1
|
Akalu YT, Patel RS, Taft J, Canas-Arranz R, Richardson A, Buta S, Martin-Fernandez M, Sazeides C, Pearl RL, Mainkar G, Kurland AP, Geltman R, Rosberger H, Kang DD, Kurian AA, Kaur K, Altman J, Dong Y, Johnson JR, Zhangi L, Lim JK, Albrecht RA, García-Sastre A, Rosenberg BR, Bogunovic D. Broad-spectrum RNA antiviral inspired by ISG15 -/- deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600468. [PMID: 38979204 PMCID: PMC11230275 DOI: 10.1101/2024.06.24.600468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Type I interferons (IFN-I) are cytokines with potent antiviral and inflammatory capacities. IFN-I signaling drives the expression of hundreds of IFN-I stimulated genes (ISGs), whose aggregate function results in the control of viral infection. A few of these ISGs are tasked with negatively regulating the IFN-I response to prevent overt inflammation. ISG15 is a negative regulator whose absence leads to persistent, low-grade elevation of ISG expression and concurrent, self-resolving mild autoinflammation. The limited breadth and low-grade persistence of ISGs expressed in ISG15 deficiency are sufficient to confer broad-spectrum antiviral resistance. Inspired by ISG15 deficiency, we have identified a nominal collection of 10 ISGs that recapitulate the broad antiviral potential of the IFN-I system. The expression of the 10 ISG collection in an IFN-I non-responsive cell line increased cellular resistance to Zika, Vesicular Stomatitis, Influenza A (IAV), and SARS-CoV-2 viruses. A deliverable prophylactic formulation of this syndicate of 10 ISGs significantly inhibited IAV PR8 replication in vivo in mice and protected hamsters against a lethal SARS-CoV-2 challenge, suggesting its potential as a broad-spectrum antiviral against many current and future emerging viral pathogens. One-Sentence Summary Human inborn error of immunity-guided discovery and development of a broad-spectrum RNA antiviral therapy.
Collapse
|
2
|
Xu S, Esmaeili S, Cardozo-Ojeda EF, Goyal A, White JM, Polyak SJ, Schiffer JT. Two-way pharmacodynamic modeling of drug combinations and its application to pairs of repurposed Ebola and SARS-CoV-2 agents. Antimicrob Agents Chemother 2024; 68:e0101523. [PMID: 38470112 PMCID: PMC10989026 DOI: 10.1128/aac.01015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Existing pharmacodynamic (PD) mathematical models for drug combinations discriminate antagonistic, additive, multiplicative, and synergistic effects, but fail to consider how concentration-dependent drug interaction effects may vary across an entire dose-response matrix. We developed a two-way pharmacodynamic (TWPD) model to capture the PD of two-drug combinations. TWPD captures interactions between upstream and downstream drugs that act on different stages of viral replication, by quantifying upstream drug efficacy and concentration-dependent effects on downstream drug pharmacodynamic parameters. We applied TWPD to previously published in vitro drug matrixes for repurposed potential anti-Ebola and anti-SARS-CoV-2 drug pairs. Depending on the drug pairing, the model recapitulated combined efficacies as or more accurately than existing models and can be used to infer efficacy at untested drug concentrations. TWPD fits the data slightly better in one direction for all drug pairs, meaning that we can tentatively infer the upstream drug. Based on its high accuracy, TWPD could be used in concert with PK models to estimate the therapeutic effects of drug pairs in vivo.
