1
|
Okselni T, Septama AW, Juliadmi D, Dewi RT, Angelina M, Yuliani T, Saragih GS, Saputri A. Quercetin as a therapeutic agent for skin problems: a systematic review and meta-analysis on antioxidant effects, oxidative stress, inflammation, wound healing, hyperpigmentation, aging, and skin cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03722-3. [PMID: 39738831 DOI: 10.1007/s00210-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Quercetin is abundant in plants and has notable pharmacological properties for skin health. This review aims to comprehensively evaluate the effects of quercetin on skin-related issues, adhering to the PRISMA guidelines and analyzing studies from ScienceDirect, Web of Science, Scopus, and PubMed. Of the 1,398 studies identified, 65 studies met the criteria for meta-analysis. The meta-analysis indicated that quercetin had powerful antioxidant properties, protecting against oxidative stress by significantly lowering levels of MDA (Z-score, 2.51), ROS (Z-score, 3.81), and LPO (Z-score, 4.46), and enhancing enzymes of GSH (Z-score, 5.46), CAT (Z-score, 5.20), and SOD (Z-score, 4.37). Quercetin acted as an anti-inflammatory by significantly suppressing protein regulators such as NF-κβ, AP-1, and MAPKs (ERK and JNK), cytokines of TNFα, IL-6, IL-1β, IL-8, and MCP-1, and enzymes of COX-2, iNOS, and MPO, while upregulating the cytokine IL-10. Additionally, quercetin significantly suppressed IL-4 (Z-score, 3.16) and IFNγ (Z-score, 3.76) cytokines involved in chronic inflammation of atopic dermatitis. Quercetin also supported wound healing by significantly decreasing inflammatory cells (Z-score, 5.60) and enhancing fibroblast distribution (Z-score, 5.98), epithelialization (Z-score, 8.57), collagen production (Z-score, 4.20), and angiogenesis factors of MVD (Z-score, 5.66) and VEGF (Z-score, 3.86). Furthermore, quercetin significantly inhibited tyrosinase activity (Z-score, 1.95), resulting in a significantly reduced melanin content (Z-score, 2.56). A significant reduction in DNA damage (Z-score, 3.27), melanoma cell viability (Z-score, 2.97), and tumor formation was also observed to ensure the promising activity of quercetin for skin issues. This review highlights quercetin's potential as a multifaceted agent in skin care and treatment.
Collapse
Affiliation(s)
- Tia Okselni
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia.
- BRIN-Kawasan BJ Habibie, Serpong, Banten, Indonesia.
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Dian Juliadmi
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong, 16911, Indonesia
| | - Rizna Triana Dewi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Marissa Angelina
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Tri Yuliani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Grace Serepina Saragih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Ariyanti Saputri
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| |
Collapse
|
2
|
Huang Y, Liu C, Fu Z, Li C, Wu Y, Jia Q, Liu X, Kang Z, Li Y, Ni D, Wei Z, Ru Z, Peng Y, Liu X, Li Y, Xiao Z, Tang J, Wang Y, Yang X. The combination of RL-QN15 and OH-CATH30 to promotes the repair of acne via the TLR2/NF-κB pathway. Eur J Pharmacol 2024:177233. [PMID: 39740735 DOI: 10.1016/j.ejphar.2024.177233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/15/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Acne is a prevalent and chronic inflammatory skin disease, and its treatment remains a huge clinical challenge. In the present study, we evaluated the therapeutic potential of combining the peptides RL-QN15 and OH-CATH30 for the treatment of acne in mice. Results indicated that the topical application of RL-QN15 and OH-CATH30 significantly inhibited the proliferation of Propionibacterium acnes (P. acnes) and alleviated acne-induced edema. Furthermore, the combined treatment suppressed the overexpression of proinflammatory cytokines induced by P. acnes, including interleukin -1 beta (IL-1β), interleukin -6 (IL-6), interleukin -8 (IL-8), tumor necrosis factor-alpha (TNF-α) induced by P. acnes and facilitated collagen deposition, thereby effectively mitigating skin damage associated with acne. Mechanistically, the combination of RL-QN15 and OH-CATH30 inhibited the expression of toll-like receptor 2 (TLR2) and activation nuclear factor kappa-B (NF-κB) signaling pathway (phosphorylation of P65 and IκB) in both mice and RAW 264.7 cells. These results suggested that this combination may inhibit the excretion of inflammatory factors and facilitated the collagen deposition by TLR2/NF-κB signaling. Overall, our study demonstrates the potent therapeutic effects of the combined application of RL-QN15 and OH-CATH30, highlights the TLR2/NF-κB pathway as a key target in acne treatment, and provides a novel strategy for developing innovative acne therapeutics.
Collapse
Affiliation(s)
- Yubing Huang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Chengxing Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Chao Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Qiuye Jia
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xue Liu
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zijian Kang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yuansheng Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Dan Ni
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ziqi Wei
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zeqiong Ru
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ying Peng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yun Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhaoxun Xiao
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan, 650500, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
3
|
Arantes AB, Rosa RT, de Oliveira NS, Bianchini LF, Rached RN, Johann ACBR, Weber SH, Murakami FS, Maluf DF, Rosa EAR. Facial disbiosis and UV filters. Arch Dermatol Res 2024; 316:739. [PMID: 39499337 DOI: 10.1007/s00403-024-03501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024]
Abstract
Acne is a multifactorial inflammatory disease with a robust microbial component and numerous correlations with dysbiosis states. Furthermore, various factors are recognized as triggers for skin dysbiosis, including the use of certain cosmetics. Based on these arguments, we hypothesized that using photoprotective formulations could trigger dysbiosis and the occurrence of acne manifestations. To verify this assumption, six volunteers between 19 and 23 years of age, meeting all the inclusion criteria, received two applications a day of a non-commercial sunscreen formulation developed with the sun filters ethylhexyl methoxycinnamate, ethylhexyl salicylate, methyl anthranilate, and octocrylene dispersed in a base gel, with an estimated protection factor of 28.8. The pure base gel was used as a control. The samples were applied to an area delimited by a standard template (15 cm2) in an amount corresponding to 30 mg (2 mg cm2) for ten days. At two points in time, pre- and post-sample applications, the facial skin surface was swabbed to collect extracted DNA and processed to verify divergent degrees of 16 S RNA coding sequences. The data obtained allowed us to determine the abundance of different bacterial entities at the genus and species levels. The results showed that critical species of the acne process, such as Cutibacterium acnes and Staphylococcus epidermidis, seem to tolerate the evaluated formulation well and are not significantly affected by the formulation, suggesting no interference of its use concerning dysbiosis induction. These findings refute the idea that photoprotectors may cause skin dysbiosis in men.
Collapse
Affiliation(s)
- Angela Bonjorno Arantes
- School of Medicine and Life Sciences, Graduate Program on Dentistry, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Rosimeire Takaki Rosa
- School of Medicine and Life Sciences. Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Nicoly Subtil de Oliveira
- School of Medicine and Life Sciences, Graduate Program on Animal Science, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Luiz Fernando Bianchini
- School of Medicine and Life Sciences. Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Rodrigo Nunes Rached
- School of Medicine and Life Sciences, Graduate Program on Dentistry, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Aline Cristina Batista Rodrigues Johann
- School of Medicine and Life Sciences, Graduate Program on Dentistry, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Saulo Henrique Weber
- School of Medicine and Life Sciences, Graduate Program on Animal Science, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Fábio Seigi Murakami
- Faculty of Pharmacy. Graduate Program on Pharmaceutical Sciences, Federal University of Paraná, 652 Prof. Lothario Meissner Av. Zip 80210-170, Curitiba, Brazil
| | - Daniela Florencio Maluf
- Faculty of Pharmacy. Graduate Program on Pharmaceutical Sciences, Federal University of Paraná, 652 Prof. Lothario Meissner Av. Zip 80210-170, Curitiba, Brazil
| | - Edvaldo Antonio Ribeiro Rosa
- School of Medicine and Life Sciences, Graduate Program on Dentistry, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil.
- School of Medicine and Life Sciences. Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil.
- School of Medicine and Life Sciences, Graduate Program on Animal Science, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil.
| |
Collapse
|
4
|
Olejniczak A, Stachowiak W, Ziental D, Długaszewska J, Rzemieniecki T, Wysokowski M, Jesionowski T, Niemczak M. Unraveling the Potential of Vitamin B 3-Derived Salts with a Salicylate Anion as Dermal Active Agents for Acne Treatment. Mol Pharm 2024; 21:4634-4647. [PMID: 39141824 PMCID: PMC11372839 DOI: 10.1021/acs.molpharmaceut.4c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
This study is focused on the utilization of naturally occurring salicylic acid and nicotinamide (vitamin B3) in the development of novel sustainable Active Pharmaceutical Ingredients (APIs) with significant potential for treating acne vulgaris. The study highlights how the chemical structure of the cation significantly influences surface activity, lipophilicity, and solubility in aqueous media. Furthermore, the new ionic forms of APIs, the synthesis of which was assessed with Green Chemistry metrics, exhibited very good antibacterial properties against common pathogens that contribute to the development of acne, resulting in remarkable enhancement of biological activity ranging from 200 to as much as 2000 times when compared to salicylic acid alone. The molecular docking studies also revealed the excellent anti-inflammatory activity of N-alkylnicotinamide salicylates comparable to commonly used drugs (indomethacin, ibuprofen, and acetylsalicylic acid) and were even characterized by better IC50 values than common anti-inflammatory drugs in some cases. The derivative, featuring a decyl substituent in the pyridinium ring of nicotinamide, exhibited efficacy against Cutibacterium acnes while displaying favorable water solubility and improved wettability on hydrophobic surfaces, marking it as particularly promising. To investigate the impact of the APIs on the biosphere, the EC50 parameter was determined against a model representative of crustaceans─Artemia franciscana. The majority of compounds (with the exception of the salt containing the dodecyl substituent) could be classified as "Relatively Harmless" or "Practically Nontoxic", indicating their potential low environmental impact, which is essential in the context of modern drug development.
Collapse
Affiliation(s)
- Adriana Olejniczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Witold Stachowiak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland
| | - Jolanta Długaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland
| | - Tomasz Rzemieniecki
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Marcin Wysokowski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Michał Niemczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| |
Collapse
|
5
|
Amer MA, Darwish MM, Soliman NS, Amin HM. Resistome, mobilome, and virulome explored in clinical isolates derived from acne patients in Egypt: unveiling unique traits of an emerging coagulase-negative Staphylococcus pathogen. Front Cell Infect Microbiol 2024; 14:1328390. [PMID: 38371297 PMCID: PMC10869526 DOI: 10.3389/fcimb.2024.1328390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Coagulase-negative staphylococci (CoNS) are a group of gram-positive staphylococcal species that naturally inhabit the healthy human skin and mucosa. The clinical impact of CoNS-associated infections has recently been regarded as a challenge for diagnosis and therapeutic options. CoNS-associated infections are primarily caused by bacterial resistance to antibiotics and biofilm formation. As antibiotics are still the most used treatment, this problem will likely persist in the future. The present study aimed to investigate the resistance and virulence of CoNS recovered from various acne lesions and explore their genetic basis. Skin swab samples were collected from participants with acne and healthy skin. All samples underwent conventional culture for the isolation of CoNS, MALDI-TOF confirmation, antibiotic susceptibility, and biofilm formation testing. A total of 85 CoNS isolates were recovered from the samples and preliminarily identified as Staphylococcus epidermidis. Isolates from the acne group (n = 60) showed the highest rates of resistance to penicillin (73%), cefoxitin (63%), clindamycin (53.3%), and erythromycin (48%), followed by levofloxacin (36.7%) and gentamycin (31.7%). The lowest rates of resistance were observed against tetracycline (28.3%), doxycycline (11.7%), and minocycline (8.3%). CoNS isolated from mild, moderate acne and healthy isolates did not show strong biofilm formation, whereas the isolates from the severe cases of the acne group showed strong biofilm formation (76.6%). Four extensively drug-resistant and strong biofilm-forming staphylococcal isolates recovered from patients with severe acne were selected for whole-genome sequencing (WGS), and their genomes were investigated using bioinformatics tools. Three of the sequenced genomes were identified as S. epidermidis; however, isolate 29AM was identified as Staphylococcus warneri, which is a newly emerging pathogen that is not commonly associated with acne and was not detected by MALDI-TOF. All the sequenced strains were multidrug-resistant and carried multiple resistance genes, including blaZ, mecA, tet(K), erm(C), lnuA, vgaA, dfrC, fusB, fosBx1, norA, and vanT, which were found to be located on plasmids and chromosomes. Virulence features were detected in all genomes in the presence of genes involved in adherence and biofilm formation (icaA, icaB, icaC, sdrG, sdrH, atl, ebh, and ebp). Only the S. warneri isolate 29AM contained immune evasion genes (capB, capC, acpXL, and manA), an anti-phagocytosis gene (cdsA), and other unique features. As a result of their potential pathogenicity and antibiotic resistance, CoNS must be monitored as an emerging pathogen associated with acne infections. To the best of our knowledge, this is the first report to isolate, identify, and correlate S. warneri with severe acne infections among Egyptian patients using WGS and bioinformatic analysis.
