1
|
Alkhofash NF, Ali BR. The Evaluation of Drugs as Potential Modulators of the Trafficking and Maturation of ACE2, the SARS-CoV-2 Receptor. Biomolecules 2024; 14:764. [PMID: 39062478 PMCID: PMC11274373 DOI: 10.3390/biom14070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
ACE2, part of the angiotensin-converting enzyme family and the renin-angiotensin-aldosterone system (RAAS), plays vital roles in cardiovascular and renal functions. It is also the primary receptor for SARS-CoV-2, enabling its entry into cells. This project aimed to study ACE2's cellular trafficking and maturation to the cell surface and assess the impact of various drugs and compounds on these processes. We used cellular and biochemical analyses to evaluate these compounds as potential leads for COVID-19 therapeutics. Our screening assay focused on ACE2 maturation levels and subcellular localization with and without drug treatments. Results showed that ACE2 maturation is generally fast and robust, with certain drugs having a mild impact. Out of twenty-three tested compounds, eight significantly reduced ACE2 maturation levels, and three caused approximately 20% decreases. Screening trafficking inhibitors revealed significant effects from most molecular modulators of protein trafficking, mild effects from most proposed COVID-19 drugs, and no effects from statins. This study noted that manipulating ACE2 levels could be beneficial or harmful, depending on the context. Thus, using this approach to uncover leads for COVID-19 therapeutics requires a thorough understanding ACE2's biogenesis and biology.
Collapse
Affiliation(s)
- Nesreen F. Alkhofash
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Lusiki Z, Blom D, Soko ND, Malema S, Jones E, Rayner B, Blackburn J, Sinxadi P, Dandara MT, Dandara C. Major Genetic Drivers of Statin Treatment Response in African Populations and Pharmacogenetics of Dyslipidemia Through a One Health Lens. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:261-279. [PMID: 37956269 DOI: 10.1089/omi.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A One Health lens is increasingly significant to address the intertwined challenges in planetary health concerned with the health of humans, nonhuman animals, plants, and ecosystems. A One Health approach can benefit the public health systems in Africa that are overburdened by noncommunicable, infectious, and environmental diseases. Notably, the COVID-19 pandemic revealed the previously overlooked two-fold importance of pharmacogenetics (PGx), for individually tailored treatment of noncommunicable diseases and environmental pathogens. For example, dyslipidemia, a common cardiometabolic risk factor, has been identified as an independent COVID-19 severity risk factor. Observational data suggest that patients with COVID-19 infection receiving lipid-lowering therapy may have better outcomes. However, among African patients, the response to these drugs varies from patient to patient, pointing to the possible contribution of genetic variation in important pharmacogenes. The PGx of lipid-lowering therapies may underlie differences in treatment responses observed among dyslipidemia patients as well as patients comorbid with COVID-19 and dyslipidemia. Genetic variations in APOE, ABCB1, CETP, CYP2C9, CYP3A4, CYP3A5, HMGCR, LDLR, NPC1L1, and SLCO1B1 genes affect the pharmacogenomics of statins, and they have individually been linked to differential responses to dyslipidemia and COVID-19 treatment. African populations are underrepresented in PGx research. This leads to poor accounting of additional diverse genetic variants that could be important in understanding interindividual and between-population variations in therapeutic responses to dyslipidemia and COVID-19. This expert review examines and synthesizes the salient and priority PGx variations, as seen through a One Health lens in Africa, to improve and inform personalized medicine in both dyslipidemia and COVID-19.
Collapse
Affiliation(s)
- Zizo Lusiki
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Dirk Blom
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Lipidology and Cape Heart Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Nyarai D Soko
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Smangele Malema
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Erika Jones
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Nephrology and Hypertension, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Brian Rayner
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Nephrology and Hypertension, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jonathan Blackburn
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Phumla Sinxadi
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Michelle T Dandara
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| |
Collapse
|
3
|
Grote K, Schaefer AC, Soufi M, Ruppert V, Linne U, Mukund Bhagwat A, Szymanski W, Graumann J, Gercke Y, Aldudak S, Hilfiker-Kleiner D, Schieffer E, Schieffer B. Targeting the High-Density Lipoprotein Proteome for the Treatment of Post-Acute Sequelae of SARS-CoV-2. Int J Mol Sci 2024; 25:4522. [PMID: 38674105 PMCID: PMC11049911 DOI: 10.3390/ijms25084522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Here, we target the high-density lipoprotein (HDL) proteome in a case series of 16 patients with post-COVID-19 symptoms treated with HMG-Co-A reductase inhibitors (statin) plus angiotensin II type 1 receptor blockers (ARBs) for 6 weeks. Patients suffering from persistent symptoms (post-acute sequelae) after serologically confirmed SARS-CoV-2 infection (post-COVID-19 syndrome, PCS, n = 8) or following SARS-CoV-2 vaccination (PVS, n = 8) were included. Asymptomatic subjects with corresponding serological findings served as healthy controls (n = 8/8). HDL was isolated using dextran sulfate precipitation and the HDL proteome of all study participants was analyzed quantitatively by mass spectrometry. Clinical symptoms were assessed using questionnaires before and after therapy. The inflammatory potential of the patients' HDL proteome was addressed in human endothelial cells. The HDL proteome of patients with PCS and PVS showed no significant differences; however, compared to controls, the HDL from PVS/PCS patients displayed significant alterations involving hemoglobin, cytoskeletal proteins (MYL6, TLN1, PARVB, TPM4, FLNA), and amyloid precursor protein. Gene Ontology Biological Process (GOBP) enrichment analysis identified hemostasis, peptidase, and lipoprotein regulation pathways to be involved. Treatment of PVS/PCS patients with statins plus ARBs improved the patients' clinical symptoms. After therapy, three proteins were significantly increased (FAM3C, AT6AP2, ADAM10; FDR < 0.05) in the HDL proteome from patients with PVS/PCS. Exposure of human endothelial cells with the HDL proteome from treated PVS/PCS patients revealed reduced inflammatory cytokine and adhesion molecule expression. Thus, HDL proteome analysis from PVS/PCS patients enables a deeper insight into the underlying disease mechanisms, pointing to significant involvement in metabolic and signaling disturbances. Treatment with statins plus ARBs improved clinical symptoms and reduced the inflammatory potential of the HDL proteome. These observations may guide future therapeutic strategies for PVS/PCS patients.