Collapse
Affiliation(s)
- Shuang Xu
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Shadisadat Esmaeili
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - E. Fabian Cardozo-Ojeda
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Ashish Goyal
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Judith M. White
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen J. Polyak
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Joshua T. Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Ianevski A, Frøysa IT, Lysvand H, Calitz C, Smura T, Schjelderup Nilsen HJ, Høyer E, Afset JE, Sridhar A, Wolthers KC, Zusinaite E, Tenson T, Kurg R, Oksenych V, Galabov AS, Stoyanova A, Bjørås M, Kainov DE. The combination of pleconaril, rupintrivir, and remdesivir efficiently inhibits enterovirus infections in vitro, delaying the development of drug-resistant virus variants. Antiviral Res 2024; 224:105842. [PMID: 38417531 DOI: 10.1016/j.antiviral.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Enteroviruses are a significant global health concern, causing a spectrum of diseases from the common cold to more severe conditions like hand-foot-and-mouth disease, meningitis, myocarditis, pancreatitis, and poliomyelitis. Current treatment options for these infections are limited, underscoring the urgent need for effective therapeutic strategies. To find better treatment option we analyzed toxicity and efficacy of 12 known broad-spectrum anti-enterovirals both individually and in combinations against different enteroviruses in vitro. We identified several novel, synergistic two-drug and three-drug combinations that demonstrated significant inhibition of enterovirus infections in vitro. Specifically, the triple-drug combination of pleconaril, rupintrivir, and remdesivir exhibited remarkable efficacy against echovirus (EV) 1, EV6, EV11, and coxsackievirus (CV) B5, in human lung epithelial A549 cells. This combination surpassed the effectiveness of single-agent or dual-drug treatments, as evidenced by its ability to protect A549 cells from EV1-induced cytotoxicity across seven passages. Additionally, this triple-drug cocktail showed potent antiviral activity against EV-A71 in human intestinal organoids. Thus, our findings highlight the therapeutic potential of the pleconaril-rupintrivir-remdesivir combination as a broad-spectrum treatment option against a range of enterovirus infections. The study also paves the way towards development of strategic antiviral drug combinations with virus family coverage and high-resistance barriers.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Irene Trøen Frøysa
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Hilde Lysvand
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Carlemi Calitz
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Teemu Smura
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; HUS Diagnostic Center, Clinical Microbiology, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland
| | | | - Erling Høyer
- Department of Medical Microbiology, Clinic for Laboratory Medicine, St. Olavs Hospital, 7028 Trondheim, Norway
| | - Jan Egil Afset
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; Department of Medical Microbiology, Clinic for Laboratory Medicine, St. Olavs Hospital, 7028 Trondheim, Norway
| | - Adithya Sridhar
- OrganoVIR Labs, Dept of Pediatric Infectious Diseases, Emma Children's Hospital, Amsterdam University Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Katja C Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Reet Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Angel S Galabov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Adelina Stoyanova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; Department of Microbiology, Oslo University Hospital and University of Oslo, 0372 Oslo, Norway
| | - Denis E Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; Institute for Molecular Medicine Finland, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
4
|
Chaudhary J, Sharma V, Jain A, Sharma D, Chopra B, Dhingra AK. A Profound Insight into the Structure-activity Relationship of Ubiquitous Scaffold Piperazine: An Explicative Review. Med Chem 2024; 20:17-29. [PMID: 37815177 DOI: 10.2174/0115734064244117230923172611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 10/11/2023]
Abstract
Despite extensive research in the field of drug discovery and development, still there is a need to develop novel molecular entities. Literature reveals a substantial heterocyclic nucleus named, piperazine, which shows an immense therapeutic voyage. For several decades, molecules having the piperazine nucleus have entered the market as a drug exhibiting biological potential. It was known to possess antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardioprotective, and anti-inflammatory activity with a specific basis for structural activity relationship. Thus, it is regarded as a key structural feature in most of the already available therapeutic drugs in the market. Reports also suggest that the extensive utilization of these currently available drugs having a piperazine nucleus shows increasing tolerance significantly day by day. In addition to this, various other factors like solubility, low bioavailability, cost-effectiveness, and imbalance between pharmacokinetics and pharmacodynamics profile limit their utilization. Focusing on that issues, various structural modification studies were performed on the piperazine moiety to develop new derivatives/analogs to overcome the problems associated with available marketed drugs. Thus, this review article aims to gain insight into the number of structural modifications at the N-1 and N-4 positions of the piperazine scaffold. This SAR approach may prove to be the best way to overcome the above-discussed drawbacks and lead to the design of drug molecules with better efficacy and affinity. Hence, there is an urgent need to focus on the structural features of this scaffold which paves further work for deeper exploration and may help medicinal chemists as well as pharmaceutical industries.
Collapse
Affiliation(s)
- Jasmine Chaudhary
- Faculty of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Vishal Sharma
- Faculty of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Akash Jain
- Faculty of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Diksha Sharma
- Research Scholar, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | | |
Collapse
|
5
|
Dai C, Yu L, Wang Z, Deng P, Li L, Gu Z, He X, Wang J, Yuan J. Mangiferin and Taurine Ameliorate MSRV Infection by Suppressing NF-κB Signaling. Microbiol Spectr 2023; 11:e0514622. [PMID: 37255471 PMCID: PMC10434205 DOI: 10.1128/spectrum.05146-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/28/2023] [Indexed: 06/01/2023] Open
Abstract
The emergence or reemergence of viruses pose a substantial threat and challenge to the world population, livestock, and wildlife. However, the landscape of antiviral agents either for human or animal viral diseases is still underdeveloped. The far tougher actuality is the case that there are no approved antiviral drugs in the aquaculture industry, although there are diverse viral pathogens. In this study, using a novel epithelial cell line derived from the brain of Micropterus salmoides (MSBr), inflammation and oxidative stress were found to implicate the major pathophysiology of M. salmoides rhabdovirus (MSRV) through transcriptome analysis and biochemical tests. Elevated levels of proinflammatory cytokines (interleukin-1β [IL-1β], IL-6, IL-8, tumor necrosis factor alpha [TNF-α], and gamma interferon [IFN-γ]) and accumulated contents of reactive oxygen species (ROS) as well as biomarkers of oxidative damage (protein carbonyl and 8-OHdG) were observed after MSRV infection in the MSBr cells. Mangiferin or taurine dampened MSRV-induced inflammation and rescued the oxidative stress and, thus, inhibited the replication of MSRV in the MSBr cells with 50% effective concentration (EC50) values of 6.77 μg/mL and 8.02 μg/mL, respectively. Further, mangiferin or taurine hampered the activation of NF-κB1 and the NF-κB1 promoter as well as the increase of phosphorylated NF-κB (p65) protein level induced by MSRV infection, indicating their antiviral mechanism by suppressing NF-κB signaling. These findings exemplify a practice approach, aiming to dampen and redirect inflammatory responses, to develop broad-spectrum antivirals. IMPORTANCE Aquaculture now provides almost half of all fish for human food in 2021 and plays a significant role in eliminating hunger, promoting health, and reducing poverty. There are diverse viral pathogens that decrease production in aquaculture. We developed a novel epithelial cell line derived from the brain of Micropterus salmoides, which can be used for virus isolation, gene expressing, and drug screening. In this study, we focus on M. salmoides rhabdovirus (MSRV) and revealed its pathophysiology of inflammation and oxidative stress. Aiming to dampen and redirect inflammatory responses, mangiferin or taurine exhibited their antiviral capability by suppressing NF-κB signaling. Our findings exemplify a practice approach to develop broad-spectrum antivirals by dampening and redirecting inflammatory responses.
