1
|
Mao C, Wang M, Zhuang L, Gan B. Metabolic cell death in cancer: ferroptosis, cuproptosis, disulfidptosis, and beyond. Protein Cell 2024; 15:642-660. [PMID: 38428031 PMCID: PMC11365558 DOI: 10.1093/procel/pwae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
Cell death resistance represents a hallmark of cancer. Recent studies have identified metabolic cell death as unique forms of regulated cell death resulting from an imbalance in the cellular metabolism. This review discusses the mechanisms of metabolic cell death-ferroptosis, cuproptosis, disulfidptosis, lysozincrosis, and alkaliptosis-and explores their potential in cancer therapy. Our review underscores the complexity of the metabolic cell death pathways and offers insights into innovative therapeutic avenues for cancer treatment.
Collapse
Affiliation(s)
- Chao Mao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
2
|
Xiao Y, Yin J, Liu P, Zhang X, Lin Y, Guo J. Triptolide-induced cuproptosis is a novel antitumor strategy for the treatment of cervical cancer. Cell Mol Biol Lett 2024; 29:113. [PMID: 39198750 PMCID: PMC11360305 DOI: 10.1186/s11658-024-00623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Cuproptosis is a unique copper-dependent form of cell death that is highly correlated with the metabolic state of cells. Triptolide exerts pharmacological activity by altering the regulation of metal ions. Cuproptosis is poorly understood in cancer, so in this study, we explored whether triptolide could induce cuproptosis in cervical cancer cells. METHODS The human cervical cancer cell lines HeLa and SiHa, which primarily rely on oxidative phosphorylation, were treated with triptolide. Cell viability, proliferation and migration, copper levels and cuproptosis-related protein levels were evaluated in these cell lines. The copper ion chelator tetrathiomolybdate (TTM) was administered to determine whether it could reverse the cuproptosis induced by triptolide. In addition, a nude mouse cervical cancer xenograft model was established to determine the effects of triptolide on cuproptosis in isolated tumor tissues. RESULTS The copper concentration increased with triptolide treatment. The levels of cuproptosis -related proteins, such as FDX1, LIAS, and DLAT, in the HeLa and SiHa cell lines decreased with triptolide treatment. XIAP, the target of triptolide, played a role in cuproptosis by regulating COMMD1. The level of copper exporters (ATP7A/B) decreased, but the level of the copper importer (CTR1) did not change with triptolide treatment. Furthermore, triptolide inhibited cervical cancer growth and induced cuproptosis in vivo. CONCLUSIONS In summary, we report a new antitumor mechanism by which triptolide disrupted intracellular copper homeostasis and induced cuproptosis in cervical cancer by regulating the XIAP/COMMD1/ATP7A/B axis.
Collapse
Affiliation(s)
- Yanxia Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, NO.1 Da HuaRoad, DongDan, Beijing, 100730, People's Republic of China
| | - Jiameng Yin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, NO.1 Da HuaRoad, DongDan, Beijing, 100730, People's Republic of China
| | - Pu Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, NO.1 Da HuaRoad, DongDan, Beijing, 100730, People's Republic of China
| | - Xin Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, NO.1 Da HuaRoad, DongDan, Beijing, 100730, People's Republic of China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, NO.1 Da HuaRoad, DongDan, Beijing, 100730, People's Republic of China.
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, NO.1 Da HuaRoad, DongDan, Beijing, 100730, People's Republic of China.
| |
Collapse
|
3
|
Gu J, Huang W, Duanmu Z, Zhuang R, Yang X. Cuproptosis and copper deficiency in ischemic vascular injury and repair. Apoptosis 2024; 29:1007-1018. [PMID: 38649508 DOI: 10.1007/s10495-024-01969-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Ischemic vascular diseases are on the rise globally, including ischemic heart diseases, ischemic cerebrovascular diseases, and ischemic peripheral arterial diseases, posing a significant threat to life. Copper is an essential element in various biological processes, copper deficiency can reduce blood vessel elasticity and increase platelet aggregation, thereby increasing the risk of ischemic vascular disease; however, excess copper ions can lead to cytotoxicity, trigger cell death, and ultimately result in vascular injury through several signaling pathways. Herein, we review the role of cuproptosis and copper deficiency implicated in ischemic injury and repair including myocardial, cerebral, and limb ischemia. We conclude with a perspective on the therapeutic opportunities and future challenges of copper biology in understanding the pathogenesis of ischemic vascular disease states.
Collapse
Affiliation(s)
- Jiayi Gu
- Department of Neurology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Huang
- Department of Neurology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Duanmu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science and Technology University, Beijing, China
| | - Rulin Zhuang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Xilan Yang
- Department of General Practice, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Zhao R, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zheng Y, Gu H, Zhao D, Madhunapantula SV, Zhu X, Liu J, Fan R. Cuproptosis, the novel type of oxidation-induced cell death in thoracic cancers: can it enhance the success of immunotherapy? Cell Commun Signal 2024; 22:379. [PMID: 39068453 PMCID: PMC11282696 DOI: 10.1186/s12964-024-01743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Copper is an important metal micronutrient, required for the balanced growth and normal physiological functions of human organism. Copper-related toxicity and dysbalanced metabolism were associated with the disruption of intracellular respiration and the development of various diseases, including cancer. Notably, copper-induced cell death was defined as cuproptosis which was also observed in malignant cells, representing an attractive anti-cancer instrument. Excess of intracellular copper leads to the aggregation of lipoylation proteins and toxic stress, ultimately resulting in the activation of cell death. Differential expression of cuproptosis-related genes was detected in normal and malignant tissues. Cuproptosis-related genes were also linked to the regulation of oxidative stress, immune cell responses, and composition of tumor microenvironment. Activation of cuproptosis was associated with increased expression of redox-metabolism-regulating genes, such as ferredoxin 1 (FDX1), lipoic acid synthetase (LIAS), lipoyltransferase 1 (LIPT1), dihydrolipoamide dehydrogenase (DLD), drolipoamide S-acetyltransferase (DLAT), pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1), and pyruvate dehydrogenase E1 subunit beta (PDHB)). Accordingly, copper-activated network was suggested as an attractive target in cancer therapy. Mechanisms of cuproptosis and regulation of cuproptosis-related genes in different cancers and tumor microenvironment are discussed in this study. The analysis of current findings indicates that therapeutic regulation of copper signaling, and activation of cuproptosis-related targets may provide an effective tool for the improvement of immunotherapy regimens.
Collapse
Affiliation(s)
- Ruiwen Zhao
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Olga Sukocheva
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide, SA, 5000, Australia.
| | - Edmund Tse
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide, SA, 5000, Australia
| | - Margarita Neganova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yulia Aleksandrova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yufei Zheng
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Gu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Deyao Zhao
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - SabbaRao V Madhunapantula
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Xiaorong Zhu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junqi Liu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruitai Fan
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Li W, Huang H, Yao S, Zhao Y, Liu M, Liu X, Guo H. Engineering of a double targeting nanoplatform to elevate ROS generation and DSF anticancer activity. J Mater Chem B 2024; 12:7143-7152. [PMID: 38904428 DOI: 10.1039/d4tb00455h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Intracellular oxidative protection mechanisms and adverse systemic toxicity are major obstacles for the success of chemodynamic therapy (CDT)/chemotherapy (CT) synergistic therapy. To tackle the fundamental challenges of current CDT and circumvent the side effects of conventional CT, we developed a copper peroxide (CP) and disulfiram (DSF)-loaded 3-aminotriazole (3-AT) doped ZIF-8 (MAF) with partial sequence-specificity using hyaluronic acid (HA) and triphenylphosphine (TPP) in this study. Upon intravenous administration, CP@MAF-DSF@PEG-TPP@HA (CPMDTH) nanoparticles (NPs) were enriched in tumor tissues through HA-mediated endocytosis, followed by enhanced accumulation in mitochondria by the TPP target. The acidic tumor environment (TME) triggered the decomposition of MAF to release CP, DSF and 3-AT. Cu2+ and H2O2 hydrated from CP NPs produced ˙OH via a Fenton-like reaction. CAT activity inhibition and GSH consumption induced by 3-AT dramatically amplified mitochondrial oxidative stress, thereby promoting the overproduction of ˙OH. In addition, the accumulation of DSF and Cu2+ led to the formation of a cytotoxic bis(N,N-diethyldithiocarbamate) copper(II) complex (Cu(DTC)2) in situ, achieving efficient CT. CPMDTH NPs demonstrated significantly improved antitumor efficiency and excellent biosafety both in vitro and in vivo. This study offers a promising therapeutic strategy for CDT/CT synergistic oncotherapy.
Collapse
Affiliation(s)
- Wenqiu Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Haowu Huang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Shunyu Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Yiwang Zhao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Mingxing Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Xiaoqing Liu
- Center for Materials Research and Analysis, Wuhan University of Technology, Wuhan 430070, PR China
| | - Huiling Guo
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
6
|
Kordi N, Saydi A, Azimi M, Mazdarani F, Gadruni K, Jung F, Karami S. Cuproptosis and physical training: A review. Clin Hemorheol Microcirc 2024:CH242329. [PMID: 39031346 DOI: 10.3233/ch-242329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Copper is an essential element in the human body, involved in many physiological and metabolic functions, including coagulation, oxidative metabolism, and hormone production. The maintenance of copper homeostasis within cells is a complex procedure that is intrinsically controlled by a multitude of intricate mechanisms. Disorders of copper homeostasis encompass a wide range of pathological conditions, including degenerative neurological diseases, metabolic disorders, cardio-cerebrovascular diseases, and tumors. Cuproptosis, a recently identified non-apoptotic mode of cell death mode, is characterized by copper dependence and the regulation of mitochondrial respiration. Cuproptosis represents a novel form of cell death distinct from the previously described modes, including apoptosis, necrosis, pyroptosis, and ferroptosis. Excess copper has been shown to induce cuproptosis by stimulating protein toxic stress responses via copper-dependent abnormal oligomerization of lipoylation proteins within the tricarboxylic acid cycle and the subsequent reduction of iron-sulfur cluster protein levels. Ferredoxin1 facilitates the lipoacylation of dihydrolipoyl transacetylase, which in turn degrades iron-sulfur cluster proteins by reducing Cu2+ to Cu+, thereby inducing cell death. Furthermore, copper homeostasis is regulated by the copper transporter, and disturbances in this homeostasis result in cuproptosis. Current evidence suggests that cuproptosis plays an important role in the onset and development of several cardiovascular diseases. Copper-chelating agents, including ammonium tetrathiomolybdate (VI) and DL-penicillamine, have been shown to facilitate the alleviation of cardiovascular disease by inhibiting cuproptosis. It is hypothesized that oxidative phosphorylation inhibitors such as physical training may inhibit cuproptosis by inhibiting the protein stress response. In conclusion, the implementation of physical training may be a viable strategy to reducte the incidence of cuproptosis.