Collapse
Affiliation(s)
- Karsten Grote
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Ann-Christin Schaefer
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Muhidien Soufi
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Volker Ruppert
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Uwe Linne
- Mass Spectrometry Facility, Department of Chemistry, Philipps University Marburg, 35043 Marburg, Germany;
| | - Aditya Mukund Bhagwat
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps University Marburg, 35043 Marburg, Germany (W.S.)
| | - Witold Szymanski
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps University Marburg, 35043 Marburg, Germany (W.S.)
| | - Johannes Graumann
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps University Marburg, 35043 Marburg, Germany (W.S.)
| | - Yana Gercke
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Sümeya Aldudak
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Denise Hilfiker-Kleiner
- Institute Cardiovascular Complications in Pregnancy and Oncologic Therapies, Philipps University Marburg, 35043 Marburg, Germany;
| | - Elisabeth Schieffer
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Bernhard Schieffer
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| |
Collapse
|
4
|
Tanzadehpanah H, Lotfian E, Avan A, Saki S, Nobari S, Mahmoodian R, Sheykhhasan M, Froutagh MHS, Ghotbani F, Jamshidi R, Mahaki H. Role of SARS-COV-2 and ACE2 in the pathophysiology of peripheral vascular diseases. Biomed Pharmacother 2023; 166:115321. [PMID: 37597321 DOI: 10.1016/j.biopha.2023.115321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
The occurrence of a novel coronavirus known as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), created a serious challenge worldwide. SARS-CoV-2 has high infectivity, the ability to be transmitted even during the asymptomatic phase, and relatively low virulence, which has resulted in rapid transmission. SARS-CoV-2 can invade epithelial cells, hence, many patients infected with SARS-CoV-2 have suffered from vascular diseases (VDs) in addition to pulmonary manifestations. Accordingly, SARS-CoV-2 may can worsen the clinical condition of the patients with pre-existing VDs. Endothelial cells express angiotensin-converting enzyme 2 (ACE2). ACE2 is a biological enzyme that converts angiotensin (Ang)- 2 to Ang-(1-7). SARS-CoV-2 uses ACE2 as a cell receptor for viral entry. Thus, the SARS-CoV-2 virus promotes downregulation of ACE2, Ang-(1-7), and anti-inflammatory cytokines, as well as, an increase in Ang-2, resulting in pro-inflammatory cytokines. SARS-CoV-2 infection can cause hypertension, and endothelial damage, which can lead to intravascular thrombosis. In this review, we have concentrated on the effect of SARS-CoV-2 in peripheral vascular diseases (PVDs) and ACE2 as an enzyme in Renin-angiotensin aldosterone system (RAAS). A comprehensive search was performed on PubMed, Google Scholar, Scopus, using related keywords. Articles focusing on ("SARS-CoV-2", OR "COVID-19"), AND ("Vascular disease", OR "Peripheral vascular disease", OR interested disease name) with regard to MeSH terms, were selected. According to the studies, it is supposed that vascular diseases may increase susceptibility to severe SARS-CoV-2 infection due to increased thrombotic burden and endothelial dysfunction. Understanding SARS-CoV-2 infection mechanism and vascular system pathogenesis is crucial for effective management and treatment in pre-existing vascular diseases.
Collapse
Affiliation(s)
- Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Lotfian
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences; Medical Genetics Research Center, Mashhad University of Medical Sciences; Medical Genetics Research center, Mashhad University of Medical Sciences; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Saki
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan Iran
| | - Sima Nobari
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan Iran
| | - Roghaye Mahmoodian
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan Iran
| | - Mohsen Sheykhhasan
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | | | - Farzaneh Ghotbani
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Raoufeh Jamshidi
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Antonazzo IC, Fornari C, Rozza D, Conti S, Di Pasquale R, Cortesi PA, Kaleci S, Ferrara P, Zucchi A, Maifredi G, Silenzi A, Cesana G, Mantovani LG, Mazzaglia G. Statins Use in Patients with Cardiovascular Diseases and COVID-19 Outcomes: An Italian Population-Based Cohort Study. J Clin Med 2022; 11:jcm11247492. [PMID: 36556112 PMCID: PMC9781425 DOI: 10.3390/jcm11247492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The role of statins among patients with established cardiovascular diseases (CVDs) who are hospitalized with COVID-19 is still debated. This study aimed at assessing whether the prior use of statins was associated with a less severe COVID-19 prognosis. METHODS Subjects with CVDs infected with SARS-CoV-2 and hospitalized between 20 February 2020 and 31 December 2020 were selected. These were classified into two mutually exclusive groups: statins-users and non-users of lipid-lowering therapies (non-LLT users). The relationship between statins exposure and the risk of Mechanical Ventilation (MV), Intensive Care Unit (ICU) access and death were evaluated by using logistic and Cox regressions models. RESULTS Of 1127 selected patients, 571 were statins-users whereas 556 were non-LLT users. The previous use of statins was not associated with a variation in the risk of need of MV (Odds Ratio [OR]: 1.00; 95% Confidence Intervals [CI]: 0.38-2.67), ICU access (OR: 0.54; 95% CI: 0.22-1.32) and mortality at 14 days (Hazard Ratio [HR]: 0.42; 95% CI: 0.16-1.10). However, a decreased risk of mortality at 30 days (HR: 0.39; 95% CI: 0.18-0.85) was observed in statins-users compared with non-LLT users. CONCLUSIONS These findings support the clinical advice for patients CVDs to continue their treatment with statins during SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Carla Fornari
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence:
| | - Davide Rozza
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
| | - Sara Conti
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
| | | | - Paolo Angelo Cortesi
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
| | - Shaniko Kaleci
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
| | - Pietro Ferrara
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
- IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Alberto Zucchi
- Health Protection Agency of Bergamo (ATS Bergamo), 24121 Bergamo, Italy
| | - Giovanni Maifredi
- Health Protection Agency of Brescia (ATS Brescia), 25124 Brescia, Italy
| | - Andrea Silenzi
- General Directorate of Health Prevention, Ministry of Health, 00144 Rome, Italy
| | - Giancarlo Cesana
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
| | - Lorenzo Giovanni Mantovani
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
- IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Giampiero Mazzaglia
- Research Centre on Public Health, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
6
|
Protective effects of statins on COVID-19 risk, severity and fatal outcome: a nationwide Swedish cohort study. Sci Rep 2022; 12:12047. [PMID: 35835835 PMCID: PMC9282150 DOI: 10.1038/s41598-022-16357-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/08/2022] [Indexed: 12/11/2022] Open
Abstract
The impact of statins on COVID-19 remains unclear. This study aims to investigate whether statin exposure assessed both in the population and in well-defined cohorts of COVID-19 patients may affect the risk and severity of COVID-19 using nationwide Swedish population-based register data. A population ≥ 40 years was selected by age/sex-stratified random sampling from the Swedish population on 1 Jan 2020. COVID-19 outcomes were identified from the SmiNet database, the National Patient Register and/or Cause-of-Death Register and linked with the National Prescribed Drug Register and sociodemographic registers. Statin exposure was defined as any statin prescriptions in the year before index date. In Cox regressions, confounding was addressed using propensity score ATT (Average Treatment effect in the Treated) weighting. Of 572,695 individuals in the overall cohort, 22.3% had prior statin treatment. After ATT weighting, protective effects were observed among statin user for hospitalization and COVID-19 death in the overall cohort and onset cohort. In the hospitalized cohort, statin use was only associated with lower risk for death (HR = 0.86, 95% CI 0.79–0.95), but not ICU admission. Statin-treated individuals appear to have lower COVID-19 mortality than nonusers, whether assessed in the general population, from COVID-19 onset or from hospitalization.