Collapse
Affiliation(s)
- Caijiao Dai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan, People's Republic of China
| | - Li Yu
- Bureau of Agriculture and Rural Affairs of Xianyou County, Putian, People's Republic of China
| | - Zhiwen Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan, People's Republic of China
| | - Peng Deng
- Wuhan Academy of Agricultural Sciences, Wuhan, People’s Republic of China
| | - Lijuan Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, People’s Republic of China
| | - Zemao Gu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan, People's Republic of China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, People’s Republic of China
| | - Xugang He
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, People’s Republic of China
| | - Jianghua Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, People’s Republic of China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan, People's Republic of China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, People’s Republic of China
| |
Collapse
|
6
|
Chistov AA, Chumakov SP, Mikhnovets IE, Nikitin TD, Slesarchuk NA, Uvarova VI, Rubekina AA, Nikolaeva YV, Radchenko EV, Khvatov EV, Orlov AA, Frolenko VS, Sukhorukov MV, Kolpakova ES, Shustova EY, Galochkina AV, Streshnev PP, Osipov EM, Sapozhnikova KA, Moiseenko AV, Brylev VA, Proskurin GV, Dokukin YS, Kutyakov SV, Aralov AV, Korshun VA, Strelkov SV, Palyulin VA, Ishmukhametov AA, Shirshin EA, Osolodkin DI, Shtro AA, Kozlovskaya LI, Alferova VA, Ustinov AV. 5-(Perylen-3-ylethynyl)uracil as an antiviral scaffold: Potent suppression of enveloped virus reproduction by 3-methyl derivatives in vitro. Antiviral Res 2023; 209:105508. [PMID: 36581049 DOI: 10.1016/j.antiviral.2022.105508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Amphipathic nucleoside and non-nucleoside derivatives of pentacyclic aromatic hydrocarbon perylene are known as potent non-cytotoxic broad-spectrum antivirals. Here we report 3-methyl-5-(perylen-3-ylethynyl)-uracil-1-acetic acid and its amides, a new series of compounds based on a 5-(perylen-3-ylethynyl)-uracil scaffold. The compounds demonstrate pronounced in vitro activity against arthropod-borne viruses, namely tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV), in plaque reduction assays with EC50 values below 1.9 and 1.3 nM, respectively, and Chikungunya virus (CHIKV) in cytopathic effect inhibition test with EC50 values below 3.2 μM. The compounds are active against respiratory viruses as well: severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in cytopathic effect inhibition test and influenza A virus (IAV) in virus titer reduction experiments are inhibited - EC50 values below 51 nM and 2.2 μM, respectively. The activity stems from the presence of a hydrophobic perylene core, and all of the synthesized compounds exhibit comparable 1O2 generation rates. Nonetheless, activity can vary by orders of magnitude depending on the hydrophilic part of the molecule, suggesting a complex mode of action. A time-of-addition experiment and fluorescent imaging indicate that the compounds inhibit viral fusion in a dose-dependent manner. The localization of the compound in the lipid bilayers and visible damage to the viral envelope suggest the membrane as the primary target. Dramatic reduction of antiviral activity with limited irradiation or under treatment with antioxidants further cements the idea of photoinduced ROS-mediated viral envelope damage being the mode of antiviral action.
