1
|
Fehsel K. Metabolic Side Effects from Antipsychotic Treatment with Clozapine Linked to Aryl Hydrocarbon Receptor (AhR) Activation. Biomedicines 2024; 12:2294. [PMID: 39457607 PMCID: PMC11505606 DOI: 10.3390/biomedicines12102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) is the most common adverse drug reaction from psychiatric pharmacotherapy. Neuroreceptor blockade by the antipsychotic drug clozapine induces MetS in about 30% of patients. Similar to insulin resistance, clozapine impedes Akt kinase activation, leading to intracellular glucose and glutathione depletion. Additional cystine shortage triggers tryptophan degradation to kynurenine, which is a well-known AhR ligand. Ligand-bound AhR downregulates the intracellular iron pool, thereby increasing the risk of mitochondrial dysfunction. Scavenging iron stabilizes the transcription factor HIF-1, which shifts the metabolism toward transient glycolysis. Furthermore, the AhR inhibits AMPK activation, leading to obesity and liver steatosis. Increasing glucose uptake by AMPK activation prevents dyslipidemia and liver damage and, therefore, reduces the risk of MetS. In line with the in vitro results, feeding experiments with rats revealed a disturbed glucose-/lipid-/iron-metabolism from clozapine treatment with hyperglycemia and hepatic iron deposits in female rats and steatosis and anemia in male animals. Decreased energy expenditure from clozapine treatment seems to be the cause of the fast weight gain in the first weeks of treatment. In patients, this weight gain due to neuroleptic treatment correlates with an improvement in psychotic syndromes and can even be used to anticipate the therapeutic effect of the treatment.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany
| |
Collapse
|
2
|
Ko J, Park BS, Heo CM, Yi J, Lee DA, Park KM. Effect of glymphatic system function on cognitive function in patients with chronic kidney disease. Front Neurol 2024; 15:1480536. [PMID: 39372703 PMCID: PMC11449729 DOI: 10.3389/fneur.2024.1480536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Objectives Studies have recently shown an alteration of the structural connectivity and a dysfunctional glymphatic system in patients with chronic kidney disease (CKD). In this study, we aimed to investigate the effects of the structural connectivity and glymphatic system on the cognitive function of patients with CKD. Methods We prospectively enrolled patients with CKD and healthy controls. The CKD group was divided into two regarding their cognitive function. All patients received brain magnetic resonance imaging, including diffusion tensor imaging (DTI). We calculated the measures of structural connectivity and diffusion tensor image analysis along the perivascular space (DTI-ALPS) index, a neuroimaging marker of the glymphatic system function, and compared the indices between groups. Results The mean clustering coefficient, local efficiency, and small-worldness index in patients with CKD were lower than those in healthy controls (0.125 ± 0.056 vs. 0.167 ± 0.082, p = 0.008; 1.191 ± 0.183 vs. 1.525 ± 0.651, p = 0.002; 0.090 ± 0.043 vs. 0.143 ± 0.102, p = 0.003; respectively). The DTI-ALPS index was lower in patients with CKD than in healthy controls (1.436 vs. 1.632, p < 0.001). Additionally, the DTI-ALPS index differed significantly between CKD patients with and without cognitive impairment. Notably, this index was lower in patients with CKD and cognitive impairment than in patients without cognitive impairment (1.338 vs. 1.494, p = 0.031). However, there were no differences of the structural connectivity between CKD patients with and without cognitive impairment. Conclusion We found lower DTI-ALPS index in patients with CKD, which could be related with glymphatic system dysfunction. Moreover, those with cognitive impairment in the CKD group had a lower index than those without, indicating a link between the glymphatic system function and cognitive function.
Collapse
Affiliation(s)
- Junghae Ko
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Bong Soo Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Chang Min Heo
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Jiyae Yi
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
3
|
Yang S, Zhao X, Zhang Y, Tang Q, Li Y, Du Y, Yu P. Tirzepatide shows neuroprotective effects via regulating brain glucose metabolism in APP/PS1 mice. Peptides 2024; 179:171271. [PMID: 39002758 DOI: 10.1016/j.peptides.2024.171271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Tirzepatide (LY3298176), a GLP-1 and GIP receptor agonist, is fatty-acid-modified and 39-amino acid linear peptide, which ameliorates learning and memory impairment in diabetic rats. However, the specific molecular mechanism remains unknown. In the present study, we investigated the role of tirzepatide in the neuroprotective effects in Alzheimer's disease (AD) model mice. Tirzepatide was administrated intraperitoneal (i.p.) APP/PS1 mice for 8 weeks with at 10 nmol/kg once-weekly, it significantly decreased the levels of GLP-1R, and GFAP protein expression and amyloid plaques in the cortex, it also lowered neuronal apoptosis induced by amyloid-β (Aβ), but did not affect the anxiety and cognitive function in APP/PS1 mice. Moreover, tirzepatide reduced the blood glucose levels and increased the mRNA expression of GLP-1R, SACF1, ATF4, Glu2A, and Glu2B in the hypothalamus of APP/PS1 mice. Tirzepatide increased the mRNA expression of glucose transporter 1, hexokinase, glucose-6-phosphate dehydrogenase, and phosphofructokinase in the cortex. Lastly, tirzepatide improved the energetic metabolism by regulated reactive oxygen species production and mitochondrial membrane potential caused by Aβ, thereby decreasing mitochondrial function and ATP levels in astrocytes through GLP-1R. These results provide valuable insights into the mechanism of brain glucose metabolism and mitochondrial function of tirzepatide, presenting potential strategies for AD treatment.
Collapse
Affiliation(s)
- Shaobin Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Xiaoqian Zhao
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yimeng Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Qi Tang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yanhong Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yaqin Du
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Peng Yu
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
4
|
Wertman E. Essential New Complexity-Based Themes for Patient-Centered Diagnosis and Treatment of Dementia and Predementia in Older People: Multimorbidity and Multilevel Phenomenology. J Clin Med 2024; 13:4202. [PMID: 39064242 PMCID: PMC11277671 DOI: 10.3390/jcm13144202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Dementia is a highly prevalent condition with devastating clinical and socioeconomic sequela. It is expected to triple in prevalence by 2050. No treatment is currently known to be effective. Symptomatic late-onset dementia and predementia (SLODP) affects 95% of patients with the syndrome. In contrast to trials of pharmacological prevention, no treatment is suggested to remediate or cure these symptomatic patients. SLODP but not young onset dementia is intensely associated with multimorbidity (MUM), including brain-perturbating conditions (BPCs). Recent studies showed that MUM/BPCs have a major role in the pathogenesis of SLODP. Fortunately, most MUM/BPCs are medically treatable, and thus, their treatment may modify and improve SLODP, relieving suffering and reducing its clinical and socioeconomic threats. Regrettably, the complex system features of SLODP impede the diagnosis and treatment of the potentially remediable conditions (PRCs) associated with them, mainly due to failure of pattern recognition and a flawed diagnostic workup. We suggest incorporating two SLODP-specific conceptual themes into the diagnostic workup: MUM/BPC and multilevel phenomenological themes. By doing so, we were able to improve the diagnostic accuracy of SLODP components and optimize detecting and favorably treating PRCs. These revolutionary concepts and their implications for remediability and other parameters are discussed in the paper.
Collapse
Affiliation(s)
- Eli Wertman
- Department of Neurology, Hadassah University Hospital, The Hebrew University, Jerusalem 9190500, Israel;
- Section of Neuropsychology, Department of Psychology, The Hebrew University, Jerusalem 9190500, Israel
- Or’ad: Organization for Cognitive and Behavioral Changes in the Elderly, Jerusalem 9458118, Israel
- Merhav Neuropsychogeriatric Clinics, Nehalim 4995000, Israel
| |
Collapse
|
5
|
Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer's disease: A systematic review and qualitative meta-analysis. Neurobiol Dis 2024; 196:106485. [PMID: 38643861 DOI: 10.1016/j.nbd.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/23/2024] Open
Abstract
Research evidence indicating common metabolic mechanisms through which type 2 diabetes mellitus (T2DM) increases risk of late-onset Alzheimer's dementia (LOAD) has accumulated over recent decades. The aim of this systematic review is to provide a comprehensive review of common mechanisms, which have hitherto been discussed in separate perspectives, and to assemble and evaluate candidate loci and epigenetic modifications contributing to polygenic risk linkages between T2DM and LOAD. For the systematic review on pathophysiological mechanisms, both human and animal studies up to December 2023 are included. For the qualitative meta-analysis of genomic bases, human association studies were examined; for epigenetic mechanisms, data from human studies and animal models were accepted. Papers describing pathophysiological studies were identified in databases, and further literature gathered from cited work. For genomic and epigenomic studies, literature mining was conducted by formalised search codes using Boolean operators in search engines, and augmented by GeneRif citations in Entrez Gene, and other sources (WikiGenes, etc.). For the systematic review of pathophysiological mechanisms, 923 publications were evaluated, and 138 gene loci extracted for testing candidate risk linkages. 3 57 publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight insulin signalling, inflammation and inflammasome pathways, proteolysis, gluconeogenesis and glycolysis, glycosylation, lipoprotein metabolism and oxidation, cell cycle regulation or survival, autophagic-lysosomal pathways, and energy. Documented findings suggest interplay between brain insulin resistance, neuroinflammation, insult compensatory mechanisms, and peripheral metabolic dysregulation in T2DM and LOAD linkage. The results allow for more streamlined longitudinal studies of T2DM-LOAD risk linkages.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry and Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Richard Killick
- Section of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Jackie Mitchell
- Department of Basic and Clinical Neurosciences, Maurice Wohl CIinical Neurosciences Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Paul W Caton
- Diabetes Research Group, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London SE1 1UL, United Kingdom
| | - Pratik Choudhary
- Diabetes Research Group, Weston Education Centre, King's College London, 10 Cutcombe Road, London SE5 9RJ, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, Hodgkin Building, Guy's Campus, King's College London, Great Maze Pond, London SE1 1UL, United Kingdom
| |
Collapse
|
6
|
Abosharaf HA, Elsonbaty Y, Tousson E, M Mohamed T. Alzheimer's disease-related brain insulin resistance and the prospective therapeutic impact of metformin. J Neuroendocrinol 2024; 36:e13356. [PMID: 37985011 DOI: 10.1111/jne.13356] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/11/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Besides COVID-19, two of the most critical outbreaks of our day are insulin resistance, type 2 diabetes mellitus (T2DM), and Alzheimer's disease (AD). Each disease's pathophysiology is well established. Furthermore, a substantial overlap between them has coexisted. Uncertainty remains on whether T2DM and AD are parallel illnesses with the same origin or separate illnesses linked through violent pathways. The current study was aimed at testing whether the insulin resistance in the brain results in AD symptoms or not. Insulin resistance was induced in the brains of rats using a single intracerebroventricular streptozotocin (STZ) dose. We then measured glucose, insulin receptor substrate 2 (IRS-2), amyloid β (Aβ) deposition, and tau phosphorylation in the brain to look for signs of insulin resistance and AD. The results of this study indicated that a single dose of STZ was able to induce insulin resistance in the brain and significantly decline IRS-2. This resistance was accompanied by obvious memory loss, Aβ deposition, and tau phosphorylation, further visible diminishing in neurotransmitters such as dopamine and acetylcholine. Furthermore, oxidative stress was increased due to the antioxidant system being compromised. Interestingly, the pancreas injury and peripheral insulin resistance coexisted with brain insulin resistance. Indeed, the antidiabetic metformin was able to enhance all these drastic effects. In conclusion, brain insulin resistance could lead to AD and vice versa. These are highly linked syndromes that could influence peripheral organs. Further studies are required to stabilize this putative pathobiology relationship between them.