Collapse
|
7
|
Barrantes FJ. The constellation of cholesterol-dependent processes associated with SARS-CoV-2 infection. Prog Lipid Res 2022; 87:101166. [PMID: 35513161 PMCID: PMC9059347 DOI: 10.1016/j.plipres.2022.101166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/11/2023]
Abstract
The role of cholesterol in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronavirus-host cell interactions is currently being discussed in the context of two main scenarios: i) the presence of the neutral lipid in cholesterol-rich lipid domains involved in different steps of the viral infection and ii) the alteration of metabolic pathways by the virus over the course of infection. Cholesterol-enriched lipid domains have been reported to occur in the lipid envelope membrane of the virus, in the host-cell plasma membrane, as well as in endosomal and other intracellular membrane cellular compartments. These membrane subdomains, whose chemical and physical properties distinguish them from the bulk lipid bilayer, have been purported to participate in diverse phenomena, from virus-host cell fusion to intracellular trafficking and exit of the virions from the infected cell. SARS-CoV-2 recruits many key proteins that participate under physiological conditions in cholesterol and lipid metabolism in general. This review analyses the status of cholesterol and lipidome proteins in SARS-CoV-2 infection and the new horizons they open for therapeutic intervention.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), Faculty of Medical Sciences, UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
8
|
Ghosh D, Ghosh Dastidar D, Roy K, Ghosh A, Mukhopadhyay D, Sikdar N, Biswas NK, Chakrabarti G, Das A. Computational prediction of the molecular mechanism of statin group of drugs against SARS-CoV-2 pathogenesis. Sci Rep 2022; 12:6241. [PMID: 35422113 PMCID: PMC9009757 DOI: 10.1038/s41598-022-09845-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/23/2022] [Indexed: 01/18/2023] Open
Abstract
Recently published clinical data from COVID-19 patients indicated that statin therapy is associated with a better clinical outcome and a significant reduction in the risk of mortality. In this study by computational analysis, we have aimed to predict the possible mechanism of the statin group of drugs by which they can inhibit SARS-CoV-2 pathogenesis. Blind docking of the critical structural and functional proteins of SARS-CoV-2 like RNA-dependent RNA polymerase, M-protease of 3-CL-Pro, Helicase, and the Spike proteins ( wild type and mutants from different VOCs) were performed using the Schrodinger docking tool. We observed that fluvastatin and pitavastatin showed fair, binding affinities to RNA polymerase and 3-CL-Pro, whereas fluvastatin showed the strongest binding affinity to the helicase. Fluvastatin also showed the highest affinity for the SpikeDelta and a fair docking score for other spike variants. Additionally, molecular dynamics simulation confirmed the formation of a stable drug-protein complex between Fluvastatin and target proteins. Thus our study shows that of all the statins, fluvastatin can bind to multiple target proteins of SARS-CoV-2, including the spike-mutant proteins. This property might contribute to the potent antiviral efficacy of this drug.
Collapse
Affiliation(s)
- Dipanjan Ghosh
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Debabrata Ghosh Dastidar
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F Nilgunj Road, Panihati, Kolkata, West Bengal, 700114, India
| | - Kamalesh Roy
- Department of Genetics, Institute of Genetic Engineering, 30, Thakurhat Road, Badu, Madhyamgram, West Bengal, 700128, India
| | - Arnab Ghosh
- National Institute of Biomedical Genomics, PO NSS, Kalyani, West Bengal, 741251, India
| | - Debanjan Mukhopadhyay
- National Institute of Biomedical Genomics, PO NSS, Kalyani, West Bengal, 741251, India
| | - Nilabja Sikdar
- Human Genetics Unit, Kolmogorov Bhaban, Biological Sciences Division, Indian Statistical Institute, 203, BT road, Kolkata, West Bengal, 700108, India.
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, PO NSS, Kalyani, West Bengal, 741251, India
| | - Gopal Chakrabarti
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| | - Amlan Das
- National Institute of Biomedical Genomics, PO NSS, Kalyani, West Bengal, 741251, India.
| |
Collapse
|
9
|
Zapata-Cardona MI, Flórez-Álvarez L, Zapata-Builes W, Guerra-Sandoval AL, Guerra-Almonacid CM, Hincapié-García J, Rugeles MT, Hernandez JC. Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro. Front Microbiol 2022; 13:721103. [PMID: 35369500 PMCID: PMC8972052 DOI: 10.3389/fmicb.2022.721103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
This article evaluated the in vitro antiviral effect of atorvastatin (ATV) against SARS-CoV-2 and identified the interaction affinity between this compound and two SARS-CoV-2 proteins. The antiviral activity of atorvastatin against this virus was evaluated by three different treatment strategies [(i) pre-post treatment, (ii) pre-infection treatment, and (iii) post-infection treatment] using Vero E6 and Caco-2 cells. The interaction of atorvastatin with RdRp (RNA-dependent RNA polymerase) and 3CL protease (3-chymotrypsin-like protease) was evaluated by molecular docking. The CC50s (half-maximal cytotoxic concentrations) obtained for ATV were 50.3 and 64.5 μM in Vero E6 and Caco-2, respectively. This compound showed antiviral activity against SARS-CoV-2 D614G strain in Vero E6 with median effective concentrations (EC50s) of 15.4, 12.1, and 11.1 μM by pre-post, pre-infection, and post-infection treatments, respectively. ATV also inhibited Delta and Mu variants by pre-post treatment (EC50s of 16.8 and 21.1 μM, respectively). In addition, ATV showed an antiviral effect against the D614G strain independent of the cell line (EC50 of 7.4 μM in Caco-2). The interaction of atorvastatin with SARS-CoV-2 RdRp and 3CL protease yielded a binding affinity of -6.7 kcal/mol and -7.5 kcal/mol, respectively. Our study demonstrated the in vitro antiviral activity of atorvastatin against the ancestral SARS-CoV-2 D614G strain and two emerging variants (Delta and Mu), with an independent effect of the cell line. A favorable binding affinity between ATV and viral proteins by bioinformatics methods was found. Due to the extensive clinical experience of atorvastatin use, it could prove valuable in the treatment of COVID-19.