Collapse
Affiliation(s)
- Negin Kordi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ali Saydi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Maliheh Azimi
- Faculty of Physical Education, Shahrood University of Technology, Shahrood, Iran
| | - Farivar Mazdarani
- Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran, Iran
| | - Keivan Gadruni
- Faculty of Physical Education, University of Tabriz, Tabriz, Iran
- Kurdistan Education Office, Ministry of Education, Kurdistan, Iran
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Friedrich Jung
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Sajad Karami
- Faculty of Physical Education and Sport Science, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
7
|
Yang S, Li X, Yan J, Jiang F, Fan X, Jin J, Zhang W, Zhong D, Li G. Disulfiram downregulates ferredoxin 1 to maintain copper homeostasis and inhibit inflammation in cerebral ischemia/reperfusion injury. Sci Rep 2024; 14:15175. [PMID: 38956251 PMCID: PMC11219760 DOI: 10.1038/s41598-024-64981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
In the current study, we aimed to investigate whether disulfiram (DSF) exerts a neuroprotective role in cerebral ischemiareperfusion (CI-RI) injury by modulating ferredoxin 1 (FDX1) to regulate copper ion (Cu) levels and inhibiting inflammatory responses. To simulate CI-RI, a transient middle cerebral artery occlusion (tMCAO) model in C57/BL6 mice was employed. Mice were administered with or without DSF before and after tMCAO. Changes in infarct volume after tMCAO were observed using TTC staining. Nissl staining and hematoxylin-eosin (he) staining were used to observe the morphological changes of nerve cells at the microscopic level. The inhibitory effect of DSF on initial inflammation was verified by TUNEL assay, apoptosis-related protein detection and iron concentration detection. FDX1 is the main regulatory protein of copper death, and the occurrence of copper death will lead to the increase of HSP70 stress and inflammatory response. Cuproptosis-related proteins and downstream inflammatory factors were detected by western blotting, immunofluorescence staining, and immunohistochemistry. The content of copper ions was detected using a specific kit, while electron microscopy was employed to examine mitochondrial changes. We found that DSF reduced the cerebral infarction volume, regulated the expression of cuproptosis-related proteins, and modulated copper content through down regulation of FDX1 expression. Moreover, DSF inhibited the HSP70/TLR-4/NLRP3 signaling pathway. Collectively, DSF could regulate Cu homeostasis by inhibiting FDX1, acting on the HSP70/TLR4/NLRP3 pathway to alleviate CI/RI. Accordingly, DSF could mitigate inflammatory responses and safeguard mitochondrial integrity, yielding novel therapeutic targets and mechanisms for the clinical management of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Shuai Yang
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Xudong Li
- The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin, 150001, China
| | - Jinhong Yan
- The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin, 150001, China
| | - Fangchao Jiang
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Xuehui Fan
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Jing Jin
- Heilongjiang Provincial Hospital, Harbin, China
| | - Weihua Zhang
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Di Zhong
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China.
| | - Guozhong Li
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China.
- Heilongjiang Provincial Hospital, Harbin, China.
| |
Collapse
|
8
|
Lin Y, Yuan M, Wang G. Copper homeostasis and cuproptosis in gynecological disorders: Pathogenic insights and therapeutic implications. J Trace Elem Med Biol 2024; 84:127436. [PMID: 38547725 DOI: 10.1016/j.jtemb.2024.127436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 05/27/2024]
Abstract
This review comprehensively explores the complex role of copper homeostasis in female reproductive system diseases. As an essential trace element, copper plays a crucial role in various biological functions. Its dysregulation is increasingly recognized as a pivotal factor in the pathogenesis of gynecological disorders. We investigate how copper impacts these diseases, focusing on aspects like oxidative stress, inflammatory responses, immune function, estrogen levels, and angiogenesis. The review highlights significant changes in copper levels in diseases such as cervical, ovarian, endometrial cancer, and endometriosis, underscoring their potential roles in disease mechanisms and therapeutic exploration. The recent discovery of 'cuproptosis,' a novel cell death mechanism induced by copper ions, offers a fresh molecular perspective in understanding these diseases. The review also examines genes associated with cuproptosis, particularly those related to drug resistance, suggesting new strategies to enhance traditional therapy effectiveness. Additionally, we critically evaluate current therapeutic approaches targeting copper homeostasis, including copper ionophores, chelators, and nanoparticles, emphasizing their emerging potential in gynecological disease treatment. This article aims to provide a comprehensive overview of copper's role in female reproductive health, setting the stage for future research to elucidate its mechanisms and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ying Lin
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China.
| |
Collapse
|
9
|
Zhou L, Wu Y, Ying Y, Ding Y. Current knowledge of ferroptosis in the pathogenesis and prognosis of oral squamous cell carcinoma. Cell Signal 2024; 119:111176. [PMID: 38636767 DOI: 10.1016/j.cellsig.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Therapeutic strategies are the hot-spot issues in treating patients with advanced oral squamous cell carcinoma (OSCC). Mounting studies have proved that triggering ferroptosis is one of the promising targets for OSCC management. In this study, we performed a first attempt to collect the current evidence on the proposed roles of ferroptosis in OSCC through a comprehensive review. Based on clinical data from the relevant studies within this topic, we found that ferroptosis-associated tumor microenvironment, ferroptosis-related genes (FRGs), and ferroptosis-related lncRNAs exhibited a potent prognostic value for OSCC patients. Mechanistically, experimental data revealed that the proliferation and tumorigenesis of OSCC might be associated with the inhibition of cellular ferroptosis through the activation of glutathione peroxidase 4 (GPX4) and adipocyte enhancer-binding protein 1 (AEBP1), suppression of glutathione (GSH) and Period 1 (PER1) expression, and modulation of specific non-coding RNAs (i.e., miR-520d-5p, miR-34c-3p, and miR-125b-5p) and their targeted proteins. Several specific interventions (i.e., Quisinostat, Carnosic acid, hyperbaric oxygen, melatonin, aqueous-soluble sporoderm-removed G. lucidum spore powder, and disulfiram/copper complex) were found to dramatically induce ferroptosis cell death of OSCC via multiple mechanisms. This review highlighted the pivotal role of ferroptosis in the pathogenesis and prognosis of OSCC. Future anticancer therapeutic strategies targeting ferroptosis and its associated molecules might provide a new insight for OSCC treatment.
Collapse
Affiliation(s)
- Liyuan Zhou
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), 318000 Zhejiang, China
| | - Youjun Wu
- Department of Dermatology, Taizhou Second People's Hospital, Taizhou, China
| | - Yukang Ying
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), 318000 Zhejiang, China
| | - Yan Ding
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang, China.
| |
Collapse
|
10
|
Lv H, Yang H, Duan Y, Sha H, Zhao Z. A disulfiram derivative against lung cancer via the Notch signaling pathway without neurotoxicity and hepatotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4747-4760. [PMID: 38147104 DOI: 10.1007/s00210-023-02906-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
The exploration of novel anti-lung cancer small-molecule drugs is important for drug resistance and adverse effects of chemotherapeutic drugs in current clinics. Disulfiram (DSF), as an antidote, has been proven to have excellent antitumor effects in combination with copper (Cu). However, the risk for potential neurotoxicity and hepatotoxicity in clinical use, as well as its poor water solubility, limits its use. In this study, we identified a DSF derivative, S-(N,N-diethyldithiocarbamoyl)-N-acetyl-L-cysteine, which could greatly increase the water solubility by converting it to a calcium salt (DS-NAC). The anti-lung cancer pharmacodynamic studies in vitro of DS-NAC were evaluated and a mouse model of lung cancer in situ was established to explore the therapeutic effects of DS-NAC compared with DSF and oxaliplatin (OXA). The results demonstrated that DS-NAC combined with Cu had superior cytotoxicity to DSF and OXA in the CCK8 assay against lung cancer cells, and exhibited potent anti-metastatic, epithelial-mesenchymal transition inhibition. In addition, DS-NAC showed better antitumor effects than DSF and comparable effects to OXA in lung cancer in situ model. In terms of the antitumor mechanism, we discovered that DS-NAC in combination with Cu exerted a greater inhibitory effect on the Notch pathway than DSF, which may account for its excellent antitumor effects. Finally, we verified the safety of DS-NAC in vivo, showing lower hepatotoxicity and neurotoxicity compared with DSF and OXA. DS-NAC is a promising anti-lung cancer drug with a favorable safety profile.
Collapse
Affiliation(s)
- Huaiyou Lv
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key University Laboratory of Pharmaceutics &, Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Department of Pharmacy, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264001, Shandong, China
| | - Huatian Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key University Laboratory of Pharmaceutics &, Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yifei Duan
- Department of Statistics, University of Virginia, Charlottesville, VA, USA
| | - Hongyu Sha
- Department of Pharmacy, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264001, Shandong, China.
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key University Laboratory of Pharmaceutics &, Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
11
|
Li L, Zhou H, Zhang C. Cuproptosis in cancer: biological implications and therapeutic opportunities. Cell Mol Biol Lett 2024; 29:91. [PMID: 38918694 PMCID: PMC11201306 DOI: 10.1186/s11658-024-00608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Cuproptosis, a newly identified copper (Cu)-dependent form of cell death, stands out due to its distinct mechanism that sets it apart from other known cell death pathways. The molecular underpinnings of cuproptosis involve the binding of Cu to lipoylated enzymes in the tricarboxylic acid cycle. This interaction triggers enzyme aggregation and proteotoxic stress, culminating in cell death. The specific mechanism of cuproptosis has yet to be fully elucidated. This newly recognized form of cell death has sparked numerous investigations into its role in tumorigenesis and cancer therapy. In this review, we summarized the current knowledge on Cu metabolism and its link to cancer. Furthermore, we delineated the molecular mechanisms of cuproptosis and summarized the roles of cuproptosis-related genes in cancer. Finally, we offered a comprehensive discussion of the most recent advancements in Cu ionophores and nanoparticle delivery systems that utilize cuproptosis as a cutting-edge strategy for cancer treatment.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
12
|
Zeng M, Wu B, Wei W, Jiang Z, Li P, Quan Y, Hu X. Disulfiram: A novel repurposed drug for cancer therapy. Chin Med J (Engl) 2024; 137:1389-1398. [PMID: 38275022 PMCID: PMC11188872 DOI: 10.1097/cm9.0000000000002909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Indexed: 01/27/2024] Open
Abstract
ABSTRACT Cancer is a major global health issue. Effective therapeutic strategies can prolong patients' survival and reduce the costs of treatment. Drug repurposing, which identifies new therapeutic uses for approved drugs, is a promising approach with the advantages of reducing research costs, shortening development time, and increasing efficiency and safety. Disulfiram (DSF), a Food and Drug Administration (FDA)-approved drug used to treat chronic alcoholism, has a great potential as an anticancer drug by targeting diverse human malignancies. Several studies show the antitumor effects of DSF, particularly the combination of DSF and copper (DSF/Cu), on a wide range of cancers such as glioblastoma (GBM), breast cancer, liver cancer, pancreatic cancer, and melanoma. In this review, we summarize the antitumor mechanisms of DSF/Cu, including induction of intracellular reactive oxygen species (ROS) and various cell death signaling pathways, and inhibition of proteasome activity, as well as inhibition of nuclear factor-kappa B (NF-κB) signaling. Furthermore, we highlight the ability of DSF/Cu to target cancer stem cells (CSCs), which provides a new approach to prevent tumor recurrence and metastasis. Strikingly, DSF/Cu inhibits several molecular targets associated with drug resistance, and therefore it is becoming a novel option to increase the sensitivity of chemo-resistant and radio-resistant patients. Studies of DSF/Cu may shed light on its improved application to clinical tumor treatment.
