1
|
Li X, Ramos-Rolón AP, Kass G, Pereira-Rufino LS, Shifman N, Shi Z, Volkow ND, Wiers CE. Imaging neuroinflammation in individuals with substance use disorders. J Clin Invest 2024; 134:e172884. [PMID: 38828729 PMCID: PMC11142750 DOI: 10.1172/jci172884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Increasing evidence suggests a role of neuroinflammation in substance use disorders (SUDs). This Review presents findings from neuroimaging studies assessing brain markers of inflammation in vivo in individuals with SUDs. Most studies investigated the translocator protein 18 kDa (TSPO) using PET; neuroimmune markers myo-inositol, choline-containing compounds, and N-acetyl aspartate using magnetic resonance spectroscopy; and fractional anisotropy using MRI. Study findings have contributed to a greater understanding of neuroimmune function in the pathophysiology of SUDs, including its temporal dynamics (i.e., acute versus chronic substance use) and new targets for SUD treatment.
Collapse
Affiliation(s)
- Xinyi Li
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Astrid P. Ramos-Rolón
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Gabriel Kass
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Lais S. Pereira-Rufino
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Naomi Shifman
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Zhenhao Shi
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Corinde E. Wiers
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Bilaus B, Turchinski NR, Ahdoot HL, Gavish RE, Shany O, Maayan R, Rosca P, Weizman A, Delayahu Y, Yadid G, Admon R. The Effect of Dehydroepiandrosterone Administration during Rehabilitation on White Matter Integrity Among Individuals With Polysubstance Use Disorder. J Addict Med 2023; 17:551-556. [PMID: 37788608 DOI: 10.1097/adm.0000000000001176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
OBJECTIVES Individuals with polysubstance use disorder (pSUD) exhibit vulnerability to relapse even after prolonged abstinence, with rehabilitation efforts achieving limited success. Previous studies highlighted dehydroepiandrosterone (DHEA) as a putative therapeutic agent that may aid rehabilitation, potentially by impacting white matter (WM) properties. The current study tested, for the first time, the effect of DHEA administration during rehabilitation on WM integrity among pSUD individuals, while assessing its putative association with long-term relapse rates. METHODS Immediately after admission to rehabilitation, 30 pSUD individuals were assigned to receive either placebo or DHEA (100 mg) daily for 3 months, via a randomized double-blind counterbalanced design. Participants also provided blood samples to assess circulating DHEA levels at treatment initiation and completed a diffusion tensor imaging (DTI) scan approximately 1 month after treatment initiation. Clinical status was evaluated 16 months after treatment initiation. Thirty matched healthy controls also underwent a DTI scan without any intervention. RESULTS DHEA administration was not associated with reduced relapse rates compared with placebo. Nevertheless, exploratory analysis revealed that DHEA was associated with successful rehabilitation among pSUD individuals with low circulating DHEA levels at treatment initiation. White matter integrity in the splenium corpus callosum (CC) was reduced in pSUD individuals compared with healthy controls, yet pSUD individuals receiving DHEA exhibited recovery of splenium CC WM integrity. CONCLUSIONS DHEA administration during rehabilitation may restore WM integrity in the CC among pSUD individuals. Although DHEA was not associated with reduced relapse rates in here, its therapeutic efficacy may depend on circulating DHEA levels at treatment initiation.
