1
|
Li X, Ramos-Rolón AP, Kass G, Pereira-Rufino LS, Shifman N, Shi Z, Volkow ND, Wiers CE. Imaging neuroinflammation in individuals with substance use disorders. J Clin Invest 2024; 134:e172884. [PMID: 38828729 PMCID: PMC11142750 DOI: 10.1172/jci172884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Increasing evidence suggests a role of neuroinflammation in substance use disorders (SUDs). This Review presents findings from neuroimaging studies assessing brain markers of inflammation in vivo in individuals with SUDs. Most studies investigated the translocator protein 18 kDa (TSPO) using PET; neuroimmune markers myo-inositol, choline-containing compounds, and N-acetyl aspartate using magnetic resonance spectroscopy; and fractional anisotropy using MRI. Study findings have contributed to a greater understanding of neuroimmune function in the pathophysiology of SUDs, including its temporal dynamics (i.e., acute versus chronic substance use) and new targets for SUD treatment.
Collapse
Affiliation(s)
- Xinyi Li
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Astrid P. Ramos-Rolón
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Gabriel Kass
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Lais S. Pereira-Rufino
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Naomi Shifman
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Zhenhao Shi
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Corinde E. Wiers
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Caldwell M, Ayo-Jibunoh V, Mendoza JC, Brimblecombe KR, Reynolds LM, Zhu Jiang XY, Alarcon C, Fiore E, N Tomaio J, Phillips GR, Mingote S, Flores C, Casaccia P, Liu J, Cragg SJ, McCloskey DP, Yetnikoff L. Axo-glial interactions between midbrain dopamine neurons and oligodendrocyte lineage cells in the anterior corpus callosum. Brain Struct Funct 2023; 228:1993-2006. [PMID: 37668732 PMCID: PMC10516790 DOI: 10.1007/s00429-023-02695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
Oligodendrocyte progenitor cells (OPCs) receive synaptic innervation from glutamatergic and GABAergic axons and can be dynamically regulated by neural activity, resulting in activity-dependent changes in patterns of axon myelination. However, it remains unclear to what extent other types of neurons may innervate OPCs. Here, we provide evidence implicating midbrain dopamine neurons in the innervation of oligodendrocyte lineage cells in the anterior corpus callosum and nearby white matter tracts of male and female adult mice. Dopaminergic axon terminals were identified in the corpus callosum of DAT-Cre mice after injection of an eYFP reporter virus into the midbrain. Furthermore, fast-scan cyclic voltammetry revealed monoaminergic transients in the anterior corpus callosum, consistent with the anatomical findings. Using RNAscope, we further demonstrate that ~ 40% of Olig2 + /Pdfgra + cells and ~ 20% of Olig2 + /Pdgfra- cells in the anterior corpus callosum express Drd1 and Drd2 transcripts. These results suggest that oligodendrocyte lineage cells may respond to dopamine released from midbrain dopamine axons, which could affect myelination. Together, this work broadens our understanding of neuron-glia interactions with important implications for myelin plasticity by identifying midbrain dopamine axons as a potential regulator of corpus callosal oligodendrocyte lineage cells.
Collapse
Affiliation(s)
- Megan Caldwell
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Vanessa Ayo-Jibunoh
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Josue Criollo Mendoza
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Katherine R Brimblecombe
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Lauren M Reynolds
- Plasticité du Cerveau, CNRS UMR8249, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Paris, France
| | - Xin Yan Zhu Jiang
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Colin Alarcon
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Elizabeth Fiore
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Jacquelyn N Tomaio
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Greg R Phillips
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
- Center for Developmental Neuroscience, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Susana Mingote
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Cecilia Flores
- Department of Psychiatry and of Neurology and Neuroscience, McGill University, and Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
- Department of Neuroscience and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Stephanie J Cragg
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Dan P McCloskey
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Leora Yetnikoff
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA.
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA.
| |
Collapse
|
3
|
Hall SA, Bell RP, Gadde S, Towe SL, Nadeem MT, McCann PS, Song AW, Meade CS. Strengthened and posterior-shifted structural rich-club organization in people who use cocaine. Drug Alcohol Depend 2022; 235:109436. [PMID: 35413558 PMCID: PMC9948276 DOI: 10.1016/j.drugalcdep.2022.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND People with cocaine use disorder (CUD) often have abnormal cognitive function and brain structure. Cognition is supported by brain networks that typically have characteristics like rich-club organization, which is a group of regions that are highly connected across the brain and to each other, and small worldness, which is a balance between local and long-distance connections. However, it is unknown whether there are abnormalities in structural brain network connectivity of CUD. METHODS Using diffusion-weighted imaging, we measured structural connectivity in 37 people with CUD and 38 age-matched controls. We identified differences in rich-club organization and whether such differences related to small worldness and behavior. We also tested whether rich-club reorganization was associated with caudate and putamen structural connectivity due to the relevance of the dopamine system to cocaine use. RESULTS People with CUD had a higher normalized rich-club coefficient than controls, more edges connecting rich-club nodes to each other and to non-rich-club nodes, and fewer edges connecting non-rich-club nodes. Rich-club nodes were shifted posterior and lateral. Rich-club reorganization was related to lower clustered connectivity around individual nodes found in CUD, to increased impulsivity, and to a decrease in caudate connectivity. CONCLUSIONS These findings are consistent with previous work showing increased rich-club connectivity in conditions associated with a hypofunctional dopamine system. The posterior shift in rich-club nodes in CUD suggests that the structural connectivity of posterior regions may be more impacted than previously recognized in models based on brain function and morphology.
Collapse
Affiliation(s)
- Shana A Hall
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Campus Box 102848, Durham, NC 27710, USA
| | - Ryan P Bell
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Campus Box 102848, Durham, NC 27710, USA
| | - Syam Gadde
- Brain Imaging and Analysis Center, Duke University Medical Center, Campus Box 3918, Durham, NC 27710, USA
| | - Sheri L Towe
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Campus Box 102848, Durham, NC 27710, USA
| | - Muhammad Tauseef Nadeem
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Campus Box 102848, Durham, NC 27710, USA
| | - Peter S McCann
- Duke University Hospital, 2301 Erwin Rd, Durham, NC 27710, USA
| | - Allen W Song
- Brain Imaging and Analysis Center, Duke University Medical Center, Campus Box 3918, Durham, NC 27710, USA
| | - Christina S Meade
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Campus Box 102848, Durham, NC 27710, USA; Brain Imaging and Analysis Center, Duke University Medical Center, Campus Box 3918, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Michels L, Moisa M, Stämpfli P, Hirsiger S, Baumgartner MR, Surbeck W, Seifritz E, Quednow BB. The impact of levamisole and alcohol on white matter microstructure in adult chronic cocaine users. Addict Biol 2022; 27:e13149. [PMID: 35394690 PMCID: PMC9287079 DOI: 10.1111/adb.13149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/16/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
Previous brain imaging studies with chronic cocaine users (CU) using diffusion tensor imaging (DTI) mostly focused on fractional anisotropy to investigate white matter (WM) integrity. However, a quantitative interpretation of fractional anisotropy (FA) alterations is often impeded by the inherent limitations of the underlying tensor model. A more fine-grained measure of WM alterations could be achieved by measuring fibre density (FD). This study investigates this novel DTI metric comparing 23 chronic CU and 32 healthy subjects. Quantitative hair analysis was used to determine intensity of cocaine and levamisole exposure-a cocaine adulterant with putative WM neurotoxicity. We first assessed the impact of cocaine use, levamisole exposure and alcohol use on group differences in WM integrity. Compared with healthy controls, all models revealed cortical reductions of FA and FD in CU. At the within-patient group level, we found that alcohol use and levamisole exposure exhibited regionally different FA and FD alterations than cocaine use. We found mostly negative correlations of tract-based WM associated with levamisole and weekly alcohol use. Specifically, levamisole exposure was linked with stronger WM reductions in the corpus callosum than alcohol use. Cocaine use duration correlated negatively with FA and FD in some regions. Yet, most of these correlations did not survive a correction for multiple testing. Our results suggest that chronic cocaine use, levamisole exposure and alcohol use were all linked to significant WM impairments in CU. We conclude that FD could be a sensitive marker to detect the impact of the use of multiple substances on WM integrity in cocaine but also other substance use disorders.
Collapse
Affiliation(s)
- Lars Michels
- Department of NeuroradiologyUniversity Hospital ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and Swiss Federal Institute of Technology ZurichZurichSwitzerland
| | - Marius Moisa
- Zurich Center for Neuroeconomics, Department of NeuroeconomicsUniversity of ZurichZurichSwitzerland
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy, and PsychosomaticsPsychiatric Hospital of the University of ZurichZurichSwitzerland
| | - Sarah Hirsiger
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and PsychosomaticsPsychiatric Hospital of the University of ZurichZurichSwitzerland
| | - Markus R. Baumgartner
- Center of Forensic Hair Analytics, Institute of Forensic MedicineUniversity of ZurichZurichSwitzerland
| | - Werner Surbeck
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and PsychosomaticsPsychiatric Hospital of the University of ZurichZurichSwitzerland
| | - Erich Seifritz
- Neuroscience Center ZurichUniversity of Zurich and Swiss Federal Institute of Technology ZurichZurichSwitzerland
- Department of Psychiatry, Psychotherapy, and PsychosomaticsPsychiatric Hospital of the University of ZurichZurichSwitzerland
| | - Boris B. Quednow
- Neuroscience Center ZurichUniversity of Zurich and Swiss Federal Institute of Technology ZurichZurichSwitzerland
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and PsychosomaticsPsychiatric Hospital of the University of ZurichZurichSwitzerland
| |
Collapse
|
5
|
Rasgado-Toledo J, Shah A, Ingalhalikar M, Garza-Villarreal EA. Neurite orientation dispersion and density imaging in cocaine use disorder. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110474. [PMID: 34758367 DOI: 10.1016/j.pnpbp.2021.110474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023]
Abstract
Cocaine use disorder (CUD) is characterized by a compulsive search for cocaine. Several studies have shown that cocaine users exhibit cognitive deficits, including lack of inhibition and decision-making as well as brain volume and diffusion-based white-matter alterations in a wide variety of brain regions. However, the non-specificity of standard volumetric and diffusion-tensor methods to detect structural micropathology may lead to wrong conclusions. To better understand microstructural pathology in CUD, we analyzed 60 CUD participants (3 female) and 43 non-CUD controls (HC; 2 female) retrospectively from our cross-sectional Mexican SUD neuroimaging dataset (SUDMEX-CONN), using multi-shell diffusion-weighted imaging and the neurite orientation dispersion and density imaging (NODDI) analysis, which aims to more accurately model microstructural pathology. We used Viso values of NODDI that employ a three-compartment model in white (WM) and gray-matter (GM). These values were also correlated with clinical measures, including psychiatric severity status, impulsive behavior and pattern of cocaine and tobacco use in the CUD group. We found higher whole-brain microstructural pathology in WM and GM in CUD patients than controls. ROI analysis revealed higher Viso-NODDI values in superior longitudinal fasciculus, cingulum, hippocampus cingulum, forceps minor and Uncinate fasciculus, as well as in frontal and parieto-temporal GM structures. We also found correlations between significant ROI and impulsivity, onset age of cocaine use and weekly dosage with Viso-NODDI. However, we did not find correlations with psychopathology measures. Overall, although their clinical relevance remains questionable, microstructural pathology seems to be present in CUD both in gray and white matter.
Collapse
Affiliation(s)
- Jalil Rasgado-Toledo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México campus Juriquilla, Querétaro, Mexico
| | - Apurva Shah
- Symbiosis Center for Medical Image Analysis, Symbiosis Institute of Technology, Symbiosis International University, Pune, Maharashtra, India
| | - Madhura Ingalhalikar
- Symbiosis Center for Medical Image Analysis, Symbiosis Institute of Technology, Symbiosis International University, Pune, Maharashtra, India
| | - Eduardo A Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México campus Juriquilla, Querétaro, Mexico.
| |
Collapse
|
6
|
Shirazi Y, Oghabian MA, Batouli SAH. Along-tract analysis of the white matter is more informative about brain ageing, compared to whole-tract analysis. Clin Neurol Neurosurg 2021; 211:107048. [PMID: 34826755 DOI: 10.1016/j.clineuro.2021.107048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/25/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022]
Abstract
Diffusion Tensor Imaging (DTI) enabled the investigation of brain White Matter (WM), both qualitatively to study the macrostructure, and quantitatively to study the microstructure. The quantitative analyses are mostly performed at the whole-tract level, i.e., providing one measure of interest per tract; however, along-tract approaches may provide finer details of the quality of the WM tracts. In this study, using the DWI data collected from 40 young and 40 old individuals, we compared the DTI measures of FA, MD, AD, and RD, estimated by both whole-tract and along-tract approaches in 18 WM bundles, between the two groups. The results of the whole-tract quantitative analysis showed a statistically significant (p-FWER < 0.05) difference between the old and young groups in 6 tracts for FA, 8 tracts for MD, 1 tract for AD, and 7 tracts for RD. On the contrary, the along-tract approach showed differences between the two groups in 10 tracts for FA, 14 tracts for MD, 8 tracts for AD, and 11 tracts for RD. All the differences between the along-tract measures of the two groups had a large effect size (Cohen'd > 0.80). This study showed that the along-tract approach for the analysis of brain WM reveals changes in some WM tracts which had not shown any changes in the whole-tract approach, and therefore this finding emphasizes the utilization of the along-tract approach along with the whole-tract method for a more accurate study of the brain WM.
