1
|
Augustin M, Horn C, Ercanoglu MS, Bondet V, de Silva US, Suarez I, Chon SH, Nierhoff D, Zoufaly A, Wenisch C, Knops E, Heger E, Klein F, Duffy D, Müller-Trutwin M, Lehmann C. From Gut to Blood: Redistribution of Zonulin in People Living with HIV. Biomedicines 2024; 12:2316. [PMID: 39457626 PMCID: PMC11505231 DOI: 10.3390/biomedicines12102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Gastrointestinal mucosal damage due to human immunodeficiency virus (HIV) infection leads to microbial translocation and immune activation, contributing to the development of non-infectious comorbidities (NICM) in people living with HIV (PLWH). Additionally, persistent proviral HIV-1 in the gut-associated lymphatic tissue (GALT) can trigger immunological changes in the epithelial environment, impacting the mucosal barrier. However, the role of zonulin, a modulator of epithelial tight junctions in GALT during HIV infection, remains poorly understood. METHODS We measured zonulin in serum and intestinal tissue sections from five treatment-naive (HIV+NAIVE) and 10 cART-treated (HIV+cART) HIV+ individuals, along with 11 controls (CTRL). We compared zonulin levels with clinical characteristics, inflammatory markers (IFN-α, CXCR3, and PD-1), and the viral reservoir in peripheral blood (PB) and terminal ileum (TI). RESULTS Upon HIV infection, TI was found to harbor more HIV DNA than PB. Circulating zonulin levels were highest in HIV+NAIVE compared to HIV+cART or CTRL. Surprisingly, in the gut tissue sections, zonulin levels were higher in CTRL than in HIV+ individuals. Elevated circulating zonulin levels were found to be correlated with CD4+T-cell depletion in PB and TI, and with intestinal IFN-α. CONCLUSIONS The findings of this study indicate a shift in zonulin levels from the gut to the bloodstream in response to HIV infection. Furthermore, elevated systemic zonulin levels are associated with the depletion of intestinal CD4+ T cells and increased gut inflammation, suggesting a potential link between systemic zonulin and intestinal damage. Gaining insight into the regulation of gut tight junctions during HIV infection could offer valuable understanding for preventing NICM in PLWH.
Collapse
Affiliation(s)
- Max Augustin
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.H.); (U.S.d.S.); (I.S.)
- Center for Molecular Medicine Cologne (CMMC), 50937 Cologne, Germany
- German Center for Infection Research (DZIF), 50937 Cologne, Germany
- Department IV of Internal Medicine, Klinik Favoriten, Vienna Healthcare Group, 1100 Vienna, Austria; (A.Z.); (C.W.)
- Faculty of Medicine, Sigmund Freud University, 1020 Vienna, Austria
| | - Carola Horn
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.H.); (U.S.d.S.); (I.S.)
- Center for Molecular Medicine Cologne (CMMC), 50937 Cologne, Germany
- German Center for Infection Research (DZIF), 50937 Cologne, Germany
| | - Meryem Seda Ercanoglu
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany; (M.S.E.); (E.K.); (E.H.); (F.K.)
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, 75015 Paris, France; (V.B.); (D.D.)
| | - Ute Sandaradura de Silva
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.H.); (U.S.d.S.); (I.S.)
- Center for Molecular Medicine Cologne (CMMC), 50937 Cologne, Germany
- German Center for Infection Research (DZIF), 50937 Cologne, Germany
| | - Isabelle Suarez
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.H.); (U.S.d.S.); (I.S.)
- German Center for Infection Research (DZIF), 50937 Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral Surgery and Surgical Oncology, University Hospital Cologne, 50937 Cologne, Germany;
| | - Dirk Nierhoff
- Department of Gastroenterology and Hepatology, University Hospital of Cologne, 50937 Cologne, Germany;
| | - Alexander Zoufaly
- Department IV of Internal Medicine, Klinik Favoriten, Vienna Healthcare Group, 1100 Vienna, Austria; (A.Z.); (C.W.)
- Faculty of Medicine, Sigmund Freud University, 1020 Vienna, Austria
| | - Christoph Wenisch
- Department IV of Internal Medicine, Klinik Favoriten, Vienna Healthcare Group, 1100 Vienna, Austria; (A.Z.); (C.W.)
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany; (M.S.E.); (E.K.); (E.H.); (F.K.)
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany; (M.S.E.); (E.K.); (E.H.); (F.K.)
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany; (M.S.E.); (E.K.); (E.H.); (F.K.)
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, 75015 Paris, France; (V.B.); (D.D.)
| | - Michaela Müller-Trutwin
- HIV, Inflammation and Persistence Unit, Institut Pasteur, Université Paris-Cité, 75015 Paris, France;
| | - Clara Lehmann
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.H.); (U.S.d.S.); (I.S.)
- Center for Molecular Medicine Cologne (CMMC), 50937 Cologne, Germany
- German Center for Infection Research (DZIF), 50937 Cologne, Germany
| |
Collapse
|
2
|
Wahl A, Yao W, Liao B, Chateau M, Richardson C, Ling L, Franks A, Senthil K, Doyon G, Li F, Frost J, Whitehurst CB, Pagano JS, Fletcher CA, Azcarate-Peril MA, Hudgens MG, Rogala AR, Tucker JD, McGowan I, Sartor RB, Garcia JV. A germ-free humanized mouse model shows the contribution of resident microbiota to human-specific pathogen infection. Nat Biotechnol 2024; 42:905-915. [PMID: 37563299 PMCID: PMC11073568 DOI: 10.1038/s41587-023-01906-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Germ-free (GF) mice, which are depleted of their resident microbiota, are the gold standard for exploring the role of the microbiome in health and disease; however, they are of limited value in the study of human-specific pathogens because they do not support their replication. Here, we develop GF mice systemically reconstituted with human immune cells and use them to evaluate the role of the resident microbiome in the acquisition, replication and pathogenesis of two human-specific pathogens, Epstein-Barr virus (EBV) and human immunodeficiency virus (HIV). Comparison with conventional (CV) humanized mice showed that resident microbiota enhance the establishment of EBV infection and EBV-induced tumorigenesis and increase mucosal HIV acquisition and replication. HIV RNA levels were higher in plasma and tissues of CV humanized mice compared with GF humanized mice. The frequency of CCR5+ CD4+ T cells throughout the intestine was also higher in CV humanized mice, indicating that resident microbiota govern levels of HIV target cells. Thus, resident microbiota promote the acquisition and pathogenesis of two clinically relevant human-specific pathogens.
Collapse
Affiliation(s)
- Angela Wahl
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Wenbo Yao
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Baolin Liao
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Morgan Chateau
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cara Richardson
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lijun Ling
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adrienne Franks
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Krithika Senthil
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Genevieve Doyon
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fengling Li
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josh Frost
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher B Whitehurst
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA
| | - Joseph S Pagano
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig A Fletcher
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Andrea Azcarate-Peril
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - Michael G Hudgens
- Department of Biostatistics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison R Rogala
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph D Tucker
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ian McGowan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
- Orion Biotechnology, Ottawa, Ontario, Canada
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Victor Garcia
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Johansson E, Nazziwa J, Freyhult E, Hong MG, Lindman J, Neptin M, Karlson S, Rezeli M, Biague AJ, Medstrand P, Månsson F, Norrgren H, Esbjörnsson J, Jansson M. HIV-2 mediated effects on target and bystander cells induce plasma proteome remodeling. iScience 2024; 27:109344. [PMID: 38500818 PMCID: PMC10945182 DOI: 10.1016/j.isci.2024.109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Despite low or undetectable plasma viral load, people living with HIV-2 (PLWH2) typically progress toward AIDS. The driving forces behind HIV-2 disease progression and the role of viremia are still not known, but low-level replication in tissues is believed to play a role. To investigate the impact of viremic and aviremic HIV-2 infection on target and bystander cell pathology, we used data-independent acquisition mass spectrometry to determine plasma signatures of tissue and cell type engagement. Proteins derived from target and bystander cells in multiple tissues, such as the gastrointestinal tract and brain, were detected at elevated levels in plasma of PLWH2, compared with HIV negative controls. Moreover, viremic HIV-2 infection appeared to induce enhanced release of proteins from a broader range of tissues compared to aviremic HIV-2 infection. This study expands the knowledge on the link between plasma proteome remodeling and the pathological cell engagement in tissues during HIV-2 infection.
Collapse
Affiliation(s)
- Emil Johansson
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
| | - Jamirah Nazziwa
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
| | - Eva Freyhult
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mun-Gwan Hong
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jacob Lindman
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Malin Neptin
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
| | - Sara Karlson
- Lund University Virus Centre, Lund, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Melinda Rezeli
- BioMS – Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden
| | | | - Patrik Medstrand
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
| | - Fredrik Månsson
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Hans Norrgren
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marianne Jansson
- Lund University Virus Centre, Lund, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - for the SWEGUB CORE group
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- BioMS – Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden
- National Public Health Laboratory, Bissau, Guinea-Bissau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Zaongo SD, Chen Y. Metformin may be a viable adjunctive therapeutic option to potentially enhance immune reconstitution in HIV-positive immunological non-responders. Chin Med J (Engl) 2023; 136:2147-2155. [PMID: 37247620 PMCID: PMC10508460 DOI: 10.1097/cm9.0000000000002493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 05/31/2023] Open
Abstract
ABSTRACT Incomplete immune reconstitution remains a global challenge for human immunodeficiency virus (HIV) treatment in the present era of potent antiretroviral therapy (ART), especially for those individuals referred to as immunological non-responders (INRs), who exhibit dramatically low CD4 + T-cell counts despite the use of effective antiretroviral therapy, with long-term inhibition of viral replication. In this review, we provide a critical overview of the concept of ART-treated HIV-positive immunological non-response, and also explain the known mechanisms which could potentially account for the emergence of immunological non-response in some HIV-infected individuals treated with appropriate and effective ART. We found that immune cell exhaustion, combined with chronic inflammation and the HIV-associated dysbiosis syndrome, may represent strategic aspects of the immune response that may be fundamental to incomplete immune recovery. Interestingly, we noted from the literature that metformin exhibits properties and characteristics that may potentially be useful to specifically target immune cell exhaustion, chronic inflammation, and HIV-associated gut dysbiosis syndrome, mechanisms which are now recognized for their critically important complicity in HIV disease-related incomplete immune recovery. In light of evidence discussed in this review, it can be seen that metformin may be of particularly favorable use if utilized as adjunctive treatment in INRs to potentially enhance immune reconstitution. The approach described herein may represent a promising area of therapeutic intervention, aiding in significantly reducing the risk of HIV disease progression and mortality in a particularly vulnerable subgroup of HIV-positive individuals.