Collapse
Affiliation(s)
- María I. Zapata-Cardona
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Lizdany Flórez-Álvarez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | | | | | - Jaime Hincapié-García
- Grupo de investigación, Promoción y prevención farmacéutica, Facultad de ciencias farmacéuticas y alimentarias, Universidad de Antioquia UdeA, Medellín, Colombia
| | - María T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Juan C. Hernandez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| |
Collapse
|
10
|
Gaitán-Duarte H, Álvarez-Moreno C, Rincón-Rodríguez C, Yomayusa-González N, Cortés J, Villar J, Bravo-Ojeda J, García-Peña A, Adarme-Jaimes W, Rodríguez-Romero V, Villate-Soto S, Buitrago G, Chacón-Sarmiento J, Macias-Quintero M, Vaca C, Gómez-Restrepo C, Rodríguez-Malagón N. Effectiveness of rosuvastatin plus colchicine, emtricitabine/tenofovir and combinations thereof in hospitalized patients with COVID-19: a pragmatic, open-label randomized trial. EClinicalMedicine 2022; 43:101242. [PMID: 34957385 PMCID: PMC8686571 DOI: 10.1016/j.eclinm.2021.101242] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The use of rosuvastatin plus colchicine and emtricitabine/tenofovir in hospitalized patients with SARS-CoV-2 disease (COVID-19) has not been assessed. The objective of this study was to assess the effectiveness and safety of rosuvastatin plus colchicine, emtricitabine/tenofovir, and their combined use in these patients. METHODS This was a randomized, controlled, open-label, multicentre, parallel, pragmatic study conducted in six referral hospitals in Bogotá, Colombia. The study enrolled hospitalized patients over 18 years of age with a confirmed diagnosis of COVID-19 complicated with pneumonia, not on chronic treatment with the study medications, and with no contraindications for their use. Patients were assigned 1:1:1:1. 1) emtricitabine with tenofovir disoproxil fumarate (FTC/TDF, 200/300 mg given orally for 10 days); 2) colchicine plus rosuvastatin (COLCH+ROSU, 0.5 mg and 40 mg given orally for 14 days); 3) emtricitabine with tenofovir disoproxil plus colchicine and rosuvastatin at the same doses and for the same period of time (FTC/TDF+COLCH+ROSU); or 4) the Colombian consensus standard of care, including a corticosteroid (SOC). The primary endpoint was 28-day all-cause mortality. A modified intention-to-treat analysis was used together with a usefulness analysis to determine which could be the best treatment. The trial was registered at ClinicalTrials.gov: NCT04359095. FINDINGS Out of 994 candidates considered between August 2020 and March 2021, 649 (65.3%) patients agreed to participate and were enrolled in this study; among them, 633 (97.5%) were included in the analysis. The mean age was 55.4 years (SD ± 12.8 years), and 428 (68%) were men; 28-day mortality was significantly lower in the FTC/TDF+COLCH+ROSUV group than in the SOC group, 10.7% (17/159) vs. 17.4% (28/161) (hazard ratio [HR] 0.53; 95% CI 0.29 to 0.96). Mortality in the FTC/TDF group was 13.8% (22/160, HR 0.68, 95% CI 0.39 to 1.20) and 14.4% in the COLCH+ROSU group (22/153) (HR 0.78, 95% CI 0.44 to 1.36). A lower need for invasive mechanical ventilation was observed in the FTC/TDF+COLCH+ROSUV group than in the SOC group (risk difference [RD] - 0.08, 95% CI 0.11 to 0.04). Three patients presented severe adverse events, one severe diarrhoea in the COLCH+ROSU and one in the FTC/TDF+COLCH+ROSU group and one general exanthema in the FTC/TDF group. INTERPRETATION The combined use of FTC/TDF+COLCH+ROSU reduces the risk of 28-day mortality and the need for invasive mechanical ventilation in hospitalized patients with pulmonary compromise from COVID-19. More randomized controlled trials are needed to compare the effectiveness and cost of treatment with this combination versus other drugs that have been shown to reduce mortality from SARS-CoV-2 infection and its usefulness in patients with chronic statin use.
Collapse
Affiliation(s)
- H.G. Gaitán-Duarte
- Clinical Research Institute, Universidad Nacional de Colombia, Hospital Universitario Nacional de Colombia, Bogotá, Colombia
| | - C. Álvarez-Moreno
- Internal Medicine Department, Universidad Nacional de Colombia, Clínica Universitaria Colombia, Clínica Colsanitas, Bogotá, Colombia
| | - C.J. Rincón-Rodríguez
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - N. Yomayusa-González
- Global Institute of Clinical Excellence-Translational Research Group, Fundación Universitaria Sanitas, Clínica Reina Sofía, Clínica Colsanitas, Bogotá, Colombia
| | - J.A. Cortés
- Internal Medicine Department, Universidad Nacional de Colombia, Infectious Diseases Service, Hospital Universitario Nacional de Colombia, Bogotá, Colombia
| | - J.C. Villar
- Research Department, Fundación Cardioinfantil - Instituto de Cardiología, Bogotá, Colombia
| | - J.S. Bravo-Ojeda
- Clínica Santa María del Lago, Clínica Colsanitas, Bogotá, Colombia
| | - A. García-Peña
- Internal Medicine Department, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - W. Adarme-Jaimes
- SEPRO Group, School of Engineering, Universidad Nacional de Colombia, Bogotá, Colombia
| | - V.A. Rodríguez-Romero
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - S.L. Villate-Soto
- Clinical Research Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - G. Buitrago
- Clinical Research Institute, Universidad Nacional de Colombia, Hospital Universitario Nacional de Colombia, Bogotá, Colombia
| | - J. Chacón-Sarmiento
- Clínica Reina Sofía, Clínica Colsanitas, Fundación Universitaria Sanitas, Bogotá, Colombia
| | | | - C.P. Vaca
- Pharmacy Department, Universidad Nacional de Colombia, Bogotá, Colombia
| | - C. Gómez-Restrepo
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - N. Rodríguez-Malagón
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
11
|
Wu KS, Lin PC, Chen YS, Pan TC, Tang PL. The use of statins was associated with reduced COVID-19 mortality: a systematic review and meta-analysis. Ann Med 2021; 53:874-884. [PMID: 34096808 PMCID: PMC8189130 DOI: 10.1080/07853890.2021.1933165] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Statins are widely used to treat people with metabolic and cardiovascular disorders. The effect of statins on coronavirus disease 2019 (COVID-19) is unclear. To investigate the association between statins and COVID-19 outcomes and, if possible, identify the subgroup population that benefits most from statin use. MATERIALS AND METHODS A systematic review and meta-analysis of published studies that included statin users and described COVID-19 outcomes through 10 November 2020. This study used the generic inverse variance method to perform meta-analyses with random-effects modelling. The main outcomes were evaluation of the need for invasive mechanical ventilator (IMV) support, the need for intensive care unit (ICU) care and death. All outcomes were measured as dichotomous variables. RESULTS A total of 28 observational studies, covering data from 63,537 individuals with COVID-19, were included. The use of statins was significantly associated with decreased mortality (odds ratio [OR] = 0.71, 95% confidence interval [CI]: 0.55-0.92, I2=72%) and the need for IMV (OR = 0.81, 95% CI: 0.69-0.95, I2=0%) but was not linked to the need for ICU care (OR = 0.91, 95% CI: 0.55-1.51, I2=66%). Subgroup analysis further identified five types of studies in which statin users had even lower odds of death. CONCLUSIONS The use of statins was significantly associated with a reduced need for IMV and decreased mortality among individuals with COVID-19. Statins may not need to be discontinued because of concern for COVID-19 on admission. Further randomized controlled trial (RCTs) are needed to clarify the causal effect between statin use and severe COVID-19 outcomes.Key messagesParticipants in five types of studies were shown to have even lower odds of death when taking statins.The use of statins was significantly associated with a reduced need for invasive mechanical ventilation and decreased all-cause mortality among individuals with COVID-19. However, statin use did not prevent participants from needing care in the intensive care unit.The results justify performing randomized controlled trials (RCTs) to validate the benefits of statins on COVID-19 outcomes.