Collapse
Affiliation(s)
- Ben Bilaus
- From the School of Psychological Sciences, University of Haifa, Haifa, Israel (BB, RA); Sagol Department of Neurobiology, University of Haifa, Haifa, Israel (NRT); Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel (HLA, REG, GY); School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel (OS); Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel (OS); The Laboratory of Molecular Psychiatry, Felsenstein Medical Research Center, Petah Tikva, Israel (RM, AW); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (RM, AW, YD); Department for the Treatment of Substance Abuse and Mental Health Services, Israeli Ministry of Health, Jerusalem, Israel (PR); Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (PR); Research Unit, Geha Mental Health Center, Petah Tikva, Israel (AW); The Dual Diagnosis Ward, Abarbanel Mental Health Center, Bat Yam, Israel (YD); The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel (RA)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Hodges CB, Steinberg JL, Zuniga EA, Ma L, Bjork JM, Moeller FG. Chronic Cocaine Use and White Matter Coherence: A Diffusion Tensor Imaging Study. J Stud Alcohol Drugs 2023; 84:585-597. [PMID: 36971714 PMCID: PMC10488304 DOI: 10.15288/jsad.21-00410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/09/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVE Chronic substance use and its effects on brain function and structure has long been of interest to clinicians and researchers. Prior cross-sectional comparisons of diffusion tensor imaging (DTI) metrics have suggested deleterious effects of chronic substance use (i.e., cocaine use) on white matter coherence. However, it is unclear how these effects may replicate across geographic regions when examined with similar technologies. In this study, we sought to conduct a replication of previous work in this area and determine whether there are any patterns of persistent differences in white matter microstructure between individuals with a history of cocaine use disorder (CocUD, according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) and healthy controls. METHOD A total of 46 participants (21 healthy controls, 25 chronic cocaine users) were recruited from the Richmond, Virginia metropolitan area. Information regarding past and current substance use was collected from all participants. Participants also completed structural and DTI scans. RESULTS Consistent with previous DTI studies, significant differences were found between fractional anisotropy (FA) and axial diffusivity (AD) CocUD and controls, with CocUD showing lower FA and AD in the right inferior and superior longitudinal fasciculus, the genu, body, and splenium of the corpus callosum, and the anterior, posterior, and superior corona radiata, among several other regions. These differences were not significant for other diffusivity metrics. Lifetime alcohol consumption was greater in the CocUD group, but lifetime alcohol consumption did not show a significant linear relationship with any of the DTI metrics in within-group regression analyses. CONCLUSIONS These data align with previously reported declines in white matter coherence in chronic cocaine users. However, it is less clear whether comorbid alcohol consumption results in an additive deleterious effect on white matter microstructure.
Collapse
Affiliation(s)
- Cooper B. Hodges
- Department of Physical Medicine and Rehabilitation, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Joel L. Steinberg
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia
| | - Edward A. Zuniga
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia
| | - Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - James M. Bjork
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia
| | - F. Gerard Moeller
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
4
|
King SG, Gaudreault PO, Malaker P, Kim JW, Alia-Klein N, Xu J, Goldstein RZ. Prefrontal-habenular microstructural impairments in human cocaine and heroin addiction. Neuron 2022; 110:3820-3832.e4. [PMID: 36206758 PMCID: PMC9671835 DOI: 10.1016/j.neuron.2022.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/24/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The habenula (Hb) is central to adaptive reward- and aversion-driven behaviors, comprising a hub for higher-order processing networks involving the prefrontal cortex (PFC). Despite an established role in preclinical models of cocaine addiction, the translational significance of the Hb and its connectivity with the PFC in humans is unclear. Using diffusion tractography, we detailed PFC structural connectivity with the Hb and two control regions, quantifying tract-specific microstructural features in healthy and cocaine-addicted individuals. White matter was uniquely impaired in PFC-Hb projections in both short-term abstainers and current cocaine users. Abnormalities in this tract further generalized to an independent sample of heroin-addicted individuals and were associated, in an exploratory analysis, with earlier onset of drug use across the addiction subgroups, potentially serving as a predisposing marker amenable for early intervention. Importantly, these findings contextualize a plausible PFC-Hb circuit in the human brain, supporting preclinical evidence for its impairment in cocaine addiction.
Collapse
Affiliation(s)
- Sarah G King
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pierre-Olivier Gaudreault
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pias Malaker
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joo-Won Kim
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nelly Alia-Klein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junqian Xu
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rita Z Goldstein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
5
|
Zimmermann J, Friedli N, Bavato F, Stämpfli P, Coray R, Baumgartner MR, Grandgirard D, Leib SL, Opitz A, Seifritz E, Stock AK, Beste C, Cole DM, Quednow BB. White matter alterations in chronic MDMA use: Evidence from diffusion tensor imaging and neurofilament light chain blood levels. Neuroimage Clin 2022; 36:103191. [PMID: 36126513 PMCID: PMC9486575 DOI: 10.1016/j.nicl.2022.103191] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy") is a serotonin- and noradrenaline-releasing substance, currently among the most widely used illicit substances worldwide. In animal studies, repeated exposure to MDMA has been associated with dendritic but also axonal degeneration in the brain. However, translation of the axonal findings, specifically, to humans has been repeatedly questioned and the few existing studies investigating white matter alterations in human chronic MDMA users have yielded conflicting findings. In this study, we combined whole-brain diffusion tensor imaging and neurofilament light chain (NfL) analysis in blood to reveal potential MDMA-induced axonal neuropathology. To this end, we assessed 39 chronic MDMA users and 39 matched MDMA-naïve healthy controls. MDMA users showed increased fractional anisotropy in several white matter tracts, most prominently in the corpus callosum as well as corticospinal tracts, with these findings partly related to MDMA use intensity. However, the NfL levels of MDMA users were not significantly different from those of controls. We conclude that MDMA use is not associated with significant white matter lesions due to the absence of reduced fractional anisotropy and increased NfL levels commonly observed in conditions associated with white matter lesions, including stimulant and ketamine use disorders. Hence, the MDMA-induced axonal degradation demonstrated in animal models was not observed in this human study of chronic MDMA users.