Collapse
Affiliation(s)
- Yasin Shirazi
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oghabian
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran; Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Batouli
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Alballa T, Boone EL, Ma L, Snyder A, Moeller FG. Exploring the relationship between white matter integrity, cocaine use and GAD polymorphisms using Bayesian Model Averaging. PLoS One 2021; 16:e0254776. [PMID: 34310624 PMCID: PMC8312937 DOI: 10.1371/journal.pone.0254776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/02/2021] [Indexed: 11/30/2022] Open
Abstract
Past investigations utilizing diffusion tensor imaging (DTI) have demonstrated that cocaine use disorder (CUD) yields white matter changes, primarily in the corpus callosum. By applying Bayesian model averaging using multiple linear regression in DTI, we demonstrate there may exist relationships between the impaired white matter and glutamic acid decarboxylase (GAD) polymorphisms. This work explored the two-way and three-way interactions between GAD1a (SNP: rs1978340) and GAD1b (SNP: rs769390) polymorphisms and years of cocaine use (YCU). GAD1a was associated with more frontal white matter changes on its own but GAD1b was associated with more midbrain and cerebellar changes as well as a greater increase in white matter changes in the context of chronic cocaine use. The three-way interaction GAD1a|GAD1b|YCU appeared to be roughly an average of the polymorphism two-way interactions GAD1a|YCU and GAD1b|YCU. The three-way interaction demonstrated multiple regions including corpus callosum which featured fewer significant voxel changes, perhaps suggesting a small protective effect of having both polymorphisms on corpus callosum and cerebellar peduncle.
Collapse
Affiliation(s)
- Tmader Alballa
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Mathematical Sciences Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Edward L. Boone
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Institute of Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Liangsuo Ma
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Institute of Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Andrew Snyder
- C. Kenneth and Dianne Wright, Center for Clinical Translational Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - F. Gerard Moeller
- Institute of Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- C. Kenneth and Dianne Wright, Center for Clinical Translational Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
8
|
Lan Z, Reich BJ, Bandyopadhyay D. A spatial Bayesian semiparametric mixture model for positive definite matrices with applications in diffusion tensor imaging. CAN J STAT 2021. [DOI: 10.1002/cjs.11601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhou Lan
- Center for Outcomes Research and Evaluation Yale School of Medicine U.S.A
| | - Brian J. Reich
- Department of Statistics North Carolina State University U.S.A
| | | |
Collapse
|
9
|
Rajan S, Brettschneider J, Collingwood JF. Regional segmentation strategy for DTI analysis of human corpus callosum indicates motor function deficit in mild cognitive impairment. J Neurosci Methods 2020; 345:108870. [PMID: 32687851 DOI: 10.1016/j.jneumeth.2020.108870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The corpus callosum is the largest white matter tract in the human brain, involved in inter-hemispheric transfer and integration of lateralised visual, sensory-motor, language, and cognitive information. Microstructural alterations are implicated in ageing as well as various neurological conditions. NEW METHOD Cross-sectional diffusion-weighted images of 107 healthy adults were used to create a linear regression model of the ageing corpus callosum and its sub-regions to evaluate the impact of analysis by sub-region, and to test for deviations from healthy ageing parameters in 28 subjects with mild cognitive impairment (MCI). Alterations in diffusion properties including fractional anisotropy, mean, radial and axial diffusivities were investigated as a function of age. RESULTS Changes in DTI parameters showed age-dependent regional differences, likely arising from axonal diameter variation across cross-sectional regions of interest in the corpus callosum. Patterns suggestive of degeneration with healthy ageing were observed in all regions. Diffusion parameters in sub-regions projecting to pre-motor, primary, and supplementary motor areas of the brain differed for MCI versus healthy controls, and MCI subjects were more likely than healthy controls to experience a reduction in motor skills. COMPARISON WITH EXISTING METHODS Statistical analyses of the corpus callosum by five manually-defined sub-regions, instead of a single manually-defined region of interest, revealed region-specific changes in microstructure in healthy ageing and MCI, and accounted for clinically-evaluated differences in motor skills between cohorts. CONCLUSION This method will support future studies of corpus callosum, enabling identification and measurement of white matter changes that are undetectable with the single ROI approach.
Collapse
Affiliation(s)
- Surya Rajan
- School of Engineering, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
10
|
He Q, Li D, Turel O, Bechara A, Hser YI. White matter integrity alternations associated with cocaine dependence and long-term abstinence: Preliminary findings. Behav Brain Res 2019; 379:112388. [PMID: 31783090 DOI: 10.1016/j.bbr.2019.112388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 01/19/2023]
Abstract
Cocaine dependence has been associated with deficits in white matter (WM) integrity. Nevertheless, what happens to WM integrity after long-term abstinence is not fully understood. To bridge this gap, changes in WM integrity were examined with diffusion tensor imaging (DTI) applied to 39 participants: 12 participants who used cocaine in the last year (CURRENT USERS), 20 who were at different stages of cocaine abstinence (ABSTINENCE) [five with 1-5 years of abstinence (ABS1), five with 6-10 years of abstinence (ABS2), and 10 with over 10 years of abstinence (ABS3)], and 7 healthy controls (CONTROLS). The CONTROL group had higher fractional anisotropy (FA) compared to CURRENT USERS in frontal cortex tracts, including the bilateral corpus callosum, bilateral superior longitudinal fasciculus, bilateral inferior fronto-occipital fasciculus, left internal capsule, left middle cingulum, and left ventral and dorsal medial frontal regions. The ABSTINENCE group also had higher FA compared to CURRENT USERS in frontal cortex tracts, such as the bilateral corpus callosum, bilateral superior longitudinal fasciculus, left inferior longitudinal fasciculus, left uncinate fasciculus, left inferior fronto-occipital fasciculus, and the left ventral and dorsal medial frontal regions. Tractography analysis showed (1) deficits in terms of number of fibers and fiber length in these regions, and that (2) while there was some recovery of white matter in dorsolateral regions during abstinence, duration of abstinence was not associated with such recovery. The results identified WM differences among cocaine users, cocaine abstinent participants, and controls. These preliminary findings point to WM tracts that recover, and some that do not, after long-term abstinence from cocaine.
Collapse
Affiliation(s)
- Qinghua He
- Faculty of Psychology, Southwest University, Beibei, Chongqing, China; Brain and Creativity Institute and Department of Psychology, University of Southern California, Los Angeles, CA, USA.
| | - Dandan Li
- Faculty of Psychology, Southwest University, Beibei, Chongqing, China
| | - Ofir Turel
- Brain and Creativity Institute and Department of Psychology, University of Southern California, Los Angeles, CA, USA; Information Systems and Decision Sciences, California State University, Fullerton, CA, USA
| | - Antoine Bechara
- Brain and Creativity Institute and Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Yih-Ing Hser
- Center for Advancing Longitudinal Drug Abuse Research, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Park HM, Satta R, Davis RG, Goo YA, LeDuc RD, Fellers RT, Greer JB, Romanova EV, Rubakhin SS, Tai R, Thomas PM, Sweedler JV, Kelleher NL, Patrie SM, Lasek AW. Multidimensional Top-Down Proteomics of Brain-Region-Specific Mouse Brain Proteoforms Responsive to Cocaine and Estradiol. J Proteome Res 2019; 18:3999-4012. [PMID: 31550894 DOI: 10.1021/acs.jproteome.9b00481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cocaine addiction afflicts nearly 1 million adults in the United States, and to date, there are no known treatments approved for this psychiatric condition. Women are particularly vulnerable to developing a cocaine use disorder and suffer from more serious cardiac consequences than men when using cocaine. Estrogen is one biological factor contributing to the increased risk for females to develop problematic cocaine use. Animal studies have demonstrated that estrogen (17β-estradiol or E2) enhances the rewarding properties of cocaine. Although E2 affects the dopamine system, the molecular and cellular mechanisms of E2-enhanced cocaine reward have not been characterized. In this study, quantitative top-down proteomics was used to measure intact proteins in specific regions of the female mouse brain after mice were trained for cocaine-conditioned place preference, a behavioral test of cocaine reward. Several proteoform changes occurred in the ventral tegmental area after combined cocaine and E2 treatments, with the most numerous proteoform alterations on myelin basic protein, indicating possible changes in white matter structure. There were also changes in histone H4, protein phosphatase inhibitors, cholecystokinin, and calmodulin proteoforms. These observations provide insight into estrogen signaling in the brain and may guide new approaches to treating women with cocaine use disorder.
Collapse
Affiliation(s)
- Hae-Min Park
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Rosalba Satta
- Department of Psychiatry , University of Illinois at Chicago , 1601 West Taylor Street , Chicago , Illinois 60612 , United States
| | - Roderick G Davis
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Young Ah Goo
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Richard D LeDuc
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Ryan T Fellers
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Joseph B Greer
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Elena V Romanova
- Department of Chemistry , University of Illinois , Urbana-Champaign, 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Stanislav S Rubakhin
- Department of Chemistry , University of Illinois , Urbana-Champaign, 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Rex Tai
- Department of Psychiatry , University of Illinois at Chicago , 1601 West Taylor Street , Chicago , Illinois 60612 , United States
| | - Paul M Thomas
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Jonathan V Sweedler
- Department of Chemistry , University of Illinois , Urbana-Champaign, 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Neil L Kelleher
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Steven M Patrie
- Departments of Chemistry, Molecular Biosciences, and The Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Amy W Lasek
- Department of Psychiatry , University of Illinois at Chicago , 1601 West Taylor Street , Chicago , Illinois 60612 , United States
| |
Collapse
|
12
|
Beard CL, Schmitz JM, Soder HE, Suchting R, Yoon JH, Hasan KM, Narayana PA, Moeller FG, Lane SD. Regional differences in white matter integrity in stimulant use disorders: A meta-analysis of diffusion tensor imaging studies. Drug Alcohol Depend 2019; 201:29-37. [PMID: 31176066 PMCID: PMC6660908 DOI: 10.1016/j.drugalcdep.2019.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Converging lines of evidence from diffusion tensor imaging (DTI) studies reveal significant alterations in white matter (WM) microstructure in the prefrontal cortex of chronic stimulant users compared to controls, suggesting compromised axonal microstructure and/or myelin. METHODS A meta-analysis of DTI-based WM integrity was conducted for white matter regions across the corpus callosum and association fibers. Articles were sourced and selected using PRISMA guidelines for systematic review and meta-analysis. Inclusion and exclusion criteria were determined by the authors in order to best capture WM integrity among individuals with primary stimulant use in comparison to healthy control subjects. RESULTS Eleven studies that focused on region-of-interest (ROI)-based analysis of WM integrity were extracted from an initial pool of 113 independent studies. Analysis across ROIs indicated significantly lower fractional anisotropy (FA) values in stimulant use groups compared to controls with a small to moderate overall effect (Hedges' g = -0.37, 95% CI [-0.54, -0.20]). Eigenvalues were also analyzed, revealing a significant effect for radial diffusivity (RD; Hedges' g = 0.24, 95% CI [0.01, 0.47]) but not axial diffusivity (AD; Hedges' g = 0.05, 95% CI [-0.20, 0.29]) or mean diffusivity (MD; Hedges' g = 0.20, 95% CI [-0.01, 0.41]). Subgroup analyses based on specific ROIs, primary substance use, poly-substance use, and imaging technology were also explored. CONCLUSION Results of the present study suggest a consistent effect of compromised WM integrity for individuals with stimulant use disorders. Furthermore, no significant differences were found between cocaine and methamphetamine-based groups.
Collapse
Affiliation(s)
- Charlotte L Beard
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA; Department of Psychology, Palo Alto University, Palo Alto, CA, 94304, USA
| | - Joy M Schmitz
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA.
| | - Heather E Soder
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA
| | - Robert Suchting
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA
| | - Jin H Yoon
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA
| | - Khader M Hasan
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Ponnada A Narayana
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | | | - Scott D Lane
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA
| |
Collapse
|
13
|
Wang Y, Li X, Zhang C, Wang H, Li Z, Zhu J, Yu Y. Selective micro-structural integrity impairment of the isthmus subregion of the corpus callosum in alcohol-dependent males. BMC Psychiatry 2019; 19:96. [PMID: 30909890 PMCID: PMC6434796 DOI: 10.1186/s12888-019-2079-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 03/15/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Previous studies have provided evidence that alcohol-dependent patients have abnormality in corpus callosum (CC); however, it is unclear whether micro-structural integrity of the CC subregions is differentially affected in this disorder. METHODS In this study, a total of 39 male individuals, including 19 alcohol-dependent patients and 20 age-matched healthy controls, underwent diffusion tensor imaging (DTI). CC was reconstructed by DTI tractography and was divided into seven subregions. Multiple diffusion metrics of each subregion were compared between two groups. RESULTS Compared to healthy controls, patients exhibited increased axial diffusivity (P = 0.007), radial diffusivity (P = 0.009) and mean diffusivity (P = 0.005) in the isthmus. In addition, we observed that daily alcohol intake was correlated positively with radial diffusivity and mean diffusivity and negatively with fractional anisotropy, while abstinence time of hospitalization was negatively correlated with mean diffusivity in the patients. CONCLUSION These findings suggest a selective micro-structural integrity impairment of the corpus callosum subregions in alcohol dependence, characterized by axon and myelin alterations in the isthmus.