Collapse
Affiliation(s)
- Min Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Baibei Wu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wenjie Wei
- Institute of Biochemistry of Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zihan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Peiqiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuanting Quan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaobo Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
13
|
Xu X, Han Y, Deng J, Wang S, Zhuo S, Zhao K, Zhou W. Repurposing disulfiram with CuET nanocrystals: Enhancing anti-pyroptotic effect through NLRP3 inflammasome inhibition for treating inflammatory bowel diseases. Acta Pharm Sin B 2024; 14:2698-2715. [PMID: 38828135 PMCID: PMC11143773 DOI: 10.1016/j.apsb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 06/05/2024] Open
Abstract
Drug repurposing offers a valuable strategy for identifying new therapeutic applications for existing drugs. Recently, disulfiram (DSF), a drug primarily used for alcohol addiction treatment, has emerged as a potential treatment for inflammatory diseases by inhibiting pyroptosis, a form of programmed cell death. The therapeutic activity of DSF can be further enhanced by the presence of Cu2+, although the underlying mechanism of this enhancement remains unclear. In this study, we investigated the mechanistic basis of Cu2+-induced enhancement and discovered that it is attributed to the formation of a novel copper ethylthiocarbamate (CuET) complex. CuET exhibited significantly stronger anti-pyroptotic activity compared to DSF and employed a distinct mechanism of action. However, despite its potent activity, CuET suffered from poor solubility and limited permeability, as revealed by our druggability studies. To overcome these intrinsic limitations, we developed a scalable method to prepare CuET nanocrystals (CuET NCs) using a metal coordination-driven self-assembly approach. Pharmacokinetic studies demonstrated that CuET NCs exhibited a 6-fold improvement in bioavailability. Notably, CuET NCs exhibited high biodistribution in the intestine, suggesting their potential application for the treatment of inflammatory bowel diseases (IBDs). To evaluate their therapeutic efficacy in vivo, we employed a murine model of DSS-induced colitis and observed that CuET NCs effectively attenuated inflammation and ameliorated colitis symptoms. Our findings highlight the discovery of CuET as a potent anti-pyroptotic agent, and the development of CuET NCs represents a novel approach to enhance the druggability of CuET.
Collapse
Affiliation(s)
- Xueming Xu
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yuanfeng Han
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jiali Deng
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Chidren's Hospital, Changsha 410007, China
| | - Shengfeng Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shijie Zhuo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Kai Zhao
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha 410008, China
| |
Collapse
|
14
|
Shen X, Sheng H, Zhang Y, Dong X, Kou L, Yao Q, Zhao X. Nanomedicine-based disulfiram and metal ion co-delivery strategies for cancer treatment. Int J Pharm X 2024; 7:100248. [PMID: 38689600 PMCID: PMC11059435 DOI: 10.1016/j.ijpx.2024.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Disulfiram (DSF) is a second-line drug for the clinical treatment of alcoholism and has long been proven to be safe for use in clinical practice. In recent years, researchers have discovered the cancer-killing activity of DSF, which is highly dependent on the presence of metal ions, particularly copper ions. Additionally, free DSF is highly unstable and easily degraded within few minutes in blood circulation. Therefore, an ideal DSF formulation should facilitate the co-delivery of metal ions and safeguard the DSF throughout its biological journey before reaching the targeted site. Extensive research have proved that nanotechnology based formulations can effectively realize this goal by strategic encapsulation therapeutic agents within nanoparticle. To be more specific, this is accomplished through precise delivery, coordinated release of metal ions at the tumor site, thereby amplifying its cytotoxic potential. Beyond traditional co-loading techniques, innovative approaches such as DSF-metal complex and metal nanomaterials, have also demonstrated promising results at the animal model stage. This review aims to elucidate the anticancer mechanism associated with DSF and its reliance on metal ions, as well as to provide a comprehensive overview of recent advances in the arena of nanomedicine based co-delivery strategies for DSF and metal ion in the context of cancer therapy.
Collapse
Affiliation(s)
- Xinyue Shen
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Huixiang Sheng
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuan Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qing Yao
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Xinyu Zhao
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
15
|
Ni K, Montesdeoca N, Karges J. Highly cytotoxic Cu(II) terpyridine complexes as chemotherapeutic agents. Dalton Trans 2024; 53:8223-8228. [PMID: 38652088 DOI: 10.1039/d4dt00759j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Cancer is considered as the biggest medicinal challenge worldwide. During a typical treatment, the tumorous tissue is removed in a surgical procedure and the patient further treated by chemotherapy. One of the most frequently applied drugs are platinum complexes. Despite their clinical success, these compounds are associated with severe side effects and low therapeutic efficiency. To overcome these limitations, herein, the synthesis and biological evaluation of Cu(II) terpyridine complexes as chemotherapeutic drug candidates is suggested. The compounds were found to be highly cytotoxic in the nanomolar range against various cancer cell lines. Mechanistic insights revealed that the compounds primarily accumulated in the cytoplasm and generated reactive oxygen species in this organelle, triggering cell death by apoptosis. Based on their high therapeutic effect, these metal complexes could serve as a starting point for further drug development.
Collapse
Affiliation(s)
- Kaixin Ni
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| |
Collapse
|
16
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
17
|
Karsa M, Xiao L, Ronca E, Bongers A, Spurling D, Karsa A, Cantilena S, Mariana A, Failes TW, Arndt GM, Cheung LC, Kotecha RS, Sutton R, Lock RB, Williams O, de Boer J, Haber M, Norris MD, Henderson MJ, Somers K. FDA-approved disulfiram as a novel treatment for aggressive leukemia. J Mol Med (Berl) 2024; 102:507-519. [PMID: 38349407 PMCID: PMC10963497 DOI: 10.1007/s00109-023-02414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 03/26/2024]
Abstract
Acute leukemia continues to be a major cause of death from disease worldwide and current chemotherapeutic agents are associated with significant morbidity in survivors. While better and safer treatments for acute leukemia are urgently needed, standard drug development pipelines are lengthy and drug repurposing therefore provides a promising approach. Our previous evaluation of FDA-approved drugs for their antileukemic activity identified disulfiram, used for the treatment of alcoholism, as a candidate hit compound. This study assessed the biological effects of disulfiram on leukemia cells and evaluated its potential as a treatment strategy. We found that disulfiram inhibits the viability of a diverse panel of acute lymphoblastic and myeloid leukemia cell lines (n = 16) and patient-derived xenograft cells from patients with poor outcome and treatment-resistant disease (n = 15). The drug induced oxidative stress and apoptosis in leukemia cells within hours of treatment and was able to potentiate the effects of daunorubicin, etoposide, topotecan, cytarabine, and mitoxantrone chemotherapy. Upon combining disulfiram with auranofin, a drug approved for the treatment of rheumatoid arthritis that was previously shown to exert antileukemic effects, strong and consistent synergy was observed across a diverse panel of acute leukemia cell lines, the mechanism of which was based on enhanced ROS induction. Acute leukemia cells were more sensitive to the cytotoxic activity of disulfiram than solid cancer cell lines and non-malignant cells. While disulfiram is currently under investigation in clinical trials for solid cancers, this study provides evidence for the potential of disulfiram for acute leukemia treatment. KEY MESSAGES: Disulfiram induces rapid apoptosis in leukemia cells by boosting oxidative stress. Disulfiram inhibits leukemia cell growth more potently than solid cancer cell growth. Disulfiram can enhance the antileukemic efficacy of chemotherapies. Disulfiram strongly synergises with auranofin in killing acute leukemia cells by ROS induction. We propose testing of disulfiram in clinical trial for patients with acute leukemia.
Collapse
Affiliation(s)
- Mawar Karsa
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Lin Xiao
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Emma Ronca
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Angelika Bongers
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Dayna Spurling
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Ayu Karsa
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Sandra Cantilena
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London, UK
| | - Anna Mariana
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Tim W Failes
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Greg M Arndt
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Laurence C Cheung
- Leukemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Rishi S Kotecha
- Leukemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, Australia
- Division of Paediatrics, School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Rosemary Sutton
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, Australia
| | - Owen Williams
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London, UK
| | - Jasper de Boer
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London, UK
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, Australia
| | - Michelle J Henderson
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Klaartje Somers
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
18
|
Abdullah K, Kaushal JB, Takkar S, Sharma G, Alsafwani ZW, Pothuraju R, Batra SK, Siddiqui JA. Copper metabolism and cuproptosis in human malignancies: Unraveling the complex interplay for therapeutic insights. Heliyon 2024; 10:e27496. [PMID: 38486750 PMCID: PMC10938126 DOI: 10.1016/j.heliyon.2024.e27496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Copper, a vital trace element, orchestrates diverse cellular processes ranging from energy production to antioxidant defense and angiogenesis. Copper metabolism and cuproptosis are closely linked in the context of human diseases, with a particular focus on cancer. Cuproptosis refers to a specific type of copper-mediated cell death or copper toxicity triggered by disruptions in copper metabolism within the cells. This phenomenon encompasses a spectrum of mechanisms, such as oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and perturbations in metal ion equilibrium. Mechanistically, cuproptosis is driven by copper binding to the lipoylated enzymes within the tricarboxylic acid (TCA) cycle. This interaction participates in protein aggregation and proteotoxic stress, ultimately culminating in cell death. Targeting copper metabolism and its associated pathways in cancer cells hold therapeutic potential by selectively targeting and eliminating cancerous cells. Strategies to modulate copper levels, enhance copper excretion, or interfere with cuproptotic pathways are being explored to identify novel therapeutic targets for cancer therapy and improve patient outcomes. Understanding the relationship between cuproptosis and copper metabolism in human malignancies remains an active area of research. This review provides a comprehensive overview of the association among copper metabolism, copper homeostasis, and carcinogenesis, explicitly emphasizing the cuproptosis mechanism and its implications for cancer pathogenesis. Additionally, we emphasize the therapeutic aspects of targeting copper and cuproptosis for cancer treatment.
Collapse
Affiliation(s)
- K.M. Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jyoti B. Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Zahraa W. Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
19
|
Liu H, Chan S, Li M, Chen S. Cuproptosis-Related Gene Signature Contributes to Prognostic Prediction and Immunosuppression in Multiple Myeloma. Mol Biotechnol 2024; 66:475-488. [PMID: 37213025 DOI: 10.1007/s12033-023-00770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
Cuproptosis is a type of programmed cell death triggered by accumulation of intracellular copper which was considered closely related to tumor progression. The study of cuproptosis in multiple myeloma (MM) is however limited. To determine the prognostic significance of cuproptosis-related gene signature in MM, we interrogated gene expression and overall survival with other available clinical variables from public datasets. Four cuproptosis-related genes were included to establish a prognostic survival model by least absolute shrinkage and selection operator (LASSO) Cox regression analysis, which showed a good performance on prognosis prediction in both training and validation cohorts. Patients with higher cuproptosis-related risk score (CRRS) exhibited worse prognosis compared with lower risk score. Survival prediction capacity and clinical benefit were elevated after integrating CRRS to existing prognostic stratification system (International Staging System, ISS or Revised International Staging System, RISS) both on 3-year and 5-year survival. Based on CRRS groups, functional enrichment analysis and immune infiltration in bone marrow microenvironment revealed correlation between CRRS and immunosuppression. In conclusion, our study found that cuproptosis-related gene signature is an independent poor prognostic factor and functions negatively on immune microenvironment, which provides another perspective on prognosis assessment and immunotherapy strategy in MM.