Collapse
Affiliation(s)
| | - Yaokai Chen
- Division of Infectious diseases, Chongqing Public Health Medical Center, Chongqing 400036, China
| |
Collapse
|
5
|
Essomba RG, Mbe RM, Ngogang MP, Ekono CB, Bitoungui VJN, Seni N, Nguwoh PS, Ateba PT, Kamdem SD, Nono JK, Ambomo MS, Assoumou MCO, Mbopi-Kéou FX. Plasma IL-33 levels and immune activation in HIV-TB coinfection: a cross-sectional study in Yaoundé, Cameroon. Pan Afr Med J 2023; 46:13. [PMID: 38035159 PMCID: PMC10683167 DOI: 10.11604/pamj.2023.46.13.41152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/22/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction HIV-1 and Mtb are characterized by immune activation and unbalances production of cytokines, but the expression of IL33 in HIV/TB coinfection remain understudied. This study aimed to evaluate the level of IL-33 in plasma of HIV and M. tuberculosis (HIV/TB) coinfected patients compared to patients with respective mono infections in Yaoundé. Methods a cross-sectional study was conducted among patients attending the pneumology service and HIV treatment center of the Yaoundé Jamot Hospital. Plasma samples of 157 HIV/TB coinfected patients (n =26, 50% males and 50% females, mean age 39), HIV-1 monoinfected patients (n = 41, 41% males and 59% females, mean age 35), TB monoinfected patients (n = 48, 56% males and 44% females, mean age 37) and healthy controls (n = 42, 29% males and 71% females, mean age 32) were examined by enzyme-linked immunoassay (ELISA) to detect the levels of IL-33 cytokine. Results plasma level of IL-33 were higher in HIV/TB coinfected (33.1±30.9 pg/ml) and TB monoinfected individuals (15.1±2.9 pg/ml) compared to healthy controls (14.0±3.4 pg/ml) and could not be detected in most of the HIV-1 monoinfected individuals (12.6±8.7 pg/ml). Interestingly, the increased plasma level of IL-33 in HIV/TB coinfected patients showed a statistically significant difference between healthy controls (33.1±30.9 pg/ml vs 14.0±3.4 pg/ml, P<0.0001) and HIV-1 monoinfected patients (33.1±30.9 pg/ml vs 12.6±8.7 pg/ml, P=0.0002). We further found that IL-33 was higher in patients with high viral load group (40.6±59.7 pg/ml vs 12.6±1.8 pg/ml), P= 0.47) whereas patients under highly active antiretroviral therapy (HAART) showed decreased level of IL-33 concentration as the number of years under ART increased. Our data showed a positive association between plasma IL-33 and viral load in the context of HIV/TB coinfection in our study population with a positive Pearson coefficient of r=0.21. Conclusion this study indicates that plasma level of IL-33 differs among HIV/TB coinfected patients and respective monoinfections patients. The increased level of plasma IL-33 reveals that IL-33 measurement in HIV-1 monoinfected patients may represent an early predictor of development of tuberculosis.
Collapse
Affiliation(s)
- René Ghislain Essomba
- National Public Health Laboratory (NPHL), Ministry of Public Health, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences (FMBS), University of Yaoundé I, Yaoundé, Cameroon
- School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroon
| | - Rostand Munkam Mbe
- School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroon
| | - Marie Paule Ngogang
- Faculty of Medicine and Biomedical Sciences (FMBS), University of Yaoundé I, Yaoundé, Cameroon
| | - Claire Bitchong Ekono
- Faculty of Medicine and Pharmaceutical Sciences (FMPS), University of Douala, Douala, Cameroon
- Pneumology Service, Jamot Hospital of Yaoundé, Yaoundé, Cameroon
| | | | - Nassif Seni
- School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroon
| | | | | | - Severin Donald Kamdem
- Faculty of Medicine and Pharmaceutical Sciences (FMPS), University of Dschang, Dschang, Cameroon
- Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Justin Komguep Nono
- Faculty of Medicine and Pharmaceutical Sciences (FMPS), University of Dschang, Dschang, Cameroon
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | - Myriam Sylvie Ambomo
- School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroon
| | - Marie Claire Okomo Assoumou
- National Public Health Laboratory (NPHL), Ministry of Public Health, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences (FMBS), University of Yaoundé I, Yaoundé, Cameroon
| | | |
Collapse
|
6
|
Enichen E, Adams RB, Demmig-Adams B. Physical Activity as an Adjunct Treatment for People Living with HIV? Am J Lifestyle Med 2023; 17:502-517. [PMID: 37426740 PMCID: PMC10328202 DOI: 10.1177/15598276221078222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
This review evaluates physical activity as a candidate for an adjunct treatment, in conjunction with antiretroviral therapy (ART), for people living with HIV (PLWH). Evidence is summarized that chronic, non-resolving inflammation (a principal feature of immune system dysfunction) and a dysfunctional state of the gut environment are key factors in HIV infection that persist despite treatment with ART. In addition, evidence is summarized that regular physical activity may restore normal function of both the immune system and the gut environment and may thereby ameliorate symptoms and non-resolving inflammation-associated comorbidities that burden PLWH. Physicians who care for PLWH could thus consider incorporating physical activity into treatment plans to complement ART. It is also discussed that different types of physical activity can have different effects on the gut environment and immune function, and that future research should establish more specific criteria for the design of exercise regimens tailored to PLWH.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Robert B. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| |
Collapse
|
7
|
Johnson SD, Byrareddy SN. HIV-associated dysbiosis and immune recovery during antiretroviral therapy. CLINICAL AND TRANSLATIONAL DISCOVERY 2022; 2:e58. [PMID: 36189116 PMCID: PMC9524401 DOI: 10.1002/ctd2.58] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 06/03/2023]
Abstract
The microbiomes of people living with HIV (PLWH) are significantly dysregulated with a loss of bacteria diversity and shifts in composition, including increases in pathogenic and decreases in beneficial species. Because of the microbiome's role in modulating health, the effect of this dysbiosis on immune response in PLWH has been a significant concern, mainly because these shifts can persist even after viral suppression during combination antiretroviral therapy (cART). However, due to limitations on sample availability, few studies have been able to provide insights into these microbiome-immune interactions. Recently, Olivas-Martínez, et al. characterized ileum and caecum mucosa-associated microbiomes of PLWH based on their level of peripheral CD4+ T-cell reconstitution following long-term cART. Their analysis revealed distinct microbiome signatures predictive of recovery. Additionally, differences in markers of gut inflammation and damage between response groups were described, further implicating mucosal disruptions with immune reconstitution. These new data demonstrate an interdependence of microbiome and therapy response, and additional studies were urgently required to fully elucidate this crosstalk and microbiome dynamics from before/after infection and finally, long-term viral suppression with cART.
Collapse
Affiliation(s)
- Samuel D Johnson
- Department of Pharmacology and Experimental Neuroscience,
University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pathology and Microbiology, University of
Nebraska Medical Center, Omaha, NE, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience,
University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
8
|
Zaongo SD, Ouyang J, Chen Y, Jiao YM, Wu H, Chen Y. HIV Infection Predisposes to Increased Chances of HBV Infection: Current Understanding of the Mechanisms Favoring HBV Infection at Each Clinical Stage of HIV Infection. Front Immunol 2022; 13:853346. [PMID: 35432307 PMCID: PMC9010668 DOI: 10.3389/fimmu.2022.853346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Human immunodeficiency virus (HIV) selectively targets and destroys the infection-fighting CD4+ T-lymphocytes of the human immune system, and has a life cycle that encompasses binding to certain cells, fusion to that cell, reverse transcription of its genome, integration of its genome into the host cell DNA, replication of the HIV genome, assembly of the HIV virion, and budding and subsequent release of free HIV virions. Once a host is infected with HIV, the host’s ability to competently orchestrate effective and efficient immune responses against various microorganisms, such as viral infections, is significantly disrupted. Without modern antiretroviral therapy (ART), HIV is likely to gradually destroy the cellular immune system, and thus the initial HIV infection will inexorably evolve into acquired immunodeficiency syndrome (AIDS). Generally, HIV infection in a patient has an acute phase, a chronic phase, and an AIDS phase. During these three clinical stages, patients are found with relatively specific levels of viral RNA, develop rather distinctive immune conditions, and display unique clinical manifestations. Convergent research evidence has shown that hepatitis B virus (HBV) co-infection, a common cause of chronic liver disease, is fairly common in HIV-infected individuals. HBV invasion of the liver can be facilitated by HIV infection at each clinical stage of the infection due to a number of contributing factors, including having identical transmission routes, immunological suppression, gut microbiota dysbiosis, poor vaccination immune response to hepatitis B immunization, and drug hepatotoxicity. However, there remains a paucity of research investigation which critically describes the influence of the different HIV clinical stages and their consequences which tend to favor HBV entrenchment in the liver. Herein, we review advances in the understanding of the mechanisms favoring HBV infection at each clinical stage of HIV infection, thus paving the way toward development of potential strategies to reduce the prevalence of HBV co-infection in the HIV-infected population.