Collapse
Affiliation(s)
- Yajun Wang
- 0000 0004 1771 3402grid.412679.fDepartment of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| | - Xiaohu Li
- 0000 0004 1771 3402grid.412679.fDepartment of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| | - Cun Zhang
- 0000 0004 1771 3402grid.412679.fDepartment of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| | - Haibao Wang
- 0000 0004 1771 3402grid.412679.fDepartment of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| | - Zipeng Li
- 0000 0004 1771 3402grid.412679.fDepartment of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
14
|
Regional elevations in microglial activation and cerebral glucose utilization in frontal white matter tracts of rhesus monkeys following prolonged cocaine self-administration. Brain Struct Funct 2019; 224:1417-1428. [PMID: 30747315 DOI: 10.1007/s00429-019-01846-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/06/2019] [Indexed: 12/18/2022]
Abstract
It has been shown that exposure to cocaine can result in neuroinflammatory responses. Microglia, the resident CNS immune cells, undergo a transition to an activated state when challenged. In rodents, and possibly humans, cocaine exposure activates microglia. The goal of this study was to assess the extent and magnitude of microglial activation in rhesus monkeys with an extensive history of cocaine self-administration. Male rhesus monkeys (N = 4/group) were trained to respond on a fixed-interval 3-min schedule of food or 0.3 mg/kg/injection cocaine presentation (30 reinforcers/session) for 300 sessions. At the end of the final session, monkeys were administered 2-[14C]deoxyglucose intravenously and 45 min later euthanized. Brain sections were used for autoradiographic assessments of glucose utilization and for microglia activation with [3H]PK11195, a marker for the microglial 18-kDa translocator protein. There were no group differences in gray matter [3H]PK11195 binding, while binding was significantly greater in cocaine self-administration animals as compared to food controls in 8 of the 11 white matter tracts measured at the striatal level. Binding did not differ from control at other levels. There were also significant increases in white matter local cerebral glucose utilization at the striatal level, which were positively correlated with [3H]PK11195 binding. The present findings demonstrate an elevation in [3H]PK11195 binding in forebrain white matter tracts of nonhuman primates with a prolonged history of cocaine self-administration. These elevations were also associated with greater cerebral metabolic rates. These data suggest that white matter deficits may contribute to behavioral, motivational, and cognitive impairments observed in cocaine abusers.
Collapse
|
15
|
Miller WR, Fox RG, Stutz SJ, Lane SD, Denner L, Cunningham KA, Dineley KT. PPARγ agonism attenuates cocaine cue reactivity. Addict Biol 2018; 23:55-68. [PMID: 27862692 DOI: 10.1111/adb.12471] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/03/2016] [Accepted: 10/09/2016] [Indexed: 01/15/2023]
Abstract
Cocaine use disorder is a chronic relapsing condition characterized by compulsive drug seeking and taking even after prolonged abstinence periods. Subsequent exposure to drug-associated cues can promote intense craving and lead to relapse in abstinent humans and rodent models. The responsiveness to these cocaine-related cues, or 'cue reactivity', can trigger relapse and cocaine-seeking behaviors; cue reactivity is measurable in cocaine-dependent humans as well as rodent models. Cue reactivity is thought to be predictive of cocaine craving and relapse. Here we report that PPARγ agonism during abstinence from cocaine self-administration reduced previously active lever pressing in Sprague Dawley rats during cue-reactivity tests, while administration of the PPARγ antagonist, GW9662, reversed this effect. PPARγ agonism also normalized nuclear ERK activity in the medial prefrontal cortex and hippocampus which was reversed with GW9662. Our results support the utility of PPARγ agonism as a relapse prevention strategy to maintain abstinence in the presence of cocaine-associated cues.
Collapse
Affiliation(s)
- William R Miller
- Department of Neurology; Galveston TX USA
- Center for Addiction Research; Galveston TX USA
- Mitchell Center for Neurodegenerative Diseases; Galveston TX USA
| | - Robert G Fox
- Center for Addiction Research; Galveston TX USA
- Department of Pharmacology and Toxicology; Galveston TX USA
| | - Sonja J Stutz
- Center for Addiction Research; Galveston TX USA
- Department of Pharmacology and Toxicology; Galveston TX USA
| | - Scott D Lane
- Department of Psychiatry and Behavioral Sciences; University of Texas Health Science Center at Houston; Houston TX USA
| | - Larry Denner
- Center for Addiction Research; Galveston TX USA
- Mitchell Center for Neurodegenerative Diseases; Galveston TX USA
- Division of Endocrinology; Internal Medicine University of Texas Medical Branch; Galveston TX USA
| | - Kathryn A Cunningham
- Center for Addiction Research; Galveston TX USA
- Mitchell Center for Neurodegenerative Diseases; Galveston TX USA
- Department of Pharmacology and Toxicology; Galveston TX USA
| | - Kelly T Dineley
- Department of Neurology; Galveston TX USA
- Center for Addiction Research; Galveston TX USA
- Mitchell Center for Neurodegenerative Diseases; Galveston TX USA
| |
Collapse
|
16
|
Krakauer K, Ebdrup BH, Glenthøj BY, Raghava JM, Nordholm D, Randers L, Rostrup E, Nordentoft M. Patterns of white matter microstructure in individuals at ultra-high-risk for psychosis: associations to level of functioning and clinical symptoms. Psychol Med 2017; 47:2689-2707. [PMID: 28464976 DOI: 10.1017/s0033291717001210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Individuals at ultra-high-risk (UHR) for psychosis present with emerging symptoms and decline in functioning. Previous univariate analyses have indicated widespread white matter (WM) aberrations in multiple brain regions in UHR individuals and patients with schizophrenia. Using multivariate statistics, we investigated whole brain WM microstructure and associations between WM, clinical symptoms, and level of functioning in UHR individuals. METHODS Forty-five UHR individuals and 45 matched healthy controls (HCs) underwent magnetic resonance diffusion tensor imaging (DTI) at 3 Tesla. UHR individuals were assessed with the Comprehensive Assessment of At-Risk Mental States, Scale for the Assessment of Negative Symptoms, and Social and Occupational Functioning Assessment Scale. Partial least-squares correlation analysis (PLSC) was used as statistical method. RESULTS PLSC group comparisons revealed one significant latent variable (LV) accounting for 52% of the cross-block covariance. This LV indicated a pattern of lower fractional anisotropy (FA), axial diffusivity (AD), and mode of anisotropy (MO) concomitant with higher radial diffusivity (RD) in widespread brain regions in UHR individuals compared with HCs. Within UHR individuals, PLSC revealed five significant LVs associated with symptoms and level of functioning. The first LV accounted for 31% of the cross-block covariance and indicated a pattern where higher symptom score and lower level of functioning correlated to lower FA, AD, MO, and higher RD. CONCLUSIONS UHR individuals demonstrate complex brain patterns of WM abnormalities. Despite the subtle psychopathology of UHR individuals, aberrations in WM appear associated with positive and negative symptoms as well as level of functioning.
Collapse
Affiliation(s)
- K Krakauer
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - B H Ebdrup
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - B Y Glenthøj
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - J M Raghava
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - D Nordholm
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - L Randers
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - E Rostrup
- Functional Imaging Unit,Clinical Physiology,Nuclear Medicine and PET,Copenhagen University Hospital Rigshospitalet,DK-2600 Glostrup,Denmark
| | - M Nordentoft
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| |
Collapse
|
17
|
Schmitz JM, Green CE, Hasan KM, Vincent J, Suchting R, Weaver MF, Moeller FG, Narayana PA, Cunningham KA, Dineley KT, Lane SD. PPAR-gamma agonist pioglitazone modifies craving intensity and brain white matter integrity in patients with primary cocaine use disorder: a double-blind randomized controlled pilot trial. Addiction 2017; 112:1861-1868. [PMID: 28498501 PMCID: PMC5593771 DOI: 10.1111/add.13868] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/14/2017] [Accepted: 05/05/2017] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIMS Pioglitazone (PIO), a potent agonist of PPAR-gamma, is a promising candidate treatment for cocaine use disorder (CUD). We tested the effects of PIO on targeted mechanisms relevant to CUD: cocaine craving and brain white matter (WM) integrity. Feasibility, medication compliance and tolerability were evaluated. DESIGN Two-arm double-blind randomized controlled proof-of-concept pilot trial of PIO or placebo (PLC). SETTING Single-site out-patient treatment research clinic in Houston, TX, USA. PARTICIPANTS Thirty treatment-seeking adults, 18 to 60 years old, with CUD. Eighteen participants (8 = PIO; 10 = PLC) completed diffusion tensor imaging (DTI) of WM integrity at pre-/post-treatment. INTERVENTION Study medication was dispensed at thrice weekly visits along with once-weekly cognitive behavioral therapy for 12 weeks. MEASUREMENTS Measures of target engagement mechanisms of interest included cocaine craving assessed by the Brief Substance Craving Scale (BSCS), the Obsessive Compulsive Drug Use Scale (OCDUS), a visual analog scale (VAS) and change in WM integrity. Feasibility measures included number completing treatment, medication compliance (riboflavin detection) and tolerability (side effects, serious adverse events). FINDINGS Target engagement change in mechanisms of interest, defined as a ≥ 0.75 Bayesian posterior probability of an interaction existing favoring PIO over PLC, was demonstrated on measures of craving (BSCS, VAS) and WM integrity indexed by fractional anisotropy (FA) values. Outcomes indicated greater decrease in craving and greater increase in FA values in the PIO group. Feasibility was demonstrated by high completion rates among those starting treatment (21/26 = 80%) and medication compliance (≥ 80%). There were no reported serious adverse events for PIO. CONCLUSIONS Compared with placebo, patients receiving pioglitazone show a higher likelihood of reduced cocaine craving and improved brain white matter integrity as a function of time in treatment. Pioglitazone shows good feasibility as a treatment for cocaine use disorder.
Collapse
Affiliation(s)
- Joy M Schmitz
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Charles E Green
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- UT-Houston Center for Clinical Research and Evidence-Based Medicine, Houston, TX, USA
| | - Khader M Hasan
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jessica Vincent
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Robert Suchting
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael F Weaver
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Ponnada A Narayana
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kathryn A Cunningham
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelly T Dineley
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott D Lane
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
18
|
O'Connor EE, Jaillard A, Renard F, Zeffiro TA. Reliability of White Matter Microstructural Changes in HIV Infection: Meta-Analysis and Confirmation. AJNR Am J Neuroradiol 2017; 38:1510-1519. [PMID: 28596189 DOI: 10.3174/ajnr.a5229] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/18/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Diffusion tensor imaging has been widely used to measure HIV effects on white matter microarchitecture. While many authors have reported reduced fractional anisotropy and increased mean diffusivity in HIV, quantitative inconsistencies across studies are numerous. PURPOSE Our aim was to evaluate the consistency across studies of HIV effects on DTI measures and then examine the DTI reliability in a longitudinal seropositive cohort. DATA SOURCES Published studies and investigators. STUDY SELECTION The meta-analysis included 16 cross-sectional studies reporting fractional anisotropy and 12 studies reporting mean diffusivity in the corpus callosum. DATA ANALYSIS Random-effects meta-analysis was used to estimate study standardized mean differences and heterogeneity. DTI longitudinal reliability was estimated in seropositive participants studied before and 3 and 6 months after beginning treatment. DATA SYNTHESIS Meta-analysis revealed lower fractional anisotropy (standardized mean difference, -0.43; P < .001) and higher mean diffusivity (standardized mean difference, 0.44; P < .003) in seropositive participants. Nevertheless, between-study heterogeneity accounted for 58% and 66% of the observed variance (P < .01). In contrast, the longitudinal cohort fractional anisotropy was higher and mean diffusivity was lower in seropositive participants (both, P < .001), and fractional anisotropy and mean diffusivity measures were very stable during 6 months, with intraclass correlation coefficients all >0.96. LIMITATIONS Many studies pooled participants with varying treatments, ages, and disease durations. CONCLUSIONS HIV effects on WM microstructure had substantial variations that could result from acquisition, processing, or cohort-selection differences. When acquisition parameters and processing were carefully controlled, the resulting DTI measures did not show high temporal variation. HIV effects on WM microstructure may be age-dependent. The high longitudinal reliability of DTI WM microstructure measures makes them promising disease-activity markers.
Collapse
Affiliation(s)
- E E O'Connor
- From the Department of Radiology and Nuclear Medicine (E.E.O.), University of Maryland Medical System, Baltimore, Maryland
| | - A Jaillard
- Unité IRM 3T-Recherche-IRMaGe-Inserm US 17/CNRS UMS 3552 (A.J., F.R.).,Laboratoire MATICE-Pôle Recherche (A.J., F.R.), Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - F Renard
- Unité IRM 3T-Recherche-IRMaGe-Inserm US 17/CNRS UMS 3552 (A.J., F.R.).,Laboratoire MATICE-Pôle Recherche (A.J., F.R.), Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - T A Zeffiro
- Neurometrika (T.A.Z.), Potomac, Maryland.,Department of Human Development (T.A.Z.), University of Maryland College Park, Maryland
| |
Collapse
|
19
|
Vaquero L, Cámara E, Sampedro F, Pérez de los Cobos J, Batlle F, Fabregas JM, Sales JA, Cervantes M, Ferrer X, Lazcano G, Rodríguez-Fornells A, Riba J. Cocaine addiction is associated with abnormal prefrontal function, increased striatal connectivity and sensitivity to monetary incentives, and decreased connectivity outside the human reward circuit. Addict Biol 2017; 22:844-856. [PMID: 26786150 DOI: 10.1111/adb.12356] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022]
Abstract
Cocaine addiction has been associated with increased sensitivity of the human reward circuit to drug-related stimuli. However, the capacity of non-drug incentives to engage this network is poorly understood. Here, we characterized the functional sensitivity to monetary incentives and the structural integrity of the human reward circuit in abstinent cocaine-dependent (CD) patients and their matched controls. We assessed the BOLD response to monetary gains and losses in 30 CD patients and 30 healthy controls performing a lottery task in a magnetic resonance imaging scanner. We measured brain gray matter volume (GMV) using voxel-based morphometry and white matter microstructure using voxel-based fractional anisotropy (FA). Functional data showed that, after monetary incentives, CD patients exhibited higher activation in the ventral striatum than controls. Furthermore, we observed an inverted BOLD response pattern in the prefrontal cortex, with activity being highest after unexpected high gains and lowest after losses. Patients showed increased GMV in the caudate and the orbitofrontal cortex, increased white matter FA in the orbito-striatal pathway but decreased FA in antero-posterior association bundles. Abnormal activation in the prefrontal cortex correlated with GMV and FA increases in the orbitofrontal cortex. While functional abnormalities in the ventral striatum were inversely correlated with abstinence duration, structural alterations were not. In conclusion, results suggest abnormal incentive processing in CD patients with high salience for rewards and punishments in subcortical structures but diminished prefrontal control after adverse outcomes. They further suggest that hypertrophy and hyper-connectivity within the reward circuit, to the expense of connectivity outside this network, characterize cocaine addiction.