Collapse
Affiliation(s)
- Hamed A Abosharaf
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Yasmin Elsonbaty
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Zhang J, Zhang Y, Zhang Y, Yao J. The Association of Brain Insulin Resistance with Anesthesia/Surgery-Induced Cognitive Deterioration Is Female-Specific in 5XFAD Transgenic Mice. J Alzheimers Dis 2024; 101:183-195. [PMID: 39213082 DOI: 10.3233/jad-231444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Our previous studies indicated that anesthesia/surgery could aggravate cognitive impairment and tau pathology in female 5XFAD transgenic (Tg) mice. However, it is unknown whether there are sex differences in the susceptibility of developing postoperative cognitive dysfunction in 5XFAD Tg mice. Objective In this study, we aim to determine whether anesthesia/surgery can have different effects on female and male 5XFAD Tg mice, and to explore the underpinning mechanisms. Methods The mice received abdominal surgery under isoflurane anesthesia. Morris water maze was used to assess the cognitive function. Hippocampal levels of p-tau (AT8), p-IRS1 (Ser612), IRS1, p-GSK3β (Tyr216), and p-GSK3β (Ser9) at postoperative day 1 were evaluated by western blot assays. Results Anesthesia/surgery exaggerated cognitive impairment and tau pathology in female, but not male 5XFAD Tg mice. The anesthesia/surgery led to elevated hippocampus protein levels of p-IRS1 (Ser612)/IRS1 ratio and p-GSK3β (Tyr216) and reduced hippocampus protein levels of p-GSK3β (Ser9) in female, but not male 5XFAD Tg mice. Conclusions This study demonstrated that female 5XFAD Tg mice were more susceptible to anesthesia/surgery-induced cognitive deterioration and tau pathology aggravation, potentially due to female-specific brain insulin resistance.
Collapse
Affiliation(s)
- Junyao Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinglin Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingying Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyan Yao
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
López-Ojeda W, Hurley RA. Glucagon-Like Peptide 1: An Introduction and Possible Implications for Neuropsychiatry. J Neuropsychiatry Clin Neurosci 2024; 36:A4-86. [PMID: 38616646 DOI: 10.1176/appi.neuropsych.20230226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Affiliation(s)
- Wilfredo López-Ojeda
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC) and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| | - Robin A Hurley
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC) and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| |
Collapse
|
9
|
Liu Y, He B, Du K, Zheng J, Ke D, Mo W, Li Y, Jiang T, Xiong R, Sun F, Zhao S, Wei W, Xu Z, Zhang S, Li S, Wang X, Zhou Q, Ye J, Liang Y, Lin H, Liu Y, Chen L, Zhang H, Zhang Y, Gao Y, Wang JZ. Periphery Biomarkers Predicting Conversion of Type 2 Diabetes to Pre-Alzheimer-Like Cognitive Decline: A Multicenter Follow-Up Study. J Alzheimers Dis 2024; 100:S115-S129. [PMID: 39058442 DOI: 10.3233/jad-240455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Background The prevalence of Alzheimer's disease (AD) is increasing, therefore, identifying biomarkers to predict those vulnerable to AD is imperative. Type 2 diabetes (T2D) serves as an independent risk factor for AD. Early prediction of T2D patients who may be more susceptible to AD, so as to achieve early intervention, is of great significance to reduce the prevalence of AD. Objective To establish periphery biomarkers that could predict conversion of T2D into pre-AD-like cognitive decline. Methods A follow-up study was carried out from 159 T2D patients at baseline. The correlations of cognitive states (by MMSE score) with multi-periphery biomarkers, including APOE genotype, plasma amyloid-β level, platelet GSK-3β activity, and olfactory score were analyzed by logistic regression. ROC curve was used for establishing the prediction model. Additionally, MRI acquired from 38 T2D patients for analyzing the correlation among cognitive function, biomarkers and brain structure. Results Compared with the patients who maintained normal cognitive functions during the follow-up period, the patients who developed MCI showed worse olfactory function, higher platelet GSK-3β activity, and higher plasma Aβ42/Aβ40 ratio. We conducted a predictive model which T2D patients had more chance of suffering from pre-AD-like cognitive decline. The MRI data revealed MMSE scores were positively correlated with brain structures. However, platelet GSK-3β activity was negatively correlated with brain structures. Conclusions Elevated platelet GSK-3β activity and plasma Aβ42/Aβ40 ratio with reduced olfactory function are correlated with pre-AD-like cognitive decline in T2D patients, which used for predicting which T2D patients will convert into pre-AD-like cognitive decline in very early stage.
Collapse
Affiliation(s)
- Yanchao Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Benrong He
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency of General Hospital of Central Theater Command, Wuhan, China
| | - Kai Du
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University. Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Mo
- Health Service Center of Jianghan District, Wuhan, China
| | - Yanni Li
- Health Service Center of Jianghan District, Wuhan, China
| | - Tao Jiang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi Zhao
- Department of Endocrinology, the Central Hospital of Wuhan, Wuhan, China
| | - Wei Wei
- Department of Endocrinology, the Central Hospital of Wuhan, Wuhan, China
| | - Zhipeng Xu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shujuan Zhang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shihong Li
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuzhi Zhou
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinwang Ye
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liang
- Department of Radiology, Wuhan Brain Hospital, Wuhan, China
| | - Hao Lin
- Department of Radiology, Wuhan Brain Hospital, Wuhan, China
| | - Yong Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Zhang
- Li-Yuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian-Zhi Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
10
|
Bakac ER, Percin E, Gunes-Bayir A, Dadak A. A Narrative Review: The Effect and Importance of Carotenoids on Aging and Aging-Related Diseases. Int J Mol Sci 2023; 24:15199. [PMID: 37894880 PMCID: PMC10607816 DOI: 10.3390/ijms242015199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Aging is generally defined as a time-dependent functional decline that affects most living organisms. The positive increase in life expectancy has brought along aging-related diseases. Oxidative stress caused by the imbalance between pro-oxidants and antioxidants can be given as one of the causes of aging. At the same time, the increase in oxidative stress and reactive oxygen species (ROS) is main reason for the increase in aging-related diseases such as cardiovascular, neurodegenerative, liver, skin, and eye diseases and diabetes. Carotenoids, a natural compound, can be used to change the course of aging and aging-related diseases, thanks to their highly effective oxygen-quenching and ROS-scavenging properties. Therefore, in this narrative review, conducted using the PubMed, ScienceDirect, and Google Scholar databases and complying with the Scale for the Assessment of Narrative Review Articles (SANRA) guidelines, the effects of carotenoids on aging and aging-related diseases were analyzed. Carotenoids are fat-soluble, highly unsaturated pigments that occur naturally in plants, fungi, algae, and photosynthetic bacteria. A large number of works have been conducted on carotenoids in relation to aging and aging-related diseases. Animal and human studies have found that carotenoids can significantly reduce obesity and fatty liver, lower blood sugar, and improve liver fibrosis in cirrhosis, as well as reduce the risk of cardiovascular disease and erythema formation, while also lowering glycated hemoglobin and fasting plasma glucose levels. Carotenoid supplementation may be effective in preventing and delaying aging and aging-related diseases, preventing and treating eye fatigue and dry eye disease, and improving macular function. These pigments can be used to stop, delay, or treat aging-related diseases due to their powerful antioxidant, restorative, anti-proliferative, anti-inflammatory, and anti-aging properties. As an increasingly aging population emerges globally, this review could provide an important prospective contribution to public health.
Collapse
Affiliation(s)
- Elif Rabia Bakac
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bezmialem Vakif University, 34065 Istanbul, Turkey
| | - Ece Percin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bezmialem Vakif University, 34065 Istanbul, Turkey
| | - Ayse Gunes-Bayir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bezmialem Vakif University, 34065 Istanbul, Turkey
| | - Agnes Dadak
- Institute of Pharmacology and Toxicology, Clinical Pharmacology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| |
Collapse
|
11
|
Mohamed-Mohamed H, García-Morales V, Sánchez Lara EM, González-Acedo A, Pardo-Moreno T, Tovar-Gálvez MI, Melguizo-Rodríguez L, Ramos-Rodríguez JJ. Physiological Mechanisms Inherent to Diabetes Involved in the Development of Dementia: Alzheimer's Disease. Neurol Int 2023; 15:1253-1272. [PMID: 37873836 PMCID: PMC10594452 DOI: 10.3390/neurolint15040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a metabolic disease reaching pandemic levels worldwide. In parallel, Alzheimer's disease (AD) and vascular dementia (VaD) are the two leading causes of dementia in an increasingly long-living Western society. Numerous epidemiological studies support the role of T2D as a risk factor for the development of dementia. However, few basic science studies have focused on the possible mechanisms involved in this relationship. On the other hand, this review of the literature also aims to explore the relationship between T2D, AD and VaD. The data found show that there are several alterations in the central nervous system that may be promoting the development of T2D. In addition, there are some mechanisms by which T2D may contribute to the development of neurodegenerative diseases such as AD or VaD.
Collapse
Affiliation(s)
- Himan Mohamed-Mohamed
- Department of Physiology, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - Victoria García-Morales
- Physiology Area, Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cádiz, Pl. Falla, 9, 11003 Cádiz, Spain
| | - Encarnación María Sánchez Lara
- Department of Personalidad, Evaluación y Tratamiento Psicológico, Faculty of Health Sciences (Ceuta), University of Granada, 51001 Ceuta, Spain;
| | - Anabel González-Acedo
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
| | - Teresa Pardo-Moreno
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - María Isabel Tovar-Gálvez
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - Lucía Melguizo-Rodríguez
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
| | - Juan José Ramos-Rodríguez
- Department of Physiology, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| |
Collapse
|
12
|
Nowell J, Blunt E, Gupta D, Edison P. Antidiabetic agents as a novel treatment for Alzheimer's and Parkinson's disease. Ageing Res Rev 2023; 89:101979. [PMID: 37328112 DOI: 10.1016/j.arr.2023.101979] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Therapeutic strategies for neurodegenerative disorders have commonly targeted individual aspects of the disease pathogenesis to little success. Neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by several pathological features. In AD and PD, there is an abnormal accumulation of toxic proteins, increased inflammation, decreased synaptic function, neuronal loss, increased astrocyte activation, and perhaps a state of insulin resistance. Epidemiological evidence has revealed a link between AD/PD and type 2 diabetes mellitus, with these disorders sharing some pathological commonalities. Such a link has opened up a promising avenue for repurposing antidiabetic agents in the treatment of neurodegenerative disorders. A successful therapeutic strategy for AD/PD would likely require a single or several agents which target the separate pathological processes in the disease. Targeting cerebral insulin signalling produces numerous neuroprotective effects in preclinical AD/PD brain models. Clinical trials have shown the promise of approved diabetic compounds in improving motor symptoms of PD and preventing neurodegenerative decline, with numerous further phase II trials and phase III trials underway in AD and PD populations. Alongside insulin signalling, targeting incretin receptors in the brain represents one of the most promising strategies for repurposing currently available agents for the treatment of AD/PD. Most notably, glucagon-like-peptide-1 (GLP-1) receptor agonists have displayed impressive clinical potential in preclinical and early clinical studies. In AD the GLP-1 receptor agonist, liraglutide, has been demonstrated to improve cerebral glucose metabolism and functional connectivity in small-scale pilot trials. Whilst in PD, the GLP-1 receptor agonist exenatide is effective in restoring motor function and cognition. Targeting brain incretin receptors reduces inflammation, inhibits apoptosis, prevents toxic protein aggregation, enhances long-term potentiation and autophagy as well as restores dysfunctional insulin signalling. Support is also increasing for the use of additional approved diabetic treatments, including intranasal insulin, metformin hydrochloride, peroxisome proliferator-activated nuclear receptor γ agonists, amylin analogs, and protein tyrosine phosphatase 1B inhibitors which are in the investigation for deployment in PD and AD treatment. As such, we provide a comprehensive review of several promising anti-diabetic agents for the treatment of AD and PD.