Collapse
Affiliation(s)
- Mai A. Amer
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Manal M. Darwish
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
- Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Noha S. Soliman
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba M. Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| |
Collapse
|
6
|
Tang T, Xu Y, Wang L, Zhang P. In vitro acne disease model from inertial focusing effect for studying the interactions between sebocyte glands and macrophages. Biotechnol J 2023; 18:e2300108. [PMID: 37477791 DOI: 10.1002/biot.202300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Acne is one of the most widespread skin diseases. The acne mechanism is intricate, involving interactions between different types of cells (i.e., sebocytes and macrophages). One of the challenges in studying the mechanism of acne is that current in vitro culture methods cannot reflect the 3D cellular environment in the tissue, including inflammatory stimuli and cellular interactions especially the interactions between sebocytes and immune cells. To solve this issue, we generated an in vitro acne disease model consisting of 3D artificial sebocyte glands and macrophages through the inertial focusing effect method. Using this model, we produced a controllable inflammatory environment similar to the acne pathogenetic process in the skin. The 3D artificial sebocyte glands and macrophages can be separated for analyzing each cell type, assisting the in-depth understanding of the acne mechanism. This study indicates that proinflammatory macrophages promote lipid accumulation and induce oxidative stress in sebocyte glands. Additionally, in an inflammatory environment, sebocyte glands induce macrophage polarization into the M1 phenotype. Employing this model for drug screening, we also demonstrated that, cannabidiol (CBD), a clinically investigated drug, is effective in restoring lipid accumulation, oxidative stress, inflammatory cytokines and macrophage polarization in the acne disease.
Collapse
Affiliation(s)
- Tan Tang
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, Beijing, China
| | - Ye Xu
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, Beijing, China
- Center of Soft Matter Physics and Its Applications, Beihang University, Beijing, China
| | - Lelin Wang
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, Beijing, China
| | - Peipei Zhang
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, Beijing, China
| |
Collapse
|
7
|
Luhaibi DK, Ali HHM, Al-Ani I, Shalan N, Al-Akayleh F, Al-Remawi M, Nasereddin J, Qinna NA, Al-Adham I, Khanfar M. The Formulation and Evaluation of Deep Eutectic Vehicles for the Topical Delivery of Azelaic Acid for Acne Treatment. Molecules 2023; 28:6927. [PMID: 37836770 PMCID: PMC10574101 DOI: 10.3390/molecules28196927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The current work was aimed at the development of a topical drug delivery system for azelaic acid (AzA) for acne treatment. The systems tested for this purpose were deep eutectic systems (DESs) prepared from choline chloride (CC), malonic acid (MA), and PEG 400. Three CC to MA and eight different MA: CC: PEG400 ratios were tested. The physical appearance of the tested formulations ranged from solid and liquid to semisolid. Only those that showed liquid formulations of suitable viscosity were considered for further investigations. A eutectic mixture made from MA: CC: PEG400 1:1:6 (MCP 116) showed the best characteristics in terms of viscosity, contact angle, spreadability, partition coefficient, and in vitro diffusion. Moreover, the MCP116 showed close rheological properties to the commercially available market lead acne treatment product (Skinorin®). In addition, the formula showed synergistic antibacterial activity between the MA moiety of the DES and the AzA. In vitro diffusion studies using polyamide membranes demonstrated superior diffusion of MCP116 over the pure drug and the commercial product. No signs of skin irritation and edema were observed when MCP116 was applied to rabbit skin. Additionally, the MCP116 was found to be, physically and chemically, highly stable at 4, 25, and 40 °C for a one-month stability study.
Collapse
Affiliation(s)
- Dhari K. Luhaibi
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman 19328, Jordan; (D.K.L.); (N.S.)
| | - Hiba H. Mohammed Ali
- Department of Pharmaceutics, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Kurdistan Region, Iraq;
| | - Israa Al-Ani
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman 19328, Jordan; (D.K.L.); (N.S.)
| | - Naeem Shalan
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman 19328, Jordan; (D.K.L.); (N.S.)
| | - Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan; (F.A.-A.); (M.A.-R.); (N.A.Q.); (I.A.-A.)
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan; (F.A.-A.); (M.A.-R.); (N.A.Q.); (I.A.-A.)
| | - Jehad Nasereddin
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Zarqa University, Zarqa 13110, Jordan;
| | - Nidal A. Qinna
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan; (F.A.-A.); (M.A.-R.); (N.A.Q.); (I.A.-A.)
| | - Isi Al-Adham
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan; (F.A.-A.); (M.A.-R.); (N.A.Q.); (I.A.-A.)
| | - Mai Khanfar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan;
| |
Collapse
|
8
|
Ruchiatan K, Rizqandaru T, Satjamanggala PR, Tache N, Cahyadi AI, Rezano A, Gunawan H, Sutedja EK, Dwiyana RF, Hidayah RMN, Achdiat PA, Sutedja E, Suwarsa O, Hindritiani R. Characteristics of Biofilm-Forming Ability and Antibiotic Resistance of Cutibacterium acnes and Staphylococcus epidermidis from Acne Vulgaris Patients. Clin Cosmet Investig Dermatol 2023; 16:2457-2465. [PMID: 37719934 PMCID: PMC10503511 DOI: 10.2147/ccid.s422486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023]
Abstract
Introduction Acne vulgaris (AV) is a common and chronic disorder of the pilosebaceous unit and has a multifactorial pathology, including activities of Cutibacterium acnes (C. acnes) and Staphylococcus epidermidis (S. epidermidis). Antibiotic resistance has become a major concern in dermatology daily practice, and the ability of biofilm formation by both bacteria is suggested to increase antibiotic resistance in acne. Purpose Our aim was to analyze the comparison of antibiotic resistance between biofilm-forming (BF) and non-biofilm-forming (NBF) strains of C. acnes and S. epidermidis towards seven antibiotics commonly used for acne. Methods This is a cross-sectional analytical study involving 60 patients with AV. Samples were obtained from closed comedones on the forehead using the standardized skin surface biopsy (SSSB) method at the Cosmetic Dermatology Clinic Dr. Hasan Sadikin in Bandung, Indonesia. Isolates were cultured and identified before undergoing the biofilm-forming test using the tissue culture plate method. Antibiotic susceptibility testing for each antibiotic was then performed using the disc diffusion method. Results The incidence of antibiotic resistance to clindamycin in BF and NBF C. acnes isolates was 54.5% (p=1.00), while in BF and NBF S. epidermidis isolates, it was 54.5% and 45.5% respectively (p=0.67). The incidence of antibiotic resistance to erythromycin and azithromycin in BF and NBF C. acnes isolates was 54.5% and 63.6% respectively (p=1.00), whereas for S. epidermidis BF and NBF isolates, it was 54.5% (p=1.00). There was no resistance observed to tetracycline, doxycycline, levofloxacin, and cotrimoxazole in all groups. Conclusion There were no significant differences in resistance against seven antibiotics between the C. acnes and S. epidermidis in BF and NBF groups. Furthermore, although statistically not significant, some resistances were observed against clindamycin, erythromycin, and azithromycin. Consequently, the use of these three antibiotics should be judiciously regulated.
Collapse
Affiliation(s)
- Kartika Ruchiatan
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
- Doctorate Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Trustia Rizqandaru
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Panji Respati Satjamanggala
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Nisrina Tache
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Adi Imam Cahyadi
- Division of Microbiology, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Andri Rezano
- Division of Cell Biology, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
- Graduate School of Biomedical Sciences Master Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Hendra Gunawan
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Eva Krishna Sutedja
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Reiva Farah Dwiyana
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Risa Miliawati Nurul Hidayah
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Pati Aji Achdiat
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Endang Sutedja
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Oki Suwarsa
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Reti Hindritiani
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| |
Collapse
|
9
|
Kim SK, Lee M, Lee YQ, Lee HJ, Rho M, Kim Y, Seo JY, Youn SH, Hwang SJ, Kang NG, Lee CH, Park SY, Lee DY. Genome-scale metabolic modeling and in silico analysis of opportunistic skin pathogen Cutibacterium acnes. Front Cell Infect Microbiol 2023; 13:1099314. [PMID: 37520435 PMCID: PMC10374032 DOI: 10.3389/fcimb.2023.1099314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Cutibacterium acnes, one of the most abundant skin microbes found in the sebaceous gland, is known to contribute to the development of acne vulgaris when its strains become imbalanced. The current limitations of acne treatment using antibiotics have caused an urgent need to develop a systematic strategy for selectively targeting C. acnes, which can be achieved by characterizing their cellular behaviors under various skin environments. To this end, we developed a genome-scale metabolic model (GEM) of virulent C. acnes, iCA843, based on the genome information of a relevant strain from ribotype 5 to comprehensively understand the pathogenic traits of C. acnes in the skin environment. We validated the model qualitatively by demonstrating its accuracy prediction of propionate and acetate production patterns, which were consistent with experimental observations. Additionally, we identified unique biosynthetic pathways for short-chain fatty acids in C. acnes compared to other GEMs of acne-inducing skin pathogens. By conducting constraint-based flux analysis under endogenous carbon sources in human skin, we discovered that the Wood-Werkman cycle is highly activated under acnes-associated skin condition for the regeneration of NAD, resulting in enhanced propionate production. Finally, we proposed potential anti-C. acnes targets by using the model-guided systematic framework based on gene essentiality analysis and protein sequence similarity search with abundant skin microbiome taxa.