Collapse
Affiliation(s)
- Josua Zimmermann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Nicole Friedli
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp Stämpfli
- MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics and the Department of Child and Adolescent Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Zurich
| | - Rebecca Coray
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Markus R Baumgartner
- Center for Forensic Hair Analytics, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - David M Cole
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Agunbiade K, Fonville L, McGonigle J, Elliott R, Ersche KD, Flechais R, Orban C, Murphy A, Smith DG, Suckling J, Taylor EM, Deakin B, Robbins TW, Nutt DJ, Lingford‐Hughes AR, Paterson LM, Nutt D, Lingford‐Hughes A, Paterson L, McGonigle J, Flechais R, Orban C, Deakin B, Elliott R, Murphy A, Taylor E, Robbins T, Ersche K, Suckling J, Smith D, Reed L, Passetti F, Faravelli L, Erritzoe D, Mick I, Kalk N, Waldman A, Nestor L, Kuchibatla S, Boyapati V, Metastasio A, Faluyi Y, Fernandez‐Egea E, Abbott S, Sahakian B, Voon V, Rabiner I. Alterations in white matter microstructure in alcohol and alcohol‐polydrug dependence: Associations with lifetime alcohol and nicotine exposure. Addict Biol 2022. [PMCID: PMC9540248 DOI: 10.1111/adb.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Evidence suggests that alcohol dependence (AD) is associated with microstructural deficits in white matter, but the relationship with lifetime alcohol exposure and the impact of polydrug dependence is not well understood. Using diffusion tensor magnetic resonance (MR) imaging, we examined white matter microstructure in relation to alcohol and polydrug dependence using data from the Imperial College Cambridge Manchester (ICCAM) platform study. Tract‐based spatial statistics were used to examine fractional anisotropy (FA) in a cohort of abstinent AD participants, most of whom had a lifetime history of dependence to nicotine. A further subgroup also had a lifetime history of dependence to cocaine and/or opiates. Individuals with AD had lower FA throughout the corpus callosum, and negative associations with alcohol and nicotine exposure were found. A group‐by‐age interaction effect was found showing greater reductions with age in the alcohol‐dependent group within corpus callosum, overlapping with the group difference. We found no evidence of recovery with abstinence. A comparison of alcohol‐only‐ and alcohol‐polydrug‐dependent groups found no differences in FA. Overall, our findings show that AD is associated with lower FA and suggest that these alterations are primarily driven by lifetime alcohol consumption and cigarette smoking, showing no relationship with exposure to other substances such as cocaine, opiates or cannabis. Reductions in FA across the adult lifespan are more pronounced in AD and offer further support for the notion of accelerated ageing in relation to alcohol dependence. These findings highlight there may be lasting structural differences in white matter in alcohol dependence, despite continued abstinence.
Collapse
Affiliation(s)
- Kofoworola Agunbiade
- Division of Psychiatry, Department of Brain Sciences Imperial College London London UK
| | - Leon Fonville
- Division of Psychiatry, Department of Brain Sciences Imperial College London London UK
| | - John McGonigle
- Division of Psychiatry, Department of Brain Sciences Imperial College London London UK
| | - Rebecca Elliott
- Neuroscience and Psychiatry Unit, Institute of Brain, Behaviour and Mental Health University of Manchester Manchester UK
| | - Karen D. Ersche
- Behavioural and Clinical Neuroscience Institute University of Cambridge Cambridge UK
- Department of Psychiatry University of Cambridge Cambridge UK
- Department of Systems Neuroscience University Medical Centre Hamburg‐Eppendorf Hamburg Germany
| | - Remy Flechais
- Division of Psychiatry, Department of Brain Sciences Imperial College London London UK
| | - Csaba Orban
- Division of Psychiatry, Department of Brain Sciences Imperial College London London UK
| | - Anna Murphy
- Neuroscience and Psychiatry Unit, Institute of Brain, Behaviour and Mental Health University of Manchester Manchester UK
| | - Dana G. Smith
- Behavioural and Clinical Neuroscience Institute University of Cambridge Cambridge UK
- Department of Psychology University of Cambridge Cambridge UK
| | - John Suckling
- Behavioural and Clinical Neuroscience Institute University of Cambridge Cambridge UK