Collapse
Affiliation(s)
- Joseph Nowell
- Department of Brain Sciences, Imperial College London, London, UK
| | - Eleanor Blunt
- Department of Brain Sciences, Imperial College London, London, UK
| | - Dhruv Gupta
- Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK; School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
13
|
Song J. Amygdala activity and amygdala-hippocampus connectivity: Metabolic diseases, dementia, and neuropsychiatric issues. Biomed Pharmacother 2023; 162:114647. [PMID: 37011482 DOI: 10.1016/j.biopha.2023.114647] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
With rapid aging of the population worldwide, the number of people with dementia is dramatically increasing. Some studies have emphasized that metabolic syndrome, which includes obesity and diabetes, leads to increased risks of dementia and cognitive decline. Factors such as insulin resistance, hyperglycemia, high blood pressure, dyslipidemia, and central obesity in metabolic syndrome are associated with synaptic failure, neuroinflammation, and imbalanced neurotransmitter levels, leading to the progression of dementia. Due to the positive correlation between diabetes and dementia, some studies have called it "type 3 diabetes". Recently, the number of patients with cognitive decline due to metabolic imbalances has considerably increased. In addition, recent studies have reported that neuropsychiatric issues such as anxiety, depressive behavior, and impaired attention are common factors in patients with metabolic disease and those with dementia. In the central nervous system (CNS), the amygdala is a central region that regulates emotional memory, mood disorders, anxiety, attention, and cognitive function. The connectivity of the amygdala with other brain regions, such as the hippocampus, and the activity of the amygdala contribute to diverse neuropathological and neuropsychiatric issues. Thus, this review summarizes the significant consequences of the critical roles of amygdala connectivity in both metabolic syndromes and dementia. Further studies on amygdala function in metabolic imbalance-related dementia are needed to treat neuropsychiatric problems in patients with this type of dementia.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
14
|
Li H, Ren J, Li Y, Wu Q, Wei J. Oxidative stress: The nexus of obesity and cognitive dysfunction in diabetes. Front Endocrinol (Lausanne) 2023; 14:1134025. [PMID: 37077347 PMCID: PMC10107409 DOI: 10.3389/fendo.2023.1134025] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023] Open
Abstract
Obesity has been associated with oxidative stress. Obese patients are at increased risk for diabetic cognitive dysfunction, indicating a pathological link between obesity, oxidative stress, and diabetic cognitive dysfunction. Obesity can induce the biological process of oxidative stress by disrupting the adipose microenvironment (adipocytes, macrophages), mediating low-grade chronic inflammation, and mitochondrial dysfunction (mitochondrial division, fusion). Furthermore, oxidative stress can be implicated in insulin resistance, inflammation in neural tissues, and lipid metabolism disorders, affecting cognitive dysfunction in diabetics.
Collapse
Affiliation(s)
- Huimin Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yusi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Tao Z, Cheng Z. Hormonal regulation of metabolism-recent lessons learned from insulin and estrogen. Clin Sci (Lond) 2023; 137:415-434. [PMID: 36942499 PMCID: PMC10031253 DOI: 10.1042/cs20210519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
Hormonal signaling plays key roles in tissue and metabolic homeostasis. Accumulated evidence has revealed a great deal of insulin and estrogen signaling pathways and their interplays in the regulation of mitochondrial, cellular remodeling, and macronutrient metabolism. Insulin signaling regulates nutrient and mitochondrial metabolism by targeting the IRS-PI3K-Akt-FoxOs signaling cascade and PGC1α. Estrogen signaling fine-tunes protein turnover and mitochondrial metabolism through its receptors (ERα, ERβ, and GPER). Insulin and estrogen signaling converge on Sirt1, mTOR, and PI3K in the joint regulation of autophagy and mitochondrial metabolism. Dysregulated insulin and estrogen signaling lead to metabolic diseases. This article reviews the up-to-date evidence that depicts the pathways of insulin signaling and estrogen-ER signaling in the regulation of metabolism. In addition, we discuss the cross-talk between estrogen signaling and insulin signaling via Sirt1, mTOR, and PI3K, as well as new therapeutic options such as agonists of GLP1 receptor, GIP receptor, and β3-AR. Mapping the molecular pathways of insulin signaling, estrogen signaling, and their interplays advances our understanding of metabolism and discovery of new therapeutic options for metabolic disorders.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, U.S.A
| | - Zhiyong Cheng
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, U.S.A
| |
Collapse
|
16
|
Arjunan A, Sah DK, Woo M, Song J. Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome. Cell Biosci 2023; 13:16. [PMID: 36691085 PMCID: PMC9872444 DOI: 10.1186/s13578-023-00966-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Neurodegenerative disorders are accompanied by neuronal degeneration and glial dysfunction, resulting in cognitive, psychomotor, and behavioral impairment. Multiple factors including genetic, environmental, metabolic, and oxidant overload contribute to disease progression. Recent evidences suggest that metabolic syndrome is linked to various neurodegenerative diseases. Metabolic syndrome (MetS) is known to be accompanied by symptoms such as hyperglycemia, abdominal obesity, hypertriglyceridemia, and hypertension. Despite advances in knowledge about the pathogenesis of neurodegenerative disorders, effective treatments to combat neurodegenerative disorders caused by MetS have not been developed to date. Insulin growth factor-1 (IGF-1) deficiency has been associated with MetS-related pathologies both in-vivo and in-vitro. IGF-1 is essential for embryonic and adult neurogenesis, neuronal plasticity, neurotropism, angiogenesis, metabolic function, and protein clearance in the brain. Here, we review the evidence for the potential therapeutic effects of IGF-1 in the neurodegeneration related to metabolic syndrome. We elucidate how IGF-1 may be involved in molecular signaling defects that occurs in MetS-related neurodegenerative disorders and highlight the importance of IGF-1 as a potential therapeutic target in MetS-related neurological diseases.
Collapse
Affiliation(s)
- Archana Arjunan
- grid.14005.300000 0001 0356 9399Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-Do 58128 Republic of Korea
| | - Dhiraj Kumar Sah
- grid.14005.300000 0001 0356 9399Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128 Republic of Korea ,grid.14005.300000 0001 0356 9399BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun, 58128 Republic of Korea
| | - Minna Woo
- grid.17063.330000 0001 2157 2938Division of Endocrinology and Metabolism, University Health Network and and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON Canada
| | - Juhyun Song
- grid.14005.300000 0001 0356 9399Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-Do 58128 Republic of Korea ,grid.14005.300000 0001 0356 9399BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun, 58128 Republic of Korea
| |
Collapse
|
17
|
Effects of Peroxisome Proliferator-Activated Receptor-Gamma Agonists on Cognitive Function: A Systematic Review and Meta-Analysis. Biomedicines 2023; 11:biomedicines11020246. [PMID: 36830783 PMCID: PMC9953157 DOI: 10.3390/biomedicines11020246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Diabetes mellitus (DM) is known to be a risk factor for dementia, especially in the elderly population, and close associations between diabetes and Alzheimer disease (AD) have been determined. Peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonists are insulin-sensitising drugs. In addition to their anti-diabetic properties, their effectiveness in preventing and decreasing cognitive impairment are the most recent characteristics that have been studied. For this study, we conducted a systematic review and meta-analysis to critically analyse and evaluate the existing data on the effects of PPAR-γ agonist therapy on the cognitive status of patients. For this purpose, we first analysed both early intervention and later treatment with PPAR-γ agonists, according to the disease status. The involved studies indicated that early PPAR-γ agonist intervention is beneficial for patients and that high-dose PPAR-γ therapy may have a better clinical effect, especially in reversing the effects of cognitive impairment. Furthermore, the efficacy of pioglitazone (PIO) seems to be promising, particularly for patients with comorbid diabetes. PIO presented a better clinical curative effect and safety, compared with rosiglitazone (RSG). Thus, PPAR-γ agonists play an important role in the inflammatory response of AD or DM patients, and clinical therapeutics should focus more on relevant metabolic indices.
Collapse
|
18
|
Davidson S, Allenback G, Decourt B, Sabbagh MN. Type 2 Diabetes Comorbidity and Cognitive Decline in Patients with Alzheimer's Disease. J Alzheimers Dis 2023; 95:1573-1584. [PMID: 37718812 DOI: 10.3233/jad-230489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Although insulin dysregulation and resistance likely participate in Alzheimer's disease (AD) etiologies, little is known about the correlation between type 2 diabetes mellitus (T2DM) and the progression of cognitive decline in patients with AD. OBJECTIVE To determine whether AD patients with T2DM experience more rapid cognitive decline than those without T2DM. METHODS All cognitive performance data and the presence or absence of T2DM comorbidity in patients with AD were derived from the US National Alzheimer's Coordinating Center's (NACC) Uniform Data Set (UDS). A search of the UDS identified 3,055 participants with AD who had more than one epoch completed. The data set culled clinically diagnosed AD dementia patients who were assessed for diabetes type identified during at least 1 visit. These patients were divided into 2 groups based on whether they had a diagnosis of T2DM. The data from these groups were then analyzed for differences in cognitive decline based on neuropsychological test battery scores and a Clinician Dementia Rating using a general linear model. RESULTS Comparisons of the mean scores for 16 selected tests from the neuropsychological test battery showed no significant differences in baseline scores and scores at subsequent visits between the T2DM and nondiabetic groups. CONCLUSIONS The results revealed no differences in cognitive decline metrics over the course of 5 visits in either study group. These data indicate that the presence of T2DM does not increase the rate of cognitive decline in AD. This finding contradicts expected disease burden and will need to be explored further.
Collapse
Affiliation(s)
- Skylar Davidson
- Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Gayle Allenback
- Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Boris Decourt
- Translational Neurodegenerative Research Lab, Roseman University, Las Vegas, NV, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Science Center, School of Medicine, Lubbock, TX, USA
| | - Marwan N Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
19
|
Hamzé R, Delangre E, Tolu S, Moreau M, Janel N, Bailbé D, Movassat J. Type 2 Diabetes Mellitus and Alzheimer's Disease: Shared Molecular Mechanisms and Potential Common Therapeutic Targets. Int J Mol Sci 2022; 23:ijms232315287. [PMID: 36499613 PMCID: PMC9739879 DOI: 10.3390/ijms232315287] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The global prevalence of diabetes mellitus and Alzheimer's disease is increasing alarmingly with the aging of the population. Numerous epidemiological data suggest that there is a strong association between type 2 diabetes and an increased risk of dementia. These diseases are both degenerative and progressive and share common risk factors. The amyloid cascade plays a key role in the pathophysiology of Alzheimer's disease. The accumulation of amyloid beta peptides gradually leads to the hyperphosphorylation of tau proteins, which then form neurofibrillary tangles, resulting in neurodegeneration and cerebral atrophy. In Alzheimer's disease, apart from these processes, the alteration of glucose metabolism and insulin signaling in the brain seems to induce early neuronal loss and the impairment of synaptic plasticity, years before the clinical manifestation of the disease. The large amount of evidence on the existence of insulin resistance in the brain during Alzheimer's disease has led to the description of this disease as "type 3 diabetes". Available animal models have been valuable in the understanding of the relationships between type 2 diabetes and Alzheimer's disease, but to date, the mechanistical links are poorly understood. In this non-exhaustive review, we describe the main molecular mechanisms that may link these two diseases, with an emphasis on impaired insulin and IGF-1 signaling. We also focus on GSK3β and DYRK1A, markers of Alzheimer's disease, which are also closely associated with pancreatic β-cell dysfunction and type 2 diabetes, and thus may represent common therapeutic targets for both diseases.