Collapse
Affiliation(s)
- Lucía Vaquero
- Cognition and Brain Plasticity Group (Bellvitge Biomedical Research Institute) IDIBELL; L'Hospitalet de Llobregat; Spain
- Department of Basic Psychology; University of Barcelona; Spain
| | - Estela Cámara
- Cognition and Brain Plasticity Group (Bellvitge Biomedical Research Institute) IDIBELL; L'Hospitalet de Llobregat; Spain
| | | | - José Pérez de los Cobos
- Addictive Behaviors Unit, Department of Psychiatry; Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute (IIB Sant Pau); Spain
- Department of Psychiatry and Legal Medicine; Autonomous University of Barcelona; Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM; Spain
| | - Francesca Batlle
- Addictive Behaviors Unit, Department of Psychiatry; Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute (IIB Sant Pau); Spain
- Department of Psychiatry and Legal Medicine; Autonomous University of Barcelona; Spain
| | | | | | | | - Xavier Ferrer
- Fundació Salut i Comunitat; Spain
- Addiction postgraduate course, School of Psychology; University of Barcelona; Spain
| | | | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group (Bellvitge Biomedical Research Institute) IDIBELL; L'Hospitalet de Llobregat; Spain
- Department of Basic Psychology; University of Barcelona; Spain
- Catalan Institution for Research and Advanced Studies; ICREA; Spain
| | - Jordi Riba
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM; Spain
- Human Neuropsychopharmacology Group; Sant Pau Institute of Biomedical Research (IIB-Sant Pau); Spain
- Centre d'Investigació de Medicaments, Servei de Farmacologia Clínica; Hospital de la Santa Creu i Sant Pau; Spain
- Departament de Farmacologia i Terapèutica; Universitat Autònoma de Barcelona; Spain
| |
Collapse
|
20
|
Ma L, Steinberg JL, Wang Q, Schmitz JM, Boone EL, Narayana PA, Moeller FG. A preliminary longitudinal study of white matter alteration in cocaine use disorder subjects. Drug Alcohol Depend 2017; 173:39-46. [PMID: 28192722 PMCID: PMC5704923 DOI: 10.1016/j.drugalcdep.2016.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/29/2016] [Accepted: 12/13/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Previous diffusion tensor imaging (DTI) studies have consistently shown that subjects with cocaine use disorder (CocUD) had altered white matter microstructure in the corpus callosum. It is believed that these alterations are due to preexisting factors, chronic cocaine use, or both. However, there is no published longitudinal DTI study on human cocaine users yet which could shed light on the relationship between cocaine use and DTI findings. METHODS This study used a longitudinal design and DTI to test if the white matter microstructure shows quicker alteration in CocUD subjects than controls. DTI data were acquired from eleven CocUD subjects who participated a treatment study and eleven non-drug-using controls at baseline (Scan 1) and after ten weeks (Scan 2). The baseline fractional anisotropy (FA), a general measure of white matter microstucture, and the change in FA (ΔFA, equals Scan 1 FA minus Scan 2 FA) were both compared between groups. RESULTS The two groups did not show a difference in FA at baseline. The CocUD subjects had significantly greater ΔFA than the controls in the left splenium of the corpus callosum. In CocUD subjects, greater ΔFA in this region was associated with shorter lifetime cocaine use and greater number of positive cocaine urine samples collected during the treatment. CONCLUSION The finding in the left splenium is consistent with previous animal studies and provide indirect evidence about the effects of chronic cocaine use on white matter alterations. The subject sample size is small, therefore the results should be treated as preliminary.
Collapse
Affiliation(s)
- Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA; Department of Radiology, VCU, Richmond, VA, USA.
| | - Joel L. Steinberg
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA,Department of Psychiatry, VCU, Richmond, Virginia, USA
| | - Qin Wang
- Department of Statistical Sciences and Operations Research, VCU, Richmond, Virginia, USA
| | - Joy M. Schmitz
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center (UTHSC), Houston, Texas, USA
| | - Edward L Boone
- Department of Statistical Sciences and Operations Research, VCU, Richmond, Virginia, USA
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, UTHSC, Houston, Texas, USA
| | - F. Gerard Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA,Department of Psychiatry, VCU, Richmond, Virginia, USA,Department of Pharmacology and Toxicology, VCU, Richmond, Virginia, USA,Department of Neurology, VCU, Richmond, Virginia, USA
| |
Collapse
|
21
|
Gao P, Limpens JHW, Spijker S, Vanderschuren LJMJ, Voorn P. Stable immediate early gene expression patterns in medial prefrontal cortex and striatum after long-term cocaine self-administration. Addict Biol 2017; 22:354-368. [PMID: 26598422 DOI: 10.1111/adb.12330] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 09/11/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022]
Abstract
The transition from casual to compulsive drug use is thought to occur as a consequence of repeated drug taking leading to neuroadaptive changes in brain circuitry involved in emotion and cognition. At the basis of such neuroadaptations lie changes in the expression of immediate early genes (IEGs) implicated in transcriptional regulation, synaptic plasticity and intracellular signalling. However, little is known about how IEG expression patterns change during long-term drug self-administration. The present study, therefore, compares the effects of 10 and 60-day self-administration of cocaine and sucrose on the expression of 17 IEGs in brain regions implicated in addictive behaviour, i.e. dorsal striatum, ventral striatum and medial prefrontal cortex (mPFC). Increased expression after cocaine self-administration was found for 6 IEGs in dorsal and ventral striatum (c-fos, Mkp1, Fosb/ΔFosb, Egr2, Egr4, and Arc) and 10 IEGs in mPFC (same 6 IEGs as in striatum, plus Bdnf, Homer1, Sgk1 and Rgs2). Five of these 10 IEGs (Egr2, Fosb/ΔFosb, Bdnf, Homer1 and Jun) and Trkb in mPFC were responsive to long-term sucrose self-administration. Importantly, no major differences were found between IEG expression patterns after 10 or 60 days of cocaine self-administration, except Fosb/ΔFosb in dorsal striatum and Egr2 in mPFC, whereas the amount of cocaine obtained per session was comparable for short-term and long-term self-administration. These steady changes in IEG expression are, therefore, associated with stable self-administration behaviour rather than the total amount of cocaine consumed. Thus, sustained impulses to IEG regulation during prolonged cocaine self-administration may evoke neuroplastic changes underlying compulsive drug use.
Collapse
Affiliation(s)
- Ping Gao
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam the Netherlands
| | - Jules H. W. Limpens
- Brain Center Rudolf Magnus, Department of Translational Neuroscience; University Medical Center Utrecht; Utrecht the Netherlands
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam; VU University Amsterdam; Amsterdam the Netherlands
| | - Louk J. M. J. Vanderschuren
- Brain Center Rudolf Magnus, Department of Translational Neuroscience; University Medical Center Utrecht; Utrecht the Netherlands
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine; Utrecht University; Utrecht the Netherlands
| | - Pieter Voorn
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam the Netherlands
| |
Collapse
|
22
|
Cocaine dependence does not contribute substantially to white matter abnormalities in HIV infection. J Neurovirol 2017; 23:441-450. [PMID: 28251596 DOI: 10.1007/s13365-017-0512-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/10/2017] [Indexed: 01/11/2023]
Abstract
This study investigated the association of HIV infection and cocaine dependence with cerebral white matter integrity using diffusion tensor imaging (DTI). One hundred thirty-five participants stratified by HIV and cocaine status (26 HIV+/COC+, 37 HIV+/COC-, 37 HIV-/COC+, and 35 HIV-/COC-) completed a comprehensive substance abuse assessment, neuropsychological testing, and MRI with DTI. Among HIV+ participants, all were receiving HIV care and 46% had an AIDS diagnosis. All COC+ participants were current users and met criteria for cocaine use disorder. We used tract-based spatial statistics (TBSS) to assess the relation of HIV and cocaine to fractional anisotropy (FA) and mean diffusivity (MD). In whole-brain analyses, HIV+ participants had significantly reduced FA and increased MD compared to HIV- participants. The relation of HIV and FA was widespread throughout the brain, whereas the HIV-related MD effects were restricted to the corpus callosum and thalamus. There were no significant cocaine or HIV-by-cocaine effects. These DTI metrics correlated significantly with duration of HIV disease, nadir CD4+ cell count, and AIDS diagnosis, as well as some measures of neuropsychological functioning. These results suggest that HIV is related to white matter integrity throughout the brain, and that HIV-related effects are more pronounced with increasing duration of infection and greater immune compromise. We found no evidence for independent effects of cocaine dependence on white matter integrity, and cocaine dependence did not appear to exacerbate the effects of HIV.
Collapse
|
23
|
Shared microstructural features of behavioral and substance addictions revealed in areas of crossing fibers. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:188-195. [PMID: 28367515 DOI: 10.1016/j.bpsc.2016.03.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Similarities between behavioral and substance addictions exist. However, direct neurobiological comparison between addictive disorders is rare. Determination of disorder-specificity (or lack thereof) of alterations within white-matter microstructures will advance understanding of the pathophysiology of addictions. METHODS We compared white-matter microstructural features between individuals with gambling disorder (GD; n=38), cocaine-use disorder (CUD; n=38) and healthy comparison (HC; n=38) participants, as assessed using diffusion-weighted magnetic resonance imaging (dMRI). To provide a more precise estimate of diffusion within regions of complex architecture (e.g., cortico-limbic tracts), analyses were conducted using a crossing-fiber model incorporating local-orientation modeling (tbss_x). Anisotropy estimates for primary and secondary fiber orientations were compared using ANOVAs corrected for multiple comparisons across space using threshold-free cluster enhancement (pFWE<.05). RESULTS A main effect of group on anisotropy of secondary fiber orientations within the left internal capsule, corona radiata, forceps major and posterior thalamic radiation, involving reduced anisotropy among GD and CUD participants in comparison to HC participants. No differences in anisotropy measures were found between GD and CUD individuals. CONCLUSIONS This is the first study to compare diffusion indices directly between behavioral and substance addictions and the largest dMRI study of GD. Our findings indicate similar white-matter microstructural alterations across addictions that cannot be attributed solely to exposure to drugs or alcohol and thus may be a vulnerability mechanism for addictive disorders.
Collapse
|
24
|
Yuan F, Zhu X, Kong L, Shen H, Liao W, Jiang C. White Matter Integrity Deficit Associated with Betel Quid Dependence. Front Psychiatry 2017; 8:201. [PMID: 29075207 PMCID: PMC5643420 DOI: 10.3389/fpsyt.2017.00201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/25/2017] [Indexed: 01/16/2023] Open
Abstract
Betel quid (BQ) is a commonly consumed psychoactive substance, which has been regarded as a human carcinogen. Long-term BQ chewing may cause Diagnostic and Statistical Manual of Mental Disorders-IV dependence symptoms, which can lead to decreased cognitive functions, such as attention and inhibition control. Although betel quid dependence (BQD) individuals have been reported with altered brain structure and function, there is little evidence showing white matter microstructure alternation in BQD individuals. The present study aimed to investigate altered white matter microstructure in BQD individuals using diffusion tensor imaging. Tract-based spatial statistics was used to analyze the data. Compared with healthy controls, BQD individuals exhibited higher mean diffusivity (MD) in anterior thalamic radiation (ATR). Further analysis revealed that the ATR in BQD individuals showed less fractional anisotropy (FA) than that in healthy controls. Correlation analysis showed that both the increase of MD and reduction of FA in BQD individuals were associated with severity of BQ dependence. These results suggested that BQD would disrupt the balance between prefrontal cortex and subcortical areas, causing declined inhibition control.
Collapse
Affiliation(s)
- Fulai Yuan
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xueling Zhu
- School of Humanities and Social Sciences, National University of Defense Technology, Changsha, China.,Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lingyu Kong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Huaizhen Shen
- School of Humanities and Social Sciences, National University of Defense Technology, Changsha, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
van Son D, Wiers RW, Catena A, Perez-Garcia M, Verdejo-García A. White matter disruptions in male cocaine polysubstance users: Associations with severity of drug use and duration of abstinence. Drug Alcohol Depend 2016; 168:247-254. [PMID: 27736678 DOI: 10.1016/j.drugalcdep.2016.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/14/2016] [Accepted: 09/17/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cocaine dependence has been associated with alterations in the brain's white matter integrity, yet relevant questions remain about what alterations are linked to cocaine use and/or polysubstance use, and whether they are amenable to abstinence. METHODS This study applied a single measurement session of diffusion tensor imaging (DTI) to examine white matter structure in male cocaine polysubstance users (n=37) versus male healthy controls (n=38), along with correlations between DTI measures and patterns of polysubstance use and duration of abstinence. Specifically, we conducted voxel-wise analyses of fractional anisotropy (FA) in the corpus callosum, frontolimbic, striatal and cingulate tracts relevant to drug sequelae. RESULTS Cocaine polysubstance users, compared to controls, showed lower FA in the body of the corpus callosum, anterior cingulate, uncinate fasciculus and retrolenticular part of the internal capsule. Duration of cocaine use had a marginal negative association with FA in the corpus callosum, and duration of alcohol use was negatively associated with FA in the internal capsule and the uncinate fasciculus. Duration of cocaine abstinence was positively correlated with FA in the uncinate fasciculus, posterior cingulate and fornix-striatum. In the context of cocaine polysubstance use, chronicity of cocaine use is therefore likely to be associated with lower FA in the corpus callosum, and chronicity of alcohol use with lower FA in the frontal-striatal and frontal-limbic tracts. Longer abstinence was correlated to greater FA in frontal-striatal and frontal-limbic tracts, though the direction of causality remains unclear. CONCLUSION Since the results did not survive multiple comparison-corrected thresholds, more studies are needed to confirm these indications.