Collapse
Affiliation(s)
- Su-Kyung Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Minouk Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Yi Qing Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Hyun Jun Lee
- Department of Biomedical Informatics, Hanyang University, Seoul, Republic of Korea
| | - Mina Rho
- Department of Biomedical Informatics, Hanyang University, Seoul, Republic of Korea
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
| | - Yunkwan Kim
- R&D Center, LG Household & Healthcare (LG H&H), Seoul, Republic of Korea
| | - Jung Yeon Seo
- R&D Center, LG Household & Healthcare (LG H&H), Seoul, Republic of Korea
| | - Sung Hun Youn
- R&D Center, LG Household & Healthcare (LG H&H), Seoul, Republic of Korea
| | - Seung Jin Hwang
- R&D Center, LG Household & Healthcare (LG H&H), Seoul, Republic of Korea
| | - Nae Gyu Kang
- R&D Center, LG Household & Healthcare (LG H&H), Seoul, Republic of Korea
| | - Choong-Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| |
Collapse
|
10
|
Lousada MB, Edelkamp J, Lachnit T, Fehrholz M, Jimenez F, Paus R. Laser capture microdissection as a method for investigating the human hair follicle microbiome reveals region-specific differences in the bacteriome profile. BMC Res Notes 2023; 16:29. [PMID: 36879274 PMCID: PMC9987047 DOI: 10.1186/s13104-023-06302-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVE Human hair follicles (HFs) are populated by a rich and diverse microbiome, traditionally evaluated by methods that inadvertently sample the skin microbiome and/or miss microbiota located in deeper HF regions. Thereby, these methods capture the human HF microbiome in a skewed and incomplete manner. This pilot study aimed to use laser-capture microdissection of human scalp HFs, coupled with 16S rRNA gene sequencing to sample the HF microbiome and overcome these methodological limitations. RESULTS HFs were laser-capture microdissected (LCM) into three anatomically distinct regions. All main known core HF bacterial colonisers, including Cutibacterium, Corynebacterium and Staphylococcus, were identified, in all three HF regions. Interestingly, region-specific variations in α-diversity and microbial abundance of the core microbiome genera and Reyranella were identified, suggestive of variations in microbiologically relevant microenvironment characteristics. This pilot study therefore shows that LCM-coupled with metagenomics is a powerful tool for analysing the microbiome of defined biological niches. Refining and complementing this method with broader metagenomic techniques will facilitate the mapping of dysbiotic events associated with HF diseases and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Marta B Lousada
- Monasterium Laboratory, Skin&Hair Research, Muenster, Germany. .,Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany.
| | - J Edelkamp
- Monasterium Laboratory, Skin&Hair Research, Muenster, Germany
| | - T Lachnit
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - M Fehrholz
- Monasterium Laboratory, Skin&Hair Research, Muenster, Germany
| | - F Jimenez
- Mediteknia Skin & Hair Lab, Las Palmas de Gran Canaria, Spain.,Medical Pathology Group, IUIBS, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - R Paus
- Monasterium Laboratory, Skin&Hair Research, Muenster, Germany.,Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,CUTANEON Skin & Hair Innovations, Hamburg, Germany
| |
Collapse
|
11
|
Ivanova K, Ramon E, Ivanova A, Sanchez-Gomez S, Tzanov T. Bio-Based Nano-Enabled Cosmetic Formulations for the Treatment of Cutibacterium acnes-Associated Skin Infections. Antioxidants (Basel) 2023; 12:antiox12020432. [PMID: 36829991 PMCID: PMC9952472 DOI: 10.3390/antiox12020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Acne is a common chronic skin condition with serious physical and psychosocial consequences. In some cases, the appearance of pimples, whiteheads, or blackheads on the face, neck, and back may lead to scarring, disfiguring, depression, frustration, and anxiety in patients. Current treatments rely on antibiotics to eradicate Cutibacterium acnes (C. acnes), the bacterium responsible for this skin condition. However, these approaches do not scavenge the reactive oxidative species (ROS) generated during disease development and raise concerns about the increase in antimicrobial resistance. In this study, an environmentally friendly and cost-effective self-assembly nanoencapsulation technology based on zein, a bio-based hydrophobic protein, was employed to produce multifunctional essential oil (EO)-loaded nanocapsules (NCs) with superior antioxidant and bactericidal activity toward C. acnes. The NCs displayed "smart" release of the active cargo only under the conditions that were conducive to acne proliferation on skin. Once incorporated into creams, the EO-loaded NCs led to a complete inhibition of C. acnes and demonstrated the capacity to scavenge ROS, thus preventing damage to human skin cells. The in vitro permeation studies revealed that the nanoformulated EO was able to penetrate through the epidermis, indicating its potential for the treatment of skin diseases, such as acne.
Collapse
Affiliation(s)
- Kristina Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | - Eva Ramon
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | - Aleksandra Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | | | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrassa, Spain
- Correspondence:
| |
Collapse
|
12
|
Kurrimboccus F, Orchard A, Danckwerts MP, van Vuuren S. Antimicrobial Formulation of Chrysopogon zizanioides Essential Oil in an Emulsified Lotion for Acne. PLANTA MEDICA 2022; 88:1256-1262. [PMID: 34963181 DOI: 10.1055/a-1699-3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acne is a skin condition arising from excess sebum production and microbial overgrowth within the pilosebaceous unit. Several commercial essential oils have shown promising activity against acne-related pathogens. Due to their volatility and thermal instability, the formulation of essential oils into commercial products remains a pharmaceutical challenge. Thus, this study aimed to develop a viable anti-acne topical treatment as an oil-in-water emulsified lotion to overcome these challenges. Chrysopogon zizanioides (vetiver) displayed noteworthy antimicrobial activity with a mean minimum inhibitory concentration of 0.14 mg/mL against Cutibacterium acnes, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus pyogenes. Emulsified lotions containing C. zizanioides were developed through the hydrophilic-lipophilic balance approach. At tested hydrophilic-lipophilic balance values of 8, 9, and 10, C. zizanioides emulsified lotions displayed maximum stability at hydrophilic-lipophilic balance 9 with a minimum change in mean droplet size and polydispersity index of 20.61 and 33.33%, respectively, over 84 days. The C. zizanioides emulsified lotion at optimum hydrophilic-lipophilic balance 9 completely inhibited the growth of C. acnes and killed S. aureus, S. epidermidis, and S. pyogenes within 24 h. Additionally, the lotion retained antimicrobial activity against these test micro-organisms over the 84-day stability test period. Thus, the C. zizanioides emulsified lotion demonstrated physical stability and antimicrobial efficiency, making it an ideal natural product anti-acne treatment.
Collapse
Affiliation(s)
- Fadilah Kurrimboccus
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ané Orchard
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michael Paul Danckwerts
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sandy van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
13
|
Beirne C, McCann E, McDowell A, Miliotis G. Genetic determinants of antimicrobial resistance in three multi-drug resistant strains of Cutibacterium acnes isolated from patients with acne: a predictive in silico study. Access Microbiol 2022; 4:acmi000404. [PMID: 36133174 PMCID: PMC9484663 DOI: 10.1099/acmi.0.000404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/06/2022] [Indexed: 01/09/2023] Open
Abstract
Objectives. Using available whole genome data, the objective of this in silico study was to identify genetic mechanisms that could explain the antimicrobial resistance profile of three multi-drug resistant (MDR) strains (CA17, CA51, CA39) of the skin bacterium
Cutibacterium acnes
previously recovered from patients with acne. In particular, we were interested in detecting novel genetic determinants associated with resistance to fluoroquinolone and macrolide antibiotics that could then be confirmed experimentally.
Methods. A range of open source bioinformatics tools were used to ‘mine’ genetic determinants of antimicrobial resistance and plasmid borne contigs, and to characterise the phylogenetic diversity of the MDR strains.
Results. As probable mechanisms of resistance to fluoroquinolones, we identified a previously described resistance associated allelic variant of the gyrA gene with a ‘deleterious' S101L mutation in type IA1 strains CA51 (ST1) and CA39 (ST1), as well as a novel E761R ‘deleterious’ mutation in the type II strain CA17 (ST153). A distinct genomic sequence of the efflux protein YfmO which is potentially associated with resistance to MLSB antibiotics was also present in CA17; homologues in CA51, CA39, and other strains of
Cutibacterium acnes
, were also found but differed in amino acid content. Strikingly, in CA17 we also identified a circular 2.7 kb non-conjugative plasmid (designated pCA17) that closely resembled a 4.8 kb plasmid (pYU39) from the MDR
Salmonella enterica
strain YU39.
Conclusions. This study has provided a detailed explanation of potential genetic determinants for MDR in the
Cutibacterium acnes
strains CA17, CA39 and CA51. Further laboratory investigations will be required to validate these in silico results, especially in relation to pCA17.
Collapse
Affiliation(s)
- Catriona Beirne
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Emily McCann
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Andrew McDowell
- Nutrition Innovation Centre for Food and Health, (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Ireland
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| |
Collapse
|
14
|
Qadir A, Ullah SNMN, Gupta DK, Khan N. Phytoconstituents loaded nanomedicines for the management of Acne. J Cosmet Dermatol 2022; 21:3240-3255. [DOI: 10.1111/jocd.14999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Abdul Qadir
- Department of Pharmaceutics School of pharmaceutical education and research Jamia Hamdard New Delhi 110062
- Department of Research and Developments Herbalfarm Health care Private Limited New Delhi 110020
| | | | - Dipak Kumar Gupta
- Department of Pharmaceutics School of pharmaceutical education and research Jamia Hamdard New Delhi 110062
| | - Nausheen Khan
- Department of Pharmacognosy and Phytochemistry school of pharmaceutical education and research Jamia Hamdard New Delhi 110062
| |
Collapse
|
15
|
Prediction of Antibacterial Peptides against Propionibacterium acnes from the Peptidomes of Achatina fulica Mucus Fractions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072290. [PMID: 35408688 PMCID: PMC9000865 DOI: 10.3390/molecules27072290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022]
Abstract
Acne vulgaris is a common skin disease mainly caused by the Gram-positive pathogenic bacterium, Propionibacterium acnes. This bacterium stimulates the inflammation process in human sebaceous glands. The giant African snail (Achatina fulica) is an alien species that rapidly reproduces and seriously damages agricultural products in Thailand. There were several research reports on the medical and pharmaceutical benefits of these snail mucus peptides and proteins. This study aimed to in silico predict multifunctional bioactive peptides from A. fulica mucus peptidome using bioinformatic tools for the determination of antimicrobial (iAMPpred), anti-biofilm (dPABBs), cytotoxic (ToxinPred) and cell-membrane-penetrating (CPPpred) peptides. Three candidate peptides with the highest predictive score were selected and re-designed/modified to improve the required activities. Structural and physicochemical properties of six anti-P. acnes (APA) peptide candidates were performed using the PEP-FOLD3 program and the four previous tools. All candidates had a random coiled structure and were named APAP-1 ori, APAP-2 ori, APAP-3 ori, APAP-1 mod, APAP-2 mod, and APAP-3 mod. To validate the APA activity, these peptide candidates were synthesized and tested against six isolates of P. acnes. The modified APA peptides showed high APA activity on three isolates. Therefore, our biomimetic mucus peptides could be useful for preventing acne vulgaris and further examined on other activities important to medical and pharmaceutical applications.
Collapse
|
16
|
The Role of Skin Immune System in Acne. J Clin Med 2022; 11:jcm11061579. [PMID: 35329904 PMCID: PMC8949596 DOI: 10.3390/jcm11061579] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 01/05/2023] Open
Abstract
Acne vulgaris is a skin disease that often occurs in adolescence and in young adulthood. The main pathogenic factors are hyperkeratinization, obstruction of sebaceous glands, stimulation of sebaceous gland secretion by androgens, and bacterial colonization of sebaceous units by Cutibacterium acnes, which promotes inflammation. Little is known about the role of skin immune cells in the development of acne lesions. The aim of the study was to try to understand the role of skin immune cells in the course of acne. Recent studies have shown that there are at least four major pathways by which Cutibacterium acnes interacts with the innate immune system to induce inflammation: through TLRs, activating inflammasomes, inducing the production of matrix metalloproteinases (MMPs), and stimulating antimicrobial peptide (AMP) activity. Cells of adaptive immune response, mainly Th1 and Th17 lymphocytes, also play an important role in the pathogenesis of acne. It is worth emphasizing that understanding the role of the skin’s immune cells in the pathogenesis of acne may, in the future, contribute to the application of modern therapeutic strategies that would avoid addiction to antibiotics, which would alleviate the spectrum of resistance that is now evident and a current threat.