Collapse
Affiliation(s)
- Kuan-Sheng Wu
- Department of Internal Medicine, Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung City, ROC
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, ROC
| | - Pei-Chin Lin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung City, ROC
- Department of Pharmacy, School of Pharmacy, Kaohsiung Medical University, Kaohsiung City, ROC
| | - Yao-Shen Chen
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, ROC
- Department of Administration, Kaohsiung Veterans General Hospital, Kaohsiung City, ROC
| | - Tzu-Cheng Pan
- Research Center of Medical Informatics, Kaohsiung Veterans General Hospital, Kaohsiung City, ROC
| | - Pei-Ling Tang
- Research Center of Medical Informatics, Kaohsiung Veterans General Hospital, Kaohsiung City, ROC
- Department of Health-Business Administration, Fooyin University, Kaohsiung City, ROC
- College of Nursing, Kaohsiung Medical University, Kaohsiung City, ROC
| |
Collapse
|
12
|
Gupta A, Pradhan A, Maurya VK, Kumar S, Theengh A, Puri B, Saxena SK. Therapeutic approaches for SARS-CoV-2 infection. Methods 2021; 195:29-43. [PMID: 33962011 PMCID: PMC8096528 DOI: 10.1016/j.ymeth.2021.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/30/2021] [Indexed: 01/18/2023] Open
Abstract
Therapeutic approaches to COVID-19 treatment require appropriate inhibitors to target crucial proteins of SARS-CoV-2 replication machinery. It's been approximately 12 months since the pandemic started, yet no known specific drugs are available. However, research progresses with time in terms of high throughput virtual screening (HTVS) and rational design of repurposed, novel synthetic and natural products discovery by understanding the viral life cycle, immuno-pathological and clinical outcomes in patients based on host's nutritional, metabolic, and lifestyle status. Further, complementary and alternative medicine (CAM) approaches have also improved resiliency and immune responses. In this article, we summarize all the therapeutic antiviral strategies for COVID-19 drug discovery including computer aided virtual screening, repurposed drugs, immunomodulators, vaccines, plasma therapy, various adjunct therapies, and phage technology to unravel insightful mechanistic pathways of targeting SARS-CoV-2 and host's intrinsic, innate immunity at multiple checkpoints that aid in the containment of the disease.
Collapse
Affiliation(s)
- Ankur Gupta
- Government Pharmacy College, Sajong, Rumtek, Gangtok 737135, India
| | - Anish Pradhan
- Government Pharmacy College, Sajong, Rumtek, Gangtok 737135, India
| | - Vimal K Maurya
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India
| | - Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India
| | - Angila Theengh
- Government Pharmacy College, Sajong, Rumtek, Gangtok 737135, India
| | - Bipin Puri
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India
| | - Shailendra K Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India.
| |
Collapse
|
13
|
Surma S, Banach M, Lewek J. COVID-19 and lipids. The role of lipid disorders and statin use in the prognosis of patients with SARS-CoV-2 infection. Lipids Health Dis 2021; 20:141. [PMID: 34689776 PMCID: PMC8542506 DOI: 10.1186/s12944-021-01563-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 coronavirus started in March 2020. The conclusions from numerous studies indicate that people with comorbidities, such as arterial hypertension, diabetes, obesity, underlying cardiovascular disease, are particularly vulnerable to the severe course of COVID-19. The available data also suggest that patients with dyslipidemia, the most common risk factor of cardiovascular diseases, are also at greater risk of severe course of COVID-19. On the other hand, it has been shown that COVID-19 infection has an influence on lipid profile leading to dyslipidemia, which might require appropriate treatment. Owing to antiviral, anti-inflammatory, immunomodulatory, and cardioprotective activity, statin therapy has been considered as valuable tool to improve COVID-19 outcomes. Numerous observational studies have shown potential beneficial effects of lipid-lowering treatment on the course of COVID-19 with significant improved prognosis and reduced mortality.
Collapse
Affiliation(s)
- Stanisław Surma
- Faculty of Medicial Sciences in Katowice, Medical University of Silesia in Katowice, Poland; Medyków 18, 40-752 Katowice, Poland
- Club of Young Hypertensiologists, Polish Society of Hypertension, Warsaw, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Rzgowska 281/289, 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Rzgowska 281/289, 93-338 Lodz, Poland
| | - Joanna Lewek
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Rzgowska 281/289, 93-338 Lodz, Poland
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
14
|
Davoodi L, Jafarpour H, Oladi Z, Zakariaei Z, Tabarestani M, Ahmadi BM, Razavi A, Hessami A. Atorvastatin therapy in COVID-19 adult inpatients: A double-blind, randomized controlled trial. IJC HEART & VASCULATURE 2021; 36:100875. [PMID: 34541293 PMCID: PMC8437805 DOI: 10.1016/j.ijcha.2021.100875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
Introduction Efficacious therapies are urgently required to tackle the coronavirus disease 2019 (COVID-19). This trial aims to evaluate the effects of atorvastatin in comparison with standard care for adults hospitalized with COVID-19. Methods We conducted a randomized controlled clinical trial on adults hospitalized with COVID-19. Patients were randomized into a treatment group receiving atorvastatin + lopinavir/ritonavir or a control group receiving lopinavir/ritonavir alone. The primary outcome of the trial was the duration of hospitalization. The secondary outcomes were the need for interferon or immunoglobulin, receipt of invasive mechanical ventilation, and O2 saturation (O2sat), and level of C-reactive protein (CRP) which were assessed at the onset of admission and on the 6th day of treatment. Results Forty patients were allocated and enrolled in the study with a 1 to 1 ratio in atorvastatin + lopinavir/ritonavir and lopinavir/ritonavir groups. Clinical and demographic characteristics were similar between the two groups. CRP level was significantly decreased in the lopinavir/ritonavir + atorvastatin group (P < 0.0001, Cohen’s d = 0.865) so that there was a significant difference in CRP level on the 6th day between the two groups (P = 0.01). Nevertheless, there was no significant difference in O2sat on day 6. Although the duration of hospitalization in the lopinavir/ritonavir + atorvastatin group was significantly reduced compared to the control group (P = 0.012), there was no significant difference in the invasive mechanical ventilation reception and the need for interferon and immunoglobulin. Conclusion Atorvastatin + lopinavir/ritonavir may be more effective than lopinavir/ritonavir in treating COVID-19 adult hospitalized patients.
Collapse
Affiliation(s)
- Lotfollah Davoodi
- Department of Infectious Diseases, School of Medicine, Antimicrobial Resistance Research Center, Communicable Diseases Research Institutes, Ghaem Shahr Razi Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Jafarpour
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ziaeddin Oladi
- Department of Internal Medicine, School of Medicine, Ghaem Shahr Razi Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zakaria Zakariaei
- Department of Emergency Medicine, School of Medicine, Orthopedic Research Center, Ghaem Shahr Razi Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Tabarestani
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Alireza Razavi
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Hessami
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
15
|
Xiang Y, Wong KCY, So HC. Exploring Drugs and Vaccines Associated with Altered Risks and Severity of COVID-19: A UK Biobank Cohort Study of All ATC Level-4 Drug Categories Reveals Repositioning Opportunities. Pharmaceutics 2021; 13:1514. [PMID: 34575590 PMCID: PMC8471264 DOI: 10.3390/pharmaceutics13091514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/08/2023] Open
Abstract
Effective therapies for COVID-19 are still lacking, and drug repositioning is a promising approach to address this problem. Here, we adopted a medical informatics approach to repositioning. We leveraged a large prospective cohort, the UK-Biobank (UKBB, N ~ 397,000), and studied associations of prior use of all level-4 ATC drug categories (N = 819, including vaccines) with COVID-19 diagnosis and severity. Effects of drugs on the risk of infection, disease severity, and mortality were investigated separately. Logistic regression was conducted, controlling for main confounders. We observed strong and highly consistent protective associations with statins. Many top-listed protective drugs were also cardiovascular medications, such as angiotensin-converting enzyme inhibitors (ACEI), angiotensin receptor blockers (ARB), calcium channel blocker (CCB), and beta-blockers. Some other drugs showing protective associations included biguanides (metformin), estrogens, thyroid hormones, proton pump inhibitors, and testosterone-5-alpha reductase inhibitors, among others. We also observed protective associations by influenza, pneumococcal, and several other vaccines. Subgroup and interaction analyses were also conducted, which revealed differences in protective effects in various subgroups. For example, protective effects of flu/pneumococcal vaccines were weaker in obese individuals, while protection by statins was stronger in cardiovascular patients. To conclude, our analysis revealed many drug repositioning candidates, for example several cardiovascular medications. Further studies are required for validation.