Collapse
Affiliation(s)
- Huixin Liu
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China.
| | - Szehoi Chan
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Miao Li
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Shuna Chen
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| |
Collapse
|
20
|
Yin X, Wu B, Yang Y, Shi J, Fu Y, Zhang H, Ye J, Sun Y, Chen C, Zhu Y, Zhang W. Precision targeting of CuET overload to disrupt mitochondrial unfolded protein response by integrated liposome. Int J Biol Macromol 2024; 262:129974. [PMID: 38331068 DOI: 10.1016/j.ijbiomac.2024.129974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Mitochondria in breast cancer play a critical role in survival and adaptation to dynamic environments. Thus, targeting mitochondria emerges as a promising therapeutic strategy for breast cancer. However, the adaptive unfolded protein response in mitochondria (UPRmt) due to mitochondrial unspecific distribution might contribute to diminished therapeutic outcomes. Herein, mitochondrial targeting liposome agents (CTPP-Lipid) are constructed and adopted for delivering the copper ion (CuET-DSF), which is especially sensitive for mitochondria-abundant breast tumors. In brief, the CTPP-Lipid@CuET achieves the goal of Cu2+ overloading by mitochondria targeting delivery. This rapidly increases ROS production, disrupts mitochondrial structure, and avoids the adaptive UPRmt formation, finally leading to apoptosis of breast cancer cells. In general, the Cu2+ overloading at mitochondria by CTPP-Lipid@CuET is a potential strategy for antitumor therapy, providing new insights into breast tumor therapy.
Collapse
Affiliation(s)
- Xi Yin
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Breast Surgery, Department of General Surgery, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361000, China
| | - Baojuan Wu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yaxuan Yang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jiajun Shi
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yuping Fu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Hongmei Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Jiahui Ye
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yuxiang Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Changrong Chen
- Department of Emergency Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China.
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, China.
| | - Weijie Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
21
|
Srishti K, Negi O, Hota PK. Recent Development on Copper-Sensor and its Biological Applications: A Review. J Fluoresc 2024:10.1007/s10895-024-03587-y. [PMID: 38416283 DOI: 10.1007/s10895-024-03587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/14/2024] [Indexed: 02/29/2024]
Abstract
Metal ion recognition is one of the most prospective research topics in the field of chemical sensors due to its wide range of clinical, biological and environmental applications. In this context, hydrazones are well known compounds that exhibit metal sensing and several biological properties due to the presence of N=CH- bond. Some of the biological properties includes anti-cancer, anti-tumor, anti-oxidant, anti-microbial activities. Hydrazones are also used as a ligand to detect metal ion as well as to generate metal complexes that exhibit medicinal properties. Thus, in recent years, many attempts were made to develop novel ligands with enhanced metal sensing and medicinal properties. In this review, some of the recent development on the hydrazones and their copper complexes are covered from the last few years from 2015-2023. These includes significance of copper ions, synthesis, biological properties, mechanism and metal sensing properties of some of the copper complexes were discussed.
Collapse
Affiliation(s)
- Km Srishti
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Oseen Negi
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Prasanta Kumar Hota
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India.
| |
Collapse
|
22
|
Cao X, Feng N, Huang Q, Liu Y. Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers: From Synthesis to Cancer Therapy and Biomedical Imaging. ACS APPLIED BIO MATERIALS 2024. [PMID: 38382060 DOI: 10.1021/acsabm.3c01300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Recently, there has been significant interest in nanoscale metal-organic frameworks (NMOFs) characterized by ordered crystal structures and nanoscale coordination polymers (NCPs) featuring amorphous structures. These structures arise from the coordination interactions between inorganic metal ions or clusters and organic ligands. Their advantages, such as the ability to tailor composition and structure, efficiently encapsulate diverse therapeutic or imaging agents within porous frameworks, inherent biodegradability, and surface functionalization capability, position them as promising carriers in the biomedical fields. This review provides an overview of the synthesis and surface modification strategies employed for NMOFs and NCPs, along with their applications in cancer treatment and biological imaging. Finally, future directions and challenges associated with the utilization of NMOFs and NCPs in cancer treatment and diagnosis are also discussed.
Collapse
Affiliation(s)
- Xianghui Cao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Nana Feng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingqing Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Zhang P, Zhou C, Ren X, Jing Q, Gao Y, Yang C, Shen Y, Zhou Y, Hu W, Jin F, Xu H, Yu L, Liu Y, Tong X, Li Y, Wang Y, Du J. Inhibiting the compensatory elevation of xCT collaborates with disulfiram/copper-induced GSH consumption for cascade ferroptosis and cuproptosis. Redox Biol 2024; 69:103007. [PMID: 38150993 PMCID: PMC10788306 DOI: 10.1016/j.redox.2023.103007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors and the fourth leading cause of cancer-related death globally, which is characterized by complicated pathophysiology, high recurrence rate, and poor prognosis. Our previous study has demonstrated that disulfiram (DSF)/Cu could be repurposed for the treatment of HCC by inducing ferroptosis. However, the effectiveness of DSF/Cu may be compromised by compensatory mechanisms that weaken its sensitivity. The mechanisms underlying these compensatory responses are currently unknown. Herein, we found DSF/Cu induces endoplasmic reticulum stress with disrupted ER structures, increased Ca2+ level and activated expression of ATF4. Further studies verified that DSF/Cu induces both ferroptosis and cuproptosis, accompanied by the depletion of GSH, elevation of lipid peroxides, and compensatory increase of xCT. Comparing ferroptosis and cuproptosis, it is interesting to note that GSH acts at the crossing point of the regulation network and therefore, we hypothesized that compensatory elevation of xCT may be a key aspect of the therapeutic target. Mechanically, knockdown of ATF4 facilitated the DSF/Cu-induced cell death and exacerbated the generation of lipid peroxides under the challenge of DSF/Cu. However, ATF4 knockdown was unable to block the compensatory elevation of xCT and the GSH reduction. Notably, we found that DSF/Cu induced the accumulation of ubiquitinated proteins, promoted the half-life of xCT protein, and dramatically dampened the ubiquitination-proteasome mediated degradation of xCT. Moreover, both pharmacologically and genetically suppressing xCT exacerbated DSF/Cu-induced cell death. In conclusion, the current work provides an in-depth study of the mechanism of DSF/Cu-induced cell death and describes a framework for the further understanding of the crosstalk between ferroptosis and cuproptosis. Inhibiting the compensatory increase of xCT renders HCC cells more susceptible to DSF/Cu, which may provide a promising synergistic strategy to sensitize tumor therapy and overcome drug resistance, as it activates different programmed cell death.
Collapse
Affiliation(s)
- Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Chaoting Zhou
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Xueying Ren
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wanye Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Feifan Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haifeng Xu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Ying Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Zhao Y, Zhu S. Nrf2/HO-1 Alleviates Disulfiram/Copper-Induced Ferroptosis in Oral Squamous Cell Carcinoma. Biochem Genet 2024; 62:144-155. [PMID: 37286868 DOI: 10.1007/s10528-023-10405-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Accumulating evidence indicates that the disulfiram/copper complex (DSF/Cu) has been shown to have potent antitumor activity against various cancers. This research evaluated the effects and probable mechanisms of DSF/Cu on oral squamous cell carcinoma (OSCC). In this study, we report the toxicity of the DSF/Cu to OSCC both in vitro and in vivo. Our study showed that DSF/Cu reduced the proliferation and clonogenicity of OSCC cells. DSF/Cu also induced ferroptosis. Importantly, we confirmed that DSF/Cu could increase the free iron pool, enhance lipid peroxidation, and eventually result in ferroptosis cell death. Inhibition of NRF2 or HO-1 enhances the sensitivity of OSCC cells to DSF/Cu-induced ferroptosis. DSF/Cu inhibited the xenograft growth of OSCC cells by suppressing the expression of Nrf2/HO-1. In conclusion, these results provide experimental evidence that Nrf2/HO-1 alleviates DSF/Cu-induced ferroptosis in OSCC. We propose that this therapy could be a novel strategy for treating OSCC.
Collapse
Affiliation(s)
- Yanjuan Zhao
- Department of Stomatology, TianJin First Central Hospital, Tianjin, 300190, China
| | - Shujin Zhu
- Department of Stomatology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 88 Changling Road, Xiqing District, Tianjin, 300190, China.
| |
Collapse
|
25
|
Meraz-Torres F, Niessner H, Plöger S, Riel S, Schörg B, Casadei N, Kneilling M, Schaller M, Flatz L, Macek B, Eigentler T, Rieß O, Garbe C, Amaral T, Sinnberg T. Augmenting MEK inhibitor efficacy in BRAF wild-type melanoma: synergistic effects of disulfiram combination therapy. J Exp Clin Cancer Res 2024; 43:30. [PMID: 38263136 PMCID: PMC10804659 DOI: 10.1186/s13046-023-02941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND MEK inhibitors (MEKi) were shown to be clinically insufficiently effective in patients suffering from BRAF wild-type (BRAF WT) melanoma, even if the MAPK pathway was constitutively activated due to mutations in NRAS or NF-1. Thus, novel combinations are needed to increase the efficacy and duration of response to MEKi in BRAF WT melanoma. Disulfiram and its metabolite diethyldithiocarbamate are known to have antitumor effects related to cellular stress, and induction of endoplasmic reticulum (ER) stress was found to synergize with MEK inhibitors in NRAS-mutated melanoma cells. Therefore, we investigated the combination of both therapeutics to test their effects on BRAF-WT melanoma cells and compared them with monotherapy using the MEKi trametinib. METHODS The effects of combined therapy with disulfiram or its metabolite diethyldithiocarbamate and the MEKi trametinib were evaluated in a series of BRAF-WT melanoma cell lines by measuring cell viability and apoptosis induction. Cytotoxicity was additionally assessed in 3D spheroids, ex vivo melanoma slice cultures, and in vivo xenograft mouse models. The response of melanoma cells to treatment was studied at the RNA and protein levels to decipher the mode of action. Intracellular and intratumoral copper measurements were performed to investigate the role of copper ions in the antitumor cytotoxicity of disulfiram and its combination with the MEKi. RESULTS Diethyldithiocarbamate enhanced trametinib-induced cytotoxicity and apoptosis induction in 2D and 3D melanoma culture models. Mechanistically, copper-dependent induction of oxidative stress and ER stress led to Janus kinase (JNK)-mediated apoptosis in melanoma cells. This mechanism was also detectable in patient-derived xenograft melanoma models and resulted in a significantly improved therapeutic effect compared to monotherapy with the MEKi trametinib. CONCLUSIONS Disulfiram and its metabolite represent an attractive pharmaceutical approach to induce ER stress in melanoma cells that potentiates the antitumor effect of MEK inhibition and may be an interesting candidate for combination therapy of BRAF WT melanoma.