- Department of Psychiatry University of Cambridge Cambridge UK
| | - Eleanor M. Taylor
- Neuroscience and Psychiatry Unit, Institute of Brain, Behaviour and Mental Health University of Manchester Manchester UK
| | - Bill Deakin
- Neuroscience and Psychiatry Unit, Institute of Brain, Behaviour and Mental Health University of Manchester Manchester UK
| | - Trevor W. Robbins
- Behavioural and Clinical Neuroscience Institute University of Cambridge Cambridge UK
- Department of Psychology University of Cambridge Cambridge UK
| | - David J. Nutt
- Division of Psychiatry, Department of Brain Sciences Imperial College London London UK
| | | | - Louise M. Paterson
- Division of Psychiatry, Department of Brain Sciences Imperial College London London UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tisdall L, MacNiven KH, Padula CB, Leong JK, Knutson B. Brain tract structure predicts relapse to stimulant drug use. Proc Natl Acad Sci U S A 2022; 119:e2116703119. [PMID: 35727973 PMCID: PMC9245633 DOI: 10.1073/pnas.2116703119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Diffusion tractography allows identification and measurement of structural tracts in the human brain previously associated with motivated behavior in animal models. Recent findings indicate that the structural properties of a tract connecting the midbrain to nucleus accumbens (NAcc) are associated with a diagnosis of stimulant use disorder (SUD), but not relapse. In this preregistered study, we used diffusion tractography in a sample of patients treated for SUD (n = 60) to determine whether qualities of tracts projecting from medial prefrontal, anterior insular, and amygdalar cortices to NAcc might instead foreshadow relapse. As predicted, reduced diffusion metrics of a tract projecting from the right anterior insula to the NAcc were associated with subsequent relapse to stimulant use, but not with previous diagnosis. These findings highlight a structural target for predicting relapse to stimulant use and further suggest that distinct connections to the NAcc may confer risk for relapse versus diagnosis.
Collapse
Affiliation(s)
- Loreen Tisdall
- Center for Cognitive and Decision Sciences, University of Basel, 4055 Basel, Switzerland
- Department of Psychology, Stanford University, Stanford, CA 94305-2130
| | - Kelly H. MacNiven
- Department of Psychology, Stanford University, Stanford, CA 94305-2130
| | | | - Josiah K. Leong
- Department of Psychological Science, University of Arkansas, Fayetteville, AR 72701
| | - Brian Knutson
- Department of Psychology, Stanford University, Stanford, CA 94305-2130
| |
Collapse
|
8
|
Lan Z, Reich BJ, Guinness J, Bandyopadhyay D, Ma L, Moeller FG. Geostatistical modeling of positive-definite matrices: An application to diffusion tensor imaging. Biometrics 2022; 78:548-559. [PMID: 33569777 DOI: 10.1111/biom.13445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 01/16/2023]
Abstract
Geostatistical modeling for continuous point-referenced data has extensively been applied to neuroimaging because it produces efficient and valid statistical inference. However, diffusion tensor imaging (DTI), a neuroimaging technique characterizing the brain's anatomical structure, produces a positive-definite (p.d.) matrix for each voxel. Currently, only a few geostatistical models for p.d. matrices have been proposed because introducing spatial dependence among p.d. matrices properly is challenging. In this paper, we use the spatial Wishart process, a spatial stochastic process (random field), where each p.d. matrix-variate random variable marginally follows a Wishart distribution, and spatial dependence between random matrices is induced by latent Gaussian processes. This process is valid on an uncountable collection of spatial locations and is almost-surely continuous, leading to a reasonable way of modeling spatial dependence. Motivated by a DTI data set of cocaine users, we propose a spatial matrix-variate regression model based on the spatial Wishart process. A problematic issue is that the spatial Wishart process has no closed-form density function. Hence, we propose an approximation method to obtain a feasible Cholesky decomposition model, which we show to be asymptotically equivalent to the spatial Wishart process model. A local likelihood approximation method is also applied to achieve fast computation. The simulation studies and real data application demonstrate that the Cholesky decomposition process model produces reliable inference and improved performance, compared to other methods.
