus, new effective drugs are urgently needed for millions of patients with neurodegenerative diseases. Celastrol, a pentacyclic triterpenoid compound, is one of the main active ingredients isolated from Tripterygium wilfordii Hook. f. that has multiple biological activities. Recently, amount evidence indicates that celastrol exerts neuroprotective effects and holds therapeutic potential to serve as a novel agent for neurodegenerative diseases. This review focuses on the therapeutic efficacy and major regulatory mechanisms of celastrol to rescue damaged neurons, restore normal cognitive and sensory motor functions in neurodegenerative diseases. Importantly, we highlight recent progress regarding identification of the drug targets of celastrol by using advanced quantitative chemical proteomics technology. Overall, this review provides novel insights into the pharmacological activities and therapeutic potential of celastrol for incurable neurodegenerative diseases.
Collapse
Affiliation(s)
- Dandan Liu
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,2Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Qian Zhang
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,2Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Piao Luo
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,2Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Liwei Gu
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengnan Shen
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Tang
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Lyu
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoli Shi
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanbin Yang
- 3Department of Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Jigang Wang
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,2Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.,3Department of Geriatrics, Shenzhen People's Hospital, Shenzhen, China.,4Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Role of Receptors in Relation to Plaques and Tangles in Alzheimer's Disease Pathology. Int J Mol Sci 2021; 22:ijms222312987. [PMID: 34884789 PMCID: PMC8657621 DOI: 10.3390/ijms222312987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022] Open
Abstract
Despite the identification of Aβ plaques and NFTs as biomarkers for Alzheimer’s disease (AD) pathology, therapeutic interventions remain elusive, with neither an absolute prophylactic nor a curative medication available to impede the progression of AD presently available. Current approaches focus on symptomatic treatments to maintain AD patients’ mental stability and behavioral symptoms by decreasing neuronal degeneration; however, the complexity of AD pathology requires a wide range of therapeutic approaches for both preventive and curative treatments. In this regard, this review summarizes the role of receptors as a potential target for treating AD and focuses on the path of major receptors which are responsible for AD progression. This review gives an overall idea centering on major receptors, their agonist and antagonist and future prospects of viral mimicry in AD pathology. This article aims to provide researchers and developers a comprehensive idea about the different receptors involved in AD pathogenesis that may lead to finding a new therapeutic strategy to treat AD.
Collapse
|
14
|
Oskarsson B, Maragakis N, Bedlack RS, Goyal N, Meyer JA, Genge A, Bodkin C, Maiser S, Staff N, Zinman L, Olney N, Turnbull J, Brooks BR, Klonowski E, Makhay M, Yasui S, Matsuda K. MN-166 (ibudilast) in amyotrophic lateral sclerosis in a Phase IIb/III study: COMBAT-ALS study design. Neurodegener Dis Manag 2021; 11:431-443. [PMID: 34816762 DOI: 10.2217/nmt-2021-0042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with motor neuron loss as a defining feature. Despite significant effort, therapeutic breakthroughs have been modest. MN-166 (ibudilast) has demonstrated neuroprotective action by various mechanisms: inhibition of proinflammatory cytokines and macrophage migration inhibitory factor, phosphodiesterase inhibition, and attenuation of glial cell activation in models of ALS. Early-phase studies suggest that MN-166 may improve survival outcomes and slow disease progression in patients with ALS. This article describes the rationale and design of COMBAT-ALS, an ongoing randomized, double-blind, placebo-controlled, multicenter Phase IIb/III study in ALS. This study is designed to evaluate the pharmacokinetics, safety and tolerability and assess the efficacy of MN-166 on function, muscle strength, quality of life and survival in ALS.
Collapse
Affiliation(s)
| | | | | | - Namita Goyal
- Department of Neurology, University California Irvine, Irvine, CA, USA
| | - Jenny A Meyer
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Angela Genge
- Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Cynthia Bodkin
- Department of Neurology, University of Indiana, Indianapolis, IN, USA
| | - Samuel Maiser
- Department of Neurology, Hennepin County Hospital, Minneapolis, MN, USA
| | - Nathan Staff
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Lorne Zinman
- Department of Neurology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | - John Turnbull
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | - Seiichi Yasui
- Faculty of Science and Technology, Department of Industrial Administration, University of Tokyo, Japan
| | | |
Collapse
|
15
|
You H, Wu T, Du G, Huang Y, Zeng Y, Lin L, Chen D, Wu C, Li X, Burgunder JM, Pei Z. Evaluation of Blood Glial Fibrillary Acidic Protein as a Potential Marker in Huntington's Disease. Front Neurol 2021; 12:779890. [PMID: 34867769 PMCID: PMC8639701 DOI: 10.3389/fneur.2021.779890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022] Open
Abstract
Objective: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. Neurofilament light protein (NfL) is correlated with clinical severity of HD but relative data are the lack in the Chinese population. Reactive astrocytes are related to HD pathology, which predicts their potential to be a biomarker in HD progression. Our aim was to discuss the role of blood glial fibrillary acidic protein (GFAP) to evaluate clinical severity in patients with HD. Methods: Fifty-seven HD mutation carriers (15 premanifest HD, preHD, and 42 manifest HD) and 26 healthy controls were recruited. Demographic data and clinical severity assessed with the internationally Unified Huntington's Disease Rating Scale (UHDRS) were retrospectively analyzed. Plasma NfL and GFAP were quantified with an ultra-sensitive single-molecule (Simoa, Norcross, GA, USA) technology. We explored their consistency and their correlation with clinical severity. Results: Compared with healthy controls, plasma NfL (p < 0.0001) and GFAP (p < 0.001) were increased in Chinese HD mutation carriers, and they were linearly correlated with each other (r = 0.612, p < 0.001). They were also significantly correlated with disease burden, Total Motor Score (TMS) and Total Functional Capacity (TFC). The scores of Stroop word reading, symbol digit modalities tests, and short version of the Problem Behaviors Assessments (PBAs) for HD were correlated with plasma NfL but not GFAP. Compared with healthy controls, plasma NfL has been increased since stage 1 but plasma GFAP began to increase statistically in stage 2. Conclusions: Plasma GFAP was correlated with plasma NfL, disease burden, TMS, and TFC in HD mutation carriers. Plasma GFAP may have potential to be a sensitive biomarker for evaluating HD progression.