Collapse
Affiliation(s)
- Yong Xiang
- Lo Kwee-Seong Integrated Biomedical Sciences Building, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (Y.X.); (K.C.-Y.W.)
| | - Kenneth Chi-Yin Wong
- Lo Kwee-Seong Integrated Biomedical Sciences Building, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (Y.X.); (K.C.-Y.W.)
| | - Hon-Cheong So
- Lo Kwee-Seong Integrated Biomedical Sciences Building, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (Y.X.); (K.C.-Y.W.)
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Kunming 650223, China
- CUHK Shenzhen Research Institute, Shenzhen 518172, China
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Hong Kong Branch of the Chinese Academy of Sciences Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
16
|
Zou M, Su X, Wang L, Yi X, Qiu Y, Yin X, Zhou X, Niu X, Wang L, Su M. The Molecular Mechanism of Multiple Organ Dysfunction and Targeted Intervention of COVID-19 Based on Time-Order Transcriptomic Analysis. Front Immunol 2021; 12:729776. [PMID: 34504502 PMCID: PMC8421734 DOI: 10.3389/fimmu.2021.729776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic is caused by the novel coronavirus that has spread rapidly around the world, leading to high mortality because of multiple organ dysfunction; however, its underlying molecular mechanism is unknown. To determine the molecular mechanism of multiple organ dysfunction, a bioinformatics analysis method based on a time-order gene co-expression network (TO-GCN) was performed. First, gene expression profiles were downloaded from the gene expression omnibus database (GSE161200), and a TO-GCN was constructed using the breadth-first search (BFS) algorithm to infer the pattern of changes in the different organs over time. Second, Gene Ontology enrichment analysis was used to analyze the main biological processes related to COVID-19. The initial gene modules for the immune response of different organs were defined as the research object. The STRING database was used to construct a protein-protein interaction network of immune genes in different organs. The PageRank algorithm was used to identify five hub genes in each organ. Finally, the Comparative Toxicogenomics Database played an important role in exploring the potential compounds that target the hub genes. The results showed that there were two types of biological processes: the body's stress response and cell-mediated immune response involving the lung, trachea, and olfactory bulb (olf) after being infected by COVID-19. However, a unique biological process related to the stress response is the regulation of neuronal signals in the brain. The stress response was heterogeneous among different organs. In the lung, the regulation of DNA morphology, angiogenesis, and mitochondrial-related energy metabolism are specific biological processes related to the stress response. In particular, an effect on tracheal stress response was made by the regulation of protein metabolism and rRNA metabolism-related biological processes, as biological processes. In the olf, the distinctive stress responses consist of neural signal transmission and brain behavior. In addition, myeloid leukocyte activation and myeloid leukocyte-mediated immunity in response to COVID-19 can lead to a cytokine storm. Immune genes such as SRC, RHOA, CD40LG, CSF1, TNFRSF1A, FCER1G, ICAM1, LAT, LCN2, PLAU, CXCL10, ICAM1, CD40, IRF7, and B2M were predicted to be the hub genes in the cytokine storm. Furthermore, we inferred that resveratrol, acetaminophen, dexamethasone, estradiol, statins, curcumin, and other compounds are potential target drugs in the treatment of COVID-19.
Collapse
Affiliation(s)
- Miao Zou
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Xiaoyun Su
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Luoying Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Xingcheng Yi
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Yue Qiu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Xirui Yin
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Xuan Zhou
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Xinhui Niu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Liuli Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Manman Su
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| |
Collapse
|
17
|
Haji Aghajani M, Moradi O, Azhdari Tehrani H, Amini H, Pourheidar E, Hatami F, Rabiei MM, Sistanizad M. Promising effects of atorvastatin on mortality and need for mechanical ventilation in patients with severe COVID-19; a retrospective cohort study. Int J Clin Pract 2021; 75:e14434. [PMID: 34080261 PMCID: PMC8237071 DOI: 10.1111/ijcp.14434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/06/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Considering the anti-inflammatory effect of atorvastatin and the role of medical comorbidities such as hypertension and coronary artery disease on the prognosis of the COVID-19 patients, we aimed to assess the effect of atorvastatin add-on therapy on mortality caused by COVID-19. METHODS We conducted a retrospective cohort study, including patients who were hospitalised with confirmed diagnosis of severe COVID-19. Baseline characteristics and related clinical data of patients were recorded. Clinical outcomes consist of in-hospital mortality, need for invasive mechanical ventilation and hospital length of stay. COX regression analysis models were used to assess the association of independent factors to outcomes. RESULTS Atorvastatin was administered for 421 of 991 patients. The mean age was 61.640 ± 17.003 years. Older age, higher prevalence of hypertension and coronary artery disease reported in patients who received atorvastatin. These patients have shorter hospital length of stay (P = .001). Based on COX proportional hazard model, in-hospital use of atorvastatin was associated with decrease in mortality (HR = 0.679, P = .005) and lower need for invasive mechanical ventilation (HR = 0.602, P = .014). CONCLUSIONS Atorvastatin add-on therapy in patient with severe COVID-19 was associated with lower in-hospital mortality and reduced the risk of need for invasive mechanical ventilation which supports to continue the prescription of the medication.
Collapse
Affiliation(s)
- Mohammad Haji Aghajani
- Prevention of Cardiovascular Disease Research CenterImam Hossein HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Omid Moradi
- Department of Clinical PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Hamed Azhdari Tehrani
- Department of Hematology and Medical OncologyShahid Beheshti University of Medical SciencesTehranIran
| | - Hossein Amini
- Department of Clinical PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Elham Pourheidar
- Department of Clinical PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Firouze Hatami
- Clinical Research Development Unit of Loghman Hakim HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Mahdi Rabiei
- Clinical Research Development Unit of Loghman Hakim HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Sistanizad
- Prevention of Cardiovascular Disease Research CenterImam Hossein HospitalShahid Beheshti University of Medical SciencesTehranIran
- Department of Clinical PharmacyShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
18
|
Tang Y, Hu L, Liu Y, Zhou B, Qin X, Ye J, Shen M, Wu Z, Zhang P. Possible mechanisms of cholesterol elevation aggravating COVID-19. Int J Med Sci 2021; 18:3533-3543. [PMID: 34522180 PMCID: PMC8436106 DOI: 10.7150/ijms.62021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
Importance: Despite the availability of a vaccine against the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), humans will have to live with this virus and the after-effects of the coronavirus disease 2019 (COVID-19) infection for a long time. Cholesterol plays an important role in the infection and prognosis of SARS-CoV-2, and the study of its mechanism is of great significance not only for the treatment of COVID-19 but also for research on generic antiviral drugs. Observations: Cholesterol promotes the development of atherosclerosis by activating NLR family pyrin domain containing 3 (NLRP3), and the resulting inflammatory environment indirectly contributes to COVID-19 infection and subsequent deterioration. In in vitro studies, membrane cholesterol increased the number of viral entry sites on the host cell membrane and the number of angiotensin-converting enzyme 2 (ACE2) receptors in the membrane fusion site. Previous studies have shown that the fusion protein of the virus interacts with cholesterol, and the spike protein of SARS-CoV-2 also requires cholesterol to enter the host cells. Cholesterol in blood interacts with the spike protein to promote the entry of spike cells, wherein the scavenger receptor class B type 1 (SR-B1) plays an important role. Because of the cardiovascular protective effects of lipid-lowering therapy and the additional anti-inflammatory effects of lipid-lowering drugs, it is currently recommended to continue lipid-lowering therapy for patients with COVID-19, but the safety of extremely low LDL-C is questionable. Conclusions and Relevance: Cholesterol can indirectly increase the susceptibility of patients to SARS-CoV-2 and increase the risk of death from COVID-19, which are mediated by NLRP3 and atherosclerotic plaques, respectively. Cholesterol present in the host cell membrane, virus, and blood may also directly participate in the virus cell entry process, but the specific mechanism still needs further study. Patients with COVID-19 are recommended to continue lipid-lowering therapy.