Collapse
Affiliation(s)
- Rim Hamzé
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Etienne Delangre
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Stefania Tolu
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Manon Moreau
- Team Degenerative Process, Stress and Aging, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Nathalie Janel
- Team Degenerative Process, Stress and Aging, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Danielle Bailbé
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Jamileh Movassat
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
- Correspondence: ; Tel.: +33-1-57-27-77-82; Fax: +33-1-57-27-77-91
| |
Collapse
|
20
|
Identification of repurposed drugs targeting significant long non-coding RNAs in the cross-talk between diabetes mellitus and Alzheimer's disease. Sci Rep 2022; 12:18332. [PMID: 36316461 PMCID: PMC9622874 DOI: 10.1038/s41598-022-22822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/19/2022] [Indexed: 11/14/2022] Open
Abstract
The relationship between diabetes mellitus (DM) and Alzheimer's disease (AD) is so strong that scientists called it "brain diabetes". According to several studies, the critical factor in this relationship is brain insulin resistance. Due to the rapid global spread of both diseases, overcoming this cross-talk has a significant impact on societies. Long non-coding RNAs (lncRNAs), on the other hand, have a substantial impact on complex diseases due to their ability to influence gene expression via a variety of mechanisms. Consequently, the regulation of lncRNA expression in chronic diseases permits the development of innovative therapeutic techniques. However, developing a new drug requires considerable time and money. Recently repurposing existing drugs has gained popularity due to the use of low-risk compounds, which may result in cost and time savings. in this study, we identified drug repurposing candidates capable of controlling the expression of common lncRNAs in the cross-talk between DM and AD. We also utilized drugs that interfered with this cross-talk. To do this, high degree common lncRNAs were extracted from microRNA-lncRNA bipartite network. The drugs that interact with the specified lncRNAs were then collected from multiple data sources. These drugs, referred to as set D, were classified in to positive (D+) and negative (D-) groups based on their effects on the expression of the interacting lncRNAs. A feature selection algorithm was used to select six important features for D. Using a random forest classifier, these features were capable of classifying D+ and D- with an accuracy of 82.5%. Finally, the same six features were extracted for the most recently Food and Drug Administration (FDA) approved drugs in order to identify those with the highest likelihood of belonging to D+ or D-. The most significant FDA-approved positive drugs, chromium nicotinate and tapentadol, were presented as repurposing candidates, while cefepime and dihydro-alpha-ergocryptine were recommended as significant adverse drugs. Moreover, two natural compounds, curcumin and quercetin, were recommended to prevent this cross-talk. According to the previous studies, less attention has been paid to the role of lncRNAs in this cross-talk. Our research not only did identify important lncRNAs, but it also suggested potential repurposed drugs to control them.
Collapse
|
21
|
Ghiam S, Eslahchi C, Shahpasand K, Habibi-Rezaei M, Gharaghani S. Exploring the role of non-coding RNAs as potential candidate biomarkers in the cross-talk between diabetes mellitus and Alzheimer’s disease. Front Aging Neurosci 2022; 14:955461. [PMID: 36092798 PMCID: PMC9451601 DOI: 10.3389/fnagi.2022.955461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Recent research has investigated the connection between Diabetes Mellitus (DM) and Alzheimer’s Disease (AD). Insulin resistance plays a crucial role in this interaction. Studies have focused on dysregulated proteins to disrupt this connection. Non-coding RNAs (ncRNAs), on the other hand, play an important role in the development of many diseases. They encode the majority of the human genome and regulate gene expression through a variety of mechanisms. Consequently, identifying significant ncRNAs and utilizing them as biomarkers could facilitate the early detection of this cross-talk. On the other hand, computational-based methods may help to understand the possible relationships between different molecules and conduct future wet laboratory experiments. Materials and methods In this study, we retrieved Genome-Wide Association Study (GWAS, 2008) results from the United Kingdom Biobank database using the keywords “Alzheimer’s” and “Diabetes Mellitus.” After excluding low confidence variants, statistical analysis was performed, and adjusted p-values were determined. Using the Linkage Disequilibrium method, 127 significant shared Single Nucleotide Polymorphism (SNP) were chosen and the SNP-SNP interaction network was built. From this network, dense subgraphs were extracted as signatures. By mapping each signature to the reference genome, genes associated with the selected SNPs were retrieved. Then, protein-microRNA (miRNA) and miRNA-long non-coding RNA (lncRNA) bipartite networks were built and significant ncRNAs were extracted. After the validation process, by applying the scoring function, the final protein-miRNA-lncRNA tripartite network was constructed, and significant miRNAs and lncRNAs were identified. Results Hsa-miR-199a-5p, hsa-miR-199b-5p, hsa-miR-423-5p, and hsa-miR-3184-5p, the four most significant miRNAs, as well as NEAT1, XIST, and KCNQ1OT1, the three most important lncRNAs, and their interacting proteins in the final tripartite network, have been proposed as new candidate biomarkers in the cross-talk between DM and AD. The literature review also validates the obtained ncRNAs. In addition, miRNA/lncRNA pairs; hsa-miR-124-3p/KCNQ1OT1, hsa-miR-124-3p/NEAT1, and hsa-miR-124-3p/XIST, all expressed in the brain, and their interacting proteins in our final network are suggested for future research investigation. Conclusion This study identified 127 shared SNPs, 7 proteins, 15 miRNAs, and 11 lncRNAs involved in the cross-talk between DM and AD. Different network analysis and scoring function suggested the most significant miRNAs and lncRNAs as potential candidate biomarkers for wet laboratory experiments. Considering these candidate biomarkers may help in the early detection of DM and AD co-occurrence.
Collapse
Affiliation(s)
- Shokoofeh Ghiam
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid-Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Changiz Eslahchi,
| | - Koorosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| | - Mehran Habibi-Rezaei
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- *Correspondence: Sajjad Gharaghani,
| |
Collapse
|
22
|
Kumar V, Kim SH, Bishayee K. Dysfunctional Glucose Metabolism in Alzheimer’s Disease Onset and Potential Pharmacological Interventions. Int J Mol Sci 2022; 23:ijms23179540. [PMID: 36076944 PMCID: PMC9455726 DOI: 10.3390/ijms23179540] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/21/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related dementia. The alteration in metabolic characteristics determines the prognosis. Patients at risk show reduced glucose uptake in the brain. Additionally, type 2 diabetes mellitus increases the risk of AD with increasing age. Therefore, changes in glucose uptake in the cerebral cortex may predict the histopathological diagnosis of AD. The shifts in glucose uptake and metabolism, insulin resistance, oxidative stress, and abnormal autophagy advance the pathogenesis of AD syndrome. Here, we summarize the role of altered glucose metabolism in type 2 diabetes for AD prognosis. Additionally, we discuss diagnosis and potential pharmacological interventions for glucose metabolism defects in AD to encourage the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - So-Hyeon Kim
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Kausik Bishayee
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: or
| |
Collapse
|
23
|
Takeuchi M, Sakasai-Sakai A, Takata T, Takino JI, Koriyama Y. Effects of Toxic AGEs (TAGE) on Human Health. Cells 2022; 11:2178. [PMID: 35883620 PMCID: PMC9317028 DOI: 10.3390/cells11142178] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 02/05/2023] Open
Abstract
The habitual and excessive consumption of sugar (i.e., sucrose and high-fructose corn syrup, HFCS) is associated with the onset and progression of lifestyle-related diseases (LSRD). Advanced glycation end-products (AGEs) have recently been the focus of research on the factors contributing to LSRD. Approaches that inhibit the effects of AGEs may be used to prevent and/or treat LSRD; however, since the structures of AGEs vary depending on the type of reducing sugars or carbonyl compounds to which they respond, difficulties are associated with verifying that AGEs are an etiological factor. Cytotoxic AGEs derived from glyceraldehyde, a triose intermediate in the metabolism of glucose and fructose, have been implicated in LSRD and are called toxic AGEs (TAGE). A dietary imbalance (the habitual and excessive intake of sucrose, HFCS, or dietary AGEs) promotes the generation/accumulation of TAGE in vivo. Elevated circulating levels of TAGE have been detected in non-diabetics and diabetics, indicating a strong relationship between the generation/accumulation of TAGE in vivo and the onset and progression of LSRD. We herein outline current findings on "TAGE as a new target" for human health.
Collapse
Affiliation(s)
- Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Kahoku 920-0293, Ishikawa, Japan;
| | - Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Kahoku 920-0293, Ishikawa, Japan;
| | - Takanobu Takata
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Kahoku 920-0293, Ishikawa, Japan;
| | - Jun-ichi Takino
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure 737-0112, Hiroshima, Japan;
| | - Yoshiki Koriyama
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki, Suzuka 513-8670, Mie, Japan;
| |
Collapse
|
24
|
Fehsel K, Christl J. Comorbidity of osteoporosis and Alzheimer's disease: Is `AKT `-ing on cellular glucose uptake the missing link? Ageing Res Rev 2022; 76:101592. [PMID: 35192961 DOI: 10.1016/j.arr.2022.101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis and Alzheimer's disease (AD) are both degenerative diseases. Osteoporosis often proceeds cognitive deficits, and multiple studies have revealed common triggers that lead to energy deficits in brain and bone. Risk factors for osteoporosis and AD, such as obesity, type 2 diabetes, aging, chemotherapy, vitamin deficiency, alcohol abuse, and apolipoprotein Eε4 and/or Il-6 gene variants, reduce cellular glucose uptake, and protective factors, such as estrogen, insulin, exercise, mammalian target of rapamycin inhibitors, hydrogen sulfide, and most phytochemicals, increase uptake. Glucose uptake is a fine-tuned process that depends on an abundance of glucose transporters (Gluts) on the cell surface. Gluts are stored in vesicles under the plasma membrane, and protective factors cause these vesicles to fuse with the membrane, resulting in presentation of Gluts on the cell surface. This translocation depends mainly on AKT kinase signaling and can be affected by a range of factors. Reduced AKT kinase signaling results in intracellular glucose deprivation, which causes endoplasmic reticulum stress and iron depletion, leading to activation of HIF-1α, the transcription factor necessary for higher Glut expression. The link between diseases and aging is a topic of growing interest. Here, we show that diseases that affect the same biochemical pathways tend to co-occur, which may explain why osteoporosis and/or diabetes are often associated with AD.