Collapse
Affiliation(s)
- Huajing You
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Tengteng Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Du
- China National Clinical Research Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- China National Clinical Research Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yixuan Zeng
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Health Center Shenzhen Second People's Hospital, Shenzhen, China
| | - Lishan Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Dingbang Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Chao Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Xunhua Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jean-marc Burgunder
- Swiss HD Centre, NeuroZentrumSiloah and Department of Neurology, University of Bern, Bern, Switzerland
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
- *Correspondence: Zhong Pei
| |
Collapse
|
16
|
Differential Proteomic Analysis of Astrocytes and Astrocytes-Derived Extracellular Vesicles from Control and Rai Knockout Mice: Insights into the Mechanisms of Neuroprotection. Int J Mol Sci 2021; 22:ijms22157933. [PMID: 34360699 PMCID: PMC8348125 DOI: 10.3390/ijms22157933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022] Open
Abstract
Reactive astrocytes are a hallmark of neurodegenerative disease including multiple sclerosis. It is widely accepted that astrocytes may adopt alternative phenotypes depending on a combination of environmental cues and intrinsic features in a highly plastic and heterogeneous manner. However, we still lack a full understanding of signals and associated signaling pathways driving astrocyte reaction and of the mechanisms by which they drive disease. We have previously shown in the experimental autoimmune encephalomyelitis mouse model that deficiency of the molecular adaptor Rai reduces disease severity and demyelination. Moreover, using primary mouse astrocytes, we showed that Rai contributes to the generation of a pro-inflammatory central nervous system (CNS) microenvironment through the production of nitric oxide and IL-6 and by impairing CD39 activity in response to soluble factors released by encephalitogenic T cells. Here, we investigated the impact of Rai expression on astrocyte function both under basal conditions and in response to IL-17 treatment using a proteomic approach. We found that astrocytes and astrocyte-derived extracellular vesicles contain a set of proteins, to which Rai contributes, that are involved in the regulation of oligodendrocyte differentiation and myelination, nitrogen metabolism, and oxidative stress. The HIF-1α pathway and cellular energetic metabolism were the most statistically relevant molecular pathways and were related to ENOA and HSP70 dysregulation.
Collapse
|
17
|
Klegeris A. Targeting neuroprotective functions of astrocytes in neuroimmune diseases. Expert Opin Ther Targets 2021; 25:237-241. [PMID: 33836642 DOI: 10.1080/14728222.2021.1915993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada
| |
Collapse
|
18
|
Papa S, Veneruso V, Mauri E, Cremonesi G, Mingaj X, Mariani A, De Paola M, Rossetti A, Sacchetti A, Rossi F, Forloni G, Veglianese P. Functionalized nanogel for treating activated astrocytes in spinal cord injury. J Control Release 2021; 330:218-228. [DOI: 10.1016/j.jconrel.2020.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/15/2020] [Accepted: 12/04/2020] [Indexed: 01/02/2023]
|
19
|
Qian L, TCW J. Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. Int J Mol Sci 2021; 22:1203. [PMID: 33530458 PMCID: PMC7865494 DOI: 10.3390/ijms22031203] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
A high-throughput drug screen identifies potentially promising therapeutics for clinical trials. However, limitations that persist in current disease modeling with limited physiological relevancy of human patients skew drug responses, hamper translation of clinical efficacy, and contribute to high clinical attritions. The emergence of induced pluripotent stem cell (iPSC) technology revolutionizes the paradigm of drug discovery. In particular, iPSC-based three-dimensional (3D) tissue engineering that appears as a promising vehicle of in vitro disease modeling provides more sophisticated tissue architectures and micro-environmental cues than a traditional two-dimensional (2D) culture. Here we discuss 3D based organoids/spheroids that construct the advanced modeling with evolved structural complexity, which propels drug discovery by exhibiting more human specific and diverse pathologies that are not perceived in 2D or animal models. We will then focus on various central nerve system (CNS) disease modeling using human iPSCs, leading to uncovering disease pathogenesis that guides the development of therapeutic strategies. Finally, we will address new opportunities of iPSC-assisted drug discovery with multi-disciplinary approaches from bioengineering to Omics technology. Despite technological challenges, iPSC-derived cytoarchitectures through interactions of diverse cell types mimic patients' CNS and serve as a platform for therapeutic development and personalized precision medicine.