Collapse
Affiliation(s)
- Yan Tang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 235 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, No. 6, Chenggui Road, East District, Zhongshan, 528403, Guangdong, People's Republic of China
| | - Longtai Hu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 235 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
- School of Traditional Chinese Medicine, Southern Medical University, No. 6, Chenggui Road, East District, Zhongshan, 528403, Guangdong, People's Republic of China
| | - Yi Liu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 235 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, No. 6, Chenggui Road, East District, Zhongshan, 528403, Guangdong, People's Republic of China
| | - Bangyi Zhou
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 235 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, No. 6, Chenggui Road, East District, Zhongshan, 528403, Guangdong, People's Republic of China
| | - Xiaohuan Qin
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 235 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, No. 6, Chenggui Road, East District, Zhongshan, 528403, Guangdong, People's Republic of China
| | - Jujian Ye
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 235 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, No. 6, Chenggui Road, East District, Zhongshan, 528403, Guangdong, People's Republic of China
| | - Maoze Shen
- Department of Cardiology, Raoping County People's Hospital, 161 Caichang Street, Huanggang Town, Chaozhou, 515700, Guangdong, People's Republic of China
| | - Zhijian Wu
- Department of Cardiology, Affiliated Boai Hospital of Zhongshan, Southern Medical University, No. 6, Chenggui Road, East District, Zhongshan, 528403, Guangdong, People's Republic of China
| | - Peidong Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 235 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| |
Collapse
|
19
|
Orlowski S, Mourad JJ, Gallo A, Bruckert E. Coronaviruses, cholesterol and statins: Involvement and application for Covid-19. Biochimie 2021; 189:51-64. [PMID: 34153377 PMCID: PMC8213520 DOI: 10.1016/j.biochi.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
The infectious power of coronaviruses is dependent on cholesterol present in the membranes of their target cells. Indeed, the virus enters the infected cell either by fusion or by endocytosis, in both cases involving cholesterol-enriched membrane microdomains. These membrane domains can be disorganized in-vitro by various cholesterol-altering agents, including statins that inhibit cell cholesterol biosynthesis. As a consequence, numerous cell physiology processes, such as signaling cascades, can be compromised. Also, some examples of anti-bacterial and anti-viral effects of statins have been observed for infectious agents known to be cholesterol dependent. In-vivo, besides their widely-reported hypocholesterolemic effect, statins display various pleiotropic effects mediated, at least partially, by perturbation of membrane microdomains as a consequence of the alteration of endogenous cholesterol synthesis. It should thus be worth considering a high, but clinically well-tolerated, dose of statin to treat Covid-19 patients, in the early phase of infection, to inhibit virus entry into the target cells, in order to control the viral charge and hence avoid severe clinical complications. Based on its efficacy and favorable biodisposition, an option would be considering Atorvastatin, but randomized controlled clinical trials are required to test this hypothesis. This new therapeutic proposal takes benefit from being a drug repurposing, applied to a widely-used drug presenting a high efficiency-to-toxicity ratio. Additionally, this therapeutic strategy avoids any risk of drug resistance by viral mutation since it is host-targeted. Noteworthy, the same pharmacological approach could also be proposed to address different animal coronavirus endemic infections that are responsible for heavy economic losses.
Collapse
Affiliation(s)
- Stéphane Orlowski
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR 9198, and CEA / DRF / Institut des Sciences du Vivant Frédéric-Joliot / SB2SM, and Université Paris-Saclay, 91191, Gif-sur-Yvette, Cedex, France.
| | - Jean-Jacques Mourad
- Department of Internal Medicine and ESH Excellence Centre, Groupe Hospitalier Paris Saint-Joseph, Paris, France.
| | - Antonio Gallo
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| | - Eric Bruckert
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| |
Collapse
|
20
|
Response to Plat and Mensink. Br J Nutr 2021; 127:1119-1120. [PMID: 34044897 DOI: 10.1017/s0007114521001793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Ikari Y, Matsue Y, Torii S, Hasegawa M, Aihara K, Kuroda S, Sano T, Kitai T, Yonetsu T, Kohsaka S, Kishi T, Komuro I, Hirata KI, Node K, Matsumoto S. Association Between Statin Use Prior to Admission and Lower Coronavirus Disease 2019 (COVID-19) Severity in Patients With Cardiovascular Disease or Risk Factors. Circ J 2021; 85:939-943. [PMID: 33952833 DOI: 10.1253/circj.cj-21-0087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Cardiovascular diseases and/or risk factors (CVDRF) have been reported as risk factors for severe coronavirus disease 2019 (COVID-19). METHODS AND RESULTS In total, we selected 693 patients with CVDRF from the CLAVIS-COVID database of 1,518 cases in Japan. The mean age was 68 years (35% females). Statin use was reported by 31% patients at admission. Statin users exhibited lower incidence of extracorporeal membrane oxygenation (ECMO) insertion (1.4% vs. 4.6%, odds ratio [OR]: 0.295, P=0.037) and septic shock (1.4% vs. 6.5%, OR: 0.205, P=0.004) despite having more comorbidities such as diabetes mellitus. CONCLUSIONS This study suggests the potential benefits of statins use against COVID-19.