Collapse
Affiliation(s)
| | - Heike Niessner
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies, University Hospital Tübingen, Tübingen, 72076, Germany
| | - Sarah Plöger
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany
| | - Simon Riel
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany
| | - Barbara Schörg
- Department of Preclinical Imaging and Radiopharmacy, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, University of Tübingen, Tübingen, 72076, Germany
| | - Nicolas Casadei
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Manfred Kneilling
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies, University Hospital Tübingen, Tübingen, 72076, Germany
- Department of Preclinical Imaging and Radiopharmacy, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, University of Tübingen, Tübingen, 72076, Germany
| | - Martin Schaller
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany
| | - Lukas Flatz
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Thomas Eigentler
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Olaf Rieß
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Claus Garbe
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany
| | - Teresa Amaral
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies, University Hospital Tübingen, Tübingen, 72076, Germany
| | - Tobias Sinnberg
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies, University Hospital Tübingen, Tübingen, 72076, Germany.
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany.
| |
Collapse
|
26
|
Liu J, Tagami T, Ogawa K, Ozeki T. Development of Hollow Gold Nanoparticles for Photothermal Therapy and Their Cytotoxic Effect on a Glioma Cell Line When Combined with Copper Diethyldithiocarbamate. Biol Pharm Bull 2024; 47:272-278. [PMID: 38267041 DOI: 10.1248/bpb.b23-00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Gold-based nanoparticles hold promise as functional nanomedicines, including in combination with a photothermal effect for cancer therapy in conjunction with chemotherapy. Here, we synthesized hollow gold nanoparticles (HGNPs) exhibiting efficient light absorption in the near-IR (NIR) region. Several synthesis conditions were explored and provided monodisperse HGNPs approximately 95-135 nm in diameter with a light absorbance range of approximately 600-720 nm. The HGNPs were hollow and the surface had protruding structures when prepared using high concentrations of HAuCl4. The simultaneous nucleation of a sacrificial AgCl template and Au nanoparticles may affect the resulting HGNPs. Diethyldithiocarbamate (DDTC) is metabolized from disulfiram and is a repurposed drug currently attracting attention. The chelation of DDTC with copper ion (DDTC-Cu) has been investigated for treating glioma, and here we confirmed the cytotoxic effect of DDTC-Cu towards rat C6 glioma cells in vitro. HGNPs alone were biocompatible and showed little cytotoxicity, whereas a mixture of DDTC-Cu and HGNPs was cytotoxic in a dose dependent manner. The temperature of HGNPs was increased by NIR-laser irradiation. The photothermal effect on HGNPs under NIR-laser irradiation resulted in cytotoxicity towards C6 cells and was dependent on the irradiation time. Photothermal therapy by HGNPs combined and DDTC-Cu was highly effective, suggesting that this combination approach hold promise as a future glioma therapy.
Collapse
Affiliation(s)
- Jin Liu
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Koki Ogawa
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
27
|
Tsymbal S, Refeld A, Zatsepin V, Kuchur O. The p53 protein is a suppressor of Atox1 copper chaperon in tumor cells under genotoxic effects. PLoS One 2023; 18:e0295944. [PMID: 38127999 PMCID: PMC10735018 DOI: 10.1371/journal.pone.0295944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
The p53 protein is crucial for regulating cell survival and apoptosis in response to DNA damage. However, its influence on therapy effectiveness is controversial: when DNA damage is high p53 directs cells toward apoptosis, while under moderate genotoxic stress it saves the cells from death and promote DNA repair. Furthermore, these processes are influenced by the metabolism of transition metals, particularly copper since they serve as cofactors for critical enzymes. The metallochaperone Atox1 is under intensive study in this context because it serves as transcription factor allegedly mediating described effects of copper. Investigating the interaction between p53 and Atox1 could provide insights into tumor cell survival and potential therapeutic applications in oncology. This study explores the relationship between p53 and Atox1 in HCT116 and A549 cell lines with wild type and knockout TP53. The study found an inverse correlation between Atox1 and p53 at the transcriptional and translational levels in response to genotoxic stress. Atox1 expression decreased with increased p53 activity, while cells with inactive p53 had significantly higher levels of Atox1. Suppression of both genes increased apoptosis, while suppression of the ATOX1 gene prevented apoptosis even under the treatment with chemotherapeutic drugs. The findings suggest that Atox1 may act as one of key elements in promotion of cell cycle under DNA-damaging conditions, while p53 works as an antagonist by inhibiting Atox1. Understanding of this relationship could help identify potential targets in cell signaling pathways to enhance the effectiveness of combined antitumor therapy, especially in tumors with mutant or inactive p53.
Collapse
Affiliation(s)
- Sergey Tsymbal
- International Institute ‘Solution Chemistry of Advanced Materials and Technologies’, ITMO University, St. Petersburg, Russia
| | - Aleksandr Refeld
- International Institute ‘Solution Chemistry of Advanced Materials and Technologies’, ITMO University, St. Petersburg, Russia
| | | | - Oleg Kuchur
- International Institute ‘Solution Chemistry of Advanced Materials and Technologies’, ITMO University, St. Petersburg, Russia
| |
Collapse
|
28
|
Conforti RA, Delsouc MB, Zorychta E, Telleria CM, Casais M. Copper in Gynecological Diseases. Int J Mol Sci 2023; 24:17578. [PMID: 38139406 PMCID: PMC10743751 DOI: 10.3390/ijms242417578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Copper (Cu) is an essential micronutrient for the correct development of eukaryotic organisms. This metal plays a key role in many cellular and physiological activities, including enzymatic activity, oxygen transport, and cell signaling. Although the redox activity of Cu is crucial for enzymatic reactions, this property also makes it potentially toxic when found at high levels. Due to this dual action of Cu, highly regulated mechanisms are necessary to prevent both the deficiency and the accumulation of this metal since its dyshomeostasis may favor the development of multiple diseases, such as Menkes' and Wilson's diseases, neurodegenerative diseases, diabetes mellitus, and cancer. As the relationship between Cu and cancer has been the most studied, we analyze how this metal can affect three fundamental processes for tumor progression: cell proliferation, angiogenesis, and metastasis. Gynecological diseases are characterized by high prevalence, morbidity, and mortality, depending on the case, and mainly include benign and malignant tumors. The cellular processes that promote their progression are affected by Cu, and the mechanisms that occur may be similar. We analyze the crosstalk between Cu deregulation and gynecological diseases, focusing on therapeutic strategies derived from this metal.
Collapse
Affiliation(s)
- Rocío A. Conforti
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| | - María B. Delsouc
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| | - Edith Zorychta
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Marilina Casais
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| |
Collapse
|
29
|
Chen Y, Sun J, Liu J, Wei Y, Wang X, Fang H, Du H, Huang J, Li Q, Ren G, Wang X, Li H. Aldehyde dehydrogenase 2-mediated aldehyde metabolism promotes tumor immune evasion by regulating the NOD/VISTA axis. J Immunother Cancer 2023; 11:e007487. [PMID: 38088186 PMCID: PMC10711917 DOI: 10.1136/jitc-2023-007487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Aldehyde dehydrogenase 2 (ALDH2) is a crucial enzyme involved in endogenous aldehyde detoxification and has been implicated in tumor progression. However, its role in tumor immune evasion remains unclear. METHODS Here, we analyzed the relationship between ALDH2 expression and antitumor immune features in multiple cancers. ALDH2 knockout tumor cells were then established using CRISPR/Cas9 system. In immunocompetent breast cancer EMT6 and melanoma B16-F10 mouse models, we investigated the impact of ALDH2 blockade on cytotoxic T lymphocyte function and tumor immune microenvironment by flow cytometry, mass cytometry, Luminex liquid suspension chip detection, and immunohistochemistry. Furthermore, RNA sequencing, flow cytometry, western blot, chromatin immunoprecipitation assay, and luciferase reporter assays were employed to explore the detailed mechanism of ALDH2 involved in tumor immune evasion. Lastly, the synergistic therapeutic efficacy of blocking ALDH2 by genetic depletion or its inhibitor disulfiram in combination with immune checkpoint blockade (ICB) was investigated in mouse models. RESULTS In our study, we uncovered a positive correlation between the expression level of ALDH2 and T-cell dysfunction in multiple cancers. Furthermore, blocking ALDH2 significantly suppressed tumor growth by enhancing cytotoxic activity of CD8+ T cells and reshaping the immune landscape and cytokine milieu of tumors in vivo. Mechanistically, inhibiting ALDH2-mediated metabolism of aldehyde downregulated the expression of V-domain Ig suppressor of T-cell activation (VISTA) via inactivating the nucleotide oligomerization domain (NOD)/nuclear factor kappa-B (NF-κB) signaling pathway. As a result, the cytotoxic function of CD8+ T cells was revitalized. Importantly, ALDH2 blockade markedly reinforced the efficacy of ICB treatment. CONCLUSIONS Our data delineate that ALDH2-mediated aldehyde metabolism drives tumor immune evasion by activating the NOD/NF-κB/VISTA axis. Targeting ALDH2 provides an effective combinatorial therapeutic strategy for immunotherapy.
Collapse
Affiliation(s)
- Yuru Chen
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazheng Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazhou Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxian Wei
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huiying Fang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyi Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
Wang H, Zhang G, Dong L, Chen L, Liang L, Ge L, Gai D, Shen X. Identification and study of cuproptosis-related genes in prognostic model of multiple myeloma. Hematology 2023; 28:2249217. [PMID: 37610069 DOI: 10.1080/16078454.2023.2249217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a highly heterogeneous disease. Cuproptosis is a novel mode of death that is closely associated with several diseases, such as hepatocellular carcinoma. However, its role in MM is unknown. METHODS MM transcriptomic and clinical data were obtained from UCSC Xena and gene expression omnibus (GEO) databases. Following MM samples were divided into different subtypes based on the cuproptosis genes, the differentially expressed genes (DEGs) among different subtypes, namely, candidate cuproptosis related genes were analyzed by univariate Cox and least absolute shrinkage and selection operator (LASSO) regression to construct a cuproptosis-related risk model. After the independent prognostic analysis was performed, a nomogram was constructed. Finally, Functional enrichment analysis and immune infiltration analysis were performed in the high- and low-risk groups, potential therapeutic agents were then predicted. RESULTS The 784 MM samples in UCSC Xena cohorts were divided into three different subtypes, and 4 out of 346 candidate cuproptosis related genes, namely CDKN2A, BCL3, KCNA3 and TTC14 were used to construct a risk model. Risk score was considered a reliable independent prognostic factor for MM patients. It was investigated that the pathway of cell cycle was significantly enriched in the high-risk group. In addition, immune score, ESTIMATE score and cytolytic activity were significantly different between different risk groups, as well as 13 immune cells such as memory B cells. Nine drugs were predicted in our study. CONCLUSION A cuproptosis-related prognostic model was constructed, which may have a potential guiding role in the treatment of MM.