Collapse
Affiliation(s)
- Silvere D. Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaling Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Yan-Mei Jiao
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hao Wu
- Department of Infectious Diseases, You’an Hospital, Capital Medical University, Beijing, China
| | - Yaokai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- *Correspondence: Yaokai Chen,
| |
Collapse
|
9
|
Impaired differentiation of small airway basal stem/progenitor cells in people living with HIV. Sci Rep 2022; 12:2966. [PMID: 35194053 PMCID: PMC8864005 DOI: 10.1038/s41598-022-06373-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
With highly active anti-retroviral therapy (HAART), higher incidence of airway abnormalities is common in the HIV population consistent with the concept of accelerated lung "aging". Our previous findings demonstrated that HIV induces human airway basal cells (BC) into destructive and inflammatory phenotypes. Since BC function as stem/progenitor cells of the small airway epithelium (SAE), responsible for self-renewal and differentiation of SAE, we hypothesized that BC from people living with HIV (PLWH) may have altered differentiation capacity that contribute to premature aging. The data demonstrates that BC from PLWH have impaired capacity to differentiate in vitro and senescent phenotypes including shortened telomeres, increased expression of β-galactosidase and cell cycle inhibitors, and mitochondrial dysfunction. In vitro studies demonstrated that BC senescence is partly due to adverse effects of HAART on BC. These findings provide an explanation for higher incidence of airway dysfunction and accelerated lung aging observed in PLWH.
Collapse
|
10
|
Ouyang J, Zaongo SD, Zhang X, Qi M, Hu A, Wu H, Chen Y. Microbiota-Meditated Immunity Abnormalities Facilitate Hepatitis B Virus Co-Infection in People Living With HIV: A Review. Front Immunol 2022; 12:755890. [PMID: 35069530 PMCID: PMC8770824 DOI: 10.3389/fimmu.2021.755890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) co-infection is fairly common in people living with HIV (PLWH) and affects millions of people worldwide. Identical transmission routes and HIV-induced immune suppression have been assumed to be the main factors contributing to this phenomenon. Moreover, convergent evidence has shown that people co-infected with HIV and HBV are more likely to have long-term serious medical problems, suffer more from liver-related diseases, and have higher mortality rates, compared to individuals infected exclusively by either HIV or HBV. However, the precise mechanisms underlying the comorbid infection of HIV and HBV have not been fully elucidated. In recent times, the human gastrointestinal microbiome is progressively being recognized as playing a pivotal role in modulating immune function, and is likely to also contribute significantly to critical processes involving systemic inflammation. Both antiretroviral therapy (ART)-naïve HIV-infected subjects and ART-treated individuals are now known to be characterized by having gut microbiomic dysbiosis, which is associated with a damaged intestinal barrier, impaired mucosal immunological functioning, increased microbial translocation, and long-term immune activation. Altered microbiota-related products in PLWH, such as lipopolysaccharide (LPS) and short-chain fatty acids (SCFA), have been associated with the development of leaky gut syndrome, favoring microbial translocation, which in turn has been associated with a chronically activated underlying host immune response and hence the facilitated pathogenesis of HBV infection. Herein, we critically review the interplay among gut microbiota, immunity, and HIV and HBV infection, thus laying down the groundwork with respect to the future development of effective strategies to efficiently restore normally diversified gut microbiota in PLWH with a dysregulated gut microbiome, and thus potentially reduce the prevalence of HBV infection in this population.
Collapse
Affiliation(s)
- Jing Ouyang
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Xue Zhang
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Miaomiao Qi
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Aizhen Hu
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Hao Wu
- Department of Infectious Diseases, You'an Hospital, Capital Medical University, Beijing, China
| | - Yaokai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
11
|
Wallace DR. HIV-associated neurotoxicity and cognitive decline: Therapeutic implications. Pharmacol Ther 2021; 234:108047. [PMID: 34848202 DOI: 10.1016/j.pharmthera.2021.108047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
As our understanding of changes to the neurological system has improved, it has become clear that patients who have contracted human immunodeficiency virus type 1 (HIV-1) can potentially suffer from a cascade of neurological issues, including neuropathy, dementia, and declining cognitive function. The progression from mild to severe symptoms tends to affect motor function, followed by cognitive changes. Central nervous system deficits that are observed as the disease progresses have been reported as most severe in later-stage HIV infection. Examining the full spectrum of neuronal damage, generalized cortical atrophy is a common hallmark, resulting in the death of multiple classes of neurons. With antiretroviral therapy (ART), we can partially control disease progression, slowing the onset of the most severe symptoms such as, reducing viral load in the brain, and developing HIV-associated dementia (HAD). HAD is a severe and debilitating outcome from HIV-related neuropathologies. HIV neurotoxicity can be direct (action directly on the neuron) or indirect (actions off-site that affect normal neuronal function). There are two critical HIV-associated proteins, Tat and gp120, which bear responsibility for many of the neuropathologies associated with HAD and HIV-associated neurocognitive disorder (HAND). A cascade of systems is involved in HIV-related neurotoxicity, and determining a critical point where therapeutic strategies can be employed is of the utmost importance. This review will provide an overview of the existing hypotheses on HIV-neurotoxicity and the potential for the development of therapeutics to aid in the treatment of HIV-related nervous system dysfunction.
Collapse
Affiliation(s)
- David R Wallace
- Oklahoma State University Center for Health Sciences, School of Biomedical Science, 1111 West 17(th) Street, Tulsa, OK 74107-1898, USA.
| |
Collapse
|
12
|
A Gut Reaction to SIV and SHIV Infection: Lower Dysregulation of Mucosal T Cells during Acute Infection Is Associated with Greater Viral Suppression during cART. Viruses 2021; 13:v13081609. [PMID: 34452474 PMCID: PMC8402906 DOI: 10.3390/v13081609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/31/2021] [Accepted: 08/12/2021] [Indexed: 11/27/2022] Open
Abstract
Selection of a pre-clinical non-human primate (NHP) model is essential when evaluating therapeutic vaccine and treatment strategies for HIV. SIV and SHIV-infected NHPs exhibit a range of viral burdens, pathologies, and responses to combinatorial antiretroviral therapy (cART) regimens and the choice of the NHP model for AIDS could influence outcomes in studies investigating interventions. Previously, in rhesus macaques (RMs) we showed that maintenance of mucosal Th17/Treg homeostasis during SIV infection correlated with a better virological response to cART. Here, in RMs we compared viral kinetics and dysregulation of gut homeostasis, defined by T cell subset disruption, during highly pathogenic SIVΔB670 compared to SHIV-1157ipd3N4 infection. SHIV infection resulted in lower acute viremia and less disruption to gut CD4 T-cell homeostasis. Additionally, 24/24 SHIV-infected versus 10/19 SIV-infected animals had sustained viral suppression <100 copies/mL of plasma after 5 months of cART. Significantly, the more profound viral suppression during cART in a subset of SIV and all SHIV-infected RMs corresponded with less gut immune dysregulation during acute SIV/SHIV infection, defined by maintenance of the Th17/Treg ratio. These results highlight significant differences in viral control during cART and gut dysregulation in NHP AIDS models and suggest that selection of a model may impact the evaluation of candidate therapeutic interventions for HIV treatment and cure strategies.
Collapse
|
13
|
Onabajo OO, Lewis MG, Mattapallil JJ. GALT CD4 +PD-1 hi T follicular helper (Tfh) cells repopulate after anti-retroviral therapy. Cell Immunol 2021; 366:104396. [PMID: 34157462 DOI: 10.1016/j.cellimm.2021.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022]
Abstract
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections are characterized by dramatic alterations in the mucosal CD4 T cell compartment. Though viremia is effectively suppressed, and peripheral CD4 T cell numbers recover to near healthy levels after highly active anti-retroviral therapy (HAART), some of the dysfunctional consequences of HIV infection continue to persist during therapy. We hypothesized that CD4 T follicular helper (Tfh) cell deficiencies may play a role in this process. Using the macaque model we show that SIV infection was associated with a significant loss of Tfh cells in the GALT that drain the mesentery lining the gastrointestinal tract (GIT). Loss of Tfh cells significantly correlated with the depletion of the overall memory CD4 T cell compartment; most Tfh cells in the GALT expressed a CD95+CD28+ memory phenotype suggesting that infection of the memory compartment likely drives the loss of GALT Tfh cells during infection. Continuous anti-retroviral therapy (cART) was accompanied by a significant repopulation of Tfh cells in the GALT to levels similar to those of uninfected animals. Repopulating Tfh cells displayed significantly higher capacity to produce IL-21 as compared to SIV infected animals suggesting that cART fully restores Tfh cells that are functionally capable of supporting GC reactions in the GALT.
Collapse
Affiliation(s)
- Olusegun O Onabajo
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | | | - Joseph J Mattapallil
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
14
|
Onabajo OO, Mattapallil JJ. Gut Microbiome Homeostasis and the CD4 T- Follicular Helper Cell IgA Axis in Human Immunodeficiency Virus Infection. Front Immunol 2021; 12:657679. [PMID: 33815419 PMCID: PMC8017181 DOI: 10.3389/fimmu.2021.657679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) and Simian Immunodeficiency Virus (SIV) are associated with severe perturbations in the gut mucosal environment characterized by massive viral replication and depletion of CD4 T cells leading to dysbiosis, breakdown of the epithelial barrier, microbial translocation, immune activation and disease progression. Multiple mechanisms play a role in maintaining homeostasis in the gut mucosa and protecting the integrity of the epithelial barrier. Among these are the secretory IgA (sIgA) that are produced daily in vast quantities throughout the mucosa and play a pivotal role in preventing commensal microbes from breaching the epithelial barrier. These microbe specific, high affinity IgA are produced by IgA+ plasma cells that are present within the Peyer’s Patches, mesenteric lymph nodes and the isolated lymphoid follicles that are prevalent in the lamina propria of the gastrointestinal tract (GIT). Differentiation, maturation and class switching to IgA producing plasma cells requires help from T follicular helper (Tfh) cells that are present within these lymphoid tissues. HIV replication and CD4 T cell depletion is accompanied by severe dysregulation of Tfh cell responses that compromises the generation of mucosal IgA that in turn alters barrier integrity leading to commensal bacteria readily breaching the epithelial barrier and causing mucosal pathology. Here we review the effect of HIV infection on Tfh cells and mucosal IgA responses in the GIT and the consequences these have for gut dysbiosis and mucosal immunopathogenesis.