Collapse
Affiliation(s)
- Lu Qian
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Ronald Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julia TCW
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Ronald Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
20
|
Domingues AV, Pereira IM, Vilaça-Faria H, Salgado AJ, Rodrigues AJ, Teixeira FG. Glial cells in Parkinson´s disease: protective or deleterious? Cell Mol Life Sci 2020; 77:5171-5188. [PMID: 32617639 PMCID: PMC11104819 DOI: 10.1007/s00018-020-03584-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/25/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Glial cells have been identified more than 100 years ago, and are known to play a key role in the central nervous system (CNS) function. A recent piece of evidence is emerging showing that in addition to the capacity of CNS modulation and homeostasis, glial cells are also being looked like as a promising cell source not only to study CNS pathologies initiation and progression but also to the establishment and development of new therapeutic strategies. Thus, in the present review, we will discuss the current evidence regarding glial cells' contribution to neurodegenerative diseases as Parkinson's disease, providing cellular, molecular, functional, and behavioral data supporting its active role in disease initiation, progression, and treatment. As so, considering their functional relevance, glial cells may be important to the understanding of the underlying mechanisms regarding neuronal-glial networks in neurodegeneration/regeneration processes, which may open new research opportunities for their future use as a target or treatment in human clinical trials.
Collapse
Affiliation(s)
- Ana V Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Inês M Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Helena Vilaça-Faria
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Ana J Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| | - Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
21
|
Tampio J, Huttunen J, Montaser A, Huttunen KM. Targeting of Perforin Inhibitor into the Brain Parenchyma Via a Prodrug Approach Can Decrease Oxidative Stress and Neuroinflammation and Improve Cell Survival. Mol Neurobiol 2020; 57:4563-4577. [PMID: 32754897 PMCID: PMC7515946 DOI: 10.1007/s12035-020-02045-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022]
Abstract
The cytolytic protein perforin has a crucial role in infections and tumor surveillance. Recently, it has also been associated with many brain diseases, such as neurodegenerative diseases and stroke. Therefore, inhibitors of perforin have attracted interest as novel drug candidates. We have previously reported that converting a perforin inhibitor into an L-type amino acid transporter 1 (LAT1)-utilizing prodrug can improve the compound's brain drug delivery not only across the blood-brain barrier (BBB) but also into the brain parenchymal cells: neurons, astrocytes, and microglia. The present study evaluated whether the increased uptake into mouse primary cortical astrocytes and subsequently improvements in the cellular bioavailability of this brain-targeted perforin inhibitor prodrug could enhance its pharmacological effects, such as inhibition of production of caspase-3/-7, lipid peroxidation products and prostaglandin E2 (PGE2) in the lipopolysaccharide (LPS)-induced neuroinflammation mouse model. It was demonstrated that increased brain and cellular drug delivery could improve the ability of perforin inhibitors to elicit their pharmacological effects in the brain at nano- to picomolar levels. Furthermore, the prodrug displayed multifunctional properties since it also inhibited the activity of several key enzymes related to Alzheimer's disease (AD), such as the β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), acetylcholinesterase (AChE), and most probably also cyclooxygenases (COX) at micromolar concentrations. Therefore, this prodrug is a potential drug candidate for preventing Aβ-accumulation and ACh-depletion in addition to combatting neuroinflammation, oxidative stress, and neural apoptosis within the brain. Graphical abstract.
Collapse
Affiliation(s)
- Janne Tampio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ahmed Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
22
|
Marchetti B. Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson's disease. Redox Biol 2020; 36:101664. [PMID: 32863224 PMCID: PMC7395594 DOI: 10.1016/j.redox.2020.101664] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and inflammation have long been recognized to contribute to Parkinson's disease (PD), a common movement disorder characterized by the selective loss of midbrain dopaminergic neurons (mDAn) of the substantia nigra pars compacta (SNpc). The causes and mechanisms still remain elusive, but a complex interplay between several genes and a number of interconnected environmental factors, are chiefly involved in mDAn demise, as they intersect the key cellular functions affected in PD, such as the inflammatory response, mitochondrial, lysosomal, proteosomal and autophagic functions. Nuclear factor erythroid 2 -like 2 (NFE2L2/Nrf2), the master regulator of cellular defense against oxidative stress and inflammation, and Wingless (Wnt)/β-catenin signaling cascade, a vital pathway for mDAn neurogenesis and neuroprotection, emerge as critical intertwinned actors in mDAn physiopathology, as a decline of an Nrf2/Wnt/β-catenin prosurvival axis with age underlying PD mutations and a variety of noxious environmental exposures drive PD neurodegeneration. Unexpectedly, astrocytes, the so-called "star-shaped" cells, harbouring an arsenal of "beneficial" and "harmful" molecules represent the turning point in the physiopathological and therapeutical scenario of PD. Fascinatingly, "astrocyte's fil rouge" brings back to Nrf2/Wnt resilience, as boosting the Nrf2/Wnt resilience program rejuvenates astrocytes, in turn (i) mitigating nigrostriatal degeneration of aged mice, (ii) reactivating neural stem progenitor cell proliferation and neuron differentiation in the brain and (iii) promoting a beneficial immunomodulation via bidirectional communication with mDAns. Then, through resilience of Nrf2/Wnt/β-catenin anti-ageing, prosurvival and proregenerative molecular programs, it seems possible to boost the inherent endogenous self-repair mechanisms. Here, the cellular and molecular aspects as well as the therapeutical options for rejuvenating glia-neuron dialogue will be discussed together with major glial-derived mechanisms and therapies that will be fundamental to the identification of novel diagnostic tools and treatments for neurodegenerative diseases (NDs), to fight ageing and nigrostriatal DAergic degeneration and promote functional recovery.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Pharmacology Section, Medical School, University of Catania, Via S. Sofia 65, 95125, Catania, Italy; Oasi Research Institute-IRCCS, Neuropharmacology Section, Via Conte Ruggero 73, 94018, Troina, EN, Italy.