Collapse
Affiliation(s)
- Haili Wang
- Shanxi Medical University, Taiyuan, People's Republic of China
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Guoxiang Zhang
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Lu Dong
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Lu Chen
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Li Liang
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Li Ge
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Dongzheng Gai
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Xuliang Shen
- Shanxi Medical University, Taiyuan, People's Republic of China
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| |
Collapse
|
31
|
Liu X, Luo B, Wu X, Tang Z. Cuproptosis and cuproptosis-related genes: Emerging potential therapeutic targets in breast cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189013. [PMID: 37918452 DOI: 10.1016/j.bbcan.2023.189013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Breast cancer is one of the most common malignant tumors in women worldwide, and thus, it is important to enhance its treatment efficacy [1]. Copper has emerged as a critical trace element that affects various intracellular signaling pathways, gene expression, and biological metabolic processes [2], thereby playing a crucial role in the pathogenesis of breast cancer. Recent studies have identified cuproptosis, a newly discovered type of cell death, as an emerging therapeutic target for breast cancer treatment, thereby offering new hope for breast cancer patients. Tsvetkov's research has elucidated the mechanism of cuproptosis and uncovered the critical genes involved in its regulation [3]. Manipulating the expression of these genes could potentially serve as a promising therapeutic strategy for breast cancer treatment. Additionally, using copper ionophores and copper complexes combined with nanomaterials to induce cuproptosis may provide a potential approach to eliminating drug-resistant breast cancer cells, thus improving the therapeutic efficacy of chemotherapy, radiotherapy, and immunotherapy and eventually eradicating breast tumors. This review aims to highlight the practical significance of cuproptosis-related genes and the induction of cuproptosis in the clinical diagnosis and treatment of breast cancer. We examine the potential of cuproptosis as a novel therapeutic target for breast cancer, and we explore the present challenges and limitations of this approach. Our objective is to provide innovative ideas and references for the development of breast cancer treatment strategies based on cuproptosis.
Collapse
Affiliation(s)
- Xiangdong Liu
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan 430079, China
| | - Bo Luo
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan 430079, China.
| | - Xinhong Wu
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan 430079, China
| | - Zijian Tang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
32
|
Guo J, Sun Y, Liu G. The mechanism of copper transporters in ovarian cancer cells and the prospect of cuproptosis. J Inorg Biochem 2023; 247:112324. [PMID: 37481825 DOI: 10.1016/j.jinorgbio.2023.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Copper transporters can not only carry copper (Cu) to maintain the homeostasis of Cu in cells but also transport platinum-based chemotherapy drugs. The effect of copper transporters on chemosensitivity has been demonstrated in a variety of malignancies. In addition, recent studies have reported that copper transporters can act as vectors to induce cuproptosis. Therefore, copper transporters can act on cells through different mechanisms to achieve different purposes. This review mainly describes the current research progress of the intracellular transport mechanism of copper transporters and cuproptosis, and prospects for the application of them in the treatment of ovarian cancer (OC).
Collapse
Affiliation(s)
- Jiahuan Guo
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guoyan Liu
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
33
|
Zhang R, Zhao X, Jia A, Wang C, Jiang H. Hyaluronic acid-based prodrug nanomedicines for enhanced tumor targeting and therapy: A review. Int J Biol Macromol 2023; 249:125993. [PMID: 37506794 DOI: 10.1016/j.ijbiomac.2023.125993] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Hyaluronic acid (HA) represents a natural polysaccharide which has attracted significant attention owing to its improved tumor targeting capacity, enzyme degradation capacity, and excellent biocompatibility. Its receptors, such as CD44, are overexpressed in diverse cancer cells and are closely related with tumor progress and metastasis. Accordingly, numerous researchers have designed various kinds of HA-based drug delivery platforms for CD44-mediated tumor targeting. Specifically, the HA-based nanoprodrugs possess distinct advantages such as good bioavailability, long circulation time, and controlled drug release and retention ability and have been extensively studied during the past years. In this review, the potential strategies and applications of HA-modified nanoprodrugs for drug molecule delivery in anti-tumor therapy are summarized.
Collapse
Affiliation(s)
- Renshuai Zhang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China
| | - Xiaohua Zhao
- Department of Thoracic surgery, Affiliated Hospital of Weifang Medical University, No.2428, Yuhe road, Kuiwen district, Weifang 261000, China
| | - Ang Jia
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Chao Wang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| | - Hongfei Jiang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| |
Collapse
|
34
|
Lafi Z, Alshaer W, Gharaibeh L, Alqudah DA, AlQuaissi B, Bashaireh B, Ibrahim AA. Synergistic combination of doxorubicin with hydralazine, and disulfiram against MCF-7 breast cancer cell line. PLoS One 2023; 18:e0291981. [PMID: 37768997 PMCID: PMC10538757 DOI: 10.1371/journal.pone.0291981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Disulfiram and hydralazine have recently been reported to have anti-cancer action, and repositioned to be used as adjuvant in cancer therapy. Chemotherapy combined with other medications, such as those that affect the immune system or epigenetic cell profile, can overcome resistance with fewer adverse effects compared to chemotherapy alone. In the present study, a combination of doxorubicin (DOX) with hydrazine (Hyd) and disulfiram (Dis), as a triple treatment, was evaluated against wild-type and DOX-resistant MCF-7 breast cancer cell line. Both wild-type MCF-7 cell line (MCF-7_WT) and DOX-resistant MCF-7 cell line (MCF-7_DoxR) were treated with different combination ratios of DOX, Dis, and Hyd followed by measuring the cell viability using the MTT assay. Synergism was determined using a combination index, isobologram analysis, and dose-reducing index. The anti-proliferation activity and mechanism of the triple combination were investigated by apoptosis analysis. The results showed a reduction in the IC50 values of DOX in MCF-7_WT cells (from 0.24 μM to 0.012 μM) and MCF-7_DoxR cells (from 1.13 μM to 0.44 μM) when treated with Dis (0.03μM), and Hyd (20μM) combination. Moreover, The triple combination DOX/Hyd/Dis induced significant apoptosis in both MCF-7_WT and MCF-7_DoxR cells compared to DOX alone. The triple combination of DOX, Dis, and Hyd showed a synergistic drugs combination to decrease the DOX dose needed to kill both MCF-7_WT and MCF-7_DoxR cancer cells and enhanced chemosensitivity to DOX.
Collapse
Affiliation(s)
- Zainab Lafi
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Lobna Gharaibeh
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Dana A. Alqudah
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | | | - Banan Bashaireh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, United States of America
| |
Collapse
|
35
|
Bian C, Zheng Z, Su J, Chang S, Yu H, Bao J, Xin Y, Jiang X. Copper homeostasis and cuproptosis in tumor pathogenesis and therapeutic strategies. Front Pharmacol 2023; 14:1271613. [PMID: 37767404 PMCID: PMC10520736 DOI: 10.3389/fphar.2023.1271613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Copper is an indispensable micronutrient for the development and replication of all eukaryotes, and its redox properties are both harmful and beneficial to cells. An imbalance in copper homeostasis is thought to be involved in carcinogenesis. Importantly, cancer cell proliferation, angiogenesis, and metastasis cannot be separated from the effects of copper. Cuproposis is a copper-dependent form of cell death that differs from other existing modalities of regulatory cell death. The role of cuproptosis in the pathogenesis of the nervous and cardiovascular systems has been widely studied; however, its impact on malignant tumors is yet to be fully understood from a clinical perspective. Exploring signaling pathways related to cuproptosis will undoubtedly provide a new perspective for the development of anti-tumor drugs in the future. Here, we systematically review the systemic and cellular metabolic processes of copper and the regulatory mechanisms of cuproptosis in cancer. In addition, we discuss the possibility of targeting copper ion drugs to prolong the survival of cancer patients, with an emphasis on the most representative copper ionophores and chelators. We suggest that attention should be paid to the potential value of copper in the treatment of specific cancers.
Collapse
Affiliation(s)
- Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Huiyuan Yu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jindian Bao
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| |
Collapse
|
36
|
Lin Z, He Y, Wu Z, Yuan Y, Li X, Luo W. Comprehensive analysis of copper-metabolism-related genes about prognosis and immune microenvironment in osteosarcoma. Sci Rep 2023; 13:15059. [PMID: 37700003 PMCID: PMC10497601 DOI: 10.1038/s41598-023-42053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Despite being significant in various diseases, including cancers, the impact of copper metabolism on osteosarcoma (OS) remains largely unexplored. This study aimed to use bioinformatics analyses to identify a reliable copper metabolism signature that could improve OS patient prognosis prediction, immune landscape understanding, and drug sensitivity. Through nonnegative matrix factorization (NMF) clustering, we revealed distinct prognosis-associated clusters of OS patients based on copper metabolism-related genes (CMRGs), showing differential gene expression linked to immune processes. The risk model, comprising 13 prognostic CMRGs, was established using least absolute shrinkage and selection operator (LASSO) Cox regression, closely associated with the OS microenvironment's immune situation and drug sensitivity. Furthermore, we developed an integrated nomogram, combining the risk score and clinical traits to quantitatively predict OS patient prognosis. The calibration plot, timeROC, and timeROC analyses demonstrated its predictable accuracy and clinical usefulness. Finally, we identified three independent prognostic signatures for OS patients: COX11, AP1B1, and ABCB6. This study confirmed the involvement of CMRGs in OS patient prognosis, immune processes, and drug sensitivity, suggesting their potential as promising prognostic signatures and therapeutic targets for OS.
Collapse
Affiliation(s)
- Zili Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yizhe He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Ziyi Wu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yuhao Yuan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xiangyao Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
37
|
Wang C, Zhou Y. Cuproptosis-related gene subtypes predict prognosis in patients with head and neck squamous cell carcinoma. J Otolaryngol Head Neck Surg 2023; 52:58. [PMID: 37697421 PMCID: PMC10496405 DOI: 10.1186/s40463-023-00655-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/23/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. A novel form of copper-dependent and reactive oxygen species (ROS)-dependent cell death, cuproptosis, has been described in many cancers. The roles and potential mechanisms of cuproptosis-related genes (CRGs) are still unclear in HNSCC. METHOD We downloaded TCGA datasets of HNSCC genomic mutations and clinic data from The Cancer Genome Atlas. Based on the Cuproptosis-related differentially expressed genes in HNSCC, we constructed a prognostic signature. RESULTS Eight CRGs have been identified as associated with the prognosis of HNSCC. According to Kaplan-Meier analyses, HNSCC with a high Risk Score had a poor prognosis. Furthermore, the AUC of the Risk Score for the 1-, 3-, and 5- year overall survival was respectively, 0.70, 0.71, and 0.68. TCGA data revealed that T cell functions, such as HLA, cytolytic activity, inflammation regulation, co-inhibition, and co-stimulation, differed significantly between members of the low and high groups. The immune checkpoint genes PD-L1, PD-L1, and CTLA-4 were also expressed differently in the two risk groups. CONCLUSIONS A CRG signature was defined that is associated with the prognosis of patients with HNSCC.