Collapse
Affiliation(s)
- Olusegun O Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Joseph J Mattapallil
- F. E. Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
15
|
Labarta-Bajo L, Nilsen SP, Humphrey G, Schwartz T, Sanders K, Swafford A, Knight R, Turner JR, Zúñiga EI. Type I IFNs and CD8 T cells increase intestinal barrier permeability after chronic viral infection. J Exp Med 2021; 217:152069. [PMID: 32880630 PMCID: PMC7953738 DOI: 10.1084/jem.20192276] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/29/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Intestinal barrier leakage constitutes a potential therapeutic target for many inflammatory diseases and represents a disease progression marker during chronic viral infections. However, the causes of altered gut barrier remain mostly unknown. Using murine infection with lymphocytic choriomeningitis virus, we demonstrate that, in contrast to an acute viral strain, a persistent viral isolate leads to long-term viral replication in hematopoietic and mesenchymal cells, but not epithelial cells (IECs), in the intestine. Viral persistence drove sustained intestinal epithelial barrier leakage, which was characterized by increased paracellular flux of small molecules and was associated with enhanced colitis susceptibility. Type I IFN signaling caused tight junction dysregulation in IECs, promoted gut microbiome shifts and enhanced intestinal CD8 T cell responses. Notably, both type I IFN receptor blockade and CD8 T cell depletion prevented infection-induced barrier leakage. Our study demonstrates that infection with a virus that persistently replicates in the intestinal mucosa increases epithelial barrier permeability and reveals type I IFNs and CD8 T cells as causative factors of intestinal leakage during chronic infections.
Collapse
Affiliation(s)
- Lara Labarta-Bajo
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Steven P Nilsen
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Gregory Humphrey
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Tara Schwartz
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Karenina Sanders
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Austin Swafford
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA.,Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Elina I Zúñiga
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
16
|
The Interrelationships between Intestinal Permeability and Phlegm Syndrome and Therapeutic Potential of Some Medicinal Herbs. Biomolecules 2021; 11:biom11020284. [PMID: 33671865 PMCID: PMC7918952 DOI: 10.3390/biom11020284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal (GI) tract has an intriguing and critical role beyond digestion in both modern and complementary and alternative medicine (CAM), as demonstrated by its link with the immune system. In this review, we attempted to explore the interrelationships between increased GI permeability and phlegm, an important pathological factor in CAM, syndrome, and therapeutic herbs for two disorders. The leaky gut and phlegm syndromes look considerably similar with respect to related symptoms, diseases, and suitable herbal treatment agents, including phytochemicals even though limitations to compare exist. Phlegm may be spread throughout the body along with other pathogens via the disruption of the GI barrier to cause several diseases sharing some parts of symptoms, diseases, and mechanisms with leaky gut syndrome. Both syndromes are related to inflammation and gut microbiota compositions. Well-designed future research should be conducted to verify the interrelationships for evidence based integrative medicine to contribute to the promotion of public health. In addition, systems biology approaches should be adopted to explore the complex synergistic effects of herbal medicine and phytochemicals on conditions associated with phlegm and leaky gut syndromes.
Collapse
|
17
|
Immune Dysregulation in Myocardial Fibrosis, Steatosis, and Heart Failure: Current Insights from HIV and the General Population. Curr HIV/AIDS Rep 2021; 18:63-72. [PMID: 33433816 DOI: 10.1007/s11904-020-00536-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW HIV is an independent risk factor for heart failure (HF). Cardiac imaging studies in people with HIV (PWH) have identified myocardial pathologies, namely fibrosis and steatosis, that likely contribute to the higher risk of HF. In this review, we survey existing epidemiological, clinical, and mechanistic literature to identify potential pathways that may contribute to the burden of myocardial fibrosis and steatosis among PWH. RECENT FINDINGS Multiple cohort studies over the past 20 years have demonstrated a roughly 2-fold higher risk of incident HF in PWH, as well as a disproportionate burden of myocardial fibrosis and steatosis in PWH without HF. Both myocardial fibrosis and steatosis are known contributors to HF in adults without HIV. Pathways involving the NLRP3 inflammasome, TGF-β1, and adipocyte dysfunction are known to play a crucial role in the development of myocardial fibrosis and steatosis. Upregulation of these pathways in HIV due to direct effects of viral proteins, persistent immune dysregulation, gut epithelial breakdown and dysbiosis, and toxicities from antiretroviral therapy may contribute to myocardial dysfunction in HIV. Understanding these pathways may lead to more precise diagnostic and therapeutic targets to curb HF in PWH. During the past three decades, observational and mechanistic studies have provided important insights into risk factors and pathways that may contribute to the increased HF risk in PWH. Future work is needed to characterize these pathways more precisely in mechanistic studies of PWH, with the goal of ultimately deriving valuable targets for prevention, early diagnosis, and treatment of HF in PWH.
Collapse
|
18
|
The Effect of Probiotics, Prebiotics, and Synbiotics on CD4 Counts in HIV-Infected Patients: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7947342. [PMID: 33294453 PMCID: PMC7718054 DOI: 10.1155/2020/7947342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022]
Abstract
Background Probiotics as a potential adjuvant therapy may improve the restoration of the intestinal CD4+ T-cell population in HIV-infected patients, whereas findings from clinical trials are inconsistent. This systematic review and meta-analysis of randomized controlled trials (RCTs) was performed to quantify the effects of probiotic, prebiotic, and synbiotic supplementation on CD4 counts in HIV-infected patients. Methods We searched PubMed, Embase, Web of Science, Scopus, and the Cochrane Central Register of Controlled Trials for relevant articles published up to March 20, 2020. Two authors independently performed the study selection, data extraction, and risk of bias assessment. Data were pooled by using the random effects model, and weighted mean difference (WMD) was considered the summary effect size. Publication bias was evaluated by a funnel plot and Egger's test. Results The search strategy identified 1712 citations. After screening, a total of 16 RCTs with 19 trials were included in the meta-analysis. Pooling of the extracted data indicated no significant difference between the probiotics/prebiotics/synbiotics and placebo groups on CD4 counts (WMD = 3.86, 95% confidence interval (CI) -24.72 to 32.45, P = 0.791). In subgroup analysis, a significant increase in CD4 counts was found in the study with high risk of bias (WMD = 188, 95% CI 108.74 to 227.26, P ≤ 0.001). Egger's test showed no evidence of significant publication bias (P = 0.936). Conclusions In summary, the evidence for the efficacy of probiotics, prebiotics, and synbiotics in improving HIV-infected patients' CD4 counts as presented in currently published RCTs is insufficient. Therefore, further comprehensive studies are needed to reveal the exact effect of probiotics, prebiotics, and synbiotics on CD4+ cell counts.
Collapse
|
19
|
Geng ST, Zhang ZY, Wang YX, Lu D, Yu J, Zhang JB, Kuang YQ, Wang KH. Regulation of Gut Microbiota on Immune Reconstitution in Patients With Acquired Immunodeficiency Syndrome. Front Microbiol 2020; 11:594820. [PMID: 33193273 PMCID: PMC7652894 DOI: 10.3389/fmicb.2020.594820] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection of CD4+ T cells in the gut plays an insidious role in acquired immunodeficiency syndrome (AIDS) pathogenesis. Host immune function is closely related to gut microbiota. Changes in the gut microbiota cause a different immune response. Previous studies revealed that HIV-1 infection caused changes in gut microbiota, which induced immune deficiency. HIV-1 infection results in an abnormal composition and function of the gut microbiota, which may disrupt the intestinal epithelial barrier and microbial translocation, leading to long-term immune activation, including inflammation and metabolic disorders. At the same time, an abnormal gut microbiota also hinders the effect of antiviral therapy and affects the immune reconstruction of patients. However, studies on the impact of the gut microbiota on immune reconstitution in patients with HIV/AIDS are still limited. In this review, we focus on changes in the gut microbiota caused by HIV infection, as well as the impact and regulation of the gut microbiota on immune function and immune reconstitution, while we also discuss the potential impact of probiotics/prebiotics and fecal microbiota transplantation (FMT) on immune reconstitution.
Collapse
Affiliation(s)
- Shi-Tao Geng
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zun-Yue Zhang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yue-Xin Wang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Danfeng Lu
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juehua Yu
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian-Bo Zhang
- Department of Dermatology, Second People's Hospital of Dali City, Dali, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun-Hua Wang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
20
|
Planchais C, Kök A, Kanyavuz A, Lorin V, Bruel T, Guivel-Benhassine F, Rollenske T, Prigent J, Hieu T, Prazuck T, Lefrou L, Wardemann H, Schwartz O, Dimitrov JD, Hocqueloux L, Mouquet H. HIV-1 Envelope Recognition by Polyreactive and Cross-Reactive Intestinal B Cells. Cell Rep 2020; 27:572-585.e7. [PMID: 30970259 PMCID: PMC6458971 DOI: 10.1016/j.celrep.2019.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/19/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022] Open
Abstract
Mucosal immune responses to HIV-1 involve the recognition of the viral envelope glycoprotein (gp)160 by tissue-resident B cells and subsequent secretion of antibodies. To characterize the B cells “sensing” HIV-1 in the gut of infected individuals, we probed monoclonal antibodies produced from single intestinal B cells binding to recombinant gp140 trimers. A large fraction of mucosal B cell antibodies were polyreactive and showed only low affinity to HIV-1 envelope glycoproteins, particularly the gp41 moiety. A few high-affinity gp140 antibodies were isolated but lacked neutralizing, potent ADCC, and transcytosis-blocking capacities. Instead, they displayed cross-reactivity with defined self-antigens. Specifically, intestinal HIV-1 gp41 antibodies targeting the heptad repeat 2 region (HR2) cluster II cross-reacted with the p38α mitogen-activated protein kinase 14 (MAPK14). Hence, physiologic polyreactivity of intestinal B cells and molecular mimicry-based self-reactivity of HIV-1 antibodies are two independent phenomena, possibly diverting and/or impairing mucosal humoral immunity to HIV-1. Polyreactive B cells in HIV-1+ intestinal mucosa interact with HIV-1 Env proteins High-affinity intestinal HIV-1 gp140 antibodies display poor antiviral activities Antibodies targeting the gp41 cluster II region cross-react with MAPK14
Collapse
Affiliation(s)
- Cyril Planchais
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Ayrin Kök
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Alexia Kanyavuz
- Sorbonne Universités, UPMC Université Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France
| | - Valérie Lorin
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris, 75015, France
| | - Florence Guivel-Benhassine
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris, 75015, France
| | - Tim Rollenske
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Julie Prigent
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Thierry Hieu
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Thierry Prazuck
- Service des Maladies Infectieuses et Tropicales, CHR d'Orléans-La Source, Orléans 45067, France
| | - Laurent Lefrou
- Service d'Hépato-Gastro-Entérologie, CHR d'Orléans-La Source, Orléans 45067, France
| | - Hedda Wardemann
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris, 75015, France
| | - Jordan D Dimitrov
- Sorbonne Universités, UPMC Université Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France
| | - Laurent Hocqueloux
- Service des Maladies Infectieuses et Tropicales, CHR d'Orléans-La Source, Orléans 45067, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France.