Collapse
Affiliation(s)
- Zhou Lan
- Yale School of Medicine, New Haven, Connecticut
| | - Brian J Reich
- North Carolina State University, Raleigh, North Carolina
| | | | | | - Liangsuo Ma
- Virginia Commonwealth University, Richmond, Virginia
| | | |
Collapse
|
9
|
Hall SA, Bell RP, Gadde S, Towe SL, Nadeem MT, McCann PS, Song AW, Meade CS. Strengthened and posterior-shifted structural rich-club organization in people who use cocaine. Drug Alcohol Depend 2022; 235:109436. [PMID: 35413558 PMCID: PMC9948276 DOI: 10.1016/j.drugalcdep.2022.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND People with cocaine use disorder (CUD) often have abnormal cognitive function and brain structure. Cognition is supported by brain networks that typically have characteristics like rich-club organization, which is a group of regions that are highly connected across the brain and to each other, and small worldness, which is a balance between local and long-distance connections. However, it is unknown whether there are abnormalities in structural brain network connectivity of CUD. METHODS Using diffusion-weighted imaging, we measured structural connectivity in 37 people with CUD and 38 age-matched controls. We identified differences in rich-club organization and whether such differences related to small worldness and behavior. We also tested whether rich-club reorganization was associated with caudate and putamen structural connectivity due to the relevance of the dopamine system to cocaine use. RESULTS People with CUD had a higher normalized rich-club coefficient than controls, more edges connecting rich-club nodes to each other and to non-rich-club nodes, and fewer edges connecting non-rich-club nodes. Rich-club nodes were shifted posterior and lateral. Rich-club reorganization was related to lower clustered connectivity around individual nodes found in CUD, to increased impulsivity, and to a decrease in caudate connectivity. CONCLUSIONS These findings are consistent with previous work showing increased rich-club connectivity in conditions associated with a hypofunctional dopamine system. The posterior shift in rich-club nodes in CUD suggests that the structural connectivity of posterior regions may be more impacted than previously recognized in models based on brain function and morphology.
Collapse
Affiliation(s)
- Shana A Hall
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Campus Box 102848, Durham, NC 27710, USA
| | - Ryan P Bell
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Campus Box 102848, Durham, NC 27710, USA
| | - Syam Gadde
- Brain Imaging and Analysis Center, Duke University Medical Center, Campus Box 3918, Durham, NC 27710, USA
| | - Sheri L Towe
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Campus Box 102848, Durham, NC 27710, USA
| | - Muhammad Tauseef Nadeem
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Campus Box 102848, Durham, NC 27710, USA
| | - Peter S McCann
- Duke University Hospital, 2301 Erwin Rd, Durham, NC 27710, USA
| | - Allen W Song
- Brain Imaging and Analysis Center, Duke University Medical Center, Campus Box 3918, Durham, NC 27710, USA
| | - Christina S Meade
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Campus Box 102848, Durham, NC 27710, USA; Brain Imaging and Analysis Center, Duke University Medical Center, Campus Box 3918, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Rasgado-Toledo J, Shah A, Ingalhalikar M, Garza-Villarreal EA. Neurite orientation dispersion and density imaging in cocaine use disorder. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110474. [PMID: 34758367 DOI: 10.1016/j.pnpbp.2021.110474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023]
Abstract
Cocaine use disorder (CUD) is characterized by a compulsive search for cocaine. Several studies have shown that cocaine users exhibit cognitive deficits, including lack of inhibition and decision-making as well as brain volume and diffusion-based white-matter alterations in a wide variety of brain regions. However, the non-specificity of standard volumetric and diffusion-tensor methods to detect structural micropathology may lead to wrong conclusions. To better understand microstructural pathology in CUD, we analyzed 60 CUD participants (3 female) and 43 non-CUD controls (HC; 2 female) retrospectively from our cross-sectional Mexican SUD neuroimaging dataset (SUDMEX-CONN), using multi-shell diffusion-weighted imaging and the neurite orientation dispersion and density imaging (NODDI) analysis, which aims to more accurately model microstructural pathology. We used Viso values of NODDI that employ a three-compartment model in white (WM) and gray-matter (GM). These values were also correlated with clinical measures, including psychiatric severity status, impulsive behavior and pattern of cocaine and tobacco use in the CUD group. We found higher whole-brain microstructural pathology in WM and GM in CUD patients than controls. ROI analysis revealed higher Viso-NODDI values in superior longitudinal fasciculus, cingulum, hippocampus cingulum, forceps minor and Uncinate fasciculus, as well as in frontal and parieto-temporal GM structures. We also found correlations between significant ROI and impulsivity, onset age of cocaine use and weekly dosage with Viso-NODDI. However, we did not find correlations with psychopathology measures. Overall, although their clinical relevance remains questionable, microstructural pathology seems to be present in CUD both in gray and white matter.