Collapse
|
25
|
Gupta S, Burman S, Nair AB, Chauhan S, Sircar D, Roy P, Dhanwat M, Lahiri D, Mehta D, Das R, Khalil HE. Brassica oleracea Extracts Prevent Hyperglycemia in Type 2 Diabetes Mellitus. Prev Nutr Food Sci 2022; 27:50-62. [PMID: 35465108 PMCID: PMC9007711 DOI: 10.3746/pnf.2022.27.1.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated the protective effect of extracts from flowers of Brassica oleracea L. var. italica Plenck on type 2 diabetes mellitus and its associated disorders. Three different doses of each extract (petroleum ether, ethanol, and aqueous) were administered orally for 42 days. Biochemical parameters, behavioral studies, and histological studies were measured at different periods. Mortality was found to be nil up to 2,000 mg/kg. Statistically significant (P<0.001) improvement in serum glucose level was observed in the groups receiving 400 mg/kg of petroleum ether, aqueous, or ethanol extracts compared with the negative control group. Insulin level was decreased by aqueous extracts, whereas lipid profiles were improved by aqueous and ethanol extracts. A reduction in transfer latency was observed in treatments of all three extract types. Ethanol extract treatment (400 mg/kg) showed maximum percentage inhibition in a lipid peroxidation assay. Additionally, the aqueous and ethanol extract treatments markedly reduced tumor necrosis factor-α, interleukin-6, and glycosylated hemoglobin levels. Histological results showed that high doses of extracts alleviated the damages induced by type 2 diabetes mellitus in various organs and bones. Based on the results of this study, it can be concluded that B. oleracea has the potential to alleviate type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Sumeet Gupta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana 133207, India
| | - Satish Burman
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana 133207, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Samrat Chauhan
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana 133207, India
| | - Debabrata Sircar
- Department of Biotechnology, Indian Institute of Technology-Roorkee, Uttarakhand 247667, India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology-Roorkee, Uttarakhand 247667, India
| | - Meenakshi Dhanwat
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana 133207, India
| | - Debrupa Lahiri
- Department of Metallurgical and Materials Engineering and Centre of Nanotechnology, Indian Institute of Technology-Roorkee, Uttarakhand 247667, India
| | - Dinesh Mehta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana 133207, India
| | - Rina Das
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana 133207, India
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
26
|
Lv YQ, Yuan L, Sun Y, Dou HW, Su JH, Hou ZP, Li JY, Li W. Long-term hyperglycemia aggravates α-synuclein aggregation and dopaminergic neuronal loss in a Parkinson’s disease mouse model. Transl Neurodegener 2022; 11:14. [PMID: 35255986 PMCID: PMC8900445 DOI: 10.1186/s40035-022-00288-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/14/2022] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
Growing evidence suggests an association between Parkinson’s disease (PD) and diabetes mellitus (DM). At the cellular level, long-term elevated levels of glucose have been shown to lead to nigrostriatal degeneration in PD models. However, the underlying mechanism is still unclear. Previously, we have elucidated the potential of type 2 diabetes mellitus (T2DM) in facilitating PD progression, involving aggregation of both alpha-synuclein (α-syn) and islet amyloid polypeptide in the pancreatic and brain tissues. However, due to the complicated effect of insulin resistance on PD onset, the actual mechanism of hyperglycemia-induced dopaminergic degeneration remains unknown.
Methods
We employed the type 1 diabetes mellitus (T1DM) model induced by streptozotocin (STZ) injection in a transgenic mouse line (BAC-α-syn-GFP) overexpressing human α-syn, to investigate the direct effect of elevated blood glucose on nigrostriatal degeneration.
Results
STZ treatment induced more severe pathological alterations in the pancreatic islets and T1DM symptoms in α-syn-overexpressing mice than in wild-type mice, at one month and three months after STZ injections. Behavioral tests evaluating motor performance confirmed the nigrostriatal degeneration. Furthermore, there was a marked decrease in dopaminergic profiles and an increase of α-syn accumulation and Serine 129 (S129) phosphorylation in STZ-treated α-syn mice compared with the vehicle-treated mice. In addition, more severe neuroinflammation was observed in the brains of the STZ-treated α-syn mice.
Conclusion
Our results solidify the potential link between DM and PD, providing insights into how hyperglycemia induces nigrostriatal degeneration and contributes to pathogenic mechanisms in PD.
Collapse
|
27
|
Mani V, Arfeen M, Mohammed HA, Elsisi HA, Sajid S, Almogbel Y, Aldubayan M, Dhanasekaran M, Alhowail A. Sukkari dates seed improves type-2 diabetes mellitus-induced memory impairment by reducing blood glucose levels and enhancing brain cholinergic transmission: In vivo and molecular modeling studies. Saudi Pharm J 2022; 30:750-763. [PMID: 35812141 PMCID: PMC9257867 DOI: 10.1016/j.jsps.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
Cognitive decline is one of the serious complications associated with diabetes mellitus (T2DM) of type-2. In this reported work, the effect of aqueous sukkari dates seed extract (ASSE) was evaluated in T2DM-induced rats. T2DM was induced using intraperitoneal injection of nicotinamide and streptozocin (STZ) administration. The diabetic rats were then treated orally with 200 mg/kg and 400 mg/kg of dates seed extract for 30 days and results were compared with metformin-treated groups. The memory functions were assessed using three maze models. Glucose and insulin levels in the blood and acetylcholine, acetylcholinesterase brain homogenates were estimated. The results showed a significant reduction in transfer latency (TL) (p < 0.001) during the elevated plus maze (EPM) test. The novel object recognition (NOR) test revealed a longer exploration time (p > 0.05) with novel objects and a higher discrimination index (p > 0.05). The Y-maze test also showed a significant increase in the number of entries to the novel arm (p > 0.05) and the total number of entries in the trial (p > 0.01) as well as in test (p > 0.05) sessions. Reduction in blood glucose (p > 0.05) and improvement in blood insulin (p > 0.05) levels were also noted. Improvement in ACh levels (p > 0.001) with 400 mg/kg of ASSE and reduction in AChE (p > 0.001) with both doses of ASSE were also observed in the brain homogenates. The results of ASSE were found comparable with the metformin-treated rats. The estimation of phytochemical constituents displayed a significant presence of phenolic content. Further, molecular modeling studies showed ellagic acid, catechin, and epicatechin as the potential molecule interacting with GSK-3β, α-amylase, and AChE and may be responsible for observed bioactivity. In conclusion, ASSE has the ability to alleviate T2DM-related cognitive impairments.
Collapse
|
28
|
Sluiman AJ, McLachlan S, Forster RB, Strachan MWJ, Deary IJ, Price JF. Higher baseline inflammatory marker levels predict greater cognitive decline in older people with type 2 diabetes: year 10 follow-up of the Edinburgh Type 2 Diabetes Study. Diabetologia 2022; 65:467-476. [PMID: 34932135 PMCID: PMC8803673 DOI: 10.1007/s00125-021-05634-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023]
Abstract
AIMS/HYPOTHESIS We aimed to determine the longitudinal association of circulating markers of systemic inflammation with subsequent long-term cognitive change in older people with type 2 diabetes. METHODS The Edinburgh Type 2 Diabetes Study is a prospective cohort study of 1066 adults aged 60 to 75 years with type 2 diabetes. Baseline data included C-reactive protein, IL-6, TNF-α fibrinogen and neuropsychological testing on major cognitive domains. Cognitive testing was repeated after 10 years in 581 participants. A general cognitive ability score was derived from the battery of seven individual cognitive tests using principal component analysis. Linear regression was used to determine longitudinal associations between baseline inflammatory markers and cognitive outcomes at follow-up, with baseline cognitive test results included as covariables to model cognitive change over time. RESULTS Following adjustment for age, sex and baseline general cognitive ability, higher baseline fibrinogen and IL-6 were associated with greater decline in general cognitive ability (standardised βs = -0.059, p=0.032 and -0.064, p=0.018, respectively). These associations lost statistical significance after adjustment for baseline vascular and diabetes-related covariables. When assessing associations with individual cognitive tests, higher IL-6 was associated with greater decline in tests of executive function and abstract reasoning (standardised βs = 0.095, p=0.006 and -0.127, p=0.001, respectively). Similarly, raised fibrinogen and C-reactive protein levels were associated with greater decline in processing speed (standardised βs = -0.115, p=0.001 and -0.111, p=0.001, respectively). These associations remained statistically significant after adjustment for the diabetes- and vascular-related risk factors. CONCLUSIONS/INTERPRETATION Higher baseline levels of inflammatory markers, including plasma IL-6, fibrinogen and C-reactive protein, were associated with subsequent cognitive decline in older people with type 2 diabetes. At least some of this association appeared to be specific to certain cognitive domains and to be independent of vascular and diabetes-related risk factors.
Collapse
Affiliation(s)
- Anniek J Sluiman
- Usher Institute, University of Edinburgh, Edinburgh, UK.
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.
| | | | | | | | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Jackie F Price
- Usher Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
29
|
Yang GZ, Gao QC, Li WR, Cai HY, Zhao HM, Wang JJ, Zhao XR, Wang JX, Wu MN, Zhang J, Hölscher C, Qi JS, Wang ZJ. (D-Ser2) oxyntomodulin recovers hippocampal synaptic structure and theta rhythm in Alzheimer's disease transgenic mice. Neural Regen Res 2022; 17:2072-2078. [PMID: 35142699 PMCID: PMC8848598 DOI: 10.4103/1673-5374.335168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In our previous studies, we have shown that (D-Ser2) oxyntomodulin (Oxm), a glucagon-like peptide 1 (GLP-1) receptor (GLP1R)/glucagon receptor (GCGR) dual agonist peptide, protects hippocampal neurons against Aβ1–42 -induced cytotoxicity, and stabilizes the calcium homeostasis and mitochondrial membrane potential of hippocampal neurons. Additionally, we have demonstrated that (D-Ser2) Oxm improves cognitive decline and reduces the deposition of amyloid-beta in Alzheimer's disease model mice. However, the protective mechanism remains unclear. In this study, we showed that 2 weeks of intraperitoneal administration of (D-Ser2) Oxm ameliorated the working memory and fear memory impairments of 9-month-old 3×Tg Alzheimer's disease model mice. In addition, electrophysiological data recorded by a wireless multichannel neural recording system implanted in the hippocampal CA1 region showed that (D-Ser2) Oxm increased the power of the theta rhythm. In addition, (D-Ser2) Oxm treatment greatly increased the expression level of synaptic-associated proteins SYP and PSD-95 and increased the number of dendritic spines in 3×Tg Alzheimer's disease model mice. These findings suggest that (D-Ser2) Oxm improves the cognitive function of Alzheimer's disease transgenic mice by recovering hippocampal synaptic function and theta rhythm.
Collapse
Affiliation(s)
- Guang-Zhao Yang
- Department of Cardiovascular Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Qi-Chao Gao
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| | - Wei-Ran Li
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hui-Min Zhao
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| | - Jian-Ji Wang
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| | - Xin-Rui Zhao
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| | - Jia-Xin Wang
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| | - Mei-Na Wu
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| | - Jun Zhang
- Functional Laboratory Center, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Christian Hölscher
- Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Jin-Shun Qi
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| | - Zhao-Jun Wang
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| |
Collapse
|
30
|
Heikal SA, Salama M, Richard Y, Moustafa AA, Lawlor B. The Impact of Disease Registries on Advancing Knowledge and Understanding of Dementia Globally. Front Aging Neurosci 2022; 14:774005. [PMID: 35197840 PMCID: PMC8859161 DOI: 10.3389/fnagi.2022.774005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/14/2022] [Indexed: 12/01/2022] Open
Abstract
To help address the increasing challenges related to the provision of dementia care, dementia registries have emerged around the world as important tools to gain insights and a better understanding of the disease process. Dementia registries provide a valuable source of standardized data collected from a large number of patients. This review explores the published research relating to different dementia registries around the world and discusses how these registries have improved our knowledge and understanding of the incidence, prevalence, risk factors, mortality, diagnosis, and management of dementia. A number of the best-known dementia registries with high research output including SveDem, NACC, ReDeGi, CREDOS and PRODEM were selected to study the publication output based on their data, investigate the key findings of these registry-based studies. Registries data contributed to understanding many aspects of the disease including disease prevalence in specific areas, patient characteristics and how they differ in populations, mortality risks, as well as the disease risk factors. Registries data impacted the quality of patients’ lives through determining the best treatment strategy for a patient based on previous patient outcomes. In conclusion, registries have significantly advanced scientific knowledge and understanding of dementia and impacted policy, clinical practice care delivery.