| |
Collapse
|
21
|
Cogswell A, Ferguson N, Barker E. Presence of Inflammatory Group I and III Innate Lymphoid Cells in the Colon of Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Virol 2020; 94:e01914-19. [PMID: 32051277 PMCID: PMC7163113 DOI: 10.1128/jvi.01914-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic, low-grade, systemic, and mucosal inflammation correlates with increased morbidity and poor clinical outcomes among patients living with human immunodeficiency virus (HIV). These long-term complications are linked to the disruption of gastrointestinal (GI) tract epithelial barrier integrity and subsequent microbial translocation. However, the mechanisms responsible for these downstream effects of infection are unknown. Here, we demonstrate that during the disruption of the GI tract and increased microbial translocation, we find inflammatory cytokines (e.g., interferon gamma [IFN-γ] and tumor necrosis factor alpha [TNF-α]) produced by innate lymphoid cells (ILCs) located in the colon secondary to simian immunodeficiency virus (SIV) infection. To do this, we used viably cryopreserved colon cells from SIV-infected and uninfected rhesus macaque monkeys and determined the make-up of the ILC subpopulations and the cytokines they expressed constitutively. Our studies revealed that the interleukin-22 (IL-22)/IL-17-producing ILCS was not altered during SIV infection. However, the percentage of IFN-γ+ ILCs in infected colons was 5- to 10-fold higher than that in uninfected colons. ILCs from infected tissue that produced IFN-γ also expressed TNF-α and IL-22. The coexpression of inflammatory cytokines with IL-22 is linked to the ability of ILCs to coexpress T-bet and RORγT/Ahr. The expression of IFN-γ/TNF-α by ILCs and NK cells combined likely triggers a pathway that contributes to chronic mucosal inflammation, GI barrier breakdown, and microbial translocation within the context of SIV/HIV infection.IMPORTANCE There is a slow yet significant uptick in systemic inflammation secondary to HIV infection that has long-term consequences for the infected host. The systemic inflammation most likely occurs as a consequence of the disruption of the gut epithelial barrier, leading to the translocation of gut microbial products. This disruption may result from mucosal inflammation. Here, we show in an animal model of HIV that chronic SIV-infected gut contains innate lymphoid cells producing inflammatory cytokines.
Collapse
Affiliation(s)
- Andrew Cogswell
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Natasha Ferguson
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Edward Barker
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
22
|
Lu J, Ma SS, Zhang WY, Duan JP. Changes in peripheral blood inflammatory factors (TNF-α and IL-6) and intestinal flora in AIDS and HIV-positive individuals. J Zhejiang Univ Sci B 2020; 20:793-802. [PMID: 31489799 DOI: 10.1631/jzus.b1900075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE In this study, we investigated the changes in peripheral blood inflammatory factors and intestinal flora in acquired immune deficiency syndrome (AIDS) and human immunodeficiency virus (HIV)-positive individuals (AIDS/HIV patients), and explored the relationships among intestinal flora, peripheral blood inflammatory factors, and CD4+ T lymphocytes. METHODS Thirty blood and stool samples from an AIDS group and a control group were collected. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were determined by enzyme-linked immunosorbent assay (ELISA), and the number of CD4+ T lymphocytes by a FACSCount automated instrument. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the messenger RNA (mRNA) levels of Bifidobacterium, Lactobacillus, Escherichia coli, Enterococcus faecalis, and Enterococcus faecium. Correlations among intestinal flora, inflammatory factor levels, and CD4+ T lymphocyte values were evaluated using the Spearman correlation coefficient. RESULTS The levels of TNF-α and IL-6 in the AIDS group were higher than those in the control group, while the number of CD4+ T lymphocytes was lower. The amounts of Bifidobacterium and Lactobacillus in the AIDS group were significantly lower than those in control group, while the amounts of E. coli, E. faecalis, and E. faecium were much higher. The amounts of Bifidobacterium and Lactobacillus were negatively correlated with the content of TNF-α and IL-6 and the CD4+ T lymphocyte count, while those correlations were reversed for E. coli, E. faecalis, and E. faecium. CONCLUSIONS The intestinal microbiota of AIDS/HIV patients were disordered, and there was a correlation between the amount of intestinal flora and the number of CD4+ T lymphocytes and the levels of TNF-α and IL-6.
Collapse
Affiliation(s)
- Jing Lu
- Department of Infectious Disease, Qingdao Sixth People's Hospital, Qingdao 266033, China
| | - Sai-Sai Ma
- Department of Infectious Disease, Qingdao Sixth People's Hospital, Qingdao 266033, China
| | - Wei-Ying Zhang
- Department of Infectious Disease, Qingdao Sixth People's Hospital, Qingdao 266033, China
| | - Jian-Ping Duan
- Department of Infectious Disease, Qingdao Sixth People's Hospital, Qingdao 266033, China
| |
Collapse
|
23
|
Isnard S, Ramendra R, Dupuy FP, Lin J, Fombuena B, Kokinov N, Kema I, Jenabian MA, Lebouché B, Costiniuk CT, Ancuta P, Bernard NF, Silverman MS, Lakatos PL, Durand M, Tremblay C, Routy JP. Plasma Levels of C-Type Lectin REG3α and Gut Damage in People With Human Immunodeficiency Virus. J Infect Dis 2020; 221:110-121. [PMID: 31504638 PMCID: PMC6910878 DOI: 10.1093/infdis/jiz423] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Regenerating islet-derived protein 3α (REG3α) is an antimicrobial peptide secreted by intestinal Paneth cells. Circulating REG3α has been identified as a gut damage marker in inflammatory bowel diseases. People living with human immunodeficiency virus (PWH) on antiretroviral therapy (ART) present with an abnormal intestinal landscape leading to microbial translocation, persistent inflammation, and development of non-AIDS comorbidities. Herein, we assessed REG3α as a marker of gut damage in PWH. METHODS Plasma from 169 adult PWH, including 30 elite controllers (ECs), and 30 human immunodeficiency virus (HIV)-uninfected controls were assessed. REG3α plasma levels were compared with HIV disease progression, epithelial gut damage, microbial translocation, and immune activation markers. RESULTS Cross-sectionally, REG3α levels were elevated in untreated and ART-treated PWH compared with controls. ECs also had elevated REG3α levels compared to controls. Longitudinally, REG3α levels increased in PWH without ART and decreased in those who initiated ART. REG3α levels were inversely associated with CD4 T-cell count and CD4:CD8 ratio, while positively correlated with HIV viral load in untreated participants, and with fungal product translocation and inflammatory markers in all PWH. CONCLUSIONS Plasma REG3α levels were elevated in PWH, including ECs. The gut inflammatory marker REG3α may be used to evaluate therapeutic interventions and predict non-AIDS comorbidity risks in PWH.
Collapse
Affiliation(s)
- Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Rayoun Ramendra
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Franck P Dupuy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Brandon Fombuena
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Nikola Kokinov
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Ido Kema
- Department of Laboratory Medicine, University Medical Center, University of Groningen, The Netherlands
| | - Mohammad-Ali Jenabian
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Department of Biological Sciences, University of Quebec at Montreal, Montreal, Quebec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Bertrand Lebouché
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Cecilia T Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Petronela Ancuta
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Nicole F Bernard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Michael S Silverman
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario
| | - Peter L Lakatos
- Division of Gastroenterology and Hepatology, McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Madeleine Durand
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Cécile Tremblay
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
- Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Emadi-Koochak H, Siami Z, zebardast J, SeyedAlinaghi S, Asadollahi-Amin A. Effect of probiotic consumption on increasing the CD4+ T cell counts among Iranian patients living with HIV. JOURNAL OF HEALTH RESEARCH 2019. [DOI: 10.1108/jhr-04-2019-0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PurposeDuring the ART era, persistent immune activation remains a significant challenge in people living with HIV (PLWH). Microbial translocation play an essential role in this setting. Probiotics have several immunological benefits which can reverse this process. The purpose of this paper is to investigate the safety and efficacy of probiotics on CD4 counts among Iranian PLWH.Design/methodology/approachIn total, 50 PLWH with CD4 counts above 350 cells/mm3did not receive ART participated in a randomized, double-blind trial and underwent 24 weeks of treatment with either LactoCare® or placebo twice daily. CD4 counts of the patients were measured at baseline, 12 weeks and 24 later in the two groups. Side effects were measured monthly using a specific checklist.FindingsThe mean CD4 count of the patients showed a significant difference between the two groups after six months. Through six months follow up, the mean CD4 count of the patients showed a significant reduction as compared to the baseline in the placebo group; however, it did not show a significant difference in the probiotic group. Repeated Measures Anova test showed a significant effect for time × treatment interaction on the CD4 count during the trial course. No significant difference between the two groups concerning adverse events was reported.Originality/valueIt seems the use of probiotics in PLWH with a CD4 count above 350 cells/mm3who are not receiving antiretroviral drugs is safe and can reduce the devastating process of CD4+ T cells in these patients.