Collapse
Affiliation(s)
- Dana van Son
- Addiction, Development and Psychopathology (ADAPT) lab, Dept. of Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| | - Reinout W Wiers
- Addiction, Development and Psychopathology (ADAPT) lab, Dept. of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Andrés Catena
- Mind, Brain and Behavior Research Center (CIMCYC), Universidad de Granada, Granada, Spain
| | - Miguel Perez-Garcia
- Mind, Brain and Behavior Research Center (CIMCYC), Universidad de Granada, Granada, Spain
| | - Antonio Verdejo-García
- Red de Trastornos Adictivos & Institute of Neurosciences F. Olóriz, Universidad de Granada, Granada, Spain; School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Australia
| |
Collapse
|
26
|
Qiu YW, Lv XF, Jiang GH, Su HH, Ma XF, Tian JZ, Zhuo FZ. Larger corpus callosum and reduced orbitofrontal cortex homotopic connectivity in codeine cough syrup-dependent male adolescents and young adults. Eur Radiol 2016; 27:1161-1168. [PMID: 27329520 DOI: 10.1007/s00330-016-4465-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 01/30/2023]
Abstract
OBJECTIVES To characterize interhemispheric functional and anatomical connectivity and their relationships with impulsive behaviour in codeine-containing cough syrup (CCS)-dependent male adolescents and young adults. METHODS We compared volumes of corpus callosum (CC) and its five subregion and voxel-mirrored homotopic functional connectivity (VMHC) in 33 CCS-dependent male adolescents and young adults and 38 healthy controls, group-matched for age, education and smoking status. Barratt impulsiveness scale (BIS.11) was used to assess participant impulsive behaviour. Abnormal CC subregions and VMHC revealed by group comparison were extracted and correlated with impulsive behaviour and duration of CCS use. RESULTS We found selective increased mid-posterior CC volume in CCS-dependent male adolescents and young adults and detected decreased homotopic interhemispheric functional connectivity of medial orbitofrontal cortex (OFC). Moreover, impairment of VMHC was associated with the impulsive behaviour and correlated with the duration of CCS abuse in CCS-dependent male adolescents and young adults. CONCLUSIONS These findings reveal CC abnormalities and disruption of interhemispheric homotopic connectivity in CCS-dependent male adolescents and young adults, which provide a novel insight into the impact of interhemispheric disconnectivity on impulsive behaviour in substance addiction pathophysiology. KEY POINTS • CCS-dependent individuals (patients) had selective increased volumes of mid-posterior corpus callosum • Patients had attenuated interhemispheric homotopic FC (VMHC) of bilateral orbitofrontal cortex • Impairment of VMHC correlated with impulsive behaviour in patients • Impairment of VMHC correlated with the CCS duration in patients.
Collapse
Affiliation(s)
- Ying-Wei Qiu
- Department of Medical Imaging, Zhongshan Ophthalmic Center, SunYat-sen University, Guangzhou, People's Republic of China. .,Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China. .,Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore.
| | - Xiao-Fei Lv
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Gui-Hua Jiang
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Huan-Huan Su
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Xiao-Fen Ma
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Jun-Zhang Tian
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Fu-Zhen Zhuo
- Addiction Medicine Division, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| |
Collapse
|
27
|
Reed SC, Evans SM. The effects of oral d-amphetamine on impulsivity in smoked and intranasal cocaine users. Drug Alcohol Depend 2016; 163:141-52. [PMID: 27114203 PMCID: PMC4880502 DOI: 10.1016/j.drugalcdep.2016.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Effective treatments for cocaine use disorders remain elusive. Two factors that may be related to treatment failures are route of cocaine used and impulsivity. Smoked cocaine users are more likely to have poorer treatment outcomes compared to intranasal cocaine users. Further, cocaine users are impulsive and impulsivity is associated with poor treatment outcomes. While stimulants are used to treat Attention Deficit Hyperactivity Disorder (ADHD) and attenuate certain cocaine-related behaviors, few studies have comprehensively examined whether stimulants can reduce behavioral impulsivity in cocaine users, and none examined route of cocaine use as a factor. METHODS The effects of immediate release oral d-amphetamine (AMPH) were examined in 34 cocaine users (13 intranasal, 21 smoked). Participants had three separate sessions where they were administered AMPH (0, 10, or 20mg) and completed behavioral measures of impulsivity and risk-taking and subjective measures of abuse liability. RESULTS Smoked cocaine users were more impulsive on the Delayed Memory Task, the GoStop task and the Delay Discounting Task than intranasal cocaine users. Smoked cocaine users also reported more cocaine craving and negative mood than intranasal cocaine users. AMPH produced minimal increases on measures of abuse liability (e.g., Drug Liking). CONCLUSIONS Smoked cocaine users were more impulsive than intranasal cocaine users on measures of impulsivity that had a delay component. Additionally, although AMPH failed to attenuate impulsive responding, there was minimal evidence of abuse liability in cocaine users. These preliminary findings need to be confirmed in larger samples that control for route and duration of cocaine use.
Collapse
Affiliation(s)
- Stephanie Collins Reed
- Division on Substance Abuse, New York State Psychiatric Institute and Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Unit 66, New York, NY 10032 USA.
| | - Suzette M Evans
- Division on Substance Abuse, New York State Psychiatric Institute and Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Unit 66, New York, NY 10032 USA
| |
Collapse
|
28
|
Azadeh S, Hobbs BP, Ma L, Nielsen DA, Moeller FG, Baladandayuthapani V. INTEGRATIVE BAYESIAN ANALYSIS OF NEUROIMAGING-GENETIC DATA THROUGH HIERARCHICAL DIMENSION REDUCTION. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2016; 2016:824-828. [PMID: 27917260 PMCID: PMC5129839 DOI: 10.1109/isbi.2016.7493393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Advances in neuromedicine have emerged from endeavors to elucidate the distinct genetic factors that influence the changes in brain structure that underlie various neurological conditions. We present a framework for examining the extent to which genetic factors impact imaging phenotypes described by voxel-wise measurements organized into collections of functionally relevant regions of interest (ROIs) that span the entire brain. Statistically, the integration of neuroimaging and genetic data is challenging. Because genetic variants are expected to impact different regions of the brain, an appropriate method of inference must simultaneously account for spatial dependence and model uncertainty. Our proposed framework combines feature extraction using generalized principal component analysis to account for inherent short- and long-range structural dependencies with Bayesian model averaging to effectuate variable selection in the presence of multiple genetic variants. The methods are demonstrated on a cocaine dependence study to identify ROIs associated with genetic factors that impact diffusion parameters.
Collapse
Affiliation(s)
- S Azadeh
- The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX
| | - B P Hobbs
- The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX
| | - L Ma
- The Institute for Drug and Alcohol Studies, 410 N 12th St # 7, Richmond, VA
| | - D A Nielsen
- Baylor College of Medicine, 1 Baylor Plaza, Houston, TX
| | - F G Moeller
- The Institute for Drug and Alcohol Studies, 410 N 12th St # 7, Richmond, VA
| | - V Baladandayuthapani
- The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX
| |
Collapse
|
29
|
Azadeh S, Hobbs BP, Ma L, Nielsen DA, Gerard Moeller F, Baladandayuthapani V. Integrative Bayesian analysis of neuroimaging-genetic data with application to cocaine dependence. Neuroimage 2016; 125:813-824. [PMID: 26484829 PMCID: PMC5042574 DOI: 10.1016/j.neuroimage.2015.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/25/2015] [Accepted: 10/13/2015] [Indexed: 01/22/2023] Open
Abstract
Neuroimaging and genetic studies provide distinct and complementary information about the structural and biological aspects of a disease. Integrating the two sources of data facilitates the investigation of the links between genetic variability and brain mechanisms among different individuals for various medical disorders. This article presents a general statistical framework for integrative Bayesian analysis of neuroimaging-genetic (iBANG) data, which is motivated by a neuroimaging-genetic study in cocaine dependence. Statistical inference necessitated the integration of spatially dependent voxel-level measurements with various patient-level genetic and demographic characteristics under an appropriate probability model to account for the multiple inherent sources of variation. Our framework uses Bayesian model averaging to integrate genetic information into the analysis of voxel-wise neuroimaging data, accounting for spatial correlations in the voxels. Using multiplicity controls based on the false discovery rate, we delineate voxels associated with genetic and demographic features that may impact diffusion as measured by fractional anisotropy (FA) obtained from DTI images. We demonstrate the benefits of accounting for model uncertainties in both model fit and prediction. Our results suggest that cocaine consumption is associated with FA reduction in most white matter regions of interest in the brain. Additionally, gene polymorphisms associated with GABAergic, serotonergic and dopaminergic neurotransmitters and receptors were associated with FA.
Collapse
Affiliation(s)
- Shabnam Azadeh
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; School of Public Health, The University of Texas Health Science Center, Houston, TX, USA
| | - Brian P Hobbs
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liangsuo Ma
- Department of Radiology, Virginia Commonwealth University, Richmond, VA, USA; The Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - David A Nielsen
- Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA; Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - F Gerard Moeller
- Department of Psychiatry, Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA; The Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
30
|
Brown GG, Jacobus J, McKenna B. Structural imaging for addiction medicine: From neurostructure to neuroplasticity. PROGRESS IN BRAIN RESEARCH 2016; 224:105-27. [PMID: 26822356 PMCID: PMC4856004 DOI: 10.1016/bs.pbr.2015.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Quantitative morphometry and diffusion tensor imaging have provided new insights into structural brain changes associated with drugs of abuse. In this chapter, we review recent studies using these methods to investigate structural brain abnormalities associated with excessive use of marijuana, stimulants, and opiates. Although many brain regions have been associated with structural abnormalities following abuse of these drugs, brain systems underlying inhibition, mood regulation, and reward are particularly involved. Candidate pathological mechanisms underlying these structural abnormalities include the direct toxic effects of the drugs, neuroinflammation, ischemia, hemorrhage, and abnormal brain development. Returning damaged brain areas to neural health would involve enhancing neuroplasticity. Behavioral, environmental, pharmacological, and cell-based therapies have been correlated with enhanced neuroplasticity following brain injury, providing a basis for new treatments of brain changes associated with excessive drug use. When testing new treatments, structural imaging may prove useful in selecting patients, monitoring recovery, and perhaps, tailoring interventions.
Collapse
|
31
|
Ma L, Steinberg JL, Moeller FG, Johns SE, Narayana PA. Effect of cocaine dependence on brain connections: clinical implications. Expert Rev Neurother 2015; 15:1307-19. [PMID: 26512421 DOI: 10.1586/14737175.2015.1103183] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cocaine dependence (CD) is associated with several cognitive deficits. Accumulating evidence, based on human and animal studies, has led to models for interpreting the neural basis of cognitive functions as interactions between functionally related brain regions. In this review, we focus on magnetic resonance imaging (MRI) studies using brain connectivity techniques as related to CD. The majority of these brain connectivity studies indicated that cocaine use is associated with altered brain connectivity between different structures, including cortical-striatal regions and default mode network. In cocaine users some of the altered brain connectivity measures are associated with behavioral performance, history of drug use, and treatment outcome. The implications of these brain connectivity findings to the treatment of CD and the pros and cons of the major brain connectivity techniques are discussed. Finally potential future directions in cocaine use disorder research using brain connectivity techniques are briefly described.
Collapse
Affiliation(s)
- Liangsuo Ma
- a Institute for Drug and Alcohol Studies , Virginia Commonwealth University (VCU) , Richmond , VA , USA.,b Department of Radiology , VCU , Richmond , VA , USA
| | - Joel L Steinberg
- a Institute for Drug and Alcohol Studies , Virginia Commonwealth University (VCU) , Richmond , VA , USA.,c Department of Psychiatry , VCU , Richmond , VA , USA
| | - F Gerard Moeller
- a Institute for Drug and Alcohol Studies , Virginia Commonwealth University (VCU) , Richmond , VA , USA.,c Department of Psychiatry , VCU , Richmond , VA , USA.,d Department of Pharmacology and Toxicology , VCU , Richmond , VA , USA.,e Department of Neurology , VCU , Richmond , VA , USA
| | - Sade E Johns
- a Institute for Drug and Alcohol Studies , Virginia Commonwealth University (VCU) , Richmond , VA , USA.,c Department of Psychiatry , VCU , Richmond , VA , USA
| | - Ponnada A Narayana
- f Department of Diagnostic and Interventional Imaging , University of Texas Health Science Center at Houston (UTHealth) , Houston , TX , USA
| |
Collapse
|
32
|
Tang VM, Lang DJ, Giesbrecht CJ, Panenka WJ, Willi T, Procyshyn RM, Vila-Rodriguez F, Jenkins W, Lecomte T, Boyda HN, Aleksic A, MacEwan GW, Honer WG, Barr AM. White matter deficits assessed by diffusion tensor imaging and cognitive dysfunction in psychostimulant users with comorbid human immunodeficiency virus infection. BMC Res Notes 2015; 8:515. [PMID: 26423806 PMCID: PMC4590729 DOI: 10.1186/s13104-015-1501-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Psychostimulant drug use is commonly associated with drug-related infection, including the human immunodeficiency virus (HIV). Both psychostimulant use and HIV infection are known to damage brain white matter and impair cognition. To date, no study has examined white matter integrity using magnetic resonance imaging (MRI) diffusion tensor imaging (DTI) in chronic psychostimulant users with comorbid HIV infection, and determined the relationship of white matter integrity to cognitive function. METHODS Twenty-one subjects (mean age 37.5 ± 9.0 years) with a history of heavy psychostimulant use and HIV infection (8.7 ± 4.3 years) and 22 matched controls were scanned on a 3T MRI. Fractional anisotropy (FA) values were calculated with DTI software. Four regions of interest were manually segmented, including the genu of the corpus callosum, left and right anterior limbs of the internal capsule, and the anterior commissure. Subjects also completed a neurocognitive battery and questionnaires about physical and mental health. RESULTS The psychostimulant using, HIV positive group displayed decreased white matter integrity, with significantly lower FA values for all white matter tracts (p < 0.05). This group also exhibited decreased cognitive performance on tasks that assessed cognitive set-shifting, fine motor speed and verbal memory. FA values for the white matter tracts correlated with cognitive performance on many of the neurocognitive tests. CONCLUSIONS White matter integrity was thus impaired in subjects with psychostimulant use and comorbid HIV infection, which predicted worsened cognitive performance on a range of tests. Further study on this medical comorbidity is required.