| |
Collapse
|
23
|
Wei YZ, Zhu GF, Zheng CQ, Li JJ, Sheng S, Li DD, Wang GQ, Zhang F. Ellagic acid protects dopamine neurons from rotenone-induced neurotoxicity via activation of Nrf2 signalling. J Cell Mol Med 2020; 24:9446-9456. [PMID: 32657027 PMCID: PMC7417702 DOI: 10.1111/jcmm.15616] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent central nervous system (CNS) degenerative disease. Oxidative stress is one of key contributors to PD. Nuclear factor erythroid-2-related factor 2 (Nrf2) is considered to be a master regulator of many genes involved in anti-oxidant stress to attenuate cell death. Therefore, activation of Nrf2 signalling provides an effective avenue to treat PD. Ellagic acid (EA), a natural polyphenolic contained in fruits and nuts, possesses amounts of pharmacological activities, such as anti-oxidant stress and anti-inflammation. Recent studies have confirmed EA could be used as a neuroprotective agent in neurodegenerative diseases. Here, mice subcutaneous injection of rotenone (ROT)-induced DA neuronal damage was performed to investigate EA-mediated neuroprotection. In addition, adult Nrf2 knockout mice and different cell cultures including MN9D-enciched, MN9D-BV-2 and MN9D-C6 cell co-cultures were applied to explore the underlying mechanisms. Results demonstrated EA conferred neuroprotection against ROT-induced DA neurotoxicity. Activation of Nrf2 signalling was involved in EA-mediated DA neuroprotection, as evidenced by the following observations. First, EA activated Nrf2 signalling in ROT-induced DA neuronal damage. Second, EA generated neuroprotection with the presence of astroglia and silence of Nrf2 in astroglia abolished EA-mediated neuroprotection. Third, EA failed to produce DA neuroprotection in Nrf2 knockout mice. In conclusion, this study identified EA protected against DA neuronal loss via an Nrf2-dependent manner.
Collapse
Affiliation(s)
- Yi-Zheng Wei
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Guo-Fu Zhu
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Chang-Qing Zheng
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jing-Jie Li
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Shuo Sheng
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Dai-di Li
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Guo-Qing Wang
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
24
|
Barbar L, Jain T, Zimmer M, Kruglikov I, Sadick JS, Wang M, Kalpana K, Rose IVL, Burstein SR, Rusielewicz T, Nijsure M, Guttenplan KA, di Domenico A, Croft G, Zhang B, Nobuta H, Hébert JM, Liddelow SA, Fossati V. CD49f Is a Novel Marker of Functional and Reactive Human iPSC-Derived Astrocytes. Neuron 2020; 107:436-453.e12. [PMID: 32485136 DOI: 10.1016/j.neuron.2020.05.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/05/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022]
Abstract
New methods for investigating human astrocytes are urgently needed, given their critical role in the central nervous system. Here we show that CD49f is a novel marker for human astrocytes, expressed in fetal and adult brains from healthy and diseased individuals. CD49f can be used to purify fetal astrocytes and human induced pluripotent stem cell (hiPSC)-derived astrocytes. We provide single-cell and bulk transcriptome analyses of CD49f+ hiPSC-astrocytes and demonstrate that they perform key astrocytic functions in vitro, including trophic support of neurons, glutamate uptake, and phagocytosis. Notably, CD49f+ hiPSC-astrocytes respond to inflammatory stimuli, acquiring an A1-like reactive state, in which they display impaired phagocytosis and glutamate uptake and fail to support neuronal maturation. Most importantly, we show that conditioned medium from human reactive A1-like astrocytes is toxic to human and rodent neurons. CD49f+ hiPSC-astrocytes are thus a valuable resource for investigating human astrocyte function and dysfunction in health and disease.
Collapse
Affiliation(s)
- Lilianne Barbar
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Tanya Jain
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Matthew Zimmer
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Ilya Kruglikov
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Jessica S Sadick
- Neuroscience Institute, NYU Langone School of Medicine, New York, NY 10016, USA
| | - Minghui Wang
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kriti Kalpana
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Indigo V L Rose
- Neuroscience Institute, NYU Langone School of Medicine, New York, NY 10016, USA
| | - Suzanne R Burstein
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Tomasz Rusielewicz
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Madhura Nijsure
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Kevin A Guttenplan
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | | | - Gist Croft
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Bin Zhang
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hiroko Nobuta
- Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jean M Hébert
- Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Langone School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, NYU Langone School of Medicine, New York, NY 10016, USA; Department of Ophthalmology, NYU Langone School of Medicine, New York, NY 10017, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA.