Collapse
Affiliation(s)
- Shimaa A. Heikal
- Institute of Global Health and Human Ecology (IGHHE), The American University in Cairo (AUC), New Cairo, Egypt
- *Correspondence: Shimaa A. Heikal,
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (IGHHE), The American University in Cairo (AUC), New Cairo, Egypt
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Yuliya Richard
- Blue Horizon Counseling Services, Sydney, NSW, Australia
| | - Ahmed A. Moustafa
- School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, QLD, Australia
- Department of Human Anatomy and Physiology, The Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Brian Lawlor
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
Lima JEBF, Moreira NCS, Sakamoto-Hojo ET. Mechanisms underlying the pathophysiology of type 2 diabetes: From risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 874-875:503437. [PMID: 35151421 DOI: 10.1016/j.mrgentox.2021.503437] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/08/2021] [Accepted: 12/12/2021] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes (T2D) is a complex multifactorial disease that emerges from the combination of genetic and environmental factors, and obesity, lifestyle, and aging are the most relevant risk factors. Hyperglycemia is the main metabolic feature of T2D as a consequence of insulin resistance and β-cell dysfunction. Among the cellular alterations induced by hyperglycemia, the overproduction of reactive oxygen species (ROS) and consequently oxidative stress, accompanied by a reduced antioxidant response and impaired DNA repair pathways, represent essential mechanisms underlying the pathophysiology of T2D and the development of late complications. Mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and inflammation are also closely correlated with insulin resistance and β-cell dysfunction. This review focus on the mechanisms by which oxidative stress, mitochondrial dysfunction, ER stress, and inflammation are involved in the pathophysiology of T2D, highlighting the importance of the antioxidant response and DNA repair mechanisms counteracting the development of the disease. Moreover, we indicate evidence on how nutritional interventions effectively improve diabetes care. Additionally, we address key molecular characteristics and signaling pathways shared between T2D and Alzheimer's disease (AD), which might probably be implicated in the risk of T2D patients to develop AD.
Collapse
Affiliation(s)
- Jessica E B F Lima
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Natalia C S Moreira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
32
|
Glibenclamide ameliorates the expression of neurotrophic factors in sevoflurane anaesthesia-induced oxidative stress and cognitive impairment in hippocampal neurons of old rats. J Vet Res 2021; 65:527-538. [PMID: 35112009 PMCID: PMC8775723 DOI: 10.2478/jvetres-2021-0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Several antidiabetic medications have been proposed as prospective treatments for cognitive impairments in type 2 diabetes patients, glibenclamide (GBC) among them. Our research aimed to evaluate the impact of GBC on hippocampal learning memory and inflammation due to enhanced neurotrophic signals induced by inhalation of sevoflurane. Material and Methods Rats (Sprague Dawley, both sexes) were assigned to four groups: a control (vehicle, p.o.), GBC (10 mg/kg b.w.; p.o.), low-dose sevoflurane and low-dose sevoflurane + GBC (10 mg/kg b.w.; p.o.) for 23 days. Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining was performed to analyse the count of apoptotic cells and ELISA was conducted to assess the protein signals. A Western blot, a Y-maze test, and a Morris maze test were performed, and the results analysed. Blood and tissues were collected, and isolation of RNA was performed with qRT-PCR. Results The Morris maze test results revealed an improvement in the length of the escape latency on days 1 (P < 0.05), 2 (P < 0.01), 3, and 4 in the low-dose Sevo group. Time spent in the quadrant and crossing axis and the percentage of spontaneous alterations showed a substantial decrease in the low-dose Sevo group which received GBC at 10 mg/kg b.w. Significant increases were shown in IL-6 and TNF-α levels in the low-dose Sevo group, whereas a decrease was evident in the GBC group. Conclusion Our results indicate that glibenclamide may be a novel drug to prevent sevoflurane inhalation-induced impaired learning and reduce brain-derived neurotrophic factor release, which may be a vital target for the development of potential therapies for cognitive deficits and neurodegeneration.
Collapse
|
33
|
Yuan L, Zhang J, Guo JH, Holscher C, Yang JT, Wu MN, Wang ZJ, Cai HY, Han LN, Shi H, Han YF, Qi JS. DAla2-GIP-GLU-PAL Protects Against Cognitive Deficits and Pathology in APP/PS1 Mice by Inhibiting Neuroinflammation and Upregulating cAMP/PKA/CREB Signaling Pathways. J Alzheimers Dis 2021; 80:695-713. [PMID: 33579843 DOI: 10.3233/jad-201262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function. Type 2 diabetes mellitus (T2DM) is an important risk factor for AD. Glucose-dependent insulinotropic polypeptide (GIP) has been identified to be effective in T2DM treatment and neuroprotection. OBJECTIVE The present study investigated the neuroprotective effects and possible mechanisms of DAla2GIP-Glu-PAL, a novel long-lasting GIP analogue, in APP/PS1 AD mice. METHODS Multiple behavioral tests were performed to examine the cognitive function of mice. In vivo hippocampus late-phase long-term potentiation (L-LTP) was recorded to reflect synaptic plasticity. Immunohistochemistry and immunofluorescence were used to examine the Aβ plaques and neuroinflammation in the brain. IL-1β, TNF-α, and cAMP/PKA/CREB signal molecules were also detected by ELISA or western blotting. RESULTS DAla2GIP-Glu-PAL increased recognition index (RI) of APP/PS1 mice in novel object recognition test, elevated spontaneous alternation percentage of APP/PS1 mice in Y maze test, and increased target quadrant swimming time of APP/PS1 mice in Morris water maze test. DAla2GIP-Glu-PAL treatment enhanced in vivo L-LTP of APP/PS1 mice. DAla2GIP-Glu-PAL significantly reduced Aβ deposition, inhibited astrocyte and microglia proliferation, and weakened IL-1β and TNF-α secretion. DAla2GIP-Glu-PAL also upregulated cAMP/PKA/CREB signal transduction and inhibited NF-κB activation in the hippocampus of APP/PS1 mice. CONCLUSION DAla2GIP-Glu-PAL can improve cognitive behavior, synaptic plasticity, and central pathological damage in APP/PS1 mice, which might be associated with the inhibition of neuroinflammation, as well as upregulation of cAMP-/PKA/CREB signaling pathway. This study suggests a potential benefit of DAla2GIP-Glu-PAL in the treatment of AD.
Collapse
Affiliation(s)
- Li Yuan
- Department of Physiology, Changzhi Medical College, Changzhi, Shanxi, PR China.,Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jun Zhang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jun-Hong Guo
- Department of Neurology, First Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Christian Holscher
- Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
| | - Jun-Ting Yang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hong-Yan Cai
- Department of Immunology and Microbiology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Ling-Na Han
- Department of Physiology, Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Hui Shi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yu-Fei Han
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jin-Shun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
34
|
Hydroxytyrosol Selectively Affects Non-Enzymatic Glycation in Human Insulin and Protects by AGEs Cytotoxicity. Antioxidants (Basel) 2021; 10:antiox10071127. [PMID: 34356360 PMCID: PMC8301023 DOI: 10.3390/antiox10071127] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Hydroxytyrosol (HT), the major phenolic compound in olive oil, is attracting increasing interest for its beneficial properties including a notable antioxidant and anti-inflammatory power. In this study, using a combination of biophysical and cell biology techniques, we have tested the role of HT in the formation of advanced glycation end-products (AGEs). AGEs have a key role in clinical sciences as they have been associated to diabetes, neurodegenerative and cardiovascular diseases. In addition, as the incidence of Alzheimer’s disease (AD) is strongly increased in diabetic patients, AGE formation is supposed to be involved in the development of the pathological hallmarks of AD. Our data show that HT selectively inhibits protein glycation reaction in human insulin, and it is able to counteract the AGE-induced cytotoxicity in human neurotypical cells by acting on SIRT1 level and oxidative stress, as well as on inflammatory response. This study identifies new beneficial properties for HT and suggests it might be a promising molecule in protecting against the AGE-induced toxicity, a key mechanism underlying the development and progression of neurodegenerative disorders.
Collapse
|
35
|
Investigation of extracellular matrix genes associated with Alzheimer’s disease in the hippocampus of experimental diabetic model rats. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-00951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
36
|
Khatri DK, Kadbhane A, Patel M, Nene S, Atmakuri S, Srivastava S, Singh SB. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100022. [PMID: 34909657 PMCID: PMC8663985 DOI: 10.1016/j.crphar.2021.100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (ND) are of vast origin which are characterized by gradual progressive loss of neurons in the brain region. ND can be classified according to the clinical symptoms present (e.g. Cognitive decline, hyperkinetic, and hypokinetic movements disorder) or by the pathological protein deposited (e.g., Amyloid, tau, Alpha-synuclein, TDP-43). Alzheimer's disease preceded by Parkinson's is the most prevalent form of ND world-wide. Multiple factors like aging, genetic mutations, environmental factors, gut microbiota, blood-brain barrier microvascular complication, etc. may increase the predisposition towards ND. Genetic mutation is a major contributor in increasing the susceptibility towards ND, the concept of one disease-one gene is obsolete and now multiple genes are considered to be involved in causing one particular disease. Also, the involvement of multiple pathological mechanisms like oxidative stress, neuroinflammation, mitochondrial dysfunction, etc. contributes to the complexity and makes them difficult to be treated by traditional mono-targeted ligands. In this aspect, the Poly-pharmacological drug approach which targets multiple pathological pathways at the same time provides the best way to treat such complex networked CNS diseases. In this review, we have provided an overview of ND and their pathological origin, along with a brief description of various genes associated with multiple diseases like Alzheimer's, Parkinson's, Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Huntington's and a comprehensive detail about the Poly-pharmacology approach (MTDLs and Fixed-dose combinations) along with their merits over the traditional single-targeted drug is provided. This review also provides insights into current repurposing strategies along with its regulatory considerations.
Collapse
Affiliation(s)
- Dharmendra Kumar Khatri
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | | | | | | | | | | | - Shashi Bala Singh
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
37
|
Takeuchi M, Sakasai-Sakai A, Takata T, Takino JI, Koriyama Y, Kikuchi C, Furukawa A, Nagamine K, Hori T, Matsunaga T. Intracellular Toxic AGEs (TAGE) Triggers Numerous Types of Cell Damage. Biomolecules 2021; 11:biom11030387. [PMID: 33808036 PMCID: PMC8001776 DOI: 10.3390/biom11030387] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
The habitual intake of large amounts of sugar, which has been implicated in the onset/progression of lifestyle-related diseases (LSRD), induces the excessive production of glyceraldehyde (GA), an intermediate of sugar metabolism, in neuronal cells, hepatocytes, and cardiomyocytes. Reactions between GA and intracellular proteins produce toxic advanced glycation end-products (toxic AGEs, TAGE), the accumulation of which contributes to various diseases, such as Alzheimer’s disease, non-alcoholic steatohepatitis, and cardiovascular disease. The cellular leakage of TAGE affects the surrounding cells via the receptor for AGEs (RAGE), thereby promoting the onset/progression of LSRD. We demonstrated that the intracellular accumulation of TAGE triggered numerous cellular disorders, and also that TAGE leaked into the extracellular space, thereby increasing extracellular TAGE levels in circulating fluids. Intracellular signaling and the production of reactive oxygen species are affected by extracellular TAGE and RAGE interactions, which, in turn, facilitate the intracellular generation of TAGE, all of which may contribute to the pathological changes observed in LSRD. In this review, we discuss the relationships between intracellular TAGE levels and numerous types of cell damage. The novel concept of the “TAGE theory” is expected to open new perspectives for research into LSRD.