Collapse
Affiliation(s)
- Victor M Tang
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T2A1, Canada.
| | - Donna J Lang
- Department of Radiology, University of British Columbia, 3350-950 W 10th Avenue, Vancouver, V5Z1M9, Canada. .,British Columbia Mental Health & Addictions Research Institute, 938 W 28th Avenue, Vancouver, V5Z4H4, Canada.
| | - Chantelle J Giesbrecht
- Department of Psychology, Simon Fraser University, 8888 University Drive, Burnaby, V5A1S6, Canada.
| | - William J Panenka
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T2A1, Canada. .,British Columbia Mental Health & Addictions Research Institute, 938 W 28th Avenue, Vancouver, V5Z4H4, Canada.
| | - Taylor Willi
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T2A1, Canada. .,British Columbia Mental Health & Addictions Research Institute, 938 W 28th Avenue, Vancouver, V5Z4H4, Canada.
| | - Ric M Procyshyn
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T2A1, Canada. .,British Columbia Mental Health & Addictions Research Institute, 938 W 28th Avenue, Vancouver, V5Z4H4, Canada.
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T2A1, Canada.
| | - Willough Jenkins
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T2A1, Canada.
| | - Tania Lecomte
- Département de Psychologie, Université de Montréal, Montreal, QC, Canada.
| | - Heidi N Boyda
- British Columbia Mental Health & Addictions Research Institute, 938 W 28th Avenue, Vancouver, V5Z4H4, Canada. .,Department of Pharmacology, University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
| | - Ana Aleksic
- British Columbia Mental Health & Addictions Research Institute, 938 W 28th Avenue, Vancouver, V5Z4H4, Canada. .,Department of Pharmacology, University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
| | - G William MacEwan
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T2A1, Canada.
| | - William G Honer
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T2A1, Canada. .,British Columbia Mental Health & Addictions Research Institute, 938 W 28th Avenue, Vancouver, V5Z4H4, Canada.
| | - Alasdair M Barr
- British Columbia Mental Health & Addictions Research Institute, 938 W 28th Avenue, Vancouver, V5Z4H4, Canada. .,Department of Pharmacology, University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
| |
Collapse
|
33
|
Ma L, Steinberg JL, Keyser-Marcus L, Ramesh D, Narayana PA, Merchant RE, Moeller FG, Cifu DX. Altered white matter in cocaine-dependent subjects with traumatic brain injury: A diffusion tensor imaging study. Drug Alcohol Depend 2015; 151:128-34. [PMID: 25841982 PMCID: PMC4447586 DOI: 10.1016/j.drugalcdep.2015.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) is a useful technique for non-invasively investigating the microstructural organization of white matter (WM), and the most consistent DTI finding regarding cocaine-related WM alterations is in the corpus callosum (CC). WM injury has also been observed in subjects with traumatic brain injury (TBI), including in the CC. METHODS We used DTI to test if the WM microstructure is relatively more impaired in cocaine-dependent subjects who had suffered a mild TBI (mTBI). Fractional anisotropy (FA), which reflects the degree of alignment of cellular structures within fiber tracts and their structural integrity, was compared across cocaine-dependent subjects with mTBI (COCTBI group, n = 9), matched cocaine-dependent subjects without TBI (COC group, n = 12), and matched healthy controls (CTL group, n = 12). RESULTS The COCTBI group had significantly lower FA in the genu, body, and splenium of CC, than the CTL group whenever the education was controlled or not. The COC group had significantly lower FA in the left and right anterior corona radiata than the CTL group only when the education was controlled. There was no significant difference in FA between the COC and COCTBI groups. CONCLUSION Cocaine dependence (or mTBI) related WM impairments in the CC were not detectable in this small subject sample. The significant finding in the CC suggests that the concurrence of cocaine dependence and mTBI might result in more severe damage to the CC, which could even be detected in small sample size.
Collapse
Affiliation(s)
- Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA; Department of Radiology, VCU, Richmond, VA, USA.
| | - Joel L. Steinberg
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA,Department of Psychiatry, VCU, Richmond, Virginia, USA
| | - Lori Keyser-Marcus
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA,Department of Psychiatry, VCU, Richmond, Virginia, USA
| | - Divya Ramesh
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA,Department of Psychiatry, VCU, Richmond, Virginia, USA,Department of Pharmacology and Toxicology, VCU, Richmond, Virginia, USA
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center, Houston, Texas, USA
| | - Randall E Merchant
- Department of Anatomy and Neurobiology, VCU, Richmond, Virginia, USA,Department of Neurosurgery, VCU, Richmond, Virginia, USA
| | - F. Gerard Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA,Department of Psychiatry, VCU, Richmond, Virginia, USA,Department of Pharmacology and Toxicology, VCU, Richmond, Virginia, USA
| | - David X Cifu
- Department of Physical Medicine and Rehabilitation, VCU, Richmond, Virginia, USA
| |
Collapse
|
34
|
Ma L, Steinberg JL, Cunningham KA, Lane SD, Bjork JM, Neelakantan H, Price AE, Narayana PA, Kosten TR, Bechara A, Moeller FG. Inhibitory behavioral control: A stochastic dynamic causal modeling study comparing cocaine dependent subjects and controls. NEUROIMAGE-CLINICAL 2015; 7:837-47. [PMID: 26082893 PMCID: PMC4459041 DOI: 10.1016/j.nicl.2015.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/02/2015] [Accepted: 03/19/2015] [Indexed: 01/08/2023]
Abstract
Cocaine dependence is associated with increased impulsivity in humans. Both cocaine dependence and impulsive behavior are under the regulatory control of cortico-striatal networks. One behavioral laboratory measure of impulsivity is response inhibition (ability to withhold a prepotent response) in which altered patterns of regional brain activation during executive tasks in service of normal performance are frequently found in cocaine dependent (CD) subjects studied with functional magnetic resonance imaging (fMRI). However, little is known about aberrations in specific directional neuronal connectivity in CD subjects. The present study employed fMRI-based dynamic causal modeling (DCM) to study the effective (directional) neuronal connectivity associated with response inhibition in CD subjects, elicited under performance of a Go/NoGo task with two levels of NoGo difficulty (Easy and Hard). The performance on the Go/NoGo task was not significantly different between CD subjects and controls. The DCM analysis revealed that prefrontal–striatal connectivity was modulated (influenced) during the NoGo conditions for both groups. The effective connectivity from left (L) anterior cingulate cortex (ACC) to L caudate was similarly modulated during the Easy NoGo condition for both groups. During the Hard NoGo condition in controls, the effective connectivity from right (R) dorsolateral prefrontal cortex (DLPFC) to L caudate became more positive, and the effective connectivity from R ventrolateral prefrontal cortex (VLPFC) to L caudate became more negative. In CD subjects, the effective connectivity from L ACC to L caudate became more negative during the Hard NoGo conditions. These results indicate that during Hard NoGo trials in CD subjects, the ACC rather than DLPFC or VLPFC influenced caudate during response inhibition. Dynamic causal modeling was used to study response inhibition in cocaine dependence. A Go/NoGo task with two levels of NoGo difficulty (Easy and Hard) was used. Patients and controls used anterior cingulate cortex to control caudate during Easy NoGo. Controls used dorsolateral/ventrolateral prefrontal cortex to control caudate during Hard NoGo. Patients continued using anterior cingulate cortex to control caudate during Hard NoGo.
Collapse
Affiliation(s)
- Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA ; Department of Radiology, VCU, Richmond, VA, USA
| | - Joel L Steinberg
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA ; Department of Psychiatry, VCU, Richmond, VA, USA
| | - Kathryn A Cunningham
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott D Lane
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston (UTHSC-H), USA
| | - James M Bjork
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA ; Department of Psychiatry, VCU, Richmond, VA, USA
| | - Harshini Neelakantan
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Amanda E Price
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ponnada A Narayana
- Department of Diagnostic and Interventional Imaging, UTHSC-H, Houston, TX, USA
| | - Thomas R Kosten
- Department of Psychiatry and Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Antoine Bechara
- Brain and Creativity Institute and Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - F Gerard Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA ; Department of Psychiatry, VCU, Richmond, VA, USA ; Department of Pharmacology and Toxicology, Richmond, VCU, VA 23219, USA
| |
Collapse
|
35
|
Acheson A, Wijtenburg SA, Rowland LM, Winkler AM, Gaston F, Mathias CW, Fox PT, Lovallo WR, Wright SN, Hong LE, Dougherty DM, Kochunov P. Assessment of whole brain white matter integrity in youths and young adults with a family history of substance-use disorders. Hum Brain Mapp 2014; 35:5401-13. [PMID: 24867528 PMCID: PMC4206569 DOI: 10.1002/hbm.22559] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022] Open
Abstract
Individuals with a family history of substance use disorders (FH+) are at a greater risk of developing substance use disorders than their peers with no such family histories (FH-) and this vulnerability is proportional to the number of affected relatives (FH density). The risk for developing substance use disorders peaks during adolescence to early adulthood in the general population, and that is thought to be related to delayed maturation of frontocortical and frontostriatal functional circuits. We hypothesized that FH+ youth and young adults have impaired myelination of frontocortical and frontostriatal white matter tracts. We examined fractional anisotropy (FA) data in 80 FH+ and 34 FH- youths (12.9 ± 1.0 years) and in 25 FH+ and 30 FH- young adults (24.3 ± 3.4 years). FH+ youths had lower FA values in both frontocortical and frontostriatal tracts as well as parietocortical tracts including the anterior, superior and posterior corona radiata and the superior frontal-occipital fasciculus. Moreover, FA values in these tracts were negatively correlated with FH density. FH+ adults had lower FA values in two frontocortical tracts: the genu of the corpus callosum and anterior corona radiata and also significant negative correlations between FA and FH density in these same tracts. In both groups, lower FA values corresponded to higher radial diffusivity suggesting reduced axonal myelination. We interpreted our findings as evidence for impaired myelination of frontal white matter that was proportional to FH density. Our data suggest that deficits may partially resolve with age, paralleling an age-related decline in risk for developing substance use disorders.
Collapse
Affiliation(s)
- Ashley Acheson
- Department of PsychiatryUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
- Research Imaging InstituteUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - S. Andrea Wijtenburg
- Maryland Psychiatric Research CenterDepartment of PsychiatryUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Laura M. Rowland
- Maryland Psychiatric Research CenterDepartment of PsychiatryUniversity of Maryland School of MedicineBaltimoreMaryland
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreMaryland
| | - Anderson M. Winkler
- Oxford Centre for Functional MRI of the BrainUniversity of OxfordOxfordUnited Kingdom
- Department of PsychiatryYale University School of MedicineNew HavenConnecticut
| | - Frank Gaston
- Maryland Psychiatric Research CenterDepartment of PsychiatryUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Charles W. Mathias
- Department of PsychiatryUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Peter T. Fox
- Research Imaging InstituteUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - William R. Lovallo
- Behavioral Sciences LaboratoriesVeterans Affairs Medical Center and University of Oklahoma Health Sciences CenterOklahoma CityOklahoma
| | - Susan N. Wright
- Maryland Psychiatric Research CenterDepartment of PsychiatryUniversity of Maryland School of MedicineBaltimoreMaryland
| | - L. Elliot Hong
- Maryland Psychiatric Research CenterDepartment of PsychiatryUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Donald M. Dougherty
- Department of PsychiatryUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Peter Kochunov
- Maryland Psychiatric Research CenterDepartment of PsychiatryUniversity of Maryland School of MedicineBaltimoreMaryland
| |
Collapse
|
36
|
Acheson A, Wijtenburg SA, Rowland LM, Winkler AM, Gaston F, Mathias CW, Fox PT, Lovallo WR, Wright SN, Hong LE, Dougherty DM, Kochunov P. Assessment of whole brain white matter integrity in youths and young adults with a family history of substance-use disorders. Hum Brain Mapp 2014. [PMID: 24867528 DOI: 10.1002/hbm.22559.assessment] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Individuals with a family history of substance use disorders (FH+) are at a greater risk of developing substance use disorders than their peers with no such family histories (FH-) and this vulnerability is proportional to the number of affected relatives (FH density). The risk for developing substance use disorders peaks during adolescence to early adulthood in the general population, and that is thought to be related to delayed maturation of frontocortical and frontostriatal functional circuits. We hypothesized that FH+ youth and young adults have impaired myelination of frontocortical and frontostriatal white matter tracts. We examined fractional anisotropy (FA) data in 80 FH+ and 34 FH- youths (12.9 ± 1.0 years) and in 25 FH+ and 30 FH- young adults (24.3 ± 3.4 years). FH+ youths had lower FA values in both frontocortical and frontostriatal tracts as well as parietocortical tracts including the anterior, superior and posterior corona radiata and the superior frontal-occipital fasciculus. Moreover, FA values in these tracts were negatively correlated with FH density. FH+ adults had lower FA values in two frontocortical tracts: the genu of the corpus callosum and anterior corona radiata and also significant negative correlations between FA and FH density in these same tracts. In both groups, lower FA values corresponded to higher radial diffusivity suggesting reduced axonal myelination. We interpreted our findings as evidence for impaired myelination of frontal white matter that was proportional to FH density. Our data suggest that deficits may partially resolve with age, paralleling an age-related decline in risk for developing substance use disorders.