| |
Collapse
|
25
|
Chen J, Yin D, He X, Gao M, Choi Y, Luo G, Wang H, Qu X. Modulation of activated astrocytes in the hypothalamus paraventricular nucleus to prevent ventricular arrhythmia complicating acute myocardial infarction. Int J Cardiol 2020; 308:33-41. [PMID: 31987663 DOI: 10.1016/j.ijcard.2020.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
|
26
|
Metformin regulates astrocyte reactivity in Parkinson's disease and normal aging. Neuropharmacology 2020; 175:108173. [PMID: 32497590 DOI: 10.1016/j.neuropharm.2020.108173] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra, leading to motor symptoms. Despite the remarkable improvements in the management of PD in recent decades, many patients remain significantly disabled. Metformin is a primary medication for the management of type 2 diabetes. We previously showed that co-treatment with metformin and 3,4-dihydroxyphenyl-l-alanine (l-DOPA) prevented the development of l-DOPA-induced dyskinesia in a 6-hydroxydopamine (6-OHDA)-lesioned animal model of PD. However, effects of metformin on PD- and aging-induced genes in reactive astrocytes remain unknown. In this study, we assessed the effect of metformin on motor function, neuroprotection, and reactive astrocytes in the 6-OHDA-induced PD animal model. In addition, the effects of metformin on the genes expressed by specific types of astrocytes were analyzed in PD model and aged mice. Here, we showed that metformin treatment effectively improves the motor symptoms in the 6-OHDA-induced PD mouse model, whereas metformin had no effect on tyrosine hydroxylase-positive neurons. The activation of AMPK and BDNF signaling pathways was induced by metformin treatment on the 6-OHDA-lesioned side of the striatum. Metformin treatment caused astrocytes to alter reactive genes in a PD animal model. Moreover, aging-induced genes in reactive astrocytes were effectively regulated or suppressed by metformin treatment. Taken together, these results suggest that metformin should be evaluated for the treatment of Parkinson's disease and related neurologic disorders characterized by astrocyte activation.
Collapse
|
27
|
Astragaloside IV inhibits astrocyte senescence: implication in Parkinson's disease. J Neuroinflammation 2020; 17:105. [PMID: 32252767 PMCID: PMC7137443 DOI: 10.1186/s12974-020-01791-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/27/2020] [Indexed: 01/10/2023] Open
Abstract
Background Senescent astrocytes have been implicated in the aging brain and neurodegenerative disorders, including Parkinson’s disease (PD). Astragaloside IV (AS-IV) is an antioxidant derivative from a traditional Chinese herbal medicine Astragalus membraneaceus Bunge and exerts anti-inflammatory and longevity effects and neuroprotective activities. However, its effect on astrocyte senescence in PD remains to be defined. Methods Long culture-induced replicative senescence model and lipopolysaccharide/1-methyl-4-phenylpyridinium (LPS/MPP+)-induced premature senescence model and a mouse model of PD were used to investigate the effect of AS-IV on astrocyte senescence in vivo and in vitro. Immunocytochemistry, qPCR, subcellular fractionation, flow cytometric analyses, and immunohistochemistry were subsequently conducted to determine the effects of AS-IV on senescence markers. Results We found that AS-IV inhibited the astrocyte replicative senescence and LPS/MPP+-induced premature senescence, evidenced by decreased senescence-associated β-galactosidase activity and expression of senescence marker p16, and increased nuclear level of lamin B1, and reduced pro-inflammatory senescence-associated secretory phenotype. More importantly, we showed that AS-IV protected against the loss of dopamine neurons and behavioral deficits in the mouse model of PD, which companied by reduced accumulation of senescent astrocytes in substantia nigra compacta. Mechanistically, AS-IV promoted mitophagy, which reduced damaged mitochondria accumulation and mitochondrial reactive oxygen species generation and then contributed to the suppression of astrocyte senescence. The inhibition of autophagy abolished the suppressive effects of AS-IV on astrocyte senescence. Conclusions Our findings reveal that AS-IV prevents dopaminergic neurodegeneration in PD via inhibition of astrocyte senescence through promoting mitophagy and suggest that AS-IV is a promising therapeutic strategy for the treatment of age-associated neurodegenerative diseases such as PD.
Collapse
|
28
|
Vismara I, Papa S, Veneruso V, Mauri E, Mariani A, De Paola M, Affatato R, Rossetti A, Sponchioni M, Moscatelli D, Sacchetti A, Rossi F, Forloni G, Veglianese P. Selective Modulation of A1 Astrocytes by Drug-Loaded Nano-Structured Gel in Spinal Cord Injury. ACS NANO 2020; 14:360-371. [PMID: 31887011 DOI: 10.1021/acsnano.9b05579] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Astrogliosis has a very dynamic response during the progression of spinal cord injury, with beneficial or detrimental effects on recovery. It is therefore important to develop strategies to target activated astrocytes and their harmful molecular mechanisms so as to promote a protective environment to counteract the progression of the secondary injury. The challenge is to formulate an effective therapy with maximum protective effects, but reduced side effects. In this study, a functionalized nanogel-based nanovector was selectively internalized in activated mouse or human astrocytes. Rolipram, an anti-inflammatory drug, when administered by these nanovectors limited the inflammatory response in A1 astrocytes, reducing iNOS and Lcn2, which in turn reverses the toxic effect of proinflammatory astrocytes on motor neurons in vitro, showing advantages over conventionally administered anti-inflammatory therapy. When tested acutely in a spinal cord injury mouse model, it improved motor performance, but only in the early stage after injury, reducing the astrocytosis and preserving neuronal cells.