Collapse
Affiliation(s)
- Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan; (A.S.-S.); (T.T.)
- Correspondence: ; Tel.: +81-76-218-8456
| | - Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan; (A.S.-S.); (T.T.)
| | - Takanobu Takata
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan; (A.S.-S.); (T.T.)
| | - Jun-ichi Takino
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan; (J.-i.T.); (T.H.)
| | - Yoshiki Koriyama
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki, Suzuka, Mie 513-8670, Japan; (Y.K.); (A.F.)
| | - Chigusa Kikuchi
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; (C.K.); (T.M.)
| | - Ayako Furukawa
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki, Suzuka, Mie 513-8670, Japan; (Y.K.); (A.F.)
| | - Kentaro Nagamine
- Department of Clinical Nutrition, Faculty of Health Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan;
| | - Takamitsu Hori
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan; (J.-i.T.); (T.H.)
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; (C.K.); (T.M.)
| |
Collapse
|
38
|
The bile acid TUDCA and neurodegenerative disorders: An overview. Life Sci 2021; 272:119252. [PMID: 33636170 DOI: 10.1016/j.lfs.2021.119252] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Bear bile has been used in Traditional Chinese Medicine for thousands of years due to its therapeutic potential and clinical applications. The tauroursodeoxycholic acid (TUDCA), one of the acids found in bear bile, is a hydrophilic bile acid and naturally produced in the liver by conjugation of taurine to ursodeoxycholic acid (UDCA). Several studies have shown that TUDCA has neuroprotective action in several models of neurodegenerative disorders (ND), including Alzheimer's disease, Parkinson's disease, and Huntington's disease, based on its potent ability to inhibit apoptosis, attenuate oxidative stress, and reduce endoplasmic reticulum stress in different experimental models of these illnesses. Our research extends the knowledge of the bile acid TUDCA actions in ND and the mechanisms and pathways involved in its cytoprotective effects on the brain, providing a novel perspective and opportunities for treatment of these diseases.
Collapse
|
39
|
Carranza-Naval MJ, Vargas-Soria M, Hierro-Bujalance C, Baena-Nieto G, Garcia-Alloza M, Infante-Garcia C, del Marco A. Alzheimer's Disease and Diabetes: Role of Diet, Microbiota and Inflammation in Preclinical Models. Biomolecules 2021; 11:biom11020262. [PMID: 33578998 PMCID: PMC7916805 DOI: 10.3390/biom11020262] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Epidemiological studies show the association between AD and type 2 diabetes (T2DM), although the mechanisms are not fully understood. Dietary habits and lifestyle, that are risk factors in both diseases, strongly modulate gut microbiota composition. Also, the brain-gut axis plays a relevant role in AD, diabetes and inflammation, through products of bacterial metabolism, like short-chain fatty acids. We provide a comprehensive review of current literature on the relation between dysbiosis, altered inflammatory cytokines profile and microglia in preclinical models of AD, T2DM and models that reproduce both diseases as commonly observed in the clinic. Increased proinflammatory cytokines, such as IL-1β and TNF-α, are widely detected. Microbiome analysis shows alterations in Actinobacteria, Bacteroidetes or Firmicutes phyla, among others. Altered α- and β-diversity is observed in mice depending on genotype, gender and age; therefore, alterations in bacteria taxa highly depend on the models and approaches. We also review the use of pre- and probiotic supplements, that by favoring a healthy microbiome ameliorate AD and T2DM pathologies. Whereas extensive studies have been carried out, further research would be necessary to fully understand the relation between diet, microbiome and inflammation in AD and T2DM.
Collapse
Affiliation(s)
- Maria Jose Carranza-Naval
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Salus Infirmorum, Universidad de Cadiz, 11005 Cadiz, Spain
| | - Maria Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Carmen Hierro-Bujalance
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Gloria Baena-Nieto
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Department of Endocrinology, Jerez Hospital, Jerez de la Frontera, 11407 Cadiz, Spain
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Carmen Infante-Garcia
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Correspondence: (C.I.-G.); (A.d.M.)
| | - Angel del Marco
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Correspondence: (C.I.-G.); (A.d.M.)
| |
Collapse
|
40
|
Zangerolamo L, Vettorazzi JF, Solon C, Bronczek GA, Engel DF, Kurauti MA, Soares GM, Rodrigues KS, Velloso LA, Boschero AC, Carneiro EM, Barbosa HCL. The bile acid TUDCA improves glucose metabolism in streptozotocin-induced Alzheimer's disease mice model. Mol Cell Endocrinol 2021; 521:111116. [PMID: 33321116 DOI: 10.1016/j.mce.2020.111116] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the major cause of dementia. According to predictions of the World Health Organization, more than 150 million people worldwide will suffer from dementia by 2050. An increasing number of studies have associated AD with type 2 diabetes mellitus (T2DM), since most of the features found in T2DM are also observed in AD, such as insulin resistance and glucose intolerance. In this sense, some bile acids have emerged as new therapeutic targets to treat AD and metabolic disorders. The taurine conjugated bile acid, tauroursodeoxycholic (TUDCA), reduces amyloid oligomer accumulation and improves cognition in APP/PS1 mice model of AD, and also improves glucose-insulin homeostasis in obese and type 2 diabetic mice. Herein, we investigated the effect of TUDCA upon glucose metabolism in streptozotocin-induced AD mice model (Stz). The Stz mice that received 300 mg/kg TUDCA during 10 days (Stz + TUDCA), showed improvement in glucose tolerance and insulin sensitivity, reduced fasted and fed glycemia, increased islet mass and β-cell area, as well as increased glucose-stimulated insulin secretion, compared with Stz mice that received only PBS. Stz + TUDCA mice also displayed lower neuroinflammation, reduced protein content of amyloid oligomer in the hippocampus, improved memory test and increased protein content of insulin receptor β-subunit in the hippocampus. In conclusion, TUDCA treatment enhanced glucose homeostasis in the streptozotocin-induced Alzheimer's disease mice model, pointing this bile acid as a good strategy to counteract glucose homeostasis disturbance in AD pathology.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, Department of Structural and Functional Biology, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | | | - Carina Solon
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Gabriela A Bronczek
- Obesity and Comorbidities Research Center, Department of Structural and Functional Biology, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Daiane F Engel
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Mirian A Kurauti
- Department of Physiological Sciences, State University of Maringa, UEM, Maringa, Parana, Brazil
| | - Gabriela M Soares
- Obesity and Comorbidities Research Center, Department of Structural and Functional Biology, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Karina S Rodrigues
- Obesity and Comorbidities Research Center, Department of Structural and Functional Biology, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Antonio C Boschero
- Obesity and Comorbidities Research Center, Department of Structural and Functional Biology, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Everardo M Carneiro
- Obesity and Comorbidities Research Center, Department of Structural and Functional Biology, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, Department of Structural and Functional Biology, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
41
|
El Bitar F, Al Sudairy N, Qadi N, Al Rajeh S, Alghamdi F, Al Amari H, Al Dawsari G, Alsubaie S, Al Sudairi M, Abdulaziz S, Al Tassan N. A Comprehensive Analysis of Unique and Recurrent Copy Number Variations in Alzheimer's Disease and its Related Disorders. Curr Alzheimer Res 2020; 17:926-938. [PMID: 33256577 DOI: 10.2174/1567205017666201130111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/20/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Copy number variations (CNVs) play an important role in the genetic etiology of various neurological disorders, including Alzheimer's disease (AD). Type 2 diabetes mellitus (T2DM) and major depressive disorder (MDD) were shown to have share mechanisms and signaling pathways with AD. OBJECTIVE We aimed to assess CNVs regions that may harbor genes contributing to AD, T2DM, and MDD in 67 Saudi familial and sporadic AD patients, with no alterations in the known genes of AD and genotyped previously for APOE. METHODS DNA was analyzed using the CytoScan-HD array. Two layers of filtering criteria were applied. All the identified CNVs were checked in the Database of Genomic Variants (DGV). RESULTS A total of 1086 CNVs (565 gains and 521 losses) were identified in our study. We found 73 CNVs harboring genes that may be associated with AD, T2DM or MDD. Nineteen CNVs were novel. Most importantly, 42 CNVs were unique in our studied cohort existing only in one patient. Two large gains on chromosomes 1 and 13 harbored genes implicated in the studied disorders. We identified CNVs in genes that encode proteins involved in the metabolism of amyloid-β peptide (AGRN, APBA2, CR1, CR2, IGF2R, KIAA0125, MBP, RER1, RTN4R, VDR and WISPI) or Tau proteins (CACNAIC, CELF2, DUSP22, HTRA1 and SLC2A14). CONCLUSION The present work provided information on the presence of CNVs related to AD, T2DM, and MDD in Saudi Alzheimer's patients.
Collapse
Affiliation(s)
- Fadia El Bitar
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nourah Al Sudairy
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Najeeb Qadi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Fatimah Alghamdi
- Institute of Biology and Environmental Research, National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hala Al Amari
- Institute of Biology and Environmental Research, National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ghadeer Al Dawsari
- Institute of Biology and Environmental Research, National Center for Genomics Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sahar Alsubaie
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mishael Al Sudairi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sara Abdulaziz
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nada Al Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Kim Y, Kim HS, Lee JW, Kim YS, You HS, Bae YJ, Lee HC, Han YE, Choi EA, Kim J, Kang HT. Metformin use in elderly population with diabetes reduced the risk of dementia in a dose-dependent manner, based on the Korean NHIS-HEALS cohort. Diabetes Res Clin Pract 2020; 170:108496. [PMID: 33068660 DOI: 10.1016/j.diabres.2020.108496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023]
Abstract
AIMS The aim of this study is to investigate the association between metformin usage and dementia in an elderly Korean population. METHODS Participants were divided into five groups: metformin non-users with diabetes mellitus (DM), metformin users with DM (low-, mid-, and high-users), and non-diabetic Individuals. Dementia was defined with primary diagnostic dementia codes according to the 10th edition of the International Classification of Diseases. To compare the incidence rate of dementia among the five groups, Kaplan-Meier estimates and log-rank test were employed. Also, to control the confounding factors, Cox proportional hazards regression models were fitted in a sequential adjustment. RESULTS The median follow-up was 12.4 years. The overall incidence rate of dementia was 11.3% (8.4% in men and 13.9% in women). Compared with metformin non-users, hazard ratios (95% confidence intervals) of low-, mid-, and high-users and non-diabetic individuals for dementia were 0.97 (0.73-1.28), 0.77 (0.58-1.01), 0.48 (0.35-0.67), and 0.98 (0.84-1.15), respectively, in men, respectively, and 0.90 (0.65-0.98), 0.61 (0.50-0.76), 0.46 (0.36-0.58), and 0.92 (0.81-1.04), respectively, in women, after full adjustment of confounding variables. CONCLUSIONS Metformin use in an elderly population with DM reduced dementia risk in a dose-response manner.