Collapse
Affiliation(s)
- Ashley Acheson
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
García-Díaz B, Riquelme R, Varela-Nieto I, Jiménez AJ, de Diego I, Gómez-Conde AI, Matas-Rico E, Aguirre JÁ, Chun J, Pedraza C, Santín LJ, Fernández O, Rodríguez de Fonseca F, Estivill-Torrús G. Loss of lysophosphatidic acid receptor LPA1 alters oligodendrocyte differentiation and myelination in the mouse cerebral cortex. Brain Struct Funct 2014; 220:3701-20. [PMID: 25226845 DOI: 10.1007/s00429-014-0885-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/08/2014] [Indexed: 12/16/2022]
Abstract
Lysophosphatidic acid (LPA) is an intercellular signaling lipid that regulates multiple cellular functions, acting through specific G-protein coupled receptors (LPA(1-6)). Our previous studies using viable Malaga variant maLPA1-null mice demonstrated the requirement of the LPA1 receptor for normal proliferation, differentiation, and survival of the neuronal precursors. In the cerebral cortex LPA1 is expressed extensively in differentiating oligodendrocytes, in parallel with myelination. Although exogenous LPA-induced effects have been investigated in myelinating cells, the in vivo contribution of LPA1 to normal myelination remains to be demonstrated. This study identified a relevant in vivo role for LPA1 as a regulator of cortical myelination. Immunochemical analysis in adult maLPA1-null mice demonstrated a reduction in the steady-state levels of the myelin proteins MBP, PLP/DM20, and CNPase in the cerebral cortex. The myelin defects were confirmed using magnetic resonance spectroscopy and electron microscopy. Stereological analysis limited the defects to adult differentiating oligodendrocytes, without variation in the NG2+ precursor cells. Finally, a possible mechanism involving oligodendrocyte survival was demonstrated by the impaired intracellular transport of the PLP/DM20 myelin protein which was accompanied by cellular loss, suggesting stress-induced apoptosis. These findings describe a previously uncharacterized in vivo functional role for LPA1 in the regulation of oligodendrocyte differentiation and myelination in the CNS, underlining the importance of the maLPA1-null mouse as a model for the study of demyelinating diseases.
Collapse
Affiliation(s)
- Beatriz García-Díaz
- Laboratorio de Investigación, UGC Intercentros de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Hospital Civil, Pabellón 5, Planta Sótano, Plaza del Hospital Civil s/n, 29009, Málaga, Spain.,Department of Neurology, H. Houston Merritt Clinical Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Raquel Riquelme
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain
| | - Isabel Varela-Nieto
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain
| | - Antonio Jesús Jiménez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29071, Málaga, Spain
| | - Isabel de Diego
- Departamento de Anatomía y Medicina Legal, Universidad de Málaga, 29071, Málaga, Spain
| | - Ana Isabel Gómez-Conde
- ECAI de Microscopía, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, 29010, Málaga, Spain
| | - Elisa Matas-Rico
- Laboratorio de Investigación, UGC Intercentros de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Hospital Civil, Pabellón 5, Planta Sótano, Plaza del Hospital Civil s/n, 29009, Málaga, Spain.,Division of Cell Biology I, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - José Ángel Aguirre
- Departamento de Fisiología Humana y Educación Físico Deportiva, Universidad de Málaga, 29071, Málaga, Spain
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Centre, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29071, Málaga, Spain
| | - Luis Javier Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29071, Málaga, Spain
| | - Oscar Fernández
- Neurology Service, UGC Intercentros de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Universidad de Málaga, 29010, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Medicina Regenerativa, UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010, Málaga, Spain
| | - Guillermo Estivill-Torrús
- Laboratorio de Investigación, UGC Intercentros de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Hospital Civil, Pabellón 5, Planta Sótano, Plaza del Hospital Civil s/n, 29009, Málaga, Spain. .,ECAI de Microscopía, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, 29010, Málaga, Spain.
| |
Collapse
|
38
|
Beveridge TJR, Smith HR, Nader SH, Nader MA, Porrino LJ. Functional consequences of cocaine re-exposure after discontinuation of cocaine availability. Neuropharmacology 2014; 85:528-37. [PMID: 24953829 DOI: 10.1016/j.neuropharm.2014.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 01/22/2023]
Abstract
Cocaine users exhibit a wide range of behavioral impairments accompanied by brain structural, neurochemical and functional abnormalities. Metabolic mapping studies in cocaine users and animal models have shown extensive functional alterations throughout the striatum, limbic system, and cortex. Few studies, however, have evaluated the persistence of these effects following cessation of cocaine availability. The purpose of this study, therefore, was to assess the functional effects of re-exposure to cocaine in nonhuman primates after the discontinuation of cocaine self-administration for 30 or 90 days, using the quantitative autoradiographic 2-[14C]deoxyglucose (2DG) method. Rhesus monkeys self-administered cocaine (fixed interval 3-min schedule, 30 infusions per session, 0.3 mg/kg/infusion) for 100 sessions followed by 30 (n=4) or 90 days (n=3) during which experimental sessions were not conducted. Food-reinforced control animals (n=5) underwent identical schedules of reinforcement. Animals were then re-exposed to cocaine or food for one final session and the 2DG method applied immediately after session completion. Compared to controls, re-exposure to cocaine after 30 or 90 day drug-free periods resulted in lower rates of glucose utilization in ventral and dorsal striatum, prefrontal and temporal cortex, limbic system, thalamus, and midbrain. These data demonstrate that vulnerability to the effects of cocaine persists for as long as 90 days after cessation of drug use. While there was some evidence for recovery (fewer brain areas were affected by cocaine re-exposure at 90 days as compared to 30 days), this was not uniform across regions, thus suggesting that recovery occurs at different rates in different brain systems.
Collapse
Affiliation(s)
- Thomas J R Beveridge
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | - Hilary R Smith
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | - Susan H Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | - Linda J Porrino
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| |
Collapse
|
39
|
Regionally-specific alterations in myelin proteins in nonhuman primate white matter following prolonged cocaine self-administration. Drug Alcohol Depend 2014; 137:143-7. [PMID: 24529965 PMCID: PMC4000724 DOI: 10.1016/j.drugalcdep.2014.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neuroimaging studies of cocaine users have demonstrated white matter abnormalities associated with behavioral measures of impulsivity and decision-making deficits. The underlying bases for this dysregulation in white matter structure and function have yet to be determined. The aim of the present studies was to investigate the influence of prolonged cocaine self-administration on the levels of myelin-associated proteins and mRNAs in nonhuman primate white matter. METHODS Rhesus monkeys (N=4) self-administered cocaine (0.3mg/kg/inj, 30 reinforcers per session) for 300 sessions. Control animals (N=4) responded for food. Following the final session monkeys were euthanized and white matter tissue at three brain levels was processed for immunoblotting analysis of proteolipid protein (PLP) and myelin basic protein (MBP), as well as for in situ hybridization histochemical analysis of PLP and MBP mRNAs. RESULTS Both MBP and PLP immunoreactivities in white matter at the level of the precommissural striatum were significantly lower in tissue from monkeys self-administering cocaine as compared to controls. No significant differences were seen for either protein at the levels of the prefrontal cortex or postcommissural striatum. In addition, no differences were observed in expression of mRNA for either protein. CONCLUSIONS These preliminary findings, in a nonhuman model of prolonged cocaine self-administration, provide further evidence that compromised myelin may underlie the deficits in white matter integrity described in studies of human cocaine users.
Collapse
|
40
|
Narayana PA, Herrera JJ, Bockhorst KH, Esparza-Coss E, Xia Y, Steinberg JL, Moeller FG. Chronic cocaine administration causes extensive white matter damage in brain: diffusion tensor imaging and immunohistochemistry studies. Psychiatry Res 2014; 221:220-30. [PMID: 24507117 PMCID: PMC3943678 DOI: 10.1016/j.pscychresns.2014.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/21/2013] [Accepted: 01/14/2014] [Indexed: 12/14/2022]
Abstract
The effect of chronic cocaine exposure on multiple white matter structures in rodent brain was examined using diffusion tensor imaging (DTI), locomotor behavior, and end point histology. The animals received either cocaine at a dose of 100mg/kg (N=19), or saline (N=17) for 28 days through an implanted osmotic minipump. The animals underwent serial DTI scans, locomotor assessment, and end point histology for determining the expressions of myelin basic protein (MBP), neurofilament-heavy protein (NF-H), proteolipid protein (PLP), Nogo-A, aquaporin-4 (AQP-4), and growth associated protein-43 (GAP-43). Differences in the DTI measures were observed in the splenium (scc) and genu (gcc) of the corpus callosum (cc), fimbria (fi), and the internal capsule (ic). A significant increase in the activity in the fine motor movements and a significant decrease in the number of rearing events were observed in the cocaine-treated animals. Reduced MBP and Nogo-A and increased GAP-43 expressions were most consistently observed in these structures. A decrease in the NF-H expression was observed in fi and ic. The reduced expression of Nogo-A and the increased expression of GAP-43 may suggest destabilization of axonal connectivity and increased neurite growth with aberrant connections. Increased GAP-43 suggests drug-induced plasticity or a possible repair mechanism response. The findings indicated that multiple white matter tracts are affected following chronic cocaine exposure.
Collapse
Affiliation(s)
- Ponnada A Narayana
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Juan J Herrera
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kurt H Bockhorst
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Emilio Esparza-Coss
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ying Xia
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joel L Steinberg
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - F Gerard Moeller
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
41
|
Bough KJ, Amur S, Lao G, Hemby SE, Tannu NS, Kampman KM, Schmitz JM, Martinez D, Merchant KM, Green C, Sharma J, Dougherty AH, Moeller FG. Biomarkers for the development of new medications for cocaine dependence. Neuropsychopharmacology 2014; 39:202-19. [PMID: 23979119 PMCID: PMC3857653 DOI: 10.1038/npp.2013.210] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/19/2013] [Accepted: 07/01/2013] [Indexed: 01/20/2023]
Abstract
There has been significant progress in personalized drug development. In large part, this has taken place in the oncology field and been due to the ability of researchers/clinicians to discover and develop novel drug development tools (DDTs), such as biomarkers. In cancer treatment research, biomarkers have permitted a more accurate pathophysiological characterization of an individual patient, and have enabled practitioners to target mechanistically the right drug, to the right patient, at the right time. Similar to cancer, patients with substance use disorders (SUDs) present clinically with heterogeneous symptomatology and respond variably to therapeutic interventions. If comparable biomarkers could be identified and developed for SUDs, significant diagnostic and therapeutic advances could be made. In this review, we highlight current opportunities and difficulties pertaining to the identification and development of biomarkers for SUDs. We focus on cocaine dependence as an example. Putative diagnostic, pharmacodynamic (PD), and predictive biomarkers for cocaine dependence are discussed across a range of methodological approaches. A possible cocaine-dependent clinical outcome assessment (COA)--another type of defined DDT--is also discussed. At present, biomarkers for cocaine dependence are in their infancy. Much additional research will be needed to identify, validate, and qualify these putative tools prior to their potential use for medications development and/or application to clinical practice. However, with a large unmet medical need and an estimated market size of several hundred million dollars per year, if developed, biomarkers for cocaine dependence will hold tremendous value to both industry and public health.
Collapse
Affiliation(s)
- Kristopher J Bough
- Division of Basic Neuroscience and Behavioral Research, National Institute on Drug Abuse, Bethesda, MD, USA
| | - Shashi Amur
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Guifang Lao
- Division of Pharmacotherapies and Medical Consequences, National Institute on Drug Abuse, Bethesda, MD, USA
| | - Scott E Hemby
- Department of Physiology & Pharmacology, Wake Forest University, Winston-Salem, NC, USA
| | - Nilesh S Tannu
- Department of Psychiatry and Behavioral Sciences, University of Texas—Houston Medical School, Houston, TX, USA
| | - Kyle M Kampman
- Department of Psychiatry, University of Pennsylvania—School of Medicine, Philadelphia, PA, USA
| | - Joy M Schmitz
- Department of Psychiatry and Behavioral Sciences, University of Texas—Houston Medical School, Houston, TX, USA
| | - Diana Martinez
- Department of Psychiatry, Columbia University/New York State University, New York, NY, USA
| | | | - Charles Green
- Department of Pediatrics, University of Texas—Houston Medical School, Houston, TX, USA
| | - Jyoti Sharma
- Department of Cardiovascular Medicine, University of Texas—Houston Medical School, Houston, TX, USA
| | - Anne H Dougherty
- Department of Cardiovascular Medicine, University of Texas—Houston Medical School, Houston, TX, USA
| | - F Gerard Moeller
- Department of Psychiatry and Pharmacology and Toxicology, Virginia Commonwealth University Medical School, Richmond, VA, USA
| |
Collapse
|
42
|
Recovering from cocaine: insights from clinical and preclinical investigations. Neurosci Biobehav Rev 2013; 37:2037-46. [PMID: 23628740 DOI: 10.1016/j.neubiorev.2013.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/26/2013] [Accepted: 04/17/2013] [Indexed: 12/12/2022]
Abstract
Cocaine remains one of the most addictive substances of abuse and one of the most difficult to treat. Although increasingly sophisticated experimental and technologic advancements in the last several decades have yielded a large body of clinical and preclinical knowledge on the direct effects of cocaine on the brain, we still have a relatively incomplete understanding of the neurobiological processes that occur when drug use is discontinued. The goal of this manuscript is to review both clinical and preclinical data related to abstinence from cocaine and discuss the complementary conclusions that emerge from these different levels of inquiry. This commentary will address observed alterations in neural function, neural structure, and neurotransmitter system regulation that are present in both animal models of cocaine abstinence and data from recovering clinical populations. Although these different levels of inquiry are often challenging to integrate, emerging data discussed in this commentary suggest that from a structural and functional perspective, the preservation of cortical function that is perhaps the most important biomarker associated with extended abstinence from cocaine.