Collapse
Affiliation(s)
- Alexey A Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Stepan P Chumakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Igor E Mikhnovets
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Timofei D Nikitin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikita A Slesarchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Victoria I Uvarova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia
| | - Anna A Rubekina
- Department of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yulia V Nikolaeva
- Smorodintsev Research Institute of Influenza, St. Petersburg, 197376, Russia
| | - Eugene V Radchenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Evgeny V Khvatov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia
| | - Alexey A Orlov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia; FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia; Skolkovo Institute of Science and Technology, 143026, Moscow Region, Russia
| | - Vasilisa S Frolenko
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia; Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow, 119991, Russia
| | - Maksim V Sukhorukov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia; FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia
| | - Ekaterina S Kolpakova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia
| | - Elena Y Shustova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia
| | | | - Philipp P Streshnev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Eugene M Osipov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | | | | | - Vladimir A Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia; Lumiprobe RUS Ltd., Moscow, 121351, Russia
| | - Gleb V Proskurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Yuri S Dokukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Sergey V Kutyakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Vladimir A Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Sergei V Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Vladimir A Palyulin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Aydar A Ishmukhametov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia; Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow, 119991, Russia
| | - Evgeny A Shirshin
- Department of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry I Osolodkin
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia; Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow, 119991, Russia
| | - Anna A Shtro
- Smorodintsev Research Institute of Influenza, St. Petersburg, 197376, Russia
| | - Liubov I Kozlovskaya
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia; Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow, 119991, Russia.
| | - Vera A Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
| | - Alexey V Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia; Lumiprobe RUS Ltd., Moscow, 121351, Russia.
| |
Collapse
|
7
|
Ravlo E, Evensen L, Sanson G, Hildonen S, Ianevski A, Skjervold PO, Ji P, Wang W, Kaarbø M, Kaynova GD, Kainov DE, Bjørås M. Antiviral Immunoglobulins of Chicken Egg Yolk for Potential Prevention of SARS-CoV-2 Infection. Viruses 2022; 14:v14102121. [PMID: 36298676 PMCID: PMC9609661 DOI: 10.3390/v14102121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/16/2022] Open
Abstract
Background: Some viruses cause outbreaks, which require immediate attention. Neutralizing antibodies could be developed for viral outbreak management. However, the development of monoclonal antibodies is often long, laborious, and unprofitable. Here, we report the development of chicken polyclonal neutralizing antibodies against SARS-CoV-2 infection. Methods: Layers were immunized twice with 14-day intervals using the purified receptor-binding domain (RBD) of the S protein of SARS-CoV-2/Wuhan or SARS-CoV-2/Omicron. Eggs were harvested 14 days after the second immunization. Polyclonal IgY antibodies were extracted. Binding of anti-RBD IgYs was analyzed by immunoblot and indirect ELISA. Furthermore, the neutralization capacity of anti-RBD IgYs was measured in Vero-E6 cells infected with SARS-CoV-2-mCherry/Wuhan and SARS-CoV-2/Omicron using fluorescence and/or cell viability assays. In addition, the effect of IgYs on the expression of SARS-CoV-2 and host cytokine genes in the lungs of Syrian Golden hamsters was examined using qRT-PCR. Results: Anti-RBD IgYs efficiently bound viral RBDs in situ, neutralized the virus variants in vitro, and lowered viral RNA amplification, with minimal alteration of virus-mediated immune gene expression in vivo. Conclusions: Altogether, our results indicate that chicken polyclonal IgYs can be attractive targets for further pre-clinical and clinical development for the rapid management of outbreaks of emerging and re-emerging viruses.
Collapse
Affiliation(s)
- Erlend Ravlo
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
- Correspondence: (E.R.); (M.B.); Tel.: +47-73598474 (M.B.)
| | - Lasse Evensen
- Norimun AS, Felleskjøpet Agri SA, Postboks 469, 0105 Oslo, Norway
| | - Gorm Sanson
- Felleskjøpet Fôrutvikling AS, Nedre Ila 20, 7018 Trondheim, Norway
| | - Siri Hildonen
- Norimun AS, Felleskjøpet Agri SA, Postboks 469, 0105 Oslo, Norway
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | | | - Ping Ji
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Wei Wang
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Mari Kaarbø
- Department of Microbiology, Oslo University Hospital, 0105 Oslo, Norway
| | | | - Denis E. Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
- Correspondence: (E.R.); (M.B.); Tel.: +47-73598474 (M.B.)
| |
Collapse
|
8
|
An Integrated Optical and Chromogenic Probe for Tumor Cell Imaging. J Pharm Biomed Anal 2022; 215:114766. [DOI: 10.1016/j.jpba.2022.114766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/02/2022] [Accepted: 04/10/2022] [Indexed: 11/22/2022]
|
9
|
Oksenych V, Kainov DE. Broad-Spectrum Antivirals and Antiviral Drug Combinations. Viruses 2022; 14:301. [PMID: 35215894 PMCID: PMC8876582 DOI: 10.3390/v14020301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Viral diseases consistently pose a substantial economic and public health burden worldwide [...].