Collapse
|
17
|
Lee H, Hwang D, Lee M, Lee J, Cho S, Kim TJ, Kim HS. Micro-Current Stimulation Suppresses Inflammatory Responses in Peptidoglycan-Treated Raw 264.7 Macrophages and Propionibacterium acnes-Induced Skin Inflammation via TLR2/NF-κB Signaling Pathway. Int J Mol Sci 2022; 23:ijms23052508. [PMID: 35269651 PMCID: PMC8910224 DOI: 10.3390/ijms23052508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Acne is a common inflammatory disorder of the human skin and a multifactorial disease caused by the sebaceous gland and Propionibacterium acnes (P. acnes). This study aimed to evaluate the anti-inflammatory effect of micro-current stimulation (MC) on peptidoglycan (PGN)-treated raw 264.7 macrophages and P. acnes-induced skin inflammation. To specify the intensity with anti-inflammatory effects, nitric oxide (NO) production was compared according to various levels of MC. As the lowest NO production was shown at an intensity of 50 μA, subsequent experiments used this intensity. The changes of expression of the proteins related to TLR2/NF-κB signaling were examined by immunoblotting. Also, immunofluorescence analysis was performed for observing NF-κB p65 localization. All of the expression levels of proteins regarding TLR2/NF-κB signaling were decreased by the application of MC. Moreover, the application of MC to PGN-treated raw 264.7 cells showed a significant decrease in the amount of nuclear p65-protein. In the case of animal models with P. acnes-induced skin inflammation, various pro-inflammatory cytokines and mediators significantly decreased in MC-applied mice. In particular, the concentration of IL-1β in serum decreased, and the area of acne lesions, decreased from the histological analysis. We suggest for the first time that MC can be a novel treatment for acne.
Collapse
Affiliation(s)
- Hana Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (H.L.); (D.H.); (M.L.)
| | - Donghyun Hwang
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (H.L.); (D.H.); (M.L.)
| | - Minjoo Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (H.L.); (D.H.); (M.L.)
| | - Jinho Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (J.L.); (T.-J.K.)
| | | | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (J.L.); (T.-J.K.)
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (H.L.); (D.H.); (M.L.)
- Correspondence: ; Tel.: +82-33-760-2913
| |
Collapse
|
18
|
Kashani-Asadi-Jafari F, Hadjizadeh A. Niosome-encapsulated Doxycycline hyclate for Potentiation of Acne Therapy: Formulation and Characterization. Pharm Nanotechnol 2022; 10:56-68. [PMID: 35209832 DOI: 10.2174/2211738510666220224103406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Acne is the pilosebaceous units' disorder. The most important cause of acne is the colonization of bacteria in the follicles. Among antibiotics, doxycycline hyclate kills a wide range of bacteria. OBJECTIVES To prevent oral administration's side effects, overcome the barriers of conventional topical treatment, and improve the therapeutic effectiveness, this drug was loaded into niosomal nanocarriers for topical application. METHODS Doxycycline hyclate was loaded into four niosomal formulations prepared by the thin-film hydration method with different percentages of constituents. Drug-containing niosomal systems were evaluated for morphological properties via scanning electron microscopy, particle size, drug entrapment efficiency, zeta potential, in vitro drug release, physical stability after 60 days, in vitro drug permeation through rat skin, in vitro drug deposition in rat skin, toxicity on human dermal fibroblasts (HDF) by MTT method after 72 hours, and antibacterial properties against the main acne-causing bacteria via antibiogram test. RESULTS The best formulation had the appropriate particle size of 362.88 ± 13.05 nm to target follicles, entrapment efficiency of 56.3 ± 2.1%, the zeta potential of - 24.46±1.39 mV, in vitro drug release of 54.93 ± 1.99% after 32 hours, and the lowest permeation of the drug through the rat skin among all other formulations. Improved cell viability, increased antibacterial activity, and an approximately three-fold increase in drug deposition were the optimal niosomal formulation features relative to the free drug. CONCLUSION This study demonstrated the ability of nano-niosomes containing doxycycline hyclate to treat skin acne compared with the free drug.
Collapse
Affiliation(s)
| | - Afra Hadjizadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran
| |
Collapse
|
19
|
Arpa MD, Seçen İM, Erim ÜC, Hoş A, Üstündağ Okur N. Azelaic acid loaded chitosan and HPMC based hydrogels for treatment of acne: formulation, characterization, in vitro- ex vivo evaluation. Pharm Dev Technol 2022; 27:268-281. [PMID: 35112652 DOI: 10.1080/10837450.2022.2038620] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, hydrogels containing azelaic acid were developed using chitosan or HPMC (1-7%) for local treatment of acne vulgaris. Physicochemical properties such as viscosity, pH and mechanical properties were evaluated. In vitro release and ex vivo permeability studies were performed using Franz diffusion cell system. The pH of the hydrogels were highly compatible with the skin pH and varied between 4.38-5.84. The cumulative release percentages of the hydrogels at the end of 6 hours were 65-78%, whereas the marketed product yielded 50% drug release. According to the ex vivo permeability results, azelaic acid accumulated in the skin were found to be 9.38 ± 0.65% (marketed cream), 19.53 ± 1.06% (K3), 10.96 ± 1.91% (H6). The antiacne studies with Cutibacterium acnes revealed that K3 (29.45 ± 0.95) and H6 (32.35 ± 0.15) had higher inhibition zones compared to the marketed cream (24.50 ± 0.90). Additionally, the gels were found to be highly stable as a result of the stability studies for 6 months. Among the hydrogels that were prepared based on experimental findings, K3 (3% Chitosan) and H6 (6% HPMC) represented elevated in vitro release profile, higher permeability and increased antiacne activity. The findings of this research suggest that the developed hydrogels might be an alternative to the marketed product.
Collapse
Affiliation(s)
- Muhammet Davut Arpa
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Technology, 34085, Istanbul, Turkey
| | - İkbal Merve Seçen
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Technology, 34085, Istanbul, Turkey
| | - Ümit Can Erim
- Istanbul Medipol University, School of Pharmacy, Department of Analytical Chemistry, 34085, Istanbul, Turkey
| | - Ayşegül Hoş
- Istanbul Medipol University, School of Pharmacy, Department of Microbiology, 34085, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmaceutical Technology, 34668, Istanbul, Turkey
| |
Collapse
|
20
|
Nano-Therapeutics to Treat Acne Vulgaris. Indian J Microbiol 2022; 62:167-174. [DOI: 10.1007/s12088-022-01001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 11/05/2022] Open
|
21
|
Polat S, Trif M, Rusu A, Šimat V, Čagalj M, Alak G, Meral R, Özogul Y, Polat A, Özogul F. Recent advances in industrial applications of seaweeds. Crit Rev Food Sci Nutr 2021:1-30. [PMID: 34875930 DOI: 10.1080/10408398.2021.2010646] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Seaweeds have been generally utilized as food and alternative medicine in different countries. They are specifically used as a raw material for wine, cheese, soup, tea, noodles, etc. In addition, seaweeds are potentially good resources of protein, vitamins, minerals, carbohydrates, essential fatty acids and dietary fiber. The quality and quantity of biologically active compounds in seaweeds depend on season and harvesting period, seaweed geolocation as well as ecological factors. Seaweeds or their extracts have been studied as innovative sources for a variety of bioactive compounds such as polyunsaturated fatty acids, polyphenols, carrageenan, fucoidan, etc. These secondary metabolites have been shown to have antioxidant, antimicrobial, antiviral, anticancer, antidiabetic, anti-inflammatory, anti-aging, anti-obesity and anti-tumour properties. They have been used in pharmaceutical/medicine, and food industries since bioactive compounds from seaweeds are regarded as safe and natural. Therefore, this article provides up-to-date information on the applications of seaweed in different industries such as pharmaceutical, biomedical, cosmetics, dermatology and agriculture. Further studies on innovative extraction methods, safety issue and health-promoting properties should be reconsidered. Moreover, the details of the molecular mechanisms of seaweeds and their bioactive compounds for physiological activities are to be clearly elucidated.
Collapse
Affiliation(s)
- Sevim Polat
- Department of Marine Biology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, Syke, Germany
| | - Alexandru Rusu
- CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Raciye Meral
- Department of Food Engineering, Faculty of Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Yesim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Abdurahman Polat
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
22
|
Pukale S, Pandya A, Patravale V. Synthesis, characterization and topical application of novel bifunctional peptide metallodendrimer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Abstract
Acne vulgaris is a common chronic inflammatory skin disease. In the present study, we reported the anti-acne vulgaris effect of the Mesua ferrea (M. ferrea) flower extract. The extract was evaluated for three anti-acne-causing bacteria properties including Cutibacterium acnes (C. acnes), Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus). The results indicated that the M. ferrea flower extract could be considered as the bactericidal agent against S. epidermidis and S. aureus with MIC values of 0.78 and 6.25 mg mL−1 and MBC values of 1.56 and 12.50 mg mL−1 and the bacteriostatic agent against C. acnes with MIC and MBC values of 3.12 and 25.00 mg mL−1, respectively. The extract at a concentration of 25 µg mL−1 also presented potent anti-inflammatory activity with a significant decrease of nitric oxide (NO) and tumor necrosis factor (TNF)-α productions in RAW 264.7 macrophage cells stimulated by LPS. In addition, the extract showed moderate to weak anti-oxidative capacities against DPPH, ABTS, FRAP and NO assays and also showed weak anti-tyrosinase activity. M. ferrea flower extract may serve as the alternative natural anti-acne formulations.
Collapse
|
24
|
Ethosomes-based gel formulation of karanjin for treatment of acne vulgaris: in vitro investigations and preclinical assessment. 3 Biotech 2021; 11:456. [PMID: 34631355 DOI: 10.1007/s13205-021-02978-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 08/27/2021] [Indexed: 01/09/2023] Open
Abstract
The aim of the present study was to develop and characterize karanjin-loaded ethosomes-based gel formulation for enhanced topical delivery and effective therapy of skin acne. Karanjin-loaded ethosomes (K-ETH) presented a nanometric size of 140.87 ± 2.35 nm, entrapment of 71.41 ± 2.74% and enhanced permeation with 1.9 times increase in the flux and 2.4 times higher skin deposition compared to the hydro-ethanolic solution of karanjin. The DSC analysis confirmed successful entrapment of the karanjin within the ethosomes. The developed ethosomes were incorporated in the carbopol gel for adequate application on the skin surface. The ethosomal gel (K-EGF) also exhibited greater penetration in the rat skin as revealed by CLSM. The optimized K-EGF formulation was non-irritant to the skin as evident by Draize score test and histopathological examination. The highest zone of inhibition, 30.0 ± 1.52 mm and 36.22 ± 0.57 mm was produced by the K-EGF against Propionibacterium acnes and Staphylococcus epidermidis, respectively, indicating substantial antibacterial properties of the K-EGF. DPPH assay indicated its potent antioxidant effects. Substantial anti-inflammatory effects in the carrageenan-induced edema in the rat paw were evident with inhibition of rat paw edema by 66.66% and 70.37% upon application of K-EGF and standard anti-inflammatory agent, respectively. Anti-acne effects were also evident with K-EGF treatment with significant decrease in number and size of sebaceous gland units in dermis. Overall, the above findings vouch for a therapeutic opportunity to improve topical delivery of karanjin in acne treatment employing ethosomal gels as the promising carrier system. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02978-3.