Collapse
Affiliation(s)
- Irma Vismara
- Department of Neuroscience , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milano , Italy
| | - Simonetta Papa
- Department of Neuroscience , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milano , Italy
| | - Valeria Veneruso
- Department of Neuroscience , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milano , Italy
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Alessandro Mariani
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milan , Italy
| | - Massimiliano De Paola
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milan , Italy
| | - Roberta Affatato
- Department of Oncology , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milan , Italy
| | - Arianna Rossetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Gianluigi Forloni
- Department of Neuroscience , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milano , Italy
| | - Pietro Veglianese
- Department of Neuroscience , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milano , Italy
| |
Collapse
|
29
|
Astrocyte-Targeted Transporter-Utilizing Derivatives of Ferulic Acid Can Have Multifunctional Effects Ameliorating Inflammation and Oxidative Stress in the Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3528148. [PMID: 31814871 PMCID: PMC6877910 DOI: 10.1155/2019/3528148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 12/27/2022]
Abstract
Ferulic acid (FA) is a natural phenolic antioxidant, which can exert also several other beneficial effects to combat neuroinflammation and neurodegenerative diseases, such as Alzheimer's disease. One of these properties is the inhibition of several enzymes and factors, such as β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), cyclooxygenases (COXs), lipoxygenases (LOXs), mammalian (or mechanistic) target for rapamycin (mTOR), and transcription factor NF-κB. We have previously synthesized three L-type amino acid transporter 1- (LAT1-) utilizing FA-derivatives with the aim to develop brain-targeted prodrugs of FA. In the present study, the cellular uptake and bioavailability of these FA-derivatives were evaluated in mouse primary astrocytic cell cultures together with their inhibitory effects towards BACE1, COX/LOX, mTOR, NF-κB, acetylcholinesterase (AChE), and oxidative stress. According to the results, all three FA-derivatives were taken up 200–600 times more effectively at 10 μM concentration into the astrocytes than FA, with one derivative having a high intracellular bioavailability (Kp,uu), particularly at low concentrations. Moreover, all of the derivatives were able to inhibit BACE1, COX/LOX, AChE, and oxidative stress measured as decreased cellular lipid peroxidation. Furthermore, one of the derivatives modified the total mTOR amount. Therefore, these derivatives have the potential to act as multifunctional compounds preventing β-amyloid accumulation as well as combating inflammation and reducing oxidative stress in the brain. Thus, this study shows that converting a parent drug into a transporter-utilizing derivative not only may increase its brain and cellular uptake, and bioavailability but can also broaden the spectrum of pharmacological effects elicited by the derivative.
Collapse
|
30
|
Puris E, Gynther M, de Lange EC, Auriola S, Hammarlund-Udenaes M, Huttunen KM, Loryan I. Mechanistic Study on the Use of the l-Type Amino Acid Transporter 1 for Brain Intracellular Delivery of Ketoprofen via Prodrug: A Novel Approach Supporting the Development of Prodrugs for Intracellular Targets. Mol Pharm 2019; 16:3261-3274. [DOI: 10.1021/acs.molpharmaceut.9b00502] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elena Puris
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mikko Gynther
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Elizabeth C.M. de Lange
- Predictive Pharmacology Group, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2311 EZ Leiden, The Netherlands
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Margareta Hammarlund-Udenaes
- Translational PKPD Group, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | - Kristiina M. Huttunen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Irena Loryan
- Translational PKPD Group, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| |
Collapse
|
31
|
Lee Y, Lee S, Chang SC, Lee J. Significant roles of neuroinflammation in Parkinson's disease: therapeutic targets for PD prevention. Arch Pharm Res 2019; 42:416-425. [PMID: 30830660 DOI: 10.1007/s12272-019-01133-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/14/2019] [Indexed: 01/24/2023]
Abstract
Glial cells outnumber neurons in the brain and play important roles in the neuroinflammation that accompanies brain damage in neurodegenerative diseases. In Parkinson's disease (PD), dopaminergic neuronal loss is accompanied by inflammatory changes in microglia, astrocytes, innate immune cells, and infiltrating peripheral immune cells. Neuroinflammation is probably a fundamental immune response to protect neurons from harm and compensate for neuronal damage, but at the same time, its neurotoxic effects exacerbate neuron damage. Furthermore, neuroinflammatory response is regulated by immune cells, such as microglia, astrocytes, and peripheral immune cells, and by cytokines and chemokines. Accordingly, it is crucial that we understand how such immune cells in the brain regulate neuroinflammatory responses in PD pathology. This review describes the roles played by glia-mediated neuroinflammation in PD, both good and bad, and the therapeutic strategies used to treat PD.