Collapse
Affiliation(s)
- Valentyn Oksenych
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway;
- Department for Cancer Research and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Denis E. Kainov
- Department for Cancer Research and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Institute of Technology, University of Tartu, 50090 Tartu, Estonia
| |
Collapse
|
10
|
Ianevski A, Yao R, Zusinaite E, Lello LS, Wang S, Jo E, Yang J, Ravlo E, Wang W, Lysvand H, Løseth K, Oksenych V, Tenson T, Windisch MP, Poranen MM, Nieminen AI, Nordbø SA, Fenstad MH, Grødeland G, Aukrust P, Trøseid M, Kantele A, Lastauskienė E, Vitkauskienė A, Legrand N, Merits A, Bjørås M, Kainov DE. Synergistic Interferon-Alpha-Based Combinations for Treatment of SARS-CoV-2 and Other Viral Infections. Viruses 2021; 13:2489. [PMID: 34960758 PMCID: PMC8705725 DOI: 10.3390/v13122489] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There is an urgent need for new antivirals with powerful therapeutic potential and tolerable side effects. METHODS Here, we tested the antiviral properties of interferons (IFNs), alone and with other drugs in vitro. RESULTS While IFNs alone were insufficient to completely abolish replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), IFNα, in combination with remdesivir, EIDD-2801, camostat, cycloheximide, or convalescent serum, proved to be more effective. Transcriptome and metabolomic analyses revealed that the IFNα-remdesivir combination suppressed SARS-CoV-2-mediated changes in Calu-3 cells and lung organoids, although it altered the homeostasis of uninfected cells and organoids. We also demonstrated that IFNα combinations with sofosbuvir, telaprevir, NITD008, ribavirin, pimodivir, or lamivudine were effective against HCV, HEV, FLuAV, or HIV at lower concentrations, compared to monotherapies. CONCLUSIONS Altogether, our results indicated that IFNα can be combined with drugs that affect viral RNA transcription, protein synthesis, and processing to make synergistic combinations that can be attractive targets for further pre-clinical and clinical development against emerging and re-emerging viral infections.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Rouan Yao
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
| | - Laura Sandra Lello
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
| | - Sainan Wang
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
| | - Eunji Jo
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, Seongnam-si 463-400, Gyeonggi-do, Korea; (E.J.); (J.Y.); (M.P.W.)
| | - Jaewon Yang
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, Seongnam-si 463-400, Gyeonggi-do, Korea; (E.J.); (J.Y.); (M.P.W.)
| | - Erlend Ravlo
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Wei Wang
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Hilde Lysvand
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Kirsti Løseth
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
| | - Marc P. Windisch
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, Seongnam-si 463-400, Gyeonggi-do, Korea; (E.J.); (J.Y.); (M.P.W.)
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland;
| | - Anni I. Nieminen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland;
| | - Svein Arne Nordbø
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
- Department of Medical Microbiology, St. Olavs Hospital, 7006 Trondheim, Norway
| | - Mona Høysæter Fenstad
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
- Department of Immunology and Transfusion Medicine, St. Olavs Hospital, 7006 Trondheim, Norway
| | - Gunnveig Grødeland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (G.G.); (P.A.); (M.T.)
- Institute of Clinical Medicine (KlinMed), University of Oslo, 0318 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (G.G.); (P.A.); (M.T.)
- Institute of Clinical Medicine (KlinMed), University of Oslo, 0318 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (G.G.); (P.A.); (M.T.)
- Institute of Clinical Medicine (KlinMed), University of Oslo, 0318 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Anu Kantele
- Inflammation Center, Infectious Diseases, Helsinki University Hospital, 00029 Helsinki, Finland;
| | | | - Astra Vitkauskienė
- Department of Laboratory Medicine, Lithuanian University of Health Science, 44307 Kaunas, Lithuania;
| | - Nicolas Legrand
- Oncodesign, 25 Avenue du Québec, 91140 Villebon Sur Yvette, France;
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Denis E. Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
11
|
Panchal R, Bapat S, Mukherjee S, Chowdhary A. In silico binding analysis of lutein and rosmarinic acid against envelope domain III protein of dengue virus. Indian J Pharmacol 2021; 53:471-479. [PMID: 34975135 PMCID: PMC8764985 DOI: 10.4103/ijp.ijp_576_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 08/29/2020] [Accepted: 11/11/2021] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE The study was performed to evaluate in silico binding ability of lutein and rosmarinic acid (RA) with the envelope domain III (EDIII) proteins of the four serotypes of dengue virus (DENV), enlightening potential antiviral activity of the two compounds. MATERIALS AND METHODS EDIII protein structures for the four DENV serotypes were retrieved from RCSB Protein data bank (PDB) and used as receptors. Four ligands of lutein and four of RA were selected from the ZINC database and used for computational molecular docking and ligand interaction analysis with the four receptors using bioinformatics tools like AutoDock Vina and Molecular Operating Environment (MOE) software. RESULTS The EDIII of the four serotypes demonstrated significant interaction with ligands of lutein and RA. RA ligand ZINC899870, particularly presented best-binding energy values of 6.4, -7.0, and 6.9 kcal/mol with EDIII of serotype DENV-1, DENV-2, and DENV-4 respectively. Whereas, lutein ligand, ZINC14879959 presented best-binding energy value of 7.9 kcal/mol for EDIII of serotype DENV-3. From the results predicted by MOE, the hydroxyl (OH) of 3, 4-dihydroxyphenyl group of RA ligand ZINC899870 is actively involved in interaction with all four serotypes. CONCLUSION RA is a competent candidate for further evaluation of potential in vitro antiviral activity that can be effective in conferring protection against the four serotypes of DENV.