Collapse
|
25
|
Soni K, Gour V, Agrawal P, Haider T, Kanwar IL, Bakshi A, Soni V. Carbopol-olive oil-based bigel drug delivery system of doxycycline hyclate for the treatment of acne. Drug Dev Ind Pharm 2021; 47:954-962. [PMID: 34280061 DOI: 10.1080/03639045.2021.1957916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The objective of this study was to prepare and evaluate the doxycycline hyclate containing bigel for the effective treatment of acne. METHODS Bigels are biphasic systems formed by water-based hydrogels and oil-based organogel. Carbopol 940 was used to prepare the hydrogel phase, whereas Span-60 and olive oil for the oleogel phase. RESULTS The microstructure of bigel confirmed the oil in water type emulsion formation. The average droplet size of formulations was found 15-50 µm, and a bell-shaped droplet distribution curve, rheological, or viscosity studies suggested that the consistency and stability of bigel decrease with high organogel concentration. Three formulations (F1, F2, and F3) of the different ratios of hydrogel:oleogel (60:40, 70:30, and 80:20) were prepared in which F1 was less stable compared to F2 and F3. The drug content of F2 and F3 was respectively 79.94 and 71.33%. Formulation F2 was found more effective as compared to F3 based on in vitro drug release studies. Bigel also showed better results during in vivo studies at the rabbit ear model, which reduce acne diameter up to 1.10 mm from 4.9 mm while gel reduced it up to 1.20 mm.
Collapse
Affiliation(s)
- Kumud Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Vishal Gour
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Poornima Agrawal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Indu Lata Kanwar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Avijit Bakshi
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| |
Collapse
|
26
|
Espinoza-Monje M, Campos J, Alvarez Villamil E, Jerez A, Dentice Maidana S, Elean M, Salva S, Kitazawa H, Villena J, García-Cancino A. Characterization of Weissella viridescens UCO-SMC3 as a Potential Probiotic for the Skin: Its Beneficial Role in the Pathogenesis of Acne Vulgaris. Microorganisms 2021; 9:1486. [PMID: 34361921 PMCID: PMC8307422 DOI: 10.3390/microorganisms9071486] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022] Open
Abstract
Previously, we isolated lactic acid bacteria from the slime of the garden snail Helix aspersa Müller and selected Weissella viridescens UCO-SMC3 because of its ability to inhibit in vitro the growth of the skin-associated pathogen Cutibacterium acnes. The present study aimed to characterize the antimicrobial and immunomodulatory properties of W. viridescens UCO-SMC3 and to demonstrate its beneficial effect in the treatment of acne vulgaris. Our in vitro studies showed that the UCO-SMC3 strain resists adverse gastrointestinal conditions, inhibits the growth of clinical isolates of C. acnes, and reduces the adhesion of the pathogen to keratinocytes. Furthermore, in vivo studies in a mice model of C. acnes infection demonstrated that W. viridescens UCO-SMC3 beneficially modulates the immune response against the skin pathogen. Both the oral and topical administration of the UCO-SCM3 strain was capable of reducing the replication of C. acnes in skin lesions and beneficially modulating the inflammatory response. Of note, orally administered W. viridescens UCO-SMC3 induced more remarkable changes in the immune response to C. acnes than the topical treatment. However, the topical administration of W. viridescens UCO-SMC3 was more efficient than the oral treatment to reduce pathogen bacterial loads in the skin, and effects probably related to its ability to inhibit and antagonize the adhesion of C. acnes. Furthermore, a pilot study in acne volunteers demonstrated the capacity of a facial cream containing the UCO-SMC3 strain to reduce acne lesions. The results presented here encourage further mechanistic and clinical investigations to characterize W. viridescens UCO-SMC3 as a probiotic for acne vulgaris treatment.
Collapse
Affiliation(s)
- Marcela Espinoza-Monje
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| | - Jorge Campos
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| | - Eduardo Alvarez Villamil
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Alonso Jerez
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| | - Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Apolinaria García-Cancino
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| |
Collapse
|
27
|
Golonka I, Greber KE, Oleksy-Wawrzyniak M, Paleczny J, Dryś A, Junka A, Sawicki W, Musiał W. Antimicrobial and Antioxidative Activity of Newly Synthesized Peptides Absorbed into Bacterial Cellulose Carrier against Acne vulgaris. Int J Mol Sci 2021; 22:ijms22147466. [PMID: 34299085 PMCID: PMC8306634 DOI: 10.3390/ijms22147466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
The ongoing search for effective treatment of Acne vulgaris is concentrated, i.a., on natural peptides with antimicrobial properties. The aim of this work was the development of new amino acid derivatives with potential activity on dermal infections against selected microorganisms, including the facultative anaerobe C. acne. The peptides P1–P6 were synthesized via Fmoc solid phase peptide synthesis using Rink amide AM resin, analyzed by RP-HPLC-MS, FTIR, DPPH radical scavenging activity, and evaluated against C. acne and S. aureus, both deposited and non-deposited in BC. Peptides P1–P6 presented a lack of cytotoxicity, antimicrobial activity, or antioxidative properties correlated with selected structural properties. P2 and P4–P6 sorption in BC resulted in variable data, i.a., confirming the prospective topical application of these peptides in a BC carrier.
Collapse
Affiliation(s)
- Iwona Golonka
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (I.G.); (A.D.)
| | - Katarzyna E. Greber
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (K.E.G.); (W.S.)
| | - Monika Oleksy-Wawrzyniak
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (M.O.-W.); (J.P.); (A.J.)
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (M.O.-W.); (J.P.); (A.J.)
| | - Andrzej Dryś
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (I.G.); (A.D.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (M.O.-W.); (J.P.); (A.J.)
| | - Wiesław Sawicki
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (K.E.G.); (W.S.)
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (I.G.); (A.D.)
- Correspondence: ; Tel.: +48-717-840-231
| |
Collapse
|
28
|
Makky EA, AlMatar M, Mahmood MH, Wen KX, Qi TBG. In-vitro antioxidant and antimicrobial studies of ethanolic plant extracts of P. granatum, O. stamineus, A. bilimbi, M. nigra, and E. longifolia. Curr Pharm Biotechnol 2021; 23:1284-1312. [PMID: 34132178 DOI: 10.2174/1389201022666210615113854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/17/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Acne is a serious skin problem that affects mostly adolescents. The topical and systematic therapies are effective but could lead to several side effects and the emergence of antibacterial resistance of the acne-causing bacteria. Plant resources have been used as traditional medicine for centuries and can be the alternative therapies for acne treatment. Antioxidants are compounds that can prevent or delay the oxidation of substrates when present in low concentrations. Antioxidants are usually involved in several mechanisms of action, including the inhibition of free radical generation, enhancement of the scavenging capacity against free radicals, and reducing power. METHODS In this study, three antioxidant assays, DPPH, ABTS, and FRAP were used to evaluate the antioxidant properties of the ethanolic extracts of five plant extracts (A. bilimbi, M. nigra, O. stamineus, P. granatum, and E. longifolia). Furthermore, the study aimed to identify the most potent plant extracts and their combination which could provide better antibacterial activities against acne-causing bacteria. Ethanolic extracts of A. bilimbi, O. stamineus, M. nigra, P. granatum, and E. longifolia were prepared by the Ultrasound-Assisted Extraction (UAE) technique. Their phytochemical contents were screened using several biochemical tests and GC-MS analysis. RESULTS The study found that only the extracts of P. granatum and O. stamineus exhibited good antioxidant activity using DPPH assay (82.37% and 81.72% μg/mL respectively) and in ABTS assay (87.25% and 88.85% μg/mL respectively); their observed FRAP values were 115.1667 ± 5.6182 and 41.3860 ± 2.4583 μg/mL, respectively. The preliminary antibacterial screening using the disc diffusion method showed that P. granatum and O. stamineus were the most potent extracts; hence, both extracts were combined at the ratios of 1:1, 1:2, and 2:1 to a total concentration of 400 mg/mL. DISCUSSION The antibacterial efficacy of the mixture was studied using the disc diffusion method and the MIC value was determined. Both S. aureus and S. epidermidis were sensitive to all the individual and combined extracts but C. acnes was resistant to all of them. CONCLUSION The antibacterial activity of the combined extracts against S. aureus showed a synergistic effect at the ratio of 2:1 with the inhibitory zone diameter of 18.00 ± 1.00 mm and MIC value of 12.5 mg/mL; however, antagonistic effects were observed against S. epidermidis while no effect was noted against C. acnes. Therefore, all the selected plant extracts exhibited antibacterial activities against certain bacteria and their effects may be enhanced by combining the plant extracts.
Collapse
Affiliation(s)
- Essam A Makky
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Manaf AlMatar
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Mahmood H Mahmood
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Khoo Xu Wen
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Tan Boon Gaik Qi
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| |
Collapse
|
29
|
Activation of Deoxyribonuclease I by Nicotinamide as a New Strategy to Attenuate Tetracycline-Resistant Biofilms of Cutibacterium acnes. Pharmaceutics 2021; 13:pharmaceutics13060819. [PMID: 34072745 PMCID: PMC8228415 DOI: 10.3390/pharmaceutics13060819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Biofilms of Cutibacterium (C.) acnes (formerly Propionibacterium acnes) are responsible for the persistence and antibiotic resistance of acne vulgaris. In addition to the standard treatments for acne vulgaris, a common adjunctive treatment is the topical administration of nicotinamide (NAM). However, the effects of NAM on biofilms of C. acnes have never been explored. This study comprehensively investigates the effects of NAM against biofilms of C. acnes using in vitro and in vivo approaches. The results showed that NAM potentiated the efficacy of suboptimal dosing of tetracycline against C. acnes. Moreover, NAM alone decreased the formation and increased the degradation of biofilms in C. acnes. The antibiofilm effect of NAM against C. acnes was further enhanced in combination with deoxyribonuclease (DNase) I, an enzyme with known antibiofilm properties. The computational molecular docking, surface plasmon resonance analysis, and enzymatic kinetic assay demonstrated that NAM binds to DNase I and accelerated its reaction. In conclusion, NAM activates DNase I to attenuate biofilms of C. acnes. This offers valuable insights into the strategies against biofilms that are worth elaborating on in other biofilm-related chronic cutaneous infections in the future.
Collapse
|
30
|
Suppressive Effect of Two Cucurbitane-Type Triterpenoids from Momordica charantia on Cutibacterium acnes-Induced Inflammatory Responses in Human THP-1 Monocytic Cell and Mouse Models. Molecules 2021; 26:molecules26030579. [PMID: 33499307 PMCID: PMC7865737 DOI: 10.3390/molecules26030579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/07/2023] Open
Abstract
Cutibacterium acnes (formerly Propionibacterium acnes) is one of the major bacterial species responsible for acne vulgaris. Numerous bioactive compounds from Momordica charantia Linn. var. abbreviata Ser. have been isolated and examined for many years. In this study, we evaluated the suppressive effect of two cucurbitane-type triterpenoids, 5β,19-epoxycucurbita-6,23-dien-3β,19,25-triol (Kuguacin R; KR) and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (TCD) on live C. acnes-stimulated in vitro and in vivo inflammatory responses. Using human THP-1 monocytes, KR or TCD suppressed C. acnes-induced production of interleukin (IL)-1β, IL-6 and IL-8 at least above 56% or 45%, as well as gene expression of these three pro-inflammatory cytokines. However, a significantly strong inhibitory effect on production and expression of tumor necrosis factor (TNF)-α was not observed. Both cucurbitanes inhibited C. acnes-induced activation of the myeloid differentiation primary response 88 (MyD88) (up to 62%) and mitogen-activated protein kinases (MAPK) (at least 36%). Furthermore, TCD suppressed the expression of pro-caspase-1 and cleaved caspase-1 (p10). In a separate study, KR or TCD decreased C. acnes-stimulated mouse ear edema by ear thickness (20% or 14%), and reduced IL-1β-expressing leukocytes and neutrophils in mouse ears. We demonstrated that KR and TCD are potential anti-inflammatory agents for modulating C. acnes-induced inflammation in vitro and in vivo.