Collapse
Affiliation(s)
- Jalil Rasgado-Toledo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México campus Juriquilla, Querétaro, Mexico
| | - Apurva Shah
- Symbiosis Center for Medical Image Analysis, Symbiosis Institute of Technology, Symbiosis International University, Pune, Maharashtra, India
| | - Madhura Ingalhalikar
- Symbiosis Center for Medical Image Analysis, Symbiosis Institute of Technology, Symbiosis International University, Pune, Maharashtra, India
| | - Eduardo A Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México campus Juriquilla, Querétaro, Mexico.
| |
Collapse
|
11
|
Ottino-González J, Uhlmann A, Hahn S, Cao Z, Cupertino RB, Schwab N, Allgaier N, Alia-Klein N, Ekhtiari H, Fouche JP, Goldstein RZ, Li CSR, Lochner C, London ED, Luijten M, Masjoodi S, Momenan R, Oghabian MA, Roos A, Stein DJ, Stein EA, Veltman DJ, Verdejo-García A, Zhang S, Zhao M, Zhong N, Jahanshad N, Thompson PM, Conrod P, Mackey S, Garavan H. White matter microstructure differences in individuals with dependence on cocaine, methamphetamine, and nicotine: Findings from the ENIGMA-Addiction working group. Drug Alcohol Depend 2022; 230:109185. [PMID: 34861493 PMCID: PMC8952409 DOI: 10.1016/j.drugalcdep.2021.109185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/27/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Nicotine and illicit stimulants are very addictive substances. Although associations between grey matter and dependence on stimulants have been frequently reported, white matter correlates have received less attention. METHODS Eleven international sites ascribed to the ENIGMA-Addiction consortium contributed data from individuals with dependence on cocaine (n = 147), methamphetamine (n = 132) and nicotine (n = 189), as well as non-dependent controls (n = 333). We compared the fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) of 20 bilateral tracts. Also, we compared the performance of various machine learning algorithms in deriving brain-based classifications on stimulant dependence. RESULTS The cocaine and methamphetamine groups had lower regional FA and higher RD in several association, commissural, and projection white matter tracts. The methamphetamine dependent group additionally showed lower regional AD. The nicotine group had lower FA and higher RD limited to the anterior limb of the internal capsule. The best performing machine learning algorithm was the support vector machine (SVM). The SVM successfully classified individuals with dependence on cocaine (AUC = 0.70, p < 0.001) and methamphetamine (AUC = 0.71, p < 0.001) relative to non-dependent controls. Classifications related to nicotine dependence proved modest (AUC = 0.62, p = 0.014). CONCLUSIONS Stimulant dependence was related to FA disturbances within tracts consistent with a role in addiction. The multivariate pattern of white matter differences proved sufficient to identify individuals with stimulant dependence, particularly for cocaine and methamphetamine.
Collapse
Affiliation(s)
- Jonatan Ottino-González
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States.
| | - Anne Uhlmann
- Department of Child & Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Sage Hahn
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Zhipeng Cao
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Renata B. Cupertino
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Nathan Schwab
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Nicholas Allgaier
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Nelly Alia-Klein
- Department of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - Hamed Ekhtiari
- Institute for Cognitive Sciences Studies, University of Tehran, Tehran, Iran,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Jean-Paul Fouche
- SA MRC Genomics and Brain Disorders Unit, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Rita Z. Goldstein
- Department of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States
| | - Christine Lochner
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Edythe D. London
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, California, United States
| | - Maartje Luijten
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Sadegh Masjoodi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Momenan
- Clinical Neuroimaging Research Core, National Institutes on Alcohol Abuse & Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Mohammad Ali Oghabian
- Neuroimaging & Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Annerine Roos
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa,SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elliot A. Stein
- Neuroimaging Research Branch, Intramural Research Program, National Institute of Drug Abuse, Baltimore, Maryland, United States
| | - Dick J. Veltman
- Department of Psychiatry, Amsterdam UMC – location VUMC, Amsterdam, the Netherlands
| | - Antonio Verdejo-García
- School of Psychological Sciences & Turner Institute for Brain & Mental Health, Monash University, Melbourne, Australia
| | - Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Neda Jahanshad
- Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, San Diego, California, United States
| | - Paul M. Thompson
- Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, San Diego, California, United States
| | - Patricia Conrod
- Department of Psychiatry, Université de Montreal, Montreal, Quebec, Canada
| | - Scott Mackey
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| |
Collapse
|
12
|
Alballa T, Boone EL, Ma L, Snyder A, Moeller FG. Exploring the relationship between white matter integrity, cocaine use and GAD polymorphisms using Bayesian Model Averaging. PLoS One 2021; 16:e0254776. [PMID: 34310624 PMCID: PMC8312937 DOI: 10.1371/journal.pone.0254776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/02/2021] [Indexed: 11/30/2022] Open
Abstract
Past investigations utilizing diffusion tensor imaging (DTI) have demonstrated that cocaine use disorder (CUD) yields white matter changes, primarily in the corpus callosum. By applying Bayesian model averaging using multiple linear regression in DTI, we demonstrate there may exist relationships between the impaired white matter and glutamic acid decarboxylase (GAD) polymorphisms. This work explored the two-way and three-way interactions between GAD1a (SNP: rs1978340) and GAD1b (SNP: rs769390) polymorphisms and years of cocaine use (YCU). GAD1a was associated with more frontal white matter changes on its own but GAD1b was associated with more midbrain and cerebellar changes as well as a greater increase in white matter changes in the context of chronic cocaine use. The three-way interaction GAD1a|GAD1b|YCU appeared to be roughly an average of the polymorphism two-way interactions GAD1a|YCU and GAD1b|YCU. The three-way interaction demonstrated multiple regions including corpus callosum which featured fewer significant voxel changes, perhaps suggesting a small protective effect of having both polymorphisms on corpus callosum and cerebellar peduncle.