Collapse
Affiliation(s)
- Chi Wang
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yu Zhou
- Department of Orthodontics, School & Hospital of Stomatology, Wenzhou Medical University, 373 West College Road, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
38
|
Cao F, Qi Y, Wu W, Li X, Yang C. Single-cell and genetic multi-omics analysis combined with experiments confirmed the signature and potential targets of cuproptosis in hepatocellular carcinoma. Front Cell Dev Biol 2023; 11:1240390. [PMID: 37745297 PMCID: PMC10516581 DOI: 10.3389/fcell.2023.1240390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Cuproptosis, as a recently discovered type of programmed cell death, occupies a very important role in hepatocellular carcinoma (HCC) and provides new methods for immunotherapy; however, the functions of cuproptosis in HCC are still unclear. Methods: We first analyzed the transcriptome data and clinical information of 526 HCC patients using multiple algorithms in R language and extensively described the copy number variation, prognostic and immune infiltration characteristics of cuproptosis related genes (CRGs). Then, the hub CRG related genes associated with prognosis through LASSO and Cox regression analyses and constructed a prognostic prediction model including multiple molecular markers and clinicopathological parameters through training cohorts, then this model was verified by test cohorts. On the basis of the model, the clinicopathological indicators, immune infiltration and tumor microenvironment characteristics of HCC patients were further explored via bioinformation analysis. Then, We further explored the key gene biological function by single-cell analysis, cell viability and transwell experiments. Meantime, we also explored the molecular docking of the hub genes. Results: We have screened 5 hub genes associated with HCC prognosis and constructed a prognosis prediction scoring model. And the model results showed that patients in the high-risk group had poor prognosis and the expression levels of multiple immune markers, including PD-L1, CD276 and CTLA4, were higher than those patients in the low-risk group. We found a significant correlation between risk score and M0 macrophages and memory CD4+ T cells. And the single-cell analysis and molecular experiments showed that BEX1 were higher expressed in HCC tissues and deletion inhibited the proliferation, invasion and migration and EMT pathway of HCC cells. Finally, it was observed that BEX1 could bind to sorafenib to form a stable conformation. Conclusion: The study not only revealed the multiomics characteristics of CRGs in HCC but also constructed a new high-accuracy prognostic prediction model. Meanwhile, BEX1 were also identified as hub genes that can mediate the cuproptosis of hepatocytes as potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Feng Cao
- Department of General, Visceral and Transplantation Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Yong Qi
- Department of General Surgery, The First Hospital of Anhui Medical University, Hefei, China
| | - Wenyong Wu
- Department of General Surgery, The First Hospital of Anhui Medical University, Hefei, China
| | - Xutong Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chuang Yang
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| |
Collapse
|
39
|
Zhu Y, Tan JK, Goon JA. Cuproptosis- and m6A-Related lncRNAs for Prognosis of Hepatocellular Carcinoma. BIOLOGY 2023; 12:1101. [PMID: 37626987 PMCID: PMC10451969 DOI: 10.3390/biology12081101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Cuproptosis and N6-methyladenosine (m6A) have potential as prognostic predictors in cancer patients, but their roles in hepatocellular carcinoma (HCC) are unclear. This study aimed to screen a total of 375 HCC samples were retrieved from the TCGA database, and lncRNAs related to cuproptosis and m6A were obtained through correlation analysis. To construct a risk assessment model, univariate Cox regression analysis and LASSO Cox regression were employed. Analyze the regulatory effect of relevant risk assessment models on tumor mutation load (TMB) and immune microenvironment. A total of five lncRNAs (AC007405.3, AL031985.3, TMCC1-AS1, MIR210HG, TMEM220-AS1) with independent overall survival-related risk models were obtained by LASSO survival regression. TP53 and CTNNB1 were the three genes found to have the most mutations in high-risk group patients. The high-risk group with low TMB had the worst survival, whereas the low-risk group with high TMB had the best survival. KEGG pathway analysis revealed that the high-risk group was enriched with cell cycle, oocyte meiosis, cell senescence, and glycolysis/glucose production pathways. We constructed a reliable cuproptosis- and m6A-related lncRNA model for the prognosis of HCC. The model may provide new insights into managing HCC patients, but further research is needed to validate it.
Collapse
Affiliation(s)
| | | | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
40
|
Zhang S, Zong Y, Chen L, Li Q, Li Z, Meng R. The immunomodulatory function and antitumor effect of disulfiram: paving the way for novel cancer therapeutics. Discov Oncol 2023; 14:103. [PMID: 37326784 DOI: 10.1007/s12672-023-00729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
More than 60 years ago, disulfiram (DSF) was employed for the management of alcohol addiction. This promising cancer therapeutic agent inhibits proliferation, migration, and invasion of malignant tumor cells. Furthermore, divalent copper ions can enhance the antitumor effects of DSF. Molecular structure, pharmacokinetics, signaling pathways, mechanisms of action and current clinical results of DSF are summarized here. Additionally, our attention is directed towards the immunomodulatory properties of DSF and we explore novel administration methods that may address the limitations associated with antitumor treatments based on DSF. Despite the promising potential of these various delivery methods for utilizing DSF as an effective anticancer agent, further investigation is essential in order to extensively evaluate the safety and efficacy of these delivery systems.
Collapse
Affiliation(s)
- Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Leichong Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
41
|
Kang X, Jadhav S, Annaji M, Huang CH, Amin R, Shen J, Ashby CR, Tiwari AK, Babu RJ, Chen P. Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems. Pharmaceutics 2023; 15:1567. [PMID: 37376016 DOI: 10.3390/pharmaceutics15061567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Disulfiram (DSF) is a thiocarbamate based drug that has been approved for treating alcoholism for over 60 years. Preclinical studies have shown that DSF has anticancer efficacy, and its supplementation with copper (CuII) significantly potentiates the efficacy of DSF. However, the results of clinical trials have not yielded promising results. The elucidation of the anticancer mechanisms of DSF/Cu (II) will be beneficial in repurposing DSF as a new treatment for certain types of cancer. DSF's anticancer mechanism is primarily due to its generating reactive oxygen species, inhibiting aldehyde dehydrogenase (ALDH) activity inhibition, and decreasing the levels of transcriptional proteins. DSF also shows inhibitory effects in cancer cell proliferation, the self-renewal of cancer stem cells (CSCs), angiogenesis, drug resistance, and suppresses cancer cell metastasis. This review also discusses current drug delivery strategies for DSF alone diethyldithocarbamate (DDC), Cu (II) and DSF/Cu (II), and the efficacious component Diethyldithiocarbamate-copper complex (CuET).
Collapse
Affiliation(s)
- Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Sanika Jadhav
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Chung-Hui Huang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John's University, Queens, NY 11431, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
42
|
Njenga LW, Mbugua SN, Odhiambo RA, Onani MO. Addressing the gaps in homeostatic mechanisms of copper and copper dithiocarbamate complexes in cancer therapy: a shift from classical platinum-drug mechanisms. Dalton Trans 2023; 52:5823-5847. [PMID: 37021641 DOI: 10.1039/d3dt00366c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The platinum drug, cisplatin, is considered as among the most successful medications in cancer treatment. However, due to its inherent toxicity and resistance limitations, research into other metal-based non-platinum anticancer medications with diverse mechanisms of action remains an active field. In this regard, copper complexes feature among non-platinum compounds which have shown promising potential as effective anticancer drugs. Moreover, the interesting discovery that cancer cells can alter their copper homeostatic processes to develop resistance to platinum-based treatments leads to suggestions that some copper compounds can indeed re-sensitize cancer cells to these drugs. In this work, we review copper and copper complexes bearing dithiocarbamate ligands which have shown promising results as anticancer agents. Dithiocarbamate ligands act as effective ionophores to convey the complexes of interest into cells thereby influencing the metal homeostatic balance and inducing apoptosis through various mechanisms. We focus on copper homeostasis in mammalian cells and on our current understanding of copper dysregulation in cancer and recent therapeutic breakthroughs using copper coordination complexes as anticancer drugs. We also discuss the molecular foundation of the mechanisms underlying their anticancer action. The opportunities that exist in research for these compounds and their potential as anticancer agents, especially when coupled with ligands such as dithiocarbamates, are also reviewed.
Collapse
Affiliation(s)
- Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Simon N Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Martin O Onani
- Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Belville, 7535, South Africa
| |
Collapse
|
43
|
Lajarin-Reinares M, Naveira-Souto I, Mallandrich M, Suñer-Carbó J, Llagostera Casas M, Calvo MA, Fernandez-Campos F. Repurposing Disulfiram as an Antifungal Agent: Development of a New Disulfiram Vaginal Mucoadhesive Gel. Pharmaceutics 2023; 15:pharmaceutics15051436. [PMID: 37242678 DOI: 10.3390/pharmaceutics15051436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Alternative formulations need to be developed to improve the efficacy of treatments administered via the vaginal route. Mucoadhesive gels with disulfiram, a molecule that was originally approved as an antialcoholism drug, offer an attractive alternative to treat vaginal candidiasis. The aim of the current study was to develop and optimize a mucoadhesive drug delivery system for the local administration of disulfiram. Such formulations were composed of polyethylene glycol and carrageenan to improve the mucoadhesive and mechanical properties and to prolong the residence time in the vaginal cavity. Microdilution susceptibility testing showed that these gels had antifungal activity against Candida albicans, Candida parapsilosis, and Nakaseomyces glabratus. The physicochemical properties of the gels were characterized, and the in vitro release and permeation profiles were investigated with vertical diffusion Franz cells. After quantification, it was determined that the amount of the drug retained in the pig vaginal epithelium was sufficient to treat candidiasis infection. Together, our findings suggest that mucoadhesive disulfiram gels have the potential to be an effective alternative treatment for vaginal candidiasis.
Collapse
Affiliation(s)
- Maria Lajarin-Reinares
- Department of Genetics and Microbiology, Campus Microbiology Unit, Autonomous University of Barcelona, 08193 Bellaterra, Spain
- R & D Development, Reig Jofre Laboratories, 08970 Sant Joan Despí, Spain
| | - Iria Naveira-Souto
- R & D Development, Reig Jofre Laboratories, 08970 Sant Joan Despí, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Montserrat Llagostera Casas
- Department of Genetics and Microbiology, Campus Microbiology Unit, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Maria Angels Calvo
- Department of Animal Health and Anatomy, Faculty of Veterinary, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | | |
Collapse
|
44
|
Wang D, Tian Z, Zhang P, Zhen L, Meng Q, Sun B, Xu X, Jia T, Li S. The molecular mechanisms of cuproptosis and its relevance to cardiovascular disease. Biomed Pharmacother 2023; 163:114830. [PMID: 37150036 DOI: 10.1016/j.biopha.2023.114830] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/11/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Recently, cuproptosis has been demonstrated to be a new non-apototic cell death mode that is characterized by copper dependence and the regulation of mitochondrial respiration. Cuproptosis is distinct from known cell death modes such as apoptosis, necrosis, pyroptosis, or ferroptosis. Excessive copper induces cuproptosis by promoting protein toxic stress reactions via copper-dependent anomalous oligomerization of lipoylation proteins in the tricarboxylic acid (TCA) cycle and reducing iron-sulfur cluster protein levels. Ferredoxin1 (FDX1) promotes dihydrolipoyl transacetylase (DLAT) lipoacylation and abates iron-sulfur cluster proteins by reducing Cu2+ to Cu+, inducing cell death. Copper homeostasis depends on the copper transporter, and disturbances to this homeostasis cause cuproptosis. Recent evidence has shown that cuproptosis plays a significant role in the occurrence and development of many cardiovascular diseases, such as myocardial ischemia/reperfusion (I/R) injury, heart failure, atherosclerosis, and arrhythmias. Copper chelators, such as ammonium tetrathiomolybdate(VI) and DL-Penicillamine, may ease the above cardiovascular diseases by inhibiting the cuproptosis pathway. Oxidative phosphorylation inhibitors may inhibit cuproptosis by inhibiting protein stress response. In conclusion, cuproptosis plays an essential role in cardiovascular disease pathogenesis. Inhibition of cardiovascular cuproptosis is expected to become a potential treatment. Here, we will thoroughly review the molecular mechanisms involved in cuproptosis and its significance in cardiovascular disease.