Collapse
Affiliation(s)
- Ritesh Panchal
- School of Science, Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Sanket Bapat
- MIT School of Bioengineering Science and Research, ADT University, Pune, India
| | - Sandeepan Mukherjee
- Department of Virology, Haffkin Institute for Training, Research and Testing, Mumbai, India
| | - Abhay Chowdhary
- Department of Microbiology, D. Y. Patil School of Medicine, Navi Mumbai, India
| |
Collapse
|
12
|
Nodosome Inhibition as a Novel Broad-Spectrum Antiviral Strategy against Arboviruses, Enteroviruses, and SARS-CoV-2. Antimicrob Agents Chemother 2021; 65:e0049121. [PMID: 34001511 DOI: 10.1128/aac.00491-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the present report, we describe two small molecules with broad-spectrum antiviral activity. These drugs block the formation of the nodosome. The studies were prompted by the observation that infection of human fetal brain cells with Zika virus (ZIKV) induces the expression of nucleotide-binding oligomerization domain-containing protein 2 (NOD2), a host factor that was found to promote ZIKV replication and spread. A drug that targets NOD2 was shown to have potent broad-spectrum antiviral activity against other flaviviruses, alphaviruses, enteroviruses, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). Another drug that inhibits receptor-interacting serine/threonine protein kinase 2 (RIPK2), which functions downstream of NOD2, also decreased the replication of these pathogenic RNA viruses. The antiviral effect of this drug was particularly potent against enteroviruses. The broad-spectrum action of nodosome-targeting drugs is mediated in part by the enhancement of the interferon response. Together, these results suggest that further preclinical investigation of nodosome inhibitors as potential broad-spectrum antivirals is warranted.
Collapse
|
13
|
Yao R, Ianevski A, Kainov D. Safe-in-Man Broad Spectrum Antiviral Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:313-337. [PMID: 34258746 DOI: 10.1007/978-981-16-0267-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Emerging and re-emerging viral diseases occur with regularity within the human population. The conventional 'one drug, one virus' paradigm for antivirals does not adequately allow for proper preparedness in the face of unknown future epidemics. In addition, drug developers lack the financial incentives to work on antiviral drug discovery, with most pharmaceutical companies choosing to focus on more profitable disease areas. Safe-in-man broad spectrum antiviral agents (BSAAs) can help meet the need for antiviral development by already having passed phase I clinical trials, requiring less time and money to develop, and having the capacity to work against many viruses, allowing for a speedy response when unforeseen epidemics arise. In this chapter, we discuss the benefits of repurposing existing drugs as BSAAs, describe the major steps in safe-in-man BSAA drug development from discovery through clinical trials, and list several database resources that are useful tools for antiviral drug repositioning.
Collapse
Affiliation(s)
- Rouan Yao
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Institute of Technology, University of Tartu, Tartu, Estonia.
- Institute for Molecule Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
14
|
Ali SI, Sheikh WM, Rather MA, Venkatesalu V, Muzamil Bashir S, Nabi SU. Medicinal plants: Treasure for antiviral drug discovery. Phytother Res 2021; 35:3447-3483. [PMID: 33590931 PMCID: PMC8013762 DOI: 10.1002/ptr.7039] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
The pandemic of viral diseases like novel coronavirus (2019-nCoV) prompted the scientific world to examine antiviral bioactive compounds rather than nucleic acid analogous, protease inhibitors, or other toxic synthetic molecules. The emerging viral infections significantly associated with 2019-nCoV have challenged humanity's survival. Further, there is a constant emergence of new resistant viral strains that demand novel antiviral agents with fewer side effects and cell toxicity. Despite significant progress made in immunization and regenerative medicine, numerous viruses still lack prophylactic vaccines and specific antiviral treatments that are so often influenced by the generation of viral escape mutants. Of importance, medicinal herbs offer a wide variety of therapeutic antiviral chemotypes that can inhibit viral replication by preventing viral adsorption, adhering to cell receptors, inhibiting virus penetration in the host cell, and competing for pathways of activation of intracellular signals. The present review will comprehensively summarize the promising antiviral activities of medicinal plants and their bioactive molecules. Furthermore, it will elucidate their mechanism of action and possible implications in the treatment/prevention of viral diseases even when their mechanism of action is not fully understood, which could serve as the base for the future development of novel or complementary antiviral treatments.