Collapse
|
25
|
Ceccarelli G, Statzu M, Santinelli L, Pinacchio C, Bitossi C, Cavallari EN, Vullo V, Scagnolari C, d'Ettorre G. Challenges in the management of HIV infection: update on the role of probiotic supplementation as a possible complementary therapeutic strategy for cART treated people living with HIV/AIDS. Expert Opin Biol Ther 2019; 19:949-965. [PMID: 31260331 DOI: 10.1080/14712598.2019.1638907] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Recent insights show that gut-mucosal immunity and intestinal microbiota play a key role in the pathogenesis of HIV infection. Alterations in the composition of intestinal flora (dysbiosis) could be associated with an impaired intestinal epithelium barrier activity and an impaired mucosal immunity function, significantly contributing to microbial translocation which is considered a major driver of chronic immune activation. Areas covered: This article provides an overview on the novel trends in probiotic therapy application. A particular emphasis is addressed to the importance of probiotics as a novel strategy to attenuate or prevent gastrointestinal involvement and to improve gut-mucosal immunity in HIV-infected subjects. Therefore, opportunities, limits and methodological criticalities of supplementation with probiotic therapy are considered and analyzed. Expert opinion: Use of probiotics is emerging as a novel strategy to manage dysbiosis and gut-mucosal impairment, to reduce immune activation and to limit a number of non-AIDS-related disorders. However, despite the growing use of probiotic therapy, mechanisms by which oral bacteria intake exhibits its effects are strain-related and disease-specific, hence clinicians need to take these two factors into consideration when suggesting probiotic supplementation to HIV-infected patients.
Collapse
Affiliation(s)
- Giancarlo Ceccarelli
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| | - Maura Statzu
- b Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome , Rome , Italy
| | - Letizia Santinelli
- b Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome , Rome , Italy
| | - Claudia Pinacchio
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| | - Camilla Bitossi
- b Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome , Rome , Italy
| | - Eugenio Nelson Cavallari
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| | - Vincenzo Vullo
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| | - Carolina Scagnolari
- b Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome , Rome , Italy
| | - GabrieIla d'Ettorre
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
26
|
Kumar V, Torben W, Mansfield J, Alvarez X, Vande Stouwe C, Li J, Byrareddy SN, Didier PJ, Pahar B, Molina PE, Mohan M. Cannabinoid Attenuation of Intestinal Inflammation in Chronic SIV-Infected Rhesus Macaques Involves T Cell Modulation and Differential Expression of Micro-RNAs and Pro-inflammatory Genes. Front Immunol 2019; 10:914. [PMID: 31114576 PMCID: PMC6503054 DOI: 10.3389/fimmu.2019.00914] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Cannabis use is frequent in HIV-infected individuals for its appetite stimulation and anti-inflammatory effects. To identify the underlying molecular mechanisms associated with these effects, we simultaneously profiled micro-RNA (miRNA) and mRNA expression in the colon of chronically simian immunodeficiency virus (SIV)-infected rhesus macaques administered either vehicle (VEH/SIV; n = 9) or Δ9-tetrahydrocannabinol (Δ9-THC; THC/SIV; n = 8). Pro-inflammatory miR-130a, miR-222, and miR-29b, lipopolysaccharide-responsive miR-146b-5p and SIV-induced miR-190b were significantly upregulated in VEH/SIV rhesus macaques. Compared to VEH/SIV rhesus macaques, 10 miRNAs were significantly upregulated in THC/SIV rhesus macaques, among which miR-204 was confirmed to directly target MMP8, an extracellular matrix-degrading collagenase that was significantly downregulated in THC/SIV rhesus macaques. Moreover, THC/SIV rhesus macaques failed to upregulate pro-inflammatory miR-21, miR-141 and miR-222, and alpha/beta-defensins, suggesting attenuated intestinal inflammation. Further, THC/SIV rhesus macaques showed higher expression of tight junction proteins (occludin, claudin-3), anti-inflammatory MUC13, keratin-8 (stress protection), PROM1 (epithelial proliferation), and anti-HIV CCL5. Gomori one-step trichrome staining detected significant collagen deposition (fibrosis) in the paracortex and B cell follicular zones of axillary lymph nodes from all VEH/SIV but not in THC/SIV rhesus macaques, thus demonstrating the ability of Δ9-THC to prevent lymph node fibrosis, a serious irreversible consequence of HIV induced chronic inflammation. Furthermore, using flow cytometry, we showed that Δ9-THC suppressed intestinal T cell proliferation/activation (Ki67/HLA-DR) and PD-1 expression and increased the percentages of anti-inflammatory CD163+ macrophages. Finally, while Δ9-THC did not affect the levels of CD4+ T cells, it significantly reduced absolute CD8+ T cell numbers in peripheral blood at 14 and 150 days post-SIV infection. These translational findings strongly support a role for differential miRNA/gene induction and T cell activation in Δ9-THC-mediated suppression of intestinal inflammation in HIV/SIV and potentially other chronic inflammatory diseases of the intestine.
Collapse
Affiliation(s)
- Vinay Kumar
- Nektar Therapeutics, South San Francisco, CA, United States
| | - Workineh Torben
- Department of Biological Sciences, LSU, Alexandria, LA, United States
| | - Joshua Mansfield
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | | | - Jian Li
- Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Peter J Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Patricia E Molina
- Department of Physiology, LSUHSC, New Orleans, LA, United States.,LSUHSC Alcohol and Drug Abuse Center, New Orleans, LA, United States
| | - Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| |
Collapse
|
27
|
Ramendra R, Isnard S, Mehraj V, Chen J, Zhang Y, Finkelman M, Routy JP. Circulating LPS and (1→3)-β-D-Glucan: A Folie à Deux Contributing to HIV-Associated Immune Activation. Front Immunol 2019; 10:465. [PMID: 30967860 PMCID: PMC6430738 DOI: 10.3389/fimmu.2019.00465] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Immune activation is the driving force behind the occurrence of AIDS and non-AIDS events, and is only partially reduced by antiretroviral therapy (ART). Soon after HIV infection, intestinal CD4+ T cells are depleted leading to epithelial gut damage and subsequent translocation of microbes and/or their products into systemic circulation. Bacteria and fungi are the two most abundant populations of the gut microbiome. Circulating lipopolysaccharide (LPS) and (1→3)-β-D-Glucan (βDG), major components of bacterial and fungal cell walls respectively, are measured as markers of microbial translocation in the context of compromised gut barriers. While LPS is a well-known inducer of innate immune activation, βDG is emerging as a significant source of monocyte and NK cell activation that contributes to immune dysfunction. Herein, we critically evaluated recent literature to untangle the respective roles of LPS and βDG in HIV-associated immune dysfunction. Furthermore, we appraised the relevance of LPS and βDG as biomarkers of disease progression and immune activation on ART. Understanding the consequences of elevated LPS and βDG on immune activation will provide insight into novel therapeutic strategies against the occurrence of AIDS and non-AIDS events.
Collapse
Affiliation(s)
- Rayoun Ramendra
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Stéphane Isnard
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Vikram Mehraj
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Jun Chen
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Yonglong Zhang
- Associates of Cape Cod Inc., Falmouth, MA, United States
| | | | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
28
|
Increased IL-17 and/or IFN-γ producing T-cell subsets in gut mucosa of long-term-treated HIV-1-infected women. AIDS 2019; 33:627-636. [PMID: 30608274 DOI: 10.1097/qad.0000000000002122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The influence of sex on gut mucosal T-cell response in HIV-1 infection remains largely unknown. We explored whether the frequencies of interferon-γ and/or IL-17 producing naive, T central memory and T effector memory (TEM) CD4+ (Th1, Th17) and CD8+ T (Tc1, Tc17) cells measured in gut and peripheral districts differed between female and male HIV-1-infected patients. METHODS Thirty long-term-treated HIV-1-infected individuals were enrolled. The frequencies of Th1, Th17, Tc1, Tc17-cell subsets (single and double) were evaluated by multiparametric flow cytometry in lamina propria lymphocytes and peripheral blood mononuclear cells (PBMC). RESULTS A sex-based pattern was recorded in the differences of Th1, Th17, Tc1, Tc17-cell subset (single and double) frequencies between gut and peripheral blood. Female patients had stronger alterations in the gut mucosal T-cell repertoire, especially increased Th1, Th17, and Th1/Th17-cell subset frequencies, compared with the blood district than their male counterparts. Higher naive Tc1, Tc17, Tc1/Tc17, TEM Tc17, and TEM Tc1/Tc17 levels were also recorded in the gut mucosa than in the PBMC of HIV-1-infected women. Males and females also differed in their gut T-cell response, with women being characterized by higher Th1, Th17, Tc1, Tc17, and Th1/Th17 cells subset levels than men. By contrast, only TEM Th1/Th17 and TEM Tc17 in PBMC differed between males and females. CONCLUSION Sex-based differences observed in the gut T-cell response of HIV-1-infected patients might contribute to the disease dimorphism.