Collapse
Affiliation(s)
- Yonghwan Kim
- Department of Family Medicine, Chungbuk National University Hospital, Cheongju, Chungbuk, Republic of Korea
| | - Hyeong-Seop Kim
- Department of Information & Statistics, Chungbuk National University, Chungbuk, Cheongju, Republic of Korea
| | - Jae-Woo Lee
- Department of Family Medicine, Chungbuk National University Hospital, Cheongju, Chungbuk, Republic of Korea
| | - Ye-Seul Kim
- Department of Family Medicine, Chungbuk National University Hospital, Cheongju, Chungbuk, Republic of Korea
| | - Hyo-Sun You
- Department of Family Medicine, Chungbuk National University Hospital, Cheongju, Chungbuk, Republic of Korea
| | - Yoon-Jong Bae
- Department of Information & Statistics, Chungbuk National University, Chungbuk, Cheongju, Republic of Korea
| | - Hyeong-Cheol Lee
- Department of Family Medicine, Chungbuk National University Hospital, Cheongju, Chungbuk, Republic of Korea
| | - Ye-Eun Han
- Department of Information & Statistics, Chungbuk National University, Chungbuk, Cheongju, Republic of Korea
| | - Eun-A Choi
- Department of Information & Statistics, Chungbuk National University, Chungbuk, Cheongju, Republic of Korea
| | - Joungyoun Kim
- Department of Information & Statistics, Chungbuk National University, Chungbuk, Cheongju, Republic of Korea.
| | - Hee-Taik Kang
- Department of Family Medicine, Chungbuk National University Hospital, Cheongju, Chungbuk, Republic of Korea; Department of Family Medicine, Chungbuk National University College of Medicine, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
43
|
Khalifa K, Bergland AK, Soennesyn H, Oppedal K, Oesterhus R, Dalen I, Larsen AI, Fladby T, Brooker H, Wesnes KA, Ballard C, Aarsland D. Effects of Purified Anthocyanins in People at Risk for Dementia: Study Protocol for a Phase II Randomized Controlled Trial. Front Neurol 2020; 11:916. [PMID: 32982933 PMCID: PMC7492209 DOI: 10.3389/fneur.2020.00916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background: The number of people with dementia is increasing, with huge challenges for society and health-care systems. There are no disease-modifying therapies available. There is, therefore, an urgent need to identify strategies to reduce the risk of developing dementia. Anthocyanins are a class of compounds found in dark berries and fruits with some effects that might reduce the risk for cognitive decline and the development of dementia in older people. Aim: This phase II three-center, randomized, 24-week, placebo-controlled study, ongoing in Norway, aims to evaluate the safety, and efficacy of anthocyanins in modifying key dementia-related mechanisms and maintain cognitive functioning in older people at risk for dementia. Methods: Participants (220 individuals aged 60–80 years) who meet the inclusion criteria (either mild cognitive impairment or two or more cardiometabolic disorders) are being enrolled in this study at three different centers in Norway. Participants are block randomized to identically appearing capsules containing 80 mg of naturally purified anthocyanins or placebo 1:1. Dosage is 2 + 2 capsules per day for 24 weeks. The primary outcome will be the quality of episodic memory score, a composite measure from the extensively validated online cognitive test battery CogTrack®, which is administered at baseline and monthly for the next 6 months. Secondary outcomes include other major scores from CogTrack, as well as a range of neuroimaging and other biomarkers. Anthocyanin metabolites will be measured in blood and cerebrospinal fluid. The change from baseline scores will be subject to a mixed model for repeated measures analysis of covariance. The primary comparison will be the contrast (difference in the least-square means) between active and placebo at the end of the study (week 24). The primary study population will be a modified intention-to-treat population (ClinicalTrials.gov, NCT03419039). Discussion: This study aims to demonstrate whether there are beneficial effects of purified anthocyanins on cognition and relevant biological functions in people at increased risk for dementia. Forthcoming results may contribute to further improvement of intervention strategies to prevent or delay the onset of dementia, including a potential decision to take anthocyanins toward phase III trials.
Collapse
Affiliation(s)
- Khadija Khalifa
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Anne Katrine Bergland
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hogne Soennesyn
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Ketil Oppedal
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway.,Stavanger Medical Imaging Laboratory (SMIL), Department of Radiology, Stavanger University Hospital, Stavanger, Norway.,Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Ragnhild Oesterhus
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ingvild Dalen
- Section of Biostatistics, Department of Research, Stavanger University Hospital, Stavanger, Norway
| | - Alf Inge Larsen
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Helen Brooker
- Medical School, University of Exeter, Exeter, United Kingdom.,Ecog Pro Ltd., Bristol, United Kingdom
| | - Keith A Wesnes
- Medical School, University of Exeter, Exeter, United Kingdom.,Wesnes Cognition Ltd., Streatley, United Kingdom.,Department of Psychology, Northumbria University, Newcastle, United Kingdom.,Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, Australia
| | - Clive Ballard
- Medical School, University of Exeter, Exeter, United Kingdom
| | - Dag Aarsland
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Old Age Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| |
Collapse
|
44
|
Suresh J, Khor IW, Kaur P, Heng HL, Torta F, Dawe GS, Tai ES, Tolwinski NS. Shared signaling pathways in Alzheimer’s and metabolic disease may point to new treatment approaches. FEBS J 2020; 288:3855-3873. [DOI: 10.1111/febs.15540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Affiliation(s)
| | - Ing Wei Khor
- Department of Medicine Yong Loo Lin School of MedicineNational University of Singapore
| | - Prameet Kaur
- Science Division Yale‐ NUS College Singapore Singapore
| | - Hui Li Heng
- Department of Pharmacology Yong Loo Lin School of Medicine National University of Singapore, and Neurobiology Programme
- Life Sciences Institute National University of Singapore Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator Department of Biochemistry Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Gavin S. Dawe
- Department of Pharmacology Yong Loo Lin School of Medicine National University of Singapore, and Neurobiology Programme
- Life Sciences Institute National University of Singapore Singapore
| | - E Shyong Tai
- Department of Medicine Yong Loo Lin School of MedicineNational University of Singapore
- Division of Endocrinology National University HospitalNational University Health System
| | | |
Collapse
|
45
|
Kellar D, Craft S. Brain insulin resistance in Alzheimer's disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol 2020; 19:758-766. [DOI: 10.1016/s1474-4422(20)30231-3] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/30/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
|
46
|
Pilipenko V, Narbute K, Pupure J, Langrate IK, Muceniece R, Kluša V. Neuroprotective potential of antihyperglycemic drug metformin in streptozocin-induced rat model of sporadic Alzheimer's disease. Eur J Pharmacol 2020; 881:173290. [DOI: 10.1016/j.ejphar.2020.173290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
|
47
|
Ma WX, Tang J, Lei ZW, Li CY, Zhao LQ, Lin C, Sun T, Li ZY, Jiang YH, Jia JT, Liang CZ, Liu JH, Yan LJ. Potential Biochemical Mechanisms of Brain Injury in Diabetes Mellitus. Aging Dis 2020; 11:978-987. [PMID: 32765958 PMCID: PMC7390528 DOI: 10.14336/ad.2019.0910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/10/2019] [Indexed: 01/07/2023] Open
Abstract
The goal of this review was to summarize current biochemical mechanisms of and risk factors for diabetic brain injury. We mainly summarized mechanisms published in the past three years and focused on diabetes induced cognitive impairment, diabetes-linked Alzheimer’s disease, and diabetic stroke. We think there is a need to conduct further studies with increased sample sizes and prolonged period of follow-ups to clarify the effect of DM on brain dysfunction. Additionally, we also think that enhancing experimental reproducibility using animal models in conjunction with application of advanced devices should be considered when new experiments are designed. It is expected that further investigation of the underlying mechanisms of diabetic cognitive impairment will provide novel insights into therapeutic approaches for ameliorating diabetes-associated injury in the brain.
Collapse
Affiliation(s)
- Wei-Xing Ma
- 1Department of Pharmaceutical, University of North Texas Health Science Center, Fort Worth, Texas, USA.,2Chemical Engineering Institute, Qingdao University of Science and Technology, Qingdao, Shandong, China.,3Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Jing Tang
- 3Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Zhi-Wen Lei
- 3Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Chun-Yan Li
- 1Department of Pharmaceutical, University of North Texas Health Science Center, Fort Worth, Texas, USA.,4Shantou University Medical College, Shantou, Guangdong, China
| | - Li-Qing Zhao
- 3Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Chao Lin
- 3Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Tao Sun
- 3Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Zheng-Yi Li
- 3Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Ying-Hui Jiang
- 3Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Jun-Tao Jia
- 3Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Cheng-Zhu Liang
- 3Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Jun-Hong Liu
- 2Chemical Engineering Institute, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Liang-Jun Yan
- 1Department of Pharmaceutical, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
48
|
ÇAM ME. Camellia sinensis leaves hydroalcoholic extract improves the Alzheimer's disease-like alterations induced by type 2 diabetes in rats. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2020. [DOI: 10.33808/clinexphealthsci.685280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
A GLP-1/GIP/Gcg receptor triagonist improves memory behavior, as well as synaptic transmission, neuronal excitability and Ca2+ homeostasis in 3xTg-AD mice. Neuropharmacology 2020; 170:108042. [DOI: 10.1016/j.neuropharm.2020.108042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/13/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
|
50
|
Chandrasekaran K, Choi J, Arvas MI, Salimian M, Singh S, Xu S, Gullapalli RP, Kristian T, Russell JW. Nicotinamide Mononucleotide Administration Prevents Experimental Diabetes-Induced Cognitive Impairment and Loss of Hippocampal Neurons. Int J Mol Sci 2020; 21:ijms21113756. [PMID: 32466541 PMCID: PMC7313029 DOI: 10.3390/ijms21113756] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetes predisposes to cognitive decline leading to dementia and is associated with decreased brain NAD+ levels. This has triggered an intense interest in boosting nicotinamide adenine dinucleotide (NAD+) levels to prevent dementia. We tested if the administration of the precursor of NAD+, nicotinamide mononucleotide (NMN), can prevent diabetes-induced memory deficits. Diabetes was induced in Sprague-Dawley rats by the administration of streptozotocin (STZ). After 3 months of diabetes, hippocampal NAD+ levels were decreased (p = 0.011). In vivo localized high-resolution proton magnetic resonance spectroscopy (MRS) of the hippocampus showed an increase in the levels of glucose (p < 0.001), glutamate (p < 0.001), gamma aminobutyric acid (p = 0.018), myo-inositol (p = 0.018), and taurine (p < 0.001) and decreased levels of N-acetyl aspartate (p = 0.002) and glutathione (p < 0.001). There was a significant decrease in hippocampal CA1 neuronal volume (p < 0.001) and neuronal number (p < 0.001) in the Diabetic rats. Diabetic rats showed hippocampal related memory deficits. Intraperitoneal NMN (100 mg/kg) was given after induction and confirmation of diabetes and was provided on alternate days for 3 months. NMN increased brain NAD+ levels, normalized the levels of glutamate, taurine, N-acetyl aspartate (NAA), and glutathione. NMN-treatment prevented the loss of CA1 neurons and rescued the memory deficits despite having no significant effect on hyperglycemic or lipidemic control. In hippocampal protein extracts from Diabetic rats, SIRT1 and PGC-1α protein levels were decreased, and acetylation of proteins increased. NMN treatment prevented the diabetes-induced decrease in both SIRT1 and PGC-1α and promoted deacetylation of proteins. Our results indicate that NMN increased brain NAD+, activated the SIRT1 pathway, preserved mitochondrial oxidative phosphorylation (OXPHOS) function, prevented neuronal loss, and preserved cognition in Diabetic rats.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (J.C.); (M.I.A.); (M.S.); (S.S.)
| | - Joungil Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (J.C.); (M.I.A.); (M.S.); (S.S.)
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA;
| | - Muhammed Ikbal Arvas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (J.C.); (M.I.A.); (M.S.); (S.S.)
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (J.C.); (M.I.A.); (M.S.); (S.S.)
| | - Sujal Singh
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (J.C.); (M.I.A.); (M.S.); (S.S.)
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.X.); (R.P.G.)
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.X.); (R.P.G.)
| | - Tibor Kristian
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA;
- Department of Anesthesiology; University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - James William Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (J.C.); (M.I.A.); (M.S.); (S.S.)
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA;
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|