Collapse
Affiliation(s)
- Tmader Alballa
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Mathematical Sciences Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Edward L. Boone
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Institute of Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Liangsuo Ma
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Institute of Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Andrew Snyder
- C. Kenneth and Dianne Wright, Center for Clinical Translational Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - F. Gerard Moeller
- Institute of Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- C. Kenneth and Dianne Wright, Center for Clinical Translational Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
13
|
Tondo LP, Viola TW, Fries GR, Kluwe-Schiavon B, Rothmann LM, Cupertino R, Ferreira P, Franco AR, Lane SD, Stertz L, Zhao Z, Hu R, Meyer T, Schmitz JM, Walss-Bass C, Grassi-Oliveira R. White matter deficits in cocaine use disorder: convergent evidence from in vivo diffusion tensor imaging and ex vivo proteomic analysis. Transl Psychiatry 2021; 11:252. [PMID: 33911068 PMCID: PMC8081729 DOI: 10.1038/s41398-021-01367-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 11/27/2022] Open
Abstract
White matter (WM) abnormalities in patients with cocaine use disorder (CUD) have been studied; however, the reported effects on the human brain are heterogenous and most results have been obtained from male participants. In addition, biological data supporting the imaging findings and revealing possible mechanisms underlying the neurotoxic effects of chronic cocaine use (CU) on WM are largely restricted to animal studies. To evaluate the neurotoxic effects of CU in the WM, we performed an in vivo diffusion tensor imaging assessment of male and female cocaine users (n = 75) and healthy controls (HC) (n = 58). Moreover, we performed an ex vivo large-scale proteomic analysis using liquid chromatography-tandem mass spectrometry in postmortem brains of patients with CUD (n = 8) and HC (n = 12). Compared with the HC, the CUD group showed significant reductions in global fractional anisotropy (FA) (p < 0.001), and an increase in global mean (MD) and radial diffusion (RD) (both p < 0.001). The results revealed that FA, RD, and MD alterations in the CUD group were widespread along the major WM tracts, after analysis using the tract-based special statistics approach. Global FA was negatively associated with years of CU (p = 0.0421) and female sex (p < 0.001), but not with years of alcohol or nicotine use. Concerning the fibers connecting the left to the right prefrontal cortex, Brodmann area 9 (BA9), the CUD group presented lower FA (p = 0.006) and higher RD (p < 0.001) values compared with the HC group. A negative association between the duration of CU in life and FA values in this tract was also observed (p = 0.019). Proteomics analyses in BA9 found 11 proteins differentially expressed between cocaine users and controls. Among these, were proteins related to myelination and neuroinflammation. In summary, we demonstrate convergent evidence from in vivo diffusion tensor imaging and ex vivo proteomics analysis of WM disruption in CUD.