Collapse
Affiliation(s)
- Yuji Ikari
- Department of Cardiology, Tokai University School of Medicine
| | - Yuya Matsue
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
- Cardiovascular Respiratory Sleep Medicine, Juntendo University Graduate School of Medicine
| | - Sho Torii
- Department of Cardiology, Tokai University School of Medicine
| | - Misaki Hasegawa
- Department of Cardiology, Tokai University School of Medicine
| | - Kazuki Aihara
- Department of Cardiology, Tokai University School of Medicine
| | - Shunsuke Kuroda
- Department of Cardiology, Kameda Medical Center
- Department of Cardiovascular Medicine, Cleveland Clinic
| | - Takahide Sano
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine
- Department of Cardiology, Ebara Hospital
| | - Takeshi Kitai
- Department of Cardiovascular Medicine, Kobe City Medical Center General Hospital
| | - Taishi Yonetsu
- Department of Interventional Cardiology, Tokyo Medical and Dental University
| | - Shun Kohsaka
- Department of Cardiology, Keio University School of Medicine
| | - Takuya Kishi
- Department of Graduate School of Medicine (Cardiology), International University of Health and Welfare
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Shingo Matsumoto
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine
| |
Collapse
|
22
|
Vahedian-Azimi A, Mohammadi SM, Heidari Beni F, Banach M, Guest PC, Jamialahmadi T, Sahebkar A. Improved COVID-19 ICU admission and mortality outcomes following treatment with statins: a systematic review and meta-analysis. Arch Med Sci 2021; 17:579-595. [PMID: 34025827 PMCID: PMC8130467 DOI: 10.5114/aoms/132950] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Approximately 1% of the world population has now been infected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19). With cases still rising and vaccines just beginning to rollout, we are still several months away from seeing reductions in daily case numbers, hospitalisations, and mortality. Therefore, there is a still an urgent need to control the disease spread by repurposing existing therapeutics. Owing to antiviral, anti-inflammatory, immunomodulatory, and cardioprotective actions, statin therapy has been considered as a plausible approach to improve COVID-19 outcomes. MATERIAL AND METHODS We carried out a meta-analysis to investigate the effect of statins on 3 COVID-19 outcomes: intensive care unit (ICU) admission, tracheal intubation, and death. We systematically searched the PubMed, Web of Science, Scopus, and ProQuest databases using keywords related to our aims up to November 2, 2020. All published observational studies and randomised clinical trials on COVID-19 and statins were retrieved. Statistical analysis with random effects modelling was performed using STATA16 software. RESULTS The final selected studies (n = 24 studies; 32,715 patients) showed significant reductions in ICU admission (OR = 0.78, 95% CI: 0.58-1.06; n = 10; I 2 = 58.5%) and death (OR = 0.70, 95% CI: 0.55-0.88; n = 21; I 2 = 82.5%) outcomes, with no significant effect on tracheal intubation (OR = 0.79; 95% CI: 0.57-1.11; n = 7; I 2= 89.0%). Furthermore, subgroup analysis suggested that death was reduced further by in-hospital application of stains (OR = 0.40, 95% CI: 0.22-0.73, n = 3; I 2 = 82.5%), compared with pre-hospital use (OR = 0.77, 95% CI: 0.60-0.98, n = 18; I 2 = 81.8%). CONCLUSIONS These findings call attention to the need for systematic clinical studies to assess both pre- and in-hospital use of statins as a potential means of reducing COVID-19 disease severity, particularly in terms of reduction of ICU admission and total mortality reduction.
Collapse
Affiliation(s)
- Amir Vahedian-Azimi
- Trauma Research Centre, Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyede Momeneh Mohammadi
- Department of Anatomical Sciences, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farshad Heidari Beni
- Nursing Care Research Center (NCRC), School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Paul C. Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Biomedical Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Yuvanc E, Tuglu D, Ozan T, Kisa U, Balci M, Batislam E, Yilmaz E. Evaluation of pheniramine maleate and zofenopril in reducing renal damage induced by unilateral ureter obstruction. An experimental study. Arch Med Sci 2021; 17:812-817. [PMID: 34025852 PMCID: PMC8130462 DOI: 10.5114/aoms.2019.88320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/14/2018] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Obstruction of the ureter may occur due to congenital, iatrogenic or other reasons. This can cause hydronephrosis in the early stage and can lead to cellular inflammation, necrosis and atrophy in the kidney tissue. The aim of this paper is to evaluate the protective effect of pheniramine maleate (PM) and zofenopril on renal damage caused by hydronephrosis due to unilateral partial ureter obstruction. MATERIAL AND METHODS Twenty-four female Sprague Dawley rats were divided into 4 groups. Group 1: sham group, group 2: partial unilateral ureteral obstruction (PUUO) group, group 3: PUUO + PM group, group 4: PUUO + zofenopril group. Paraoxonase (PON), total antioxidant status (TAS) and total oxidant status (TOS) of tissue and blood samples were measured and calculated. Tissue samples were evaluated histopathologically. RESULTS An increase in tissue TAS and a decrease in tissue TOS and OSI levels were detected in groups 3 and 4 compared to group 2 (both: p < 0.01). Tissue PON levels showed an increase in groups 3 and 4 compared to groups 1 and 2 (both: p < 0.01). Histopathological evaluation showed a decrease in interstitial inflammation and congestion in groups 3 and 4 compared to the control group (p < 0.001). The decrease was observed to be more significant in group 4 compared to group 3 (p < 0.01). CONCLUSIONS In our experimental study, we observed that PM and zofenopril reduce the oxidation and tissue damage caused by unilateral partial obstruction.
Collapse
Affiliation(s)
- Ercan Yuvanc
- Department of Urology, Kirikkale University School of Medicine, Kirikkale, Turkey
| | - Devrim Tuglu
- Department of Urology, Kirikkale University School of Medicine, Kirikkale, Turkey
| | - Tunc Ozan
- Department of Urology, Firat University School of Medicine, Elazig, Turkey
| | - Ucler Kisa
- Department of Biochemistry, Kirikkale University School of Medicine, Kirikkale, Turkey
| | - Mahi Balci
- Department of Pathology, Kirikkale University School of Medicine, Kirikkale, Turkey
| | - Ertan Batislam
- Department of Urology, Kirikkale University School of Medicine, Kirikkale, Turkey
| | - Erdal Yilmaz
- Department of Urology, Kirikkale University School of Medicine, Kirikkale, Turkey
| |
Collapse
|
24
|
Scheen AJ. Statins and clinical outcomes with COVID-19: Meta-analyses of observational studies. DIABETES & METABOLISM 2020; 47:101220. [PMID: 33359486 PMCID: PMC7757378 DOI: 10.1016/j.diabet.2020.101220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Aims People with cardiovascular disease or risk factors are at increased risk when exposed to SARS-CoV-2. Most are treated with statins, but the impact of these drugs on clinical outcomes of COVID-19 remains unclear. This report is therefore based on meta-analyses of retrospective observational studies aimed at investigating the impact of previous statin therapy in patients hospitalized for COVID-19. Methods In studies reporting on the clinical outcomes of COVID-19 in statin users vs non-users, two endpoints have been used—in-hospital death rates, and disease severity as assessed by admission to intensive care units (ICUs)—with a special focus on patients with diabetes. Results Regarding mortality, 13 studies were included in the meta-analysis for a total of 10,829 statin users (2517 deaths) and 31,893 non-users (7516 deaths): univariate analysis showed no statistically significant reduction in deaths (OR: 0.97, 95% CI: 0.92–1.03), although between-study heterogeneity was high (I² = 97%). As for disease severity, 11 studies were selected for a total of 3462 statin users (724 endpoints) and 10,560 non-users (1763 endpoints): here again, univariate analysis showed no reduction in severity (OR: 1.09, 95% CI: 0.99–1.22; I² = 93%). Collectively, in 10 studies using multivariable analysis adjusted for the more prevalent baseline risk factors among statin users, lower OR values were reported than with univariate analyses (0.73 ± 0.31 vs 1.44 ± 0.84, respectively; P = 0.0028; adjusted OR: P = 0.0237 vs non-users). Limited but conflicting findings were observed for diabetes patients. Conclusion Although no significant reductions in either in-hospital mortality or COVID-19 severity were reported among statin users compared with non-users after univariate comparisons, such reductions were observed after adjusting for confounding factors. These highly heterogeneous observational findings now require confirmation by ongoing randomized clinical trials.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, Liège University, Liège, Belgium; Clinical Pharmacology Unit, CHU Liège, Center for Interdisciplinary Research on Medicines (CIRM), Liège University, Liège, Belgium.
| |
Collapse
|