Collapse
Affiliation(s)
- Yujeong Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Seulah Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Seung-Cheol Chang
- Institute of BioPhysio Sensor Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
32
|
Qi L, Cui EH, Ji CM, Zhang XB, Wang ZA, Sun YZ, Xu JC, Zhai XF, Chen ZJ, Li J, Zheng JY, Yu RT. Specific knockdown of hippocampal astroglial EphB2 improves synaptic function via inhibition of D-serine secretion in APP/PS1 mice. Am J Transl Res 2019; 11:1073-1083. [PMID: 30899407 PMCID: PMC6413293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Increasing evidence emphasizes the protective role of Eph receptors in synaptic function in the pathological development of Alzheimer's disease (AD); however, their roles in the regulation of hippocampal astrocytes remain largely unknown. Here, we directly investigated the function of astroglial EphB2 on synaptic plasticity in APP/PS1 mice. Using cell isolation and transgene technologies, we first isolated hippocampal astrocytes and evaluated the expression levels of ephrinB ligands and EphB receptors. Then, we stereotaxically injected EphB2-Flox-AAV into the hippocampus of GFAP-cre/APP/PS1 mice and further evaluated hippocampal synaptic plasticity and astroglial function. Interestingly, astrocytic EphB2 expression was significantly increased in APP/PS1 mice in contrast to its expression profile in neurons. Moreover, depressing this astroglial EphB2 upregulation enhanced hippocampal synaptic plasticity, which results from harmful D-serine release. These results provide evidence of the different expression profiles and function of EphB2 between astrocytes and neurons in AD pathology.
Collapse
Affiliation(s)
- Liang Qi
- Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - En-Hui Cui
- Department of Anesthesiology, Huai’an Matenal and Child Health HospitalHuai’an, Jiangsu, China
| | - Chun-Mei Ji
- Department of Neurosurgery, Huai’an Second People’s Hospital and The Affiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, Jiangsu, China
| | - Xiao-Bing Zhang
- Department of Neurosurgery, Huai’an Second People’s Hospital and The Affiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, Jiangsu, China
| | - Ze-Ai Wang
- Department of Neurosurgery, Huai’an Second People’s Hospital and The Affiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, Jiangsu, China
| | - Yuan-Zhao Sun
- Department of Neurosurgery, Huai’an Second People’s Hospital and The Affiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, Jiangsu, China
| | - Jian-Chang Xu
- Department of Neurosurgery, Huai’an Second People’s Hospital and The Affiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, Jiangsu, China
| | - Xiao-Fu Zhai
- Department of Neurosurgery, Huai’an Second People’s Hospital and The Affiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, Jiangsu, China
| | - Zhong-Jun Chen
- Department of Neurosurgery, Huai’an Second People’s Hospital and The Affiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, Jiangsu, China
| | - Jing Li
- Department of Neurosurgery, Huai’an Second People’s Hospital and The Affiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, Jiangsu, China
| | - Jin-Yu Zheng
- Department of Neurosurgery, Huai’an Second People’s Hospital and The Affiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, Jiangsu, China
| | - Ru-Tong Yu
- Laboratory of Neurosurgery, Xuzhou Medical UniversityXuzhou, Jiangsu, China
| |
Collapse
|
33
|
Conditional BDNF Delivery from Astrocytes Rescues Memory Deficits, Spine Density, and Synaptic Properties in the 5xFAD Mouse Model of Alzheimer Disease. J Neurosci 2019; 39:2441-2458. [PMID: 30700530 DOI: 10.1523/jneurosci.2121-18.2019] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/25/2022] Open
Abstract
It has been well documented that neurotrophins, including brain-derived neurotrophic factor (BDNF), are severely affected in Alzheimer's disease (AD), but their administration faces a myriad of technical challenges. Here we took advantage of the early astrogliosis observed in an amyloid mouse model of AD (5xFAD) and used it as an internal sensor to administer BDNF conditionally and locally. We first demonstrate the relevance of BDNF release from astrocytes by evaluating the effects of coculturing WT neurons and BDNF-deficient astrocytes. Next, we crossed 5xFAD mice with pGFAP:BDNF mice (only males were used) to create 5xFAD mice that overexpress BDNF when and where astrogliosis is initiated (5xF:pGB mice). We evaluated the behavioral phenotype of these mice. We first found that BDNF from astrocytes is crucial for dendrite outgrowth and spine number in cultured WT neurons. Double-mutant 5xF:pGB mice displayed improvements in cognitive tasks compared with 5xFAD littermates. In these mice, there was a rescue of BDNF/TrkB downstream signaling activity associated with an improvement of dendritic spine density and morphology. Clusters of synaptic markers, PSD-95 and synaptophysin, were also recovered in 5xF:pGB compared with 5xFAD mice as well as the number of presynaptic vesicles at excitatory synapses. Additionally, experimentally evoked LTP in vivo was increased in 5xF:pGB mice. The beneficial effects of conditional BDNF production and local delivery at the location of active neuropathology highlight the potential to use endogenous biomarkers with early onset, such as astrogliosis, as regulators of neurotrophic therapy in AD.SIGNIFICANCE STATEMENT Recent evidence places astrocytes as pivotal players during synaptic plasticity and memory processes. In the present work, we first provide evidence that astrocytes are essential for neuronal morphology via BDNF release. We then crossed transgenic mice (5xFAD mice) with the transgenic pGFAP-BDNF mice, which express BDNF under the GFAP promoter. The resultant double-mutant mice 5xF:pGB mice displayed a full rescue of hippocampal BDNF loss and related signaling compared with 5xFAD mice and a significant and specific improvement in all the evaluated cognitive tasks. These improvements did not correlate with amelioration of β amyloid load or hippocampal adult neurogenesis rate but were accompanied by a dramatic recovery of structural and functional synaptic plasticity.