Collapse
|
29
|
Manickam C, Shah SV, Lucar O, Ram DR, Reeves RK. Cytokine-Mediated Tissue Injury in Non-human Primate Models of Viral Infections. Front Immunol 2018; 9:2862. [PMID: 30568659 PMCID: PMC6290327 DOI: 10.3389/fimmu.2018.02862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
Viral infections trigger robust secretion of interferons and other antiviral cytokines by infected and bystander cells, which in turn can tune the immune response and may lead to viral clearance or immune suppression. However, aberrant or unrestricted cytokine responses can damage host tissues, leading to organ dysfunction, and even death. To understand the cytokine milieu and immune responses in infected host tissues, non-human primate (NHP) models have emerged as important tools. NHP have been used for decades to study human infections and have played significant roles in the development of vaccines, drug therapies and other immune treatment modalities, aided by an ability to control disease parameters, and unrestricted tissue access. In addition to the genetic and physiological similarities with humans, NHP have conserved immunologic properties with over 90% amino acid similarity for most cytokines. For example, human-like symptomology and acute respiratory syndrome is found in cynomolgus macaques infected with highly pathogenic avian influenza virus, antibody enhanced dengue disease is common in neotropical primates, and in NHP models of viral hepatitis cytokine-induced inflammation induces severe liver damage, fibrosis, and hepatocellular carcinoma recapitulates human disease. To regulate inflammation, anti-cytokine therapy studies in NHP are underway and will provide important insights for future human interventions. This review will provide a comprehensive outline of the cytokine-mediated exacerbation of disease and tissue damage in NHP models of viral infections and therapeutic strategies that can aid in prevention/treatment of the disease syndromes.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Spandan V. Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Olivier Lucar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Daniel R. Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
30
|
Wu X, Li Y, Song CB, Chen YL, Fu YJ, Jiang YJ, Ding HB, Shang H, Zhang ZN. Increased Expression of sST2 in Early HIV Infected Patients Attenuated the IL-33 Induced T Cell Responses. Front Immunol 2018; 9:2850. [PMID: 30564243 PMCID: PMC6288272 DOI: 10.3389/fimmu.2018.02850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
T cell responses were less functional and persisted in an exhausted state in chronic HIV infection. Even in early phase of HIV infection, the dysfunction of HIV-specific T cells can be observed in rapid progressors, but the underlying mechanisms are not fully understood. Cytokines play a central role in regulating T cell function. In this study, we sought to elucidate whether IL-33/ST2 axis plays roles in the regulation of T cell function in HIV infection. We found that the level of IL-33 was upregulated in early HIV-infected patients compared with that in healthy controls and has a trend associated with disease progression. In vitro study shows that IL-33 promotes the expression of IFN-γ by Gag stimulated CD4+ and CD8+T cells from HIV-infected patients to a certain extent. However, soluble ST2 (sST2), a decoy receptor of IL-33, was also increased in early HIV infected patients, especially in those with progressive infection. We found that anti-ST2 antibodies attenuated the effect of IL-33 to CD4+ and CD8+T cells. Our data indicates that elevated expression of IL-33 in early HIV infection has the potential to enhance the function of T cells, but the upregulated sST2 weakens the activity of IL-33, which may indirectly contribute to the dysfunction of T cells and rapid disease progression. This data broadens the understanding of HIV pathogenesis and provides critical information for HIV intervention.
Collapse
Affiliation(s)
- Xian Wu
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yao Li
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Clinical and Emergency Medical Laboratory Department, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Cheng-Bo Song
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ya-Li Chen
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ya-Jing Fu
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yong-Jun Jiang
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Hai-Bo Ding
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Zi-Ning Zhang
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
31
|
Lu W, Feng Y, Jing F, Han Y, Lyu N, Liu F, Li J, Song X, Xie J, Qiu Z, Zhu T, Routy B, Routy JP, Li T, Zhu B. Association Between Gut Microbiota and CD4 Recovery in HIV-1 Infected Patients. Front Microbiol 2018; 9:1451. [PMID: 30034377 PMCID: PMC6043814 DOI: 10.3389/fmicb.2018.01451] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
Composition of the gut microbiota has been linked with human immunedeficiency virus (HIV)-infected patients on antiretroviral therapy (ART). Evidence suggests that ART-treated patients with poor CD4+ T-cell recovery have higher levels of microbial translocation and immune activation. However, the association of the gut microbiota and immune recovery remains unclear. We performed a cross-sectional study on 30 healthy controls (HC) and 61 HIV-infected individuals, including 15 immunological ART responders (IRs), 20 immunological ART non-responders (INRs) and 26 untreated individuals (VU). IR and INR groups were classified by CD4+ T-cell counts of ≥350 cells/mm3 and <350 cells/mm3 after 2 years of ART, respectively. Each subject’s gut microbiota composition was analyzed by metagenomics sequencing. Levels of CD4+ T cells, CD8+HLA-DR+ T cells and CD8+CD38+ T cells were measured by flow cytometry. We identified more Prevotella and fewer Bacteroides in HIV-infected individuals than in HC. Patients in INR group were enriched with Faecalibacterium prausnitzii, unclassified Subdoligranulum sp. and Coprococcus comes when compared with those in IR group. F. prausnitzii and unclassified Subdoligranulum sp. were overrepresented in individuals in VU group with CD4+ T-cell counts <350 cells/mm3. Moreover, we found that the relative abundance of unclassified Subdoligranulum sp. and C. comes were positively correlated with CD8+HLA-DR+ T-cell count and CD8+HLA-DR+/CD8+ percentage. Our study has shown that gut microbiota changes were associated with CD4+ T-cell counts and immune activation in HIV-infected subjects. Interventions to reverse gut dysbiosis and inhibit immune activation could be a new strategy for improving immune reconstitution of HIV-1-infected individuals.
Collapse
Affiliation(s)
- Wei Lu
- Department of Infectious Disease, Peking Union Medical College Hospital, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqing Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid School of Medicine, University of Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Microbial Drug Resistance and Resistome, Beijing, China
| | - Fanhui Jing
- Department of Infectious Disease, Peking Union Medical College Hospital, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Han
- Department of Infectious Disease, Peking Union Medical College Hospital, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Lyu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Microbial Drug Resistance and Resistome, Beijing, China
| | - Fei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Microbial Drug Resistance and Resistome, Beijing, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Microbial Drug Resistance and Resistome, Beijing, China
| | - Xiaojing Song
- Department of Infectious Disease, Peking Union Medical College Hospital, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Xie
- Department of Infectious Disease, Peking Union Medical College Hospital, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhifeng Qiu
- Department of Infectious Disease, Peking Union Medical College Hospital, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Zhu
- Department of Infectious Disease, Peking Union Medical College Hospital, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bertrand Routy
- Division of Hematology and Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illnesses Service Research Institute and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Taisheng Li
- Department of Infectious Disease, Peking Union Medical College Hospital, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid School of Medicine, University of Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Microbial Drug Resistance and Resistome, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
32
|
Starr JR, Huang Y, Lee KH, Murphy CM, Moscicki AB, Shiboski CH, Ryder MI, Yao TJ, Faller LL, Van Dyke RB, Paster BJ. Oral microbiota in youth with perinatally acquired HIV infection. MICROBIOME 2018; 6:100. [PMID: 29855347 PMCID: PMC5984365 DOI: 10.1186/s40168-018-0484-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/15/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Microbially mediated oral diseases can signal underlying HIV/AIDS progression in HIV-infected adults. The role of the oral microbiota in HIV-infected youth is not known. The Adolescent Master Protocol of the Pediatric HIV/AIDS Cohort Study is a longitudinal study of perinatally HIV-infected (PHIV) and HIV-exposed, uninfected (PHEU) youth. We compared oral microbiome levels and associations with caries or periodontitis in 154 PHIV and 100 PHEU youth. RESULTS Species richness and alpha diversity differed little between PHIV and PHEU youth. Group differences in average counts met the significance threshold for six taxa; two Corynebacterium species were lower in PHIV and met thresholds for noteworthiness. Several known periodontitis-associated organisms (Prevotella nigrescens, Tannerella forsythia, Aggregatibacter actinomycetemcomitans, and Filifactor alocis) exhibited expected associations with periodontitis in PHEU youth, associations not observed in PHIV youth. In both groups, odds of caries increased with counts of taxa in four genera, Streptococcus, Scardovia, Bifidobacterium, and Lactobacillus. CONCLUSIONS The microbiomes of PHIV and PHEU youth were similar, although PHIV youth seemed to have fewer "health"-associated taxa such as Corynebacterium species. These results are consistent with the hypothesis that HIV infection, or its treatment, may contribute to oral dysbiosis.
Collapse
Affiliation(s)
- Jacqueline R Starr
- Forsyth Institute, 245 First St, Cambridge, MA, 02142, USA
- Department of Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Yanmei Huang
- Forsyth Institute, 245 First St, Cambridge, MA, 02142, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Kyu Ha Lee
- Forsyth Institute, 245 First St, Cambridge, MA, 02142, USA
- Department of Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Boston, MA, USA
| | - C M Murphy
- Forsyth Institute, 245 First St, Cambridge, MA, 02142, USA
| | - Anna-Barbara Moscicki
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Caroline H Shiboski
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Mark I Ryder
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Tzy-Jyun Yao
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Bruce J Paster
- Forsyth Institute, 245 First St, Cambridge, MA, 02142, USA.
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
33
|
|
34
|
Mehraj V, Ghali P, Ramendra R, Costiniuk C, Lebouché B, Ponte R, Reinhard R, Sousa J, Chomont N, Cohen EA, Ancuta P, Routy JP. The evaluation of risk-benefit ratio for gut tissue sampling in HIV cure research. J Virus Erad 2017; 3:212-217. [PMID: 29057085 PMCID: PMC5632548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Antiretroviral therapy (ART) does not cure HIV infection due to the persistence of HIV reservoirs in long-lived memory CD4 T cells present in the blood, lymph nodes, intestinal tract, and other tissues. Interest grows in obtaining gut-tissue samples for HIV persistence studies, which poses an ethical challenge to provide study volunteers with adequate information on risks and benefits. Herein we assess the risks and benefits of undergoing gut biopsy procedures for HIV pathogenesis and reservoir studies. METHODS A group discussion was organised with physicians and community representatives on performing either a flexible sigmoidoscopy or a colonoscopy. Consensus was reached on conducting colonoscopy in persons ≥50 years. Thirty HIV-infected, ART-treated and nine uninfected participants were recruited. Colonoscopy was performed to collect 30 gut mucosal biopsies. When present, polyps were removed and abnormal mucosal findings were biopsied for pathological analysis. Participants were interviewed on potential discomfort following colonoscopic examination. RESULTS The HIV-infected and uninfected groups were comparable in terms of age and gender with more men who have sex with men (MSM) in the former group. Abnormal colonoscopic findings were observed in 43.6% of all the participants and did not differ by HIV status. In total, 24 polyps were removed with a higher mean number of polyps removed in HIV-infected versus uninfected participants (1.7 vs 1.0, P=0.013). The number of polyps marginally correlated with inverted CD4:CD8 ratio. Based on our findings, colonoscopic examination was safe to use for gut biopsy procedures where almost half of the participants had polyps removed. CONCLUSION Participation in the study provided colon cancer screening as an ancillary benefit that participants could have received in standard medical care, thus mitigating burdens of invasive procedures. Dialogue between community representatives and clinical researchers can increase participation and advance HIV cure research.