Collapse
Affiliation(s)
- Di Wang
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenyu Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health. Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational. Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Zhang
- Department of Urology, Zibo Hospital of Integrated Traditional Chinese and Western Medicine, Zibo, China
| | - Lv Zhen
- Department of Cardiology, Zibo First Hospital, Zibo, China
| | - Qingju Meng
- Department of Internal Medicine, Zoucheng Xiangcheng Town Health Center, Jining, China
| | - Benteng Sun
- Department of Primary and Secondary education, Qufu Mingde School, Jining, China
| | - Xingli Xu
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tong Jia
- Department of Geratology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China
| | - Shengqiang Li
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China.
| |
Collapse
|
45
|
He Y, Yang M, Yang L, Hao M, Wang F, Li X, Taylor EW, Zhang X, Zhang J. Preparation and anticancer actions of CuET-nanoparticles dispersed by bovine serum albumin. Colloids Surf B Biointerfaces 2023; 226:113329. [PMID: 37156027 DOI: 10.1016/j.colsurfb.2023.113329] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Diethyldithiocarbamate-copper complex (CuET) shows promising anticancer effect; nonetheless, preclinical evaluations of CuET are hindered due to poor solubility. We prepared bovine serum albumin (BSA)-dispersed CuET nanoparticles (CuET-NPs) to overcome the shortcoming. Results from a cell-free redox system demonstrated that CuET-NPs reacted with glutathione, leading to form hydroxyl radical. Glutathione-mediated production of hydroxyl radicals may help explain why CuET selectively kills drug-resistant cancer cells with higher levels of glutathione. CuET-NPs dispersed by autoxidation products of green tea epigallocatechin gallate (EGCG) also reacted with glutathione; however, the autoxidation products eradicated hydroxyl radicals; consequently, such CuET-NPs exhibited largely compromised cytotoxicity, suggesting that hydroxyl radical is a crucial mediator of CuET anticancer activity. In cancer cells, BSA-dispersed CuET-NPs exhibited cytotoxic activities equivalent to CuET and induced protein poly-ubiquitination. Moreover, the reported powerful inhibition of CuET on colony formation and migration of cancer cells could be replicated by CuET-NPs. These similarities demonstrate BSA-dispersed CuET-NPs is identical to CuET. Thus, we advanced to pilot toxicological and pharmacological evaluations. CuET-NPs caused hematologic toxicities in mice and induced protein poly-ubiquitination and apoptosis of cancer cells inoculated in mice at a defined pharmacological dose. Given high interest in CuET and its poor solubility, BSA-dispersed CuET-NPs pave the way for preclinical evaluations.
Collapse
Affiliation(s)
- Yufeng He
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mingchuan Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Lumin Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Meng Hao
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Fuming Wang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiuli Li
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jinsong Zhang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
46
|
Xiao C, Li J, Wang X, Li S, Xu C, Zhang Z, Hua A, Ding ZY, Zhang BX, Yang X, Li Z. Hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanocrystals for cancer therapy. J Control Release 2023; 356:288-305. [PMID: 36870542 DOI: 10.1016/j.jconrel.2023.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Cancer stem cells (CSCs) have been recognized as the culprit for tumor progression, treatment resistance, metastasis, and recurrence while redox homeostasis represents the Achilles' Heel of CSCs. However, few drugs or formulations that are capable of elevating oxidative stress have achieved clinical success for eliminating CSCs. Here, we report hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanoparticles (CuET@HES NPs), which conspicuously suppress CSCs not only in vitro but also in numerous tumor models in vivo. Furthermore, CuET@HES NPs effectively inhibit CSCs in fresh tumor tissues surgically excised from hepatocellular carcinoma patients. Mechanistically, we uncover that hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanocrystals via copper‑oxygen coordination interactions, thereby promoting copper-diethyldithiocarbamate colloidal stability, cellular uptake, intracellular reactive oxygen species production, and CSCs apoptosis. As all components are widely used in clinics, CuET@HES NPs represent promising treatments for CSCs-rich solid malignancies and hold great clinical translational potentials. This study has critical implications for design of CSCs targeting nanomedicines.
Collapse
Affiliation(s)
- Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiayuan Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xing Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shiyou Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chen Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ao Hua
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ze-Yang Ding
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong 510530, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
47
|
Li T, Zhang Y, Zhu J, Zhang F, Xu A, Zhou T, Li Y, Liu M, Ke H, Yang T, Tang Y, Tao J, Miao L, Deng Y, Chen H. A pH-Activatable Copper-Biomineralized Proenzyme for Synergistic Chemodynamic/Chemo-Immunotherapy against Aggressive Cancers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210201. [PMID: 36573375 DOI: 10.1002/adma.202210201] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Artificial enzymes have demonstrated therapeutic benefits against diverse malignant tumors, yet their antitumor potencies are still severely compromised by non-selective catalysis, low atomic-utilization efficiency, and undesired off-target toxicity. Herein, it is reported that peroxidase-like biomineralized copper (II) carbonate hydroxide nanocrystals inside single albumin nanocages (CuCH-NCs) act as a pH-activatable proenzyme to achieve tumor-selective and synergistic chemodynamic/chemo-immunotherapy against aggressive triple-negative breast cancers (TNBCs). These CuCH-NCs show pH-sensitive Cu2+ release, which spontaneously undergoes glutathione (GSH)-mediated reduction into Cu+ species for catalyzing the evolution of H2 O2 into hydroxyl radicals (·OH) in a single-atom-like manner to cause chemodynamic cell injury, and simultaneously activates non-toxic disulfiram to cytotoxic complex for yielding selective chemotherapeutic damage via blocking cell proliferation and amplifying cell apoptosis. CuCH-NCs exhibit considerable tumor-targeting capacity with deep penetration depth, thus affording preferable efficacy against orthotopic breast tumors through synergistic chemodynamic/chemotherapy, together with good in vivo safety. Moreover, CuCH-NCs arouse distinct immunogenic cell death effect and upregulate PD-L1 expression upon disulfiram combination, and thus synergize with anti-PD-L1 antibody to activate adaptive and innate immunities, together with relieving immunosuppression, finally yielding potent antitumor efficacy against both primary and metastatic TNBCs. These results provide insights into smart and high-performance proenzymes for synergistic therapy against aggressive cancers.
Collapse
Affiliation(s)
- Ting Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ying Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jie Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Fangrui Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - An'an Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Tian Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yaoqi Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ming Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yong'an Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jing Tao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, 215006, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, 215006, China
- State Key Laboratory of Radiation Medicine and Protection, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
48
|
Benkő BM, Lamprou DA, Sebestyén A, Zelkó R, Sebe I. Clinical, pharmacological, and formulation evaluation of disulfiram in the treatment of glioblastoma - a systematic literature review. Expert Opin Drug Deliv 2023; 20:541-557. [PMID: 36922013 DOI: 10.1080/17425247.2023.2190581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
INTRODUCTION Glioblastoma (GB) is one of the most challenging central nervous system (CNS) tumors in treatment options and response, urging the development of novel management strategies. The anti-alcoholism drug, disulfiram (DS), has a potential anticancer activity, and its complex mechanism of action is assumed to be well exploited against the heterogeneous GB. AREA COVERED Through a systematic literature review about repositioning DS to GB treatment, an evaluation of the clinical, pharmacological, and formulation strategies is provided to specify the challenges of drug delivery and thus to advance its clinical translation. From six databases, 35 articles were selected, including case report (1); clinical trials (3); original articles mainly representing in vitro and preclinical pharmacological data, and 10 dealing with technological approaches. EXPERT OPINION The repositioning of DS in GB treatment is facing drug and tumor-associated limitations due to the oral drug's low bioavailability, unwanted metabolism, and inefficient delivery to brain-tumor tissue. Development strategies using molecular encapsulation of DS and the parenteral dosage forms improve the anticancer pharmacology of the drug. The development of optimized drug delivery systems (DDS) shows promise for the clinical translation of DS into GB adjuvant therapy.
Collapse
Affiliation(s)
- Beáta-Mária Benkő
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | | | - Anna Sebestyén
- Tumour Biology, Cell and Tissue Culture Laboratory, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | - István Sebe
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| |
Collapse
|
49
|
Disulfiram: Mechanisms, Applications, and Challenges. Antibiotics (Basel) 2023; 12:antibiotics12030524. [PMID: 36978391 PMCID: PMC10044060 DOI: 10.3390/antibiotics12030524] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Since disulfiram’s discovery in the 1940s and its FDA approval for alcohol use disorder, other indications have been investigated. This review describes potential clinical applications, associated risks, and challenges. Methods: For this narrative review, a PubMed search was conducted for articles addressing in vivo studies of disulfiram with an emphasis on drug repurposing for the treatment of human diseases. The key search terms were “disulfiram” and “Antabuse”. Animal studies and in vitro studies highlighting important mechanisms and safety issues were also included. Results: In total, 196 sources addressing our research focus spanning 1948–2022 were selected for inclusion. In addition to alcohol use disorder, emerging data support a potential role for disulfiram in the treatment of other addictions (e.g., cocaine), infections (e.g., bacteria such as Staphylococcus aureus and Borrelia burgdorferi, viruses, parasites), inflammatory conditions, neurological diseases, and cancers. The side effects range from minor to life-threatening, with lower doses conveying less risk. Caution in human use is needed due to the considerable inter-subject variability in disulfiram pharmacokinetics. Conclusions: While disulfiram has promise as a “repurposed” agent in human disease, its risk profile is of concern. Animal studies and well-controlled clinical trials are needed to assess its safety and efficacy for non-alcohol-related indications.
Collapse
|
50
|
Jiang Z, Sha G, Zhang W, Zhang Z, Liu T, Wang D, Tang D. The huge potential of targeting copper status in the treatment of colorectal cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03107-7. [PMID: 36781599 DOI: 10.1007/s12094-023-03107-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023]
Abstract
Colorectal cancer (CRC) commonly leads to cancer deaths and is often diagnosed at advanced stages. It also faces difficulties due to the poor results of conventional treatments such as surgery, chemotherapy, and radiotherapy. Copper is a mineral nutrient whose intrinsic properties have a two-way effect on the production and treatment of cancer. Copper's redox properties allow it to be used in developing anti-cancer drugs, while its potential toxicity leads to oxidative stress and even cancer. Copper status is closely related to colorectal tumors' proliferation and metastasis. The study of the mechanisms of copper homeostasis, cuproplasia, and cuproptosis due to altered copper status plays a crucial role in developing anticancer drugs. Therefore, targeting alteration of copper status becomes a potential option for treating colorectal cancer. This review summarizes the mechanisms by which altered copper status causes CRC progression and emphasizes the potential of regulating copper status in treating CRC.
Collapse
Affiliation(s)
- Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Tian Liu
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225000, People's Republic of China.
| |
Collapse
|