Collapse
|
31
|
Abbas S, Shanbhag T, Kothare A. Applications of bromelain from pineapple waste towards acne. Saudi J Biol Sci 2021; 28:1001-1009. [PMID: 33424393 PMCID: PMC7785454 DOI: 10.1016/j.sjbs.2020.11.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 11/29/2022] Open
Abstract
Bromelain is a proteolytic mixture obtained from pineapple (Ananas comosus (L. Merr)). It has diversified clinical properties and is used in alleviation of cancer, inflammation and oxidative stress. The current study focuses on extraction of bromelain from different parts of pineapple such as core, crown, fruit, peel and stem. The extracted enzyme was precipitated using ammonium sulphate at 40% saturation followed by dialysis. The fold of purification obtained for peel, crown, core, fruit and stem were found to be 1.948, 1.536, 1,027, 1.989, and 1.232 respectively. Bromelain activity was estimated using Azocasein assay, the highest activity was seen in peel at 3.417 U/μg. Antimicrobial activity and MIC of the bromelain purified and crude fractions was studied against the test organisms. Peel crude and purified extract exhibited highest inhibitory effect towards S. aureus followed by P. acne. The antioxidant activity was evaluated using DPPH antioxidant assay. IC50 values peel, fruit, stem and crown are found to be 13.158 μg/ml, 24.13 μg/ml and 23.33 μg/ml and 113.79 μg/ml respectively. The purified bromelain from peel, stem and crown was used to create a facewash formulation towards pathogens frequently associated with skin infections. Common skin pathogens like S. aureus and P. acne were found highly sensitive to its action. The aim of this study was to evaluate the potential of bromelain isolated from waste parts of pineapple in alleviation of acne due to its diverse antimicrobial properties.
Collapse
Affiliation(s)
- Sukaina Abbas
- Department of Life Sciences, Kishinchand Chellaram College, Churchgate, Mumbai, Maharasthra 400-020, India
| | - Tejashree Shanbhag
- Department of Life Sciences, Kishinchand Chellaram College, Churchgate, Mumbai, Maharasthra 400-020, India
| | - Amruta Kothare
- Department of Life Sciences, Kishinchand Chellaram College, Churchgate, Mumbai, Maharasthra 400-020, India
| |
Collapse
|
32
|
Yen H, Chang YT, Yee FJ, Huang YC. Metformin Therapy for Acne in Patients with Polycystic Ovary Syndrome: A Systematic Review and Meta-analysis. Am J Clin Dermatol 2021; 22:11-23. [PMID: 33048332 DOI: 10.1007/s40257-020-00565-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Acne is one of the cutaneous manifestations of polycystic ovary syndrome (PCOS). There is limited evidence on metformin use for treatment of acne in PCOS patients. OBJECTIVE Our aim was to conduct a systematic review and meta-analysis to evaluate the efficacy of metformin for treatment of PCOS-related acne. METHODS On November 23, 2019, we searched PubMed, the Cochrane Library, and Embase databases for human clinical studies in any language. The keywords included 'acne' and 'polycystic ovary syndrome' combined with 'metformin,' 'biguanide,' or 'glucophage.' We included randomized controlled trials (RCTs), non-randomized controlled trials (NRCTs), and open-label studies on patients with PCOS treated with metformin. We calculated standardized mean differences (SMDs) for acne scores and odds ratios (ORs) for presence of acne, with 95% confidence intervals (CIs). Quality assessment was performed using the Cochrane Collaboration risk of bias instrument for RCTs. NRCTs and open-label studies were assessed using the adapted methodological index for nonrandomized studies (MINORS). RESULTS We included 51 studies on 2405 PCOS patients. Metformin as adjuvant therapy led to greater improvement of acne scores than the same therapy without metformin (SMD - 0.256; 95% CI - 0.439 to - 0.074). Pooling pre- and post-metformin therapy data showed significant decrease of acne scores after metformin use (SMD - 0.712; 95% CI - 0.949 to - 0.476). Presence of acne decreased significantly after metformin treatment (OR 0.362; 95% CI 0.271 to 0.485). LIMITATIONS There was heterogeneity across some studies due to different acne assessment scales, metformin dosages, and treatment durations. CONCLUSIONS For PCOS patients, metformin as stand-alone or adjuvant therapy was associated with improvement of acne. More randomized controlled trials are needed to validate these results. REGISTRATION PROSPERO registration number CRD42020159656.
Collapse
Affiliation(s)
- Hsuan Yen
- Department of Dermatology, Wan Fang Hospital, Taipei Medical University, No.111, Sec. 3, Xinglong Rd., Wenshan Dist., Taipei City, 116, Taiwan
| | - Yu-Tung Chang
- Department of Medical Education, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Fui-Jun Yee
- Department of Medical Education, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Huang
- Department of Dermatology, Wan Fang Hospital, Taipei Medical University, No.111, Sec. 3, Xinglong Rd., Wenshan Dist., Taipei City, 116, Taiwan.
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
33
|
Steele A, Stacey HJ, de Soir S, Jones JD. The Safety and Efficacy of Phage Therapy for Superficial Bacterial Infections: A Systematic Review. Antibiotics (Basel) 2020; 9:E754. [PMID: 33138253 PMCID: PMC7692203 DOI: 10.3390/antibiotics9110754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Superficial bacterial infections, such as dermatological, burn wound and chronic wound/ulcer infections, place great human and financial burdens on health systems globally and are often complicated by antibiotic resistance. Bacteriophage (phage) therapy is a promising alternative antimicrobial strategy with a 100-year history of successful application. Here, we report a systematic review of the safety and efficacy of phage therapy for the treatment of superficial bacterial infections. Three electronic databases were systematically searched for articles that reported primary data about human phage therapy for dermatological, burn wound or chronic wound/ulcer infections secondary to commonly causative bacteria. Two authors independently assessed study eligibility and performed data extraction. Of the 27 eligible reports, eight contained data on burn wound infection (n = 156), 12 on chronic wound/ulcer infection (n = 327) and 10 on dermatological infections (n = 1096). Cautionary pooled efficacy estimates from the studies that clearly reported efficacy data showed clinical resolution or improvement in 77.5% (n = 111) of burn wound infections, 86.1% (n = 310) of chronic wound/ulcer infections and 94.14% (n = 734) of dermatological infections. Over half of the reports that commented on safety (n = 8/15), all published in or after 2002, did not express safety concerns. Seven early reports (1929-1987), described adverse effects consistent with the administration of raw phage lysate and co-administered bacterial debris or broth. This review strongly suggests that the use of purified phage to treat superficial bacterial infections can be highly effective and, by various routes of administration, is safe and without adverse effects.
Collapse
Affiliation(s)
- Angharad Steele
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK;
| | - Helen J. Stacey
- Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK;
| | - Steven de Soir
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Rue Bruyn, 1120 Brussels, Belgium;
- Cellular & Molecular Pharmacology, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Joshua D. Jones
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK;
| |
Collapse
|
34
|
Fang F, Xie Z, Quan J, Wei X, Wang L, Yang L. Baicalin suppresses Propionibacterium acnes-induced skin inflammation by downregulating the NF-κB/MAPK signaling pathway and inhibiting activation of NLRP3 inflammasome. ACTA ACUST UNITED AC 2020; 53:e9949. [PMID: 33111746 PMCID: PMC7584154 DOI: 10.1590/1414-431x20209949] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
Acne is a kind of common, chronic skin condition caused by the inflammation of the sebaceous glands in hair follicles. Recent studies have demonstrated that baicalin (BA) possesses potential anti-inflammatory properties. In this study, we evaluated the anti-inflammatory activity of BA in vitro and in vivo. Heat-killed Propionibacterium acnes-induced THP-1 cells and live P. acnes-injected male Sprague Dawley rats were used for establishing the acne model. The rate of ear swelling was calculated, and the severity was determined by hematoxylin and eosin staining. The production of cytokines [interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF-α)] in the cell supernatant and ear tissue homogenates was measured by ELISA. Protein levels of JNK, ERK, P38, IκBα, P65, Nod-like receptor pyrin domain-containing 3 (NLRP3), pro-caspase-1, and IL-1β in THP-1 cells and ear tissues were detected by western blotting. NLRP3 and IL-1β were detected by immunohistochemistry, and the NLRP3, IL-1β and pro-caspase-1 mRNAs were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that BA decreased the expression of pro-inflammatory cytokines in vitro and in vivo. Moreover, BA down-regulated the phosphorylation of JNK, ERK1/2, and κBα and inhibited the nuclear translocation of p65. Furthermore, BA inhibited the activation of NLRP3 inflammasome, at both the gene and protein levels. Taken together, the results demonstrated that BA might exert its anti-inflammatory activity by inhibiting NF-κB/MAPK signaling pathways and consequently suppressing the activation of the NLRP3 inflammasome both in vivo and in vitro.
Collapse
Affiliation(s)
- Fang Fang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingyu Quan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaohan Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Linlin Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Liu Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
In Vitro and In Vivo Screening of Wild Bitter Melon Leaf for Anti-Inflammatory Activity against Cutibacterium acnes. Molecules 2020; 25:molecules25184277. [PMID: 32961947 PMCID: PMC7570529 DOI: 10.3390/molecules25184277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/01/2022] Open
Abstract
Cutibacterium acnes (formerly Propionibacterium acnes) is a key pathogen involved in the development and progression of acne inflammation. The numerous bioactive properties of wild bitter melon (WBM) leaf extract and their medicinal applications have been recognized for many years. In this study, we examined the suppressive effect of a methanolic extract (ME) of WBM leaf and fractionated components thereof on live C. acnes-induced in vitro and in vivo inflammation. Following methanol extraction of WBM leaves, we confirmed anti-inflammatory properties of ME in C. acnes-treated human THP-1 monocyte and mouse ear edema models. Using a bioassay-monitored isolation approach and a combination of liquid–liquid extraction and column chromatography, the ME was then separated into n-hexane, ethyl acetate, n-butanol and water-soluble fractions. The hexane fraction exerted the most potent anti-inflammatory effect, suppressing C. acnes-induced interleukin-8 (IL-8) production by 36%. The ethanol-soluble fraction (ESF), which was separated from the n-hexane fraction, significantly inhibited C. acnes-induced activation of mitogen-activated protein kinase (MAPK)-mediated cellular IL-8 production. Similarly, the ESF protected against C. acnes-stimulated mouse ear swelling, as measured by ear thickness (20%) and biopsy weight (23%). Twenty-four compounds in the ESF were identified using gas chromatograph–mass spectrum (GC/MS) analysis. Using co-cultures of C. acnes and THP-1 cells, β-ionone, a compound of the ESF, reduced the production of IL-1β and IL-8 up to 40% and 18%, respectively. β-ionone also reduced epidermal microabscess, neutrophilic infiltration and IL-1β expression in mouse ear. We also found evidence of the presence of anti-inflammatory substances in an unfractionated phenolic extract of WBM leaf, and demonstrated that the ESF is a potential anti-inflammatory agent for modulating in vitro and in vivo C. acnes-induced inflammatory responses.
Collapse
|
36
|
Nanocarriers as versatile delivery systems for effective management of acne. Int J Pharm 2020; 579:119140. [DOI: 10.1016/j.ijpharm.2020.119140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/26/2020] [Accepted: 02/12/2020] [Indexed: 12/23/2022]
|
37
|
Rosa davurica Pall. Improves Propionibacterium acnes-Induced Inflammatory Responses in Mouse Ear Edema Model and Suppresses Pro-Inflammatory Chemokine Production via MAPK and NF-κB Pathways in HaCaT Cells. Int J Mol Sci 2020; 21:ijms21051717. [PMID: 32138302 PMCID: PMC7084861 DOI: 10.3390/ijms21051717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 11/17/2022] Open
Abstract
Acne, also known as acne vulgaris, is a common disorder of human skin involving the sebaceous gland and Propionibacterium acnes (P. acnes). Although there are a number of treatments suggested for acne, many of them have limitations in their safety and have efficacy issues. Therefore, there is a high demand to develop safe and effective novel acne treatments. In the present study, we demonstrate the protective effects of Rosa davurica Pall. leaves (RDL) extract against P. acnes-induced inflammatory responses in vitro and in vivo. The results showed that RDL dose-dependently inhibited the growth of skin bacteria, including P. acnes (KCTC3314) and aerobic Staphylococcus aureus (KCTC1621) or Staphylococcus epidermidis (KCTC1917). The downregulation of proinflammatory cytokines by RDL appears to be mediated by blocking the phosphorylations of mitogen-activated protein kinase (MAPK) and subsequent nuclear factor-kappa B (NF-κB) pathways in P. acnes-stimulated HaCaT cells. In a mouse model of acne vulgaris, histopathological changes were examined in the P. acnes-induced mouse ear edema. The concomitant intradermal injection of RDL resulted in the reduction of ear swelling in mice along with microabscess but exerted no cytotoxic effects for skin cells. Instrumental analysis demonstrated there were seven major components in the RDL extract, and they seemed to have important roles in the anti-inflammatory and antimicrobial effects of RDL. Conclusively, our present work showed for the first time that RDL has anti-inflammatory and antimicrobial effects against P. acnes, suggesting RDL as a promising novel strategy for the treatment of acne, including natural additives in anti-acne cosmetics or pharmaceutical products.