Collapse
Affiliation(s)
- Sofi Imtiyaz Ali
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Muzafar Ahmad Rather
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | | | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| |
Collapse
|
15
|
Ma J, Gu Y, Xu P. A roadmap to engineering antiviral natural products synthesis in microbes. Curr Opin Biotechnol 2020; 66:140-149. [PMID: 32795662 PMCID: PMC7419324 DOI: 10.1016/j.copbio.2020.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
Abstract
Natural products continue to be the inspirations for us to discover and acquire new drugs. The seemingly unstoppable viruses have kept records high to threaten human health and well-being. The diversity and complexity of natural products (NPs) offer remarkable efficacy and specificity to target viral infection steps and serve as excellent source for antiviral agents. The discovery and production of antiviral NPs remain challenging due to low abundance in their native hosts. Reconstruction of NP biosynthetic pathways in microbes is a promising solution to overcome this limitation. In this review, we surveyed 23 most prominent NPs (from more than 200 antiviral NP candidates) with distinct antiviral mode of actions and summarized the recent metabolic engineering effort to produce these compounds in various microbial hosts. We envision that the scalable and low-cost production of novel antiviral NPs, enabled by metabolic engineering, may light the hope to control and eradicate the deadliest viruses that plague our society and humanity.
Collapse
Affiliation(s)
- Jingbo Ma
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | - Yang Gu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
16
|
Identification and Tracking of Antiviral Drug Combinations. Viruses 2020; 12:v12101178. [PMID: 33080984 PMCID: PMC7589631 DOI: 10.3390/v12101178] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Combination therapies have become a standard for the treatment for HIV and hepatitis C virus (HCV) infections. They are advantageous over monotherapies due to better efficacy, reduced toxicity, as well as the ability to prevent the development of resistant viral strains and to treat viral co-infections. Here, we identify new synergistic combinations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), echovirus 1 (EV1), hepatitis C virus (HCV) and human immunodeficiency virus 1 (HIV-1) in vitro. We observed synergistic activity of nelfinavir with convalescent serum and with purified neutralizing antibody 23G7 against SARS-CoV-2 in human lung epithelial Calu-3 cells. We also demonstrated synergistic activity of nelfinavir with EIDD-2801 or remdesivir in Calu-3 cells. In addition, we showed synergistic activity of vemurafenib with emetine, homoharringtonine, anisomycin, or cycloheximide against EV1 infection in human lung epithelial A549 cells. We also found that combinations of sofosbuvir with brequinar or niclosamide are synergistic against HCV infection in hepatocyte-derived Huh-7.5 cells, and that combinations of monensin with lamivudine or tenofovir are synergistic against HIV-1 infection in human cervical TZM-bl cells. These results indicate that synergy is achieved when a virus-directed antiviral is combined with another virus- or host-directed agent. Finally, we present an online resource that summarizes novel and known antiviral drug combinations and their developmental status.
Collapse
|
17
|
Xiong R, Zhang L, Li S, Sun Y, Ding M, Wang Y, Zhao Y, Wu Y, Shang W, Jiang X, Shan J, Shen Z, Tong Y, Xu L, Chen Y, Liu Y, Zou G, Lavillete D, Zhao Z, Wang R, Zhu L, Xiao G, Lan K, Li H, Xu K. Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2. Protein Cell 2020; 11:723-739. [PMID: 32754890 DOI: 10.1101/2020.03.11.983056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 05/18/2023] Open
Abstract
Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC50 of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.
Collapse
Affiliation(s)
- Rui Xiong
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuan Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Minyi Ding
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yongliang Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weijuan Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiaming Jiang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiwei Shan
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zihao Shen
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Tong
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liuxin Xu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gang Zou
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dimitri Lavillete
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ke Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
18
|
Xiong R, Zhang L, Li S, Sun Y, Ding M, Wang Y, Zhao Y, Wu Y, Shang W, Jiang X, Shan J, Shen Z, Tong Y, Xu L, Chen Y, Liu Y, Zou G, Lavillete D, Zhao Z, Wang R, Zhu L, Xiao G, Lan K, Li H, Xu K. Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2. Protein Cell 2020; 11:723-739. [PMID: 32754890 PMCID: PMC7402641 DOI: 10.1007/s13238-020-00768-w] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 12/28/2022] Open
Abstract
Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC50 of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.