Collapse
Affiliation(s)
- Lucca Pizzato Tondo
- Developmental Cognitive Neuroscience Lab (DCNL), Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Thiago Wendt Viola
- Developmental Cognitive Neuroscience Lab (DCNL), Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gabriel R Fries
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bruno Kluwe-Schiavon
- Developmental Cognitive Neuroscience Lab (DCNL), Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Leonardo Mello Rothmann
- Developmental Cognitive Neuroscience Lab (DCNL), Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Renata Cupertino
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Pedro Ferreira
- Developmental Cognitive Neuroscience Lab (DCNL), Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | | | - Scott D Lane
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura Stertz
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ruifeng Hu
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Thomas Meyer
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joy M Schmitz
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Consuelo Walss-Bass
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
14
|
Lan Z, Reich BJ, Bandyopadhyay D. A spatial Bayesian semiparametric mixture model for positive definite matrices with applications in diffusion tensor imaging. CAN J STAT 2021. [DOI: 10.1002/cjs.11601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhou Lan
- Center for Outcomes Research and Evaluation Yale School of Medicine U.S.A
| | - Brian J. Reich
- Department of Statistics North Carolina State University U.S.A
| | | |
Collapse
|
15
|
Stewart JL, May AC, Paulus MP. Bouncing back: Brain rehabilitation amid opioid and stimulant epidemics. NEUROIMAGE-CLINICAL 2019; 24:102068. [PMID: 31795056 PMCID: PMC6978215 DOI: 10.1016/j.nicl.2019.102068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/20/2019] [Accepted: 11/03/2019] [Indexed: 12/18/2022]
Abstract
Frontoparietal event related potentials predict/track recovery. Frontostriatal functional magnetic resonance imaging signals predict/track recovery. Transcranial magnetic left prefrontal stimulation reduces craving and drug use.
Recent methamphetamine and opioid use epidemics are a major public health concern. Chronic stimulant and opioid use are characterized by significant psychosocial, physical and mental health costs, repeated relapse, and heightened risk of early death. Neuroimaging research highlights deficits in brain processes and circuitry that are linked to responsivity to drug cues over natural rewards as well as suboptimal goal-directed decision-making. Despite the need for interventions, little is known about (1) how the brain changes with prolonged abstinence or as a function of various treatments; and (2) how symptoms change as a result of neuromodulation. This review focuses on the question: What do we know about changes in brain function during recovery from opioids and stimulants such as methamphetamine and cocaine? We provide a detailed overview and critique of published research employing a wide array of neuroimaging methods – functional and structural magnetic resonance imaging, electroencephalography, event-related potentials, diffusion tensor imaging, and multiple brain stimulation technologies along with neurofeedback – to track or induce changes in drug craving, abstinence, and treatment success in stimulant and opioid users. Despite the surge of methamphetamine and opioid use in recent years, most of the research on neuroimaging techniques for recovery focuses on cocaine use. This review highlights two main findings: (1) interventions can lead to improvements in brain function, particularly in frontal regions implicated in goal-directed behavior and cognitive control, paired with reduced drug urges/craving; and (2) the targeting of striatal mechanisms implicated in drug reward may not be as cost-effective as prefrontal mechanisms, given that deep brain stimulation methods require surgery and months of intervention to produce effects. Overall, more studies are needed to replicate and confirm findings, particularly for individuals with opioid and methamphetamine use disorders.
Collapse
Affiliation(s)
- Jennifer L Stewart
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Community Medicine, University of Tulsa, Tulsa, OK, United States.
| | - April C May
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Community Medicine, University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
16
|
Hampton WH, Hanik IM, Olson IR. Substance abuse and white matter: Findings, limitations, and future of diffusion tensor imaging research. Drug Alcohol Depend 2019; 197:288-298. [PMID: 30875650 PMCID: PMC6440853 DOI: 10.1016/j.drugalcdep.2019.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/14/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
Individuals who abuse substances often differ from nonusers in their brain structure. Substance abuse and addiction is often associated with atrophy and pathology of grey matter, but much less is known about the role of white matter, which constitutes over half of human brain volume. Diffusion tensor imaging (DTI), a method for non-invasively estimating white matter, is increasingly being used to study addiction and substance abuse. Here we review recent DTI studies of major substances of abuse (alcohol, opiates, cocaine, cannabis, and nicotine substance abuse) to examine the relationship, specificity, causality, and permanence of substance-related differences in white matter microstructure. Across substance, users tended to exhibit differences in the microstructure of major fiber pathways, such as the corpus callosum. The direction of these differences, however, appeared substance-dependent. The subsample of longitudinal studies reviewed suggests that substance abuse may cause changes in white matter, though it is unclear to what extent such alterations are permanent. While collectively informative, some studies reviewed were limited by methodological and technical approach. We therefore also provide methodological guidance for future research using DTI to study substance abuse.
Collapse
Affiliation(s)
- William H Hampton
- Department of Psychology, College of Liberal Arts, Temple University, United States
| | - Italia M Hanik
- Department of Psychology, College of Liberal Arts, Temple University, United States
| | - Ingrid R Olson
- Department of Psychology, College of Liberal Arts, Temple University, United States.
| |
Collapse
|