Collapse
|
38
|
De Canha MN, Komarnytsky S, Langhansova L, Lall N. Exploring the Anti-Acne Potential of Impepho [ Helichrysum odoratissimum (L.) Sweet] to Combat Cutibacterium acnes Virulence. Front Pharmacol 2020; 10:1559. [PMID: 32082144 PMCID: PMC7002546 DOI: 10.3389/fphar.2019.01559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
The Gram-positive bacterium Cutibacterium acnes (previously Propionibacterium acnes), plays an important role in the pathogenesis and progression of the dermatological skin disorder acne vulgaris. The methanolic extract of Helichrysum odoratissimum (L.) Sweet (HO-MeOH) was investigated for its ability to target bacterial growth and pathogenic virulence factors associated with acne progression. The gas chromatography-mass spectrometry (GC-MS) analysis of HO-MeOH identified α-humulene (3.94%), α-curcumene (3.74%), and caryophyllene (8.12%) as major constituents, which correlated with previous reports of other Helichrysum species. The HO-MeOH extract exhibited potent antimicrobial activity against C. acnes (ATCC 6919) with a minimum inhibitory concentration (MIC) of 7.81 µg/ml. It enhanced the antimicrobial activity of benzoyl peroxide (BPO). The extract showed high specificity against C. acnes cell aggregation at sub-inhibitory concentrations, preventing biofilm formation. Mature C. acnes biofilms were disrupted at a sub-inhibitory concentration of 3.91 µg/ml. At 100 µg/ml, HO-MeOH reduced interleukin-1α (IL-1α) cytokine levels in C. acnes-induced human keratinocytes (HaCaT) by 11.08%, highlighting its potential as a comedolytic agent for the treatment of comedonal acne. The extract exhibited a 50% inhibitory concentration (IC50) of 157.50 µg/ml against lipase enzyme activity, an enzyme responsible for sebum degradation, ultimately causing inflammation. The extract's anti-inflammatory activity was tested against various targets associated with inflammatory activation by the bacterium. The extract inhibited pro-inflammatory cytokine levels of IL-8 by 48.31% when compared to C. acnes-induced HaCaT cells at 7.81 µg/ml. It exhibited cyclooxygenase-II (COX-II) enzyme inhibition with an IC50 of 22.87 µg/ml. Intracellular nitric oxide (NO) was inhibited by 40.39% at 7.81 µg/ml when compared with NO production in lipopolysaccharide (LPS)-induced RAW264.7 cells. The intracellular NO inhibition was potentially due to the 2.14 fold reduction of inducible nitric oxide synthase (iNOS) gene expression. The HO-MeOH extract exhibited an IC50 of 145.45 µg/ml against virulent hyaluronidase enzyme activity, which is responsible for hyaluronan degradation and scar formation. This study provides scientific validation for the traditional use of H. odoratissimum as an ointment for pimples, not only due to its ability to control C. acnes proliferation but also due to its inhibitory activity on various targets associated with bacterial virulence leading to acne progression.
Collapse
Affiliation(s)
- Marco Nuno De Canha
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Slavko Komarnytsky
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Lenka Langhansova
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czechia
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- School of Natural Resources, University of Missouri, Columbia, MO, United States
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
39
|
Lall N, Chrysargyris A, Lambrechts I, Fibrich B, Blom Van Staden A, Twilley D, de Canha MN, Oosthuizen CB, Bodiba D, Tzortzakis N. Sideritis Perfoliata (Subsp. Perfoliata) Nutritive Value and Its Potential Medicinal Properties. Antioxidants (Basel) 2019; 8:antiox8110521. [PMID: 31671566 PMCID: PMC6912803 DOI: 10.3390/antiox8110521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 11/16/2022] Open
Abstract
Sideritis perfoliata L. subsp. perfoliata is an endemic species of the Eastern Mediterranean region with several uses in traditional medicine. The present study aims to explore the unknown properties of S. perfoliata investigating the nutritional content as well as the antioxidant, anticancer, antituberculosis, antiwrinkle, anti-acne, hyper/hypo-pigmentation and antibacterial activities. Mineral content, nutritional value, the composition and antioxidant properties of the essential oil, the antityrosinase, the antibacterial activity and anti-elastase potential of the extract, were evaluated. The antiproliferative activity of S. perfoliata against cervical cancer (HeLa), human melanoma (UCT-Mel-1), human hepatocellular carcinoma (HepG2) and human epidermoid carcinoma (A431) was investigated. Cytotoxic effects on normal human keratinocyte (HaCat) and kidney epithelial (Vero) cell lines were also determined. Sideritis perfoliata exhibited high nutritional value of proteins and minerals (K, P, Mg, Fe, Zn, Cu). The most abundant components of the essential oil were found to be α-pinene, β-phelladrene, valeranone, β-pinene and sabinene. The ethanolic extract of S. perfoliata displayed moderate antioxidant potential and antibacterial activity against Prevotella intermedia. Noteworthy elastase and moderate anticancer potential against the human liver cancer cell line (HepG2) was observed with IC50 values of 57.18 ± 3.22 μg/mL and 64.27 ± 2.04 μg/mL respectively. The noteworthy in vitro activity of S. perfoliata could be due to the presence of flavonoids and phenols in the leaves, having high nutritional value. Sideritis perfoliata could potentially be useful to reduce the appearance of wrinkles and for the treatment of liver cancer. The moderate antibacterial, antioxidant and elastase activity of the plant can be linked to the traditional use of S. perfoliata for the treatment of wounds and inflammation.
Collapse
Affiliation(s)
- Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa.
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA.
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570015, India.
| | - Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Lemesos, Cyprus.
| | - Isa Lambrechts
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Bianca Fibrich
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | | | - Danielle Twilley
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Marco Nuno de Canha
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | | | - Dikonketso Bodiba
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Lemesos, Cyprus.
| |
Collapse
|
40
|
Dai Y, Chuang Y, Chen P, Chen C. Efficacy and Safety of Ablative Resurfacing With A High‐Energy 1,064 Nd‐YAG Picosecond‐domain Laser for the Treatment of Facial Acne Scars in Asians. Lasers Surg Med 2019; 52:389-395. [DOI: 10.1002/lsm.23151] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Ying‐Xiu Dai
- Department of DermatologyTaipei Veterans General HospitalTaipei 11221 Taiwan
- Department of Dermatology, School of MedicineNational Yang‐Ming UniversityTaipei 11221 Taiwan
| | | | - Po‐Yu Chen
- Department of DermatologyTaipei Veterans General HospitalTaipei 11221 Taiwan
| | - Chih‐Chiang Chen
- Department of DermatologyTaipei Veterans General HospitalTaipei 11221 Taiwan
- Department of Dermatology, School of MedicineNational Yang‐Ming UniversityTaipei 11221 Taiwan
- Institute of Clinical MedicineNational Yang‐Ming UniversityTaipei 11221 Taiwan
| |
Collapse
|
41
|
Kanwar IL, Haider T, Kumari A, Dubey S, Jain P, Soni V. Models for acne: A comprehensive study. Drug Discov Ther 2019; 12:329-340. [PMID: 30674767 DOI: 10.5582/ddt.2018.01079] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acne vulgaris (AV) is the familiar chronic skin ailment affecting most of the individuals. This multifarious, disease involves the bacterium gram-positive, anaerobic Propionibacterium acnes (P. acnes) which resides on skin microflora, and participated in acne inflammation and acne lesions. The object of this review is to discuss presently available in vitro, ex vivo, and in vivo models to evaluate the cosmetic formulations that are developed for dealing and prevention of acne formation. These various available models offer new chances for further research on biologically active materials, drugs & pharmaceutical as well as cosmetics for acne treatment.
Collapse
Affiliation(s)
- Indu Lata Kanwar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University
| | - Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University
| | - Anju Kumari
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University
| | - Sandeep Dubey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University
| | - Priyanka Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University
| |
Collapse
|
42
|
Development of Novel Topical Cosmeceutical Formulations from Nigella sativa L. with Antimicrobial Activity against Acne-Causing Microorganisms. ScientificWorldJournal 2019; 2019:5985207. [PMID: 31485198 PMCID: PMC6710770 DOI: 10.1155/2019/5985207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023] Open
Abstract
Acne vulgaris occurs due to the inflammation of sebaceous follicles in the skin. It is triggered by the activity of some bacterial species like Propionibacterium acnes, Staphylococcus aureus, and Staphylococcus epidermidis. Acquisition of antibiotic resistance by these microorganisms and adverse effects associated with the current treatment regimens necessitate the introduction of novel therapeutic agents for acne vulgaris. Thus, this study was undertaken to develop novel gel formulations from seeds of Nigella sativa L. and to evaluate the antibacterial potential against some acne-causing bacterial species. The antibacterial activity of seed extracts was initially screened against S. aureus and P. acnes by the agar well diffusion method. Thereafter, topical gels were formulated incorporating the ethyl acetate extract of seeds of N. sativa at three different concentrations. These topical formulations were subjected to antimicrobial activity studies while the stability was evaluated over a period of 30 days. All three formulations were capable of inhibiting the growth of S. aureus and P. acnes, with the highest antibacterial activity in the formulation comprising 15% of the seed extract. Interestingly, the antibacterial potency of this formulation against S. aureus surpassed the commercial synthetic product used as the positive control. Moreover, any alteration in color, odor, homogeneity, washability, consistency, and pH was not observed while the antibacterial potency was also retained during the storage period. The potent antibacterial activity in topical gel formulations developed from the ethyl acetate extract of N. sativa signposts their suitability as alternatives to existing antiacne agents in the management of acne vulgaris.
Collapse
|
43
|
Zhang B, Choi YM, Lee J, An IS, Li L, He C, Dong Y, Bae S, Meng H. Toll-like receptor 2 plays a critical role in pathogenesis of acne vulgaris. BIOMEDICAL DERMATOLOGY 2019. [DOI: 10.1186/s41702-019-0042-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Yang G, Wang J, Lu S, Chen Z, Fan S, Chen D, Xue H, Shi W, He J. Short lipopeptides specifically inhibit the growth of Propionibacterium acnes with a dual antibacterial and anti-inflammatory action. Br J Pharmacol 2019; 176:2321-2335. [PMID: 30927447 DOI: 10.1111/bph.14680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Propionibacterium acnes is a Gram-positive bacterium associated with the skin disorder acne. In this study, as fatty acids are considered to be important in the life habitat of P. acnes, we tested our lipopeptide library in an attempt to create potent P. acnes-specific antimicrobial agents. EXPERIMENTAL APPROACH The antimicrobial activity of various lipopeptides was determined by measuring their minimal inhibitory concentration (MIC). Lipids from P. acnes were used to explore their mode of action. RAW264.7 cells stimulated with LPS and P. acnes respectively were used to measure their anti-inflammatory activity. Mice ears injected with P. acnes were used to assess the antimicrobial and anti-inflammatory effects of the peptides tested in vivo. KEY RESULTS The most potent candidate, C16-KWKW, was observed to be more active against P. acnes than against other non-targeted bacterial strains, such as Streptococcus mutans, Staphylococcus aureus, and Escherichia coli. The mode of action of C16-KWKW was observed to be through interference with the integrity of the bacterial membrane, thereby impairing membrane permeability and causing leakage of inner contents of bacterial cells. Furthermore, C16-KWKW inhibited the expression of pro-inflammatory cytokines, such as IL-1β, TNF-α, and inducible NOS stimulated by both LPS and P. acnes, thus showing potential anti-inflammatory activity, which was further verified in the in vivo animal studies. CONCLUSIONS AND IMPLICATIONS C16-KWKW is a lipopeptide displaying both anti-P. acnes and anti-inflammatory effects in vitro and in vivo and shows potential as a treatment for acne vulgaris induced by P. acnes.