Collapse
Affiliation(s)
- Rui Xiong
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuan Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Minyi Ding
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yongliang Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weijuan Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiaming Jiang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiwei Shan
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zihao Shen
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Tong
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liuxin Xu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gang Zou
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dimitri Lavillete
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ke Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
19
|
Potential Antiviral Options against SARS-CoV-2 Infection. Viruses 2020; 12:v12060642. [PMID: 32545799 PMCID: PMC7354438 DOI: 10.3390/v12060642] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023] Open
Abstract
As of June 2020, the number of people infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) continues to skyrocket, with more than 6.7 million cases worldwide. Both the World Health Organization (WHO) and United Nations (UN) has highlighted the need for better control of SARS-CoV-2 infections. However, developing novel virus-specific vaccines, monoclonal antibodies and antiviral drugs against SARS-CoV-2 can be time-consuming and costly. Convalescent sera and safe-in-man broad-spectrum antivirals (BSAAs) are readily available treatment options. Here, we developed a neutralization assay using SARS-CoV-2 strain and Vero-E6 cells. We identified the most potent sera from recovered patients for the treatment of SARS-CoV-2-infected patients. We also screened 136 safe-in-man broad-spectrum antivirals against the SARS-CoV-2 infection in Vero-E6 cells and identified nelfinavir, salinomycin, amodiaquine, obatoclax, emetine and homoharringtonine. We found that a combination of orally available virus-directed nelfinavir and host-directed amodiaquine exhibited the highest synergy. Finally, we developed a website to disseminate the knowledge on available and emerging treatments of COVID-19.
Collapse
|
20
|
|
21
|
Discovery and development of safe-in-man broad-spectrum antiviral agents. Int J Infect Dis 2020; 93:268-276. [PMID: 32081774 PMCID: PMC7128205 DOI: 10.1016/j.ijid.2020.02.018] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
We reviewed the discovery and development process of broad-spectrum antiviral agents. We summarized the information on 120 safe-in-man agents in a freely accessible database. Further studies will increase the number of broad-spectrum antivirals, expand the spectrum of their indications, and identify drug combinations for treatment of emerging and re-emerging viral infections.
Viral diseases are one of the leading causes of morbidity and mortality in the world. Virus-specific vaccines and antiviral drugs are the most powerful tools to combat viral diseases. However, broad-spectrum antiviral agents (BSAAs, i.e. compounds targeting viruses belonging to two or more viral families) could provide additional protection of the general population from emerging and re-emerging viral diseases, reinforcing the arsenal of available antiviral options. Here, we review discovery and development of BSAAs and summarize the information on 120 safe-in-man agents in a freely accessible database (https://drugvirus.info/). Future and ongoing pre-clinical and clinical studies will increase the number of BSAAs, expand the spectrum of their indications, and identify drug combinations for treatment of emerging and re-emerging viral infections as well as co-infections.
Collapse
|
22
|
Pastuch-Gawołek G, Gillner D, Król E, Walczak K, Wandzik I. Selected nucleos(t)ide-based prescribed drugs and their multi-target activity. Eur J Pharmacol 2019; 865:172747. [PMID: 31634460 PMCID: PMC7173238 DOI: 10.1016/j.ejphar.2019.172747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Nucleos(t)ide analogues play pivotal roles as antiviral, cytotoxic or immunosuppressive agents. Here, we review recent reports of nucleoside analogues that exhibit broad-spectrum activity towards multiple life-threatening RNA and DNA viruses. We also present a discussion about nucleoside antimetabolites-approved antineoplastic agents-that have recently been shown to have antiviral and/or antibacterial activity. The approved drugs and drug combinations, as well as recently identified candidates for investigation and/or experimentation, are discussed. Several examples of repurposed drugs that have already been approved for use are presented. This strategy can be crucial for the first-line treatment of acute infections or coinfections and for the management of drug-resistant strains.
Collapse
Affiliation(s)
- Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
| | - Danuta Gillner
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
| | - Ewelina Król
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Krzysztof Walczak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland.
| |
Collapse
|
23
|
Novel Antiviral Activities of Obatoclax, Emetine, Niclosamide, Brequinar, and Homoharringtonine. Viruses 2019; 11:v11100964. [PMID: 31635418 PMCID: PMC6832696 DOI: 10.3390/v11100964] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Viruses are the major causes of acute and chronic infectious diseases in the world. According to the World Health Organization, there is an urgent need for better control of viral diseases. Repurposing existing antiviral agents from one viral disease to another could play a pivotal role in this process. Here, we identified novel activities of obatoclax and emetine against herpes simplex virus type 2 (HSV-2), echovirus 1 (EV1), human metapneumovirus (HMPV) and Rift Valley fever virus (RVFV) in cell cultures. Moreover, we demonstrated novel activities of emetine against influenza A virus (FLUAV), niclosamide against HSV-2, brequinar against human immunodeficiency virus 1 (HIV-1), and homoharringtonine against EV1. Our findings may expand the spectrum of indications of these safe-in-man agents and reinforce the arsenal of available antiviral therapeutics pending the results of further in vitro and in vivo tests.
Collapse
|