Collapse
|
43
|
Mackey S, Paulus M. Are there volumetric brain differences associated with the use of cocaine and amphetamine-type stimulants? Neurosci Biobehav Rev 2012; 37:300-16. [PMID: 23253945 DOI: 10.1016/j.neubiorev.2012.12.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/06/2012] [Accepted: 12/05/2012] [Indexed: 12/21/2022]
Abstract
While a large number of studies have examined brain volume differences associated with cocaine use, much less is known about structural differences related to amphetamine-type stimulant (ATS) use. What is known about cocaine may help to interpret emerging information on the interaction of brain volume with ATS consumption. To date, volumetric studies on the two types of stimulant have focused almost exclusively on brain differences associated with chronic use. There is considerable variability in the findings between studies which may be explained in part by the wide variety of methodologies employed. Despite this variability, seven recurrent themes are worth noting: (1) loci of lower cortical volume (approximately 10% on average) are consistently reported, (2) almost all studies indicate less volume in all or parts of the frontal cortex, (3) more specifically, a core group of studies implicate the ventromedial prefrontal cortex (including the medial portion of the orbital frontal cortex) and (4) the insula, (5) an enlarged striatal volume has been repeatedly observed, (6) reports on volume differences in the hippocampus and amygdala have been equivocal, (7) evidence supporting differential interaction of brain structure with cocaine vs. ATS is scant but the volume of all or parts of the temporal cortex appear lower in a majority of studies on cocaine but not ATS. Future research should include longitudinal designs on larger sample sizes and examine other stages of exposure to psychostimulants.
Collapse
Affiliation(s)
- Scott Mackey
- Dept. Psychiatry, University of California, San Diego, La Jolla, CA 92037, United States.
| | | |
Collapse
|
44
|
Ma L, Steinberg JL, Hasan KM, Narayana PA, Kramer LA, Moeller FG. Stochastic dynamic causal modeling of working memory connections in cocaine dependence. Hum Brain Mapp 2012; 35:760-78. [PMID: 23151990 DOI: 10.1002/hbm.22212] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/21/2012] [Accepted: 09/19/2012] [Indexed: 11/10/2022] Open
Abstract
Although reduced working memory brain activation has been reported in several brain regions of cocaine-dependent subjects compared with controls, very little is known about whether there is altered connectivity of working memory pathways in cocaine dependence. This study addresses this issue by using functional magnetic resonance imaging-based stochastic dynamic causal modeling (DCM) analysis to study the effective connectivity of 19 cocaine-dependent subjects and 14 healthy controls while performing a working memory task. Stochastic DCM is an advanced method that has recently been implemented in SPM8 that can obtain improved estimates, relative to deterministic DCM, of hidden neuronal causes before convolution with the hemodynamic response. Thus, stochastic DCM may be less influenced by the confounding effects of variations in blood oxygen level-dependent response caused by disease or drugs. Based on the significant regional activation common to both groups and consistent with previous working memory activation studies, seven regions of interest were chosen as nodes for DCM analyses. Bayesian family level inference, Bayesian model selection analyses, and Bayesian model averaging (BMA) were conducted. BMA showed that the cocaine-dependent subjects had large differences compared with the control subjects in the strengths of prefrontal-striatal modulatory (B matrix) DCM parameters. These findings are consistent with altered cortical-striatal networks that may be related to reduced dopamine function in cocaine dependence. As far as we are aware, this is the first between-group DCM study using stochastic methodology.
Collapse
Affiliation(s)
- Liangsuo Ma
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, Texas
| | | | | | | | | | | |
Collapse
|
45
|
Adolescent toluene inhalation in rats affects white matter maturation with the potential for recovery following abstinence. PLoS One 2012; 7:e44790. [PMID: 23028622 PMCID: PMC3445546 DOI: 10.1371/journal.pone.0044790] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/13/2012] [Indexed: 12/16/2022] Open
Abstract
Inhalant misuse is common during adolescence, with ongoing chronic misuse associated with neurobiological and cognitive abnormalities. While human imaging studies consistently report white matter abnormalities among long-term inhalant users, longitudinal studies have been lacking with limited data available regarding the progressive nature of such abnormalities, including the potential for recovery following periods of sustained abstinence. We exposed adolescent male Wistar rats (postnatal day 27) to chronic intermittent inhaled toluene (3,000 ppm) for 1 hour/day, 3 times/week for 8 weeks to model abuse patterns observed in adolescent and young adult human users. This dosing regimen resulted in a significant retardation in weight gain during the exposure period (p<0.05). In parallel, we performed longitudinal magnetic resonance imaging (T₂-weighted) and diffusion tensor imaging prior to exposure, and after 4 and 8 weeks, to examine the integrity of white matter tracts, including the anterior commissure and corpus callosum. We also conducted imaging after 8 weeks of abstinence to assess for potential recovery. Chronic intermittent toluene exposure during adolescence and early adulthood resulted in white matter abnormalities, including a decrease in axial (p<0.05) and radial (p<0.05) diffusivity. These abnormalities appeared region-specific, occurring in the anterior commissure but not the corpus callosum and were not present until after at least 4 weeks of exposure. Toluene-induced effects on both body weight and white matter parameters recovered following abstinence. Behaviourally, we observed a progressive decrease in rearing activity following toluene exposure but no difference in motor function, suggesting cognitive function may be more sensitive to the effects of toluene. Furthermore, deficits in rearing were present by 4 weeks suggesting that toluene may affect behaviour prior to detectable white matter abnormalities. Consequently, exposure to inhalants that contain toluene during adolescence and early adulthood appear to differentially affect white matter maturation and behavioural outcomes, although recovery can occur following abstinence.
Collapse
|
46
|
Weich TM, Tochetto TM, Seligman L. Brain stem evoked response audiometry of former drug users. Braz J Otorhinolaryngol 2012; 78:90-6. [PMID: 23108826 PMCID: PMC9450772 DOI: 10.5935/1808-8694.20120014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 07/01/2012] [Indexed: 11/20/2022] Open
Abstract
Illicit drugs are known for their deleterious effects upon the central nervous system and more specifically for how they adversely affect hearing. Objective This study aims to analyze and compare the hearing complaints and the results of brainstem evoked response audiometry (BERA) of former drug user support group goers. Methods This is a cross-sectional non-experimental descriptive quantitative study. The sample consisted of 17 subjects divided by their preferred drug of use. Ten individuals were placed in the marijuana group (G1) and seven in the crack/cocaine group (G2). The subjects were further divided based on how long they had been using drugs: 1 to 5 years, 6 to 10 years, and over 15 years. They were interviewed, and assessed by pure tone audiometry, acoustic impedance tests, and BERA. Results No statistically significant differences were found between G1 and G2 or time of drug use in absolute latencies and interpeak intervals. However, only five of the 17 individuals had BERA results with adequate results for their ages. Conclusion Marijuana and crack/cocaine may cause diffuse disorders in the brainstem and compromise the transmission of auditory stimuli regardless of how long these substances are used for.
Collapse
|
47
|
Pharmacotherapeutics directed at deficiencies associated with cocaine dependence: focus on dopamine, norepinephrine and glutamate. Pharmacol Ther 2012; 134:260-77. [PMID: 22327234 DOI: 10.1016/j.pharmthera.2012.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 11/20/2022]
Abstract
Much effort has been devoted to research focused on pharmacotherapies for cocaine dependence yet there are no FDA-approved medications for this brain disease. Preclinical models have been essential to defining the central and peripheral effects produced by cocaine. Recent evidence suggests that cocaine exerts its reinforcing effects by acting on multiple neurotransmitter systems within mesocorticolimibic circuitry. Imaging studies in cocaine-dependent individuals have identified deficiencies in dopaminergic signaling primarily localized to corticolimbic areas. In addition to dysregulated striatal dopamine, norepinephrine and glutamate are also altered in cocaine dependence. In this review, we present these brain abnormalities as therapeutic targets for the treatment of cocaine dependence. We then survey promising medications that exert their therapeutic effects by presumably ameliorating these brain deficiencies. Correcting neurochemical deficits in cocaine-dependent individuals improves memory and impulse control, and reduces drug craving that may decrease cocaine use. We hypothesize that using medications aimed at reversing known neurochemical imbalances is likely to be more productive than current approaches. This view is also consistent with treatment paradigms used in neuropsychiatry and general medicine.
Collapse
|
48
|
Iverson GL, Hakulinen U, Wäljas M, Dastidar P, Lange RT, Soimakallio S, Öhman J. To exclude or not to exclude: white matter hyperintensities in diffusion tensor imaging research. Brain Inj 2012; 25:1325-32. [PMID: 22077537 DOI: 10.3109/02699052.2011.608409] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE A practical methodological issue for diffusion tensor imaging (DTI) researchers is determining what to do about incidental findings, such as white matter hyperintensities (WMHI). The purpose of this study was to compare healthy control subjects with or without WMHIs on whole brain DTI. METHOD Participants were 30 subjects (age = 37.7, SD = 11.3, Range = 18-60; 70% female) who had no known developmental, general medical, neurological or psychiatric condition that could have had an adverse affect on brain morphology. RESULTS MRI (3 Tesla) revealed, at minimum, a WMHI in eight subjects (26.7%). Fractional anisotropy (FA) was calculated for 19 regions of interest (ROI). Frequency distributions of FA scores for the 19 ROIs were calculated. The 10th percentile for each ROI was selected as a cut-off score. Having four or more low FA scores occurred in 16.7%. More subjects with incidental findings met criterion for low FA scores (37.5%), compared to 9.1% of subjects with no findings. When subjects with minor WMHIs were retained and only those with multiple incidental findings were excluded, 8.3% of the retained subjects met criterion for low FA scores compared to 50.0% of the excluded subjects. CONCLUSIONS The decision to include or exclude subjects who have incidental findings can influence the results of a study.
Collapse
Affiliation(s)
- Grant L Iverson
- British Columbia Mental Health & Addiction Services, Vancouver, BC, Canada.
| | | | | | | | | | | | | |
Collapse
|
49
|
Nielsen DA, Huang W, Hamon SC, Maili L, Witkin BM, Fox RG, Cunningham KA, Moeller FG. Forced Abstinence from Cocaine Self-Administration is Associated with DNA Methylation Changes in Myelin Genes in the Corpus Callosum: a Preliminary Study. Front Psychiatry 2012; 3:60. [PMID: 22712019 PMCID: PMC3374938 DOI: 10.3389/fpsyt.2012.00060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/26/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Human cocaine abuse is associated with alterations in white matter integrity revealed upon brain imaging, an observation that is recapitulated in an animal model of continuous cocaine exposure. The mechanism through which cocaine may affect white matter is unknown and the present study tested the hypothesis that cocaine self-administration results in changes in DNA methylation that could result in altered expression of several myelin genes that could contribute to the effects of cocaine on white matter integrity. METHODS In the present study, we examined the impact of forced abstinence from cocaine self-administration on chromatin associated changes in white matter. To this end, rats were trained to self-administer cocaine (0.75 mg/kg/0.1 mL infusion) for 14 days followed by forced abstinence for 1 day (n = 6) or 30 days (n = 6) before sacrifice. Drug-free, sham surgery controls (n = 7) were paired with the experimental groups. Global DNA methylation and DNA methylation at specific CpG sites in the promoter regions ofmyelin basic protein (Mbp), proteolipid protein-1 (Plp1), and SRY-related HMG-box-10 (Sox10) genes were analyzed in DNA extracted from corpus callosum. RESULTS Significant differences in the overall methylation patterns of the Sox10 promoter region were observed in the corpus callosum of rats at 30 days of forced abstinence from cocaine self-administration relative to sham controls; the -189, -142, -93, and -62 CpG sites were significantly hypomethylated point-wise at this time point. After correction for multiple comparisons, no differences in global methylation or the methylation patterns of Mbp or Plp1 were found. CONCLUSION Forced abstinence from cocaine self-administration was associated with differences in DNA methylation at specific CpG sites in the promoter region of the Sox10 gene in corpus callosum. These changes may be related to reductions in normal age related changes in DNA methylation and could be a factor in white matter alterations seen after withdrawal from repeated cocaine self-administration. Further research is warranted examining the effects of cocaine on DNA methylation in white matter.
Collapse
Affiliation(s)
- David A Nielsen
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, and the Michael E. DeBakey Veterans Administration Medical Center Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Narayanan A, White CA, Saklayen SS, Abduljalil A, Schmalbrock P, Pepper TH, Lander BN, Beversdorf DQ. Functional connectivity during language processing in acute cocaine withdrawal: a pilot study. Neurocase 2012; 18:441-9. [PMID: 22082460 PMCID: PMC3288306 DOI: 10.1080/13554794.2011.627341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Recent research revealed decreased access to semantic and associative networks in acute cocaine withdrawal. In autism, such behavioral outcomes are associated with decreased functional connectivity using functional magnetic resonance imaging. Therefore, we wished to determine whether connectivity is also decreased in acute cocaine withdrawal. Eight subjects in acute cocaine withdrawal were compared to controls for connectivity in language areas while performing a task involving categorization of words according to semantic and phonological relatedness. Acute withdrawal subjects had significantly less overall connectivity during semantic relatedness, and a trend towards less connectivity during phonological relatedness. Of potential future interest is whether this might serve as an imaging marker for treatment in patients.
Collapse
Affiliation(s)
- Ananth Narayanan
- Interdisciplinary Biomedical Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|