Collapse
Affiliation(s)
- Guang Yang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jingyu Wang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Shengsheng Lu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Zhao Chen
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Sheng Fan
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Daiwei Chen
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Huanxin Xue
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Wenyuan Shi
- The Forsyth Institute, Harvard School of Dental Medicine, Cambridge, MA, USA
| | - Jian He
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
45
|
Settharaksa S, Monton C, Charoenchai L. Optimization of Caesalpinia sappan L. heartwood extraction procedure to obtain the highest content of brazilin and greatest antibacterial activity. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2019; 17:351-358. [PMID: 31130448 DOI: 10.1016/j.joim.2019.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/13/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The objective of the work was to optimize the extraction conditions of Caesalpinia sappan L. heartwood in order to maximize the brazilin content and antibacterial activity of the extract. METHODS Two independent factors were studied: extraction temperature (45-95 °C) and extraction time (30-60 min). In addition, five dependent factors were monitored, including extraction yield, brazilin content, and clear zones against Staphylococcus aureus TISTR 1466, Staphylococcus epidermidis TISTR 518 and Propionibacterium acnes DMST 14961. The brazilin content was quantified by high-performance liquid chromatography and antibacterial activity was determined by disk diffusion assay. RESULTS The high temperature provided high total extract yield as well as brazilin content, while extraction time had little effect on yield or brazilin content. Extraction time had a positive effect, while extraction temperature had little effect on clear zone against S. aureus. The largest clear zone against S. epidermidis was achieved at low extraction temperature and long extraction time. Conversely, short extraction time and high extraction temperature provided the largest clear zone against P. acnes. The optimal conditions providing the highest brazilin content was an extraction temperature and extraction time of 95 °C and 30 min, respectively. The same optimal conditions also provided the simultaneous greatest antibacterial activity against the three bacteria. Modeled optimal conditions were validated be conducting extraction using these values. Yield and antibacterial activity of the resulting extract demonstrated that the model had a low percentage error. CONCLUSION The optimal condition will be used as a standard condition for extraction of C. sappan heartwood to maximize brazilin content and antibacterial activity.
Collapse
Affiliation(s)
- Sukanya Settharaksa
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Muang, Pathum Thani 12000, Thailand.
| | - Chaowalit Monton
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Muang, Pathum Thani 12000, Thailand
| | - Laksana Charoenchai
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Muang, Pathum Thani 12000, Thailand
| |
Collapse
|
46
|
Yang G, Wang J, Lu S, Chen Z, Fan S, Chen D, Xue H, Shi W, He J. Short lipopeptides specifically inhibit the growth of Propionibacterium acnes with dual antibacterial and anti-inflammatory action. Br J Pharmacol 2019; 176:1603-1618. [PMID: 30644534 DOI: 10.1111/bph.14571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/30/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Propionibacterium acnes (P. acnes) is a Gram-positive bacterium associated with the skin disorder acne. In this study, we determined the importance of fatty acids in the life habitat of P. acnes; we tested our lipopeptide library in an attempt to create potent P. acnes-specific antimicrobial agents. EXPERIMENTAL APPROACH Antimicrobial activity was determined by the minimal inhibitory concentration (MIC). Lipids from P. acnes were used to explore the mode of action. RAW264.7 cells respectively stimulated with LPS and P. acnes were used to measure the anti-inflammatory activity. Mice ears injected with P. acnes were used to assess the antimicrobial and anti-inflammatory effects of the peptides tested in vivo. KEY RESULTS The most potent candidate, C16-KWKW, was observed to be more active against P. acnes, with an MIC of 2 μg·ml-1 , than against other non-targeted bacterial strains, such as Streptococcus mutans, Staphylococcus aureus, and Escherichia coli. The mode of action of C16-KWKW was observed to be through interference with the integrity of bacterial membrane, thereby impairing membrane permeability and causing leakage of the inner contents of bacterial cells. In addition, C16-KWKW inhibited the expression of pro-inflammatory cytokines, such as IL-1β, TNF-α, and inducible NOS, stimulated by both LPS and P. acnes, thus showing potential anti-inflammatory activity, which was further assessed in animal studies in vivo. CONCLUSIONS AND IMPLICATIONS C16-KWKW is a lipopeptide displaying both anti-P. acnes and anti-inflammatory effects in vitro and in vivo, and exhibits potential as a treatment for acne vulgaris induced by P. acnes.
Collapse
Affiliation(s)
- Guang Yang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jingyu Wang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shengsheng Lu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhao Chen
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Sheng Fan
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Daiwei Chen
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Huanxin Xue
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenyuan Shi
- The Forsyth Institute, Harvard School of Dental Medicine, Cambridge, Massachusetts, USA
| | - Jian He
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Juliano C, Marchetti M, Pisu ML, Usai M. In Vitro Antimicrobial Activity of Essential Oils from Sardinian Flora against Cutibacterium (Formerly Propionibacterium) acnes and Its Enhancement by Chitosan. Sci Pharm 2018; 86:scipharm86030040. [PMID: 30217104 DOI: 10.3390/scipharm86030040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023] Open
Abstract
The in vitro antibacterial activity of some essential oils from Sardinian flora, both alone and in combination with chitosan, was investigated against a strain of Cutibacterium acnes, a bacterium involved in pathogenesis of acne. The composition of the essential oils was determined by gas chromatography and gas chromatography/mass spectrometry. The results of this investigation demonstrated that some of the oils examined, characterised by different chemical profiles, possessed some activity against C. acnes. Interestingly, this antibacterial effect was enhanced by sub-inhibitory concentrations of chitosan. These observations suggest the potential application of this synergy in the development of innovative topical formulations useful in the management of acne.
Collapse
Affiliation(s)
- Claudia Juliano
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Muroni 23/A, 07100 Sassari, Italy.
| | - Mauro Marchetti
- C.N.R.-Istituto di Chimica Biomolecolare, traversa La Crucca 3, 07040 Sassari, Italy.
| | - Maria Luisa Pisu
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Muroni 23/A, 07100 Sassari, Italy.
| | - Marianna Usai
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Muroni 23/A, 07100 Sassari, Italy.
| |
Collapse
|
48
|
You Z, Ran X, Dai Y, Ran Y. Clioquinol, an alternative antimicrobial agent against common pathogenic microbe. J Mycol Med 2018; 28:492-501. [DOI: 10.1016/j.mycmed.2018.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/17/2018] [Accepted: 03/18/2018] [Indexed: 12/11/2022]
|
49
|
Chuang LT, Tsai TH, Lien TJ, Huang WC, Liu JJ, Chang H, Chang ML, Tsai PJ. Ethanolic Extract of Origanum vulgare Suppresses Propionibacterium acnes-Induced Inflammatory Responses in Human Monocyte and Mouse Ear Edema Models. Molecules 2018; 23:molecules23081987. [PMID: 30096960 PMCID: PMC6222868 DOI: 10.3390/molecules23081987] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 11/21/2022] Open
Abstract
Acne vulgaris (acne) is a common inflammatory skin disorder, and Propionibacterium acnes plays a major role in the development and progression of acne inflammation. Herbs possessing antimicrobial and anti-inflammatory activity have been applied as a medical option for centuries. In this study, we examined the suppressive effect of ethanolic oregano (Origanum vulgare) extract on live P. acnes-induced in vivo and in vitro inflammation. Following ethanol extraction of oregano leaves, four compounds with strong antioxidant activity, including rosmarinic acid, quercetin, apigenin, and carvacrol, were identified by high-performance liquid chromatography. Using the mouse ear edema model, we demonstrated that ethanol oregano extracts (EOE) significantly suppressed P. acnes-induced skin inflammation, as measured by ear thickness (32%) and biopsy weight (37%). In a separate study, using the co-culture of P. acnes and human THP-1 monocytes, EOE reduced the production of interleukin (IL)-8, IL-1β and tumor necrosis factor (TNF)-α up to 40%, 37%, and 18%, respectively, as well as the expression of these three pro-inflammatory mediators at the transcriptional level. Furthermore, EOE inhibited the translocation of nuclear factor-kappa B (NF-κB) into the nucleus possibly by inactivating toll-like receptor-2 (TLR2). The suppressive effect of EOE on live P. acnes-induced inflammatory responses could be due, in part, to the anti-inflammatory and antioxidant properties, but not the anti-microbial effect of EOE.
Collapse
Affiliation(s)
- Lu-Te Chuang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan.
| | - Tsung-Hsien Tsai
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Tsung-Jung Lien
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan.
| | - Wen-Cheng Huang
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan.
| | - Jun-Jen Liu
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 110, Taiwan.
| | - Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan.
| | - Mei-Ling Chang
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei 104, Taiwan.
| | - Po-Jung Tsai
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan.
- Program of Nutritional Science, School of Life Science, National Taiwan Normal University, Taipei 106, Taiwan.
| |
Collapse
|
50
|
Nguyen CT, Sah SK, Zouboulis CC, Kim TY. Inhibitory effects of superoxide dismutase 3 on Propionibacterium acnes-induced skin inflammation. Sci Rep 2018; 8:4024. [PMID: 29507345 PMCID: PMC5838256 DOI: 10.1038/s41598-018-22132-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/06/2018] [Indexed: 12/22/2022] Open
Abstract
Propionibacterium acnes is a well-known commensal bacterium that plays an important role in the pathogenesis of acne and chronic inflammatory skin disease. In this study, we investigated the effect of superoxide dismutase 3 (SOD3) on P. acnes- or peptidoglycan (PGN)-induced inflammation in vitro and in vivo. Our data demonstrated that SOD3 suppressed toll-like receptor-2 (TLR-2) expression in P. acnes- or PGN-treated keratinocytes and sebocytes. Moreover, we found that SOD3 suppressed the expressions of phosphorylated nuclear factor-κB (NF-κB) and p38 in P. acnes- or PGN-treated cells. SOD3 also exhibited an anti-inflammatory role by reducing the expression of inflammasome-related proteins (NLRP3, ASC, caspase-1) and inhibiting the expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and interleukin-8. In addition, SOD3 reduced lipid accumulation and expression of lipogenic regulators in P. acnes-treated sebocytes. Recombinant SOD3-treated wild-type mice and SOD3 transgenic mice, which were subcutaneously infected with P. acnes, showed tolerance to inflammation through reducing inflammatory cell infiltration in skin, ear thickness, and expression of inflammatory mediators. Our result showed that SOD3 could suppress the inflammation through inhibition of TLR2/p38/NF-κB axis and NLRP3 inflammasome activation. Therefore, SOD3 could be a promising candidate for treatment of P. acnes-mediated skin inflammation.
Collapse
Affiliation(s)
- Cuong Thach Nguyen
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, 137-040, South Korea
| | - Shyam Kishor Sah
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, 137-040, South Korea
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Tae-Yoon Kim
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, 137-040, South Korea.
| |
Collapse
|