Collapse
Affiliation(s)
| | - Peter Ghali
- Division of Gastroenterology and Hepatology, McGill University Health Centre,
Montreal, QC,
Canada
| | | | | | | | | | - Robert Reinhard
- Community Liaison, Canadian HIV Cure Enterprise (CanCURE),
Montreal, QC,
Canada
| | - Jose Sousa
- Community Advisory Committee, CIHR/CTN,
Canada
| | | | | | | | - Jean-Pierre Routy
- Corresponding author: Jean-Pierre Routy,
McGill University Health Centre: Glen siteResearch Institute, Block E, Suite EM 3-3232, Mezzanine 3M1001 Boulevard Décarie,
Montréal,
QCH4A 3J1,
Canada
| |
Collapse
|
35
|
Ponte R, Rancez M, Figueiredo-Morgado S, Dutrieux J, Fabre-Mersseman V, Charmeteau-de-Muylder B, Guilbert T, Routy JP, Cheynier R, Couëdel-Courteille A. Acute Simian Immunodeficiency Virus Infection Triggers Early and Transient Interleukin-7 Production in the Gut, Leading to Enhanced Local Chemokine Expression and Intestinal Immune Cell Homing. Front Immunol 2017; 8:588. [PMID: 28579989 PMCID: PMC5437214 DOI: 10.3389/fimmu.2017.00588] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
The intestinal barrier, one of the first targets of HIV/simian immunodeficiency virus (SIV) is subjected to major physiological changes during acute infection. Having previously shown that pharmaceutical injection of interleukin-7 (IL-7) triggers chemokine expression in many organs leading to massive T-cell homing, in particular to the intestine, we here explored mucosal IL-7 expression as part of the cytokine storm occurring during the acute phase of SIV infection in rhesus macaques. Quantifying both mRNA and protein in tissues, we demonstrated a transient increase of IL-7 expression in the small intestine of SIV-infected rhesus macaques, starting with local detection of the virus by day 3 of infection. We also observed increased transcription levels of several chemokines in the small intestine. In infected macaques, ileal IL-7 expression correlated with the transcription of four of these chemokines. Among these chemokines, the macrophage and/or T-cell attractant chemokines CCL4, CCL25, and CCL28 also demonstrated increased transcription in uninfected IL-7-treated monkeys. Through immunohistofluorescence staining and image analysis, we observed increased CD8+ T-cell numbers and stable CD4+ T-cell counts in the infected lamina propria (LP) during hyperacute infection. Concomitantly, circulating CCR9+beta7+ CD4+ and CD8+ T-cells dropped during acute infection, suggesting augmented intestinal homing of gut-imprinted T-cells. Finally, CD4+ macrophages transiently decreased in the submucosa and concentrated in the LP during the first days of infection. Overall, our study identifies IL-7 as a danger signal in the small intestine of Chinese rhesus macaques in response to acute SIV infection. Through stimulation of local chemokine expressions, this overexpression of IL-7 triggers immune cell recruitment to the gut. These findings suggest a role for IL-7 in the initiation of early mucosal immune responses to SIV and HIV infections. However, IL-7 triggered CD4+ T-cells and macrophages localization at viral replication sites could also participate to viral spread and establishment of viral reservoirs.
Collapse
Affiliation(s)
- Rosalie Ponte
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM, U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Magali Rancez
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM, U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Suzanne Figueiredo-Morgado
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM, U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jacques Dutrieux
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM, U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Véronique Fabre-Mersseman
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM, U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bénédicte Charmeteau-de-Muylder
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM, U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Thomas Guilbert
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM, U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Rémi Cheynier
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM, U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Couëdel-Courteille
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM, U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Paris Diderot, Paris, France
| |
Collapse
|
36
|
Li CX, Zhang X. Whole body MRI of the non-human primate using a clinical 3T scanner: initial experiences. Quant Imaging Med Surg 2017; 7:267-275. [PMID: 28516052 PMCID: PMC5418147 DOI: 10.21037/qims.2017.04.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022]
Abstract
With the advent of parallel imaging MRI techniques, whole-body MRI is being increasingly used in clinical diagnosis. However, its application in preclinical research using large animals remains very limited. In the present study, the whole-body MRI techniques for adult macaque monkeys were explored using a conventional clinic 3T scanner. The T1, T2 anatomical images, and MR angiography of adult macaque whole bodies were illustrated. The preliminary results suggest whole-body MRI can be a robust tool to examine multiple organs of non-human primate (NHP) models from head to toe non-invasively and simultaneously using a conventional clinical setting. As NHPs are intensely used in biomedical research such as HIV/AIDS and vaccine discovery, whole body MRI techniques can have a wide range of applications in translational research using NHPs.
Collapse
Affiliation(s)
- Chun-Xia Li
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Xiaodong Zhang
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| |
Collapse
|
37
|
Gosselin A, Wiche Salinas TR, Planas D, Wacleche VS, Zhang Y, Fromentin R, Chomont N, Cohen ÉA, Shacklett B, Mehraj V, Ghali MP, Routy JP, Ancuta P. HIV persists in CCR6+CD4+ T cells from colon and blood during antiretroviral therapy. AIDS 2017; 31:35-48. [PMID: 27835617 PMCID: PMC5131694 DOI: 10.1097/qad.0000000000001309] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/07/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The objective of this article is to investigate the contribution of colon and blood CD4 T-cell subsets expressing the chemokine receptor CCR6 to HIV persistence during antiretroviral therapy. DESIGN Matched sigmoid biopsies and blood samples (n = 13) as well as leukapheresis (n = 20) were collected from chronically HIV-infected individuals receiving antiretroviral therapy. Subsets of CD4 T cells with distinct differentiation/polarization profiles were identified using surface markers as follows: memory (TM, CD45RA), central memory (TCM; CD45RACCR7), effector (TEM/TM; CD45RACCR7), Th17 (CCR6CCR4), Th1Th17 (CCR6CXCR3), Th1 (CCR6CXCR3), and Th2 (CCR6CCR4). METHODS We used polychromatic flow cytometry for cell sorting, nested real-time PCR for HIV DNA quantification, ELISA and flow cytometry for HIV p24 quantification. HIV reactivation was induced by TCR triggering in the presence/absence of all-trans retinoic acid. RESULTS Compared with blood, the frequency of CCR6 TM was higher in the colon. In both colon and blood compartments, CCR6 TM were significantly enriched in HIV DNA when compared with their CCR6 counterparts (n = 13). In blood, integrated HIV DNA levels were significantly enriched in CCR6 versus CCR6 TCM of four of five individuals and CCR6 versus CCR6 TEM of three of five individuals. Among blood TCM, Th17 and Th1Th17 contributed the most to the pool of cells harboring integrated HIV DNA despite their reduced frequency compared with Th2, which were infected the least. HIV reactivation was induced by TCR triggering and/or retinoic acid exposure at higher levels in CCR6 versus CCR6 TM, TCM, and TEM. CONCLUSION CCR6 is a marker for colon and blood CD4 T cells enriched for replication-competent HIV DNA. Novel eradication strategies should target HIV persistence in CCR6CD4 T cells from various anatomic sites.
Collapse
Affiliation(s)
| | - Tomas Raul Wiche Salinas
- CHUM-Research Centre
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal
| | - Delphine Planas
- CHUM-Research Centre
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal
| | - Vanessa S. Wacleche
- CHUM-Research Centre
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal
| | - Yuwei Zhang
- CHUM-Research Centre
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal
| | | | - Nicolas Chomont
- CHUM-Research Centre
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal
| | - Éric A. Cohen
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal
- Institut de Recherche Clinique de Montréal, Montréal, Québec, Canada
| | | | - Vikram Mehraj
- Chronic Viral Illness Service and Research Institute
| | | | - Jean-Pierre Routy
- Chronic Viral Illness Service and Research Institute
- Division of Hematology, McGill University Health Centre, Montreal, Québec, Canada
| | - Petronela Ancuta
- CHUM-Research Centre
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal
| |
Collapse
|
38
|
Mehraj V, Ponte R, Routy JP. The Dynamic Role of the IL-33/ST2 Axis in Chronic Viral-infections: Alarming and Adjuvanting the Immune Response. EBioMedicine 2016; 9:37-44. [PMID: 27397514 PMCID: PMC4972565 DOI: 10.1016/j.ebiom.2016.06.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/25/2016] [Accepted: 06/30/2016] [Indexed: 12/18/2022] Open
Abstract
Interleukin 33 (IL-33), a member of the IL-1 family, is constitutively expressed in epithelial and in endothelial cells at barrier sites, acting as a danger signal and adjuvanting the immune response following tissue damage and infection. Originally implicated in allergy, IL-33 is also known to be involved in innate and adaptive immune responses by enhancing natural killer, Th1, and CD4 and CD8 T-cell functions. The nature of the antiviral immune response orchestrated by IL-33 depends on the site of infection, the duration of the disease and the cytokine milieu. In this review, we focus on the distinctive contribution of IL-33 as an anti-infective and proinflammatory cytokine in response to cell death and viral infections. The dynamic role of IL-33 in the acute and chronic phases of infection with HIV, hepatitis B and C viruses, and with CMV is highlighted. This review will also discuss the potential immunotherapeutic and adjuvant roles of IL-33. Search Strategy and Selection Criteria English language, indexed publications in PubMed were searched using combinations of following key words: “interleukin-33”, “IL-33”, “suppression of tumorigenicity 2”, ST2”, “sST2”, “HIV”, “HBV”, “HCV”, “CMV”, “HPV”, “immunotherapy” and “vaccine”. Except for seminal studies, only articles published between 2010 and 2016 were included. IL-33, a guardian of barriers, acts as an alarmin and as an enhancer of immune responses following injury or infection. sST2, the IL-33 decoy receptor, is considered as a biomarker for allergies, cardiac conditions and infections. IL-33 has immunotherapeutic and/or adjuvant potential.
Collapse
Affiliation(s)
- Vikram Mehraj
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montréal, Québec, Canada.
| | - Rosalie Ponte
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montréal, Québec, Canada.
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montréal, Québec, Canada; Division of Hematology, McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|