Collapse
|
34
|
Koyama Y, Sumie S, Nakano Y, Nagao T, Tokumaru S, Michinaga S. Endothelin-1 stimulates expression of cyclin D1 and S-phase kinase-associated protein 2 by activating the transcription factor STAT3 in cultured rat astrocytes. J Biol Chem 2019; 294:3920-3933. [PMID: 30670587 DOI: 10.1074/jbc.ra118.005614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/17/2019] [Indexed: 01/04/2023] Open
Abstract
Brain injury-mediated induction of reactive astrocytes often leads to glial scar formation in damaged brain regions. Activation of signal transducer and activator of transcription 3 (STAT3), a member of the STAT family of transcription factors, plays a pivotal role in inducing reactive astrocytes and glial scar formation. Endothelin-1 (ET-1) is a vasoconstrictor peptide, and its levels increase in brain disorders and promote astrocytic proliferation through ETB receptors. To clarify the mechanisms underlying ET-1-mediated astrocytic proliferation, here we examined its effects on STAT3 in cultured rat astrocytes. ET-1 treatment stimulated Ser-727 phosphorylation of STAT3 in the astrocytes, but Tyr-705 phosphorylation was unaffected, and ET-induced STAT3 Ser-727 phosphorylation was reduced by the ETB antagonist BQ788. ET-1 stimulated STAT3 binding to its consensus DNA-binding motifs. Monitoring G1/S phase cell cycle transition through bromodeoxyuridine (BrdU) incorporation, we found that ET-1 increases BrdU incorporation into the astrocytic nucleus, indicating cell cycle progression. Of note, STAT3 chemical inhibition (with stattic or 5,15-diphenyl-porphine (5,15-DPP)) or siRNA-mediated STAT3 silencing reduced ET-induced BrdU incorporation. Moreover, ET-1 increased astrocytic expression levels of cyclin D1 and S-phase kinase-associated protein 2 (SKP2), which were reduced by stattic, 5,15-DPP, and STAT3 siRNA. ChIP-based PCR analysis revealed that ET-1 promotes the binding of SAT3 to the 5'-flanking regions of rat cyclin D1 and SKP2 genes. Our results suggest that STAT3-mediated regulation of cyclin D1 and SKP2 expression underlies ET-induced astrocytic proliferation.
Collapse
Affiliation(s)
- Yutaka Koyama
- From the Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe, 658-8558, Japan and
| | - Satoshi Sumie
- the Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tonda-bayashi, Osaka 584-8540, Japan
| | - Yasutaka Nakano
- the Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tonda-bayashi, Osaka 584-8540, Japan
| | - Tomoya Nagao
- the Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tonda-bayashi, Osaka 584-8540, Japan
| | - Shiho Tokumaru
- the Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tonda-bayashi, Osaka 584-8540, Japan
| | - Shotaro Michinaga
- the Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tonda-bayashi, Osaka 584-8540, Japan
| |
Collapse
|
35
|
Patel R, Muir M, Cvetkovic C, Krencik R. Concepts toward directing human astroplasticity to promote neuroregeneration. Dev Dyn 2018; 248:21-33. [DOI: 10.1002/dvdy.24655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
| | | | - Caroline Cvetkovic
- Center for Neuroregeneration, Department of Neurosurgery; Houston Methodist Research Institute; Houston Texas
| | - Robert Krencik
- Center for Neuroregeneration, Department of Neurosurgery; Houston Methodist Research Institute; Houston Texas
| |
Collapse
|
36
|
Daverey A, Agrawal SK. Pre and post treatment with curcumin and resveratrol protects astrocytes after oxidative stress. Brain Res 2018; 1692:45-55. [PMID: 29729252 DOI: 10.1016/j.brainres.2018.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 10/17/2022]
Abstract
The two most studied polyphenolic compounds, curcumin (Cur) and resveratrol (Res), have been reported to protect oxidative damage of astrocytes. The present study is designed to examine the comparative anti-oxidative effect of Cur and Res on astrocytes by studying their potential to protect H2O2 induced oxidative stress at 4 h and 24 h time exposure. The effect of Cur and Res on cell viability, ROS production, inflammation and astrogliosis was compared. The effect of these two on Nrf2 expression and its translocation to nuclear compartment was investigated. The results showed that both Cur and Res significantly increase astrocytes survival after oxidative stress at both time points, however, Res demonstrated better effect on cell viability than the Cur. Res, showing significant inhibition of ROS production at both time points. Cur displayed significant inhibition of ROS production at 4 h, suggesting that Cur is more active on ROS inhibition in the earlier phase of insult. Comparing the expression of NF-κB, Cur showed better anti-inflammatory action on NF-κB while Res did not have any effect of NF-κB expression at 4 h. Interestingly, Cur showed an upregulation of nuclear Nrf2 expression at 24 h whereas Res displayed no effect after 24 h incubation. Both Cur and Res inhibited the H2O2 induced translocation of Nrf2 into nucleus. In conclusion, based on our observation, we found that Cur and Res both protected astrocytes from oxidative stress. In addition, we observed that Cur is most effective in early hours of insult while Res is effective in late hours suggesting that Res may or may not have immediate effect on astrocytes.
Collapse
Affiliation(s)
- Amita Daverey
- Department of Surgery, Division of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sandeep K Agrawal
- Department of Surgery, Division of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|