1
|
Nicholson LK, Kofonow JM, Robertson CE, Wright T, Li Q, Gardner EM, Frank DN, Janoff EN. Clinical and Microbial Determinants of Upper Respiratory Colonization With Streptococcus pneumoniae and Native Microbiota in People With Human Immunodeficiency Virus Type 1 and Control Adults. J Infect Dis 2024; 230:1456-1465. [PMID: 38718217 PMCID: PMC11646594 DOI: 10.1093/infdis/jiae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/06/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND The substantial risk for respiratory and invasive infections with Streptococcus pneumoniae (Spn) among people with HIV-1 (PWH) begins with asymptomatic colonization. The frequency of Spn colonization among US adults with and without HIV-1 infection is not well characterized in the conjugate vaccine era. METHODS We determined Spn colonization frequency by culture and specific lytA gene quantitative polymerase chain reaction (PCR) and microbiota profile by 16S ribosomal RNA gene sequencing in nasopharyngeal (NP) and oropharyngeal (OP) DNA from 138 PWH and 93 control adults and associated clinical characteristics. RESULTS The frequencies of Spn colonization among PWH and controls did not differ (11.6% vs 8.6%, respectively; P = .46) using combined results of culture and PCR, independent of vaccination or behavioral risks. PWH showed altered microbiota composition (ie, β-diversity; NP: P = .0028, OP: P = .0098), decreased α-diversity (NP: P = .024, OP: P = .0045), and differences in the relative abundance of multiple bacterial taxa. Spn colonization was associated with altered β-diversity in the nasopharynx (P = .011) but not oropharynx (P = .21). CONCLUSIONS Despite widespread conjugate vaccine and antiretroviral use, frequencies of Spn colonization among PWH and controls are currently consistent with those reported in the preconjugate era. The persistently increased risk of pneumococcal disease despite antiretroviral therapy may relate to behavioral and immunologic variables other than colonization.
Collapse
Affiliation(s)
- Lindsay K Nicholson
- Mucosal and Vaccine Research Program Colorado (MAVRC), Aurora, Colorado
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Infectious Diseases, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Eastern Colorado Healthcare System, Department of Medicine, Aurora, Colorado
| | - Jennifer M Kofonow
- Mucosal and Vaccine Research Program Colorado (MAVRC), Aurora, Colorado
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Infectious Diseases, Aurora, Colorado
| | - Charles E Robertson
- Mucosal and Vaccine Research Program Colorado (MAVRC), Aurora, Colorado
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Infectious Diseases, Aurora, Colorado
| | - Timothy Wright
- Denver Health and Hospital Authority, Infectious Disease Department, Denver, Colorado
| | - Qing Li
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Infectious Diseases, Aurora, Colorado
| | - Edward M Gardner
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Infectious Diseases, Aurora, Colorado
- Denver Health and Hospital Authority, Infectious Disease Department, Denver, Colorado
| | - Daniel N Frank
- Mucosal and Vaccine Research Program Colorado (MAVRC), Aurora, Colorado
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Infectious Diseases, Aurora, Colorado
| | - Edward N Janoff
- Mucosal and Vaccine Research Program Colorado (MAVRC), Aurora, Colorado
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Infectious Diseases, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Eastern Colorado Healthcare System, Department of Medicine, Aurora, Colorado
| |
Collapse
|
2
|
Marín-Sánchez N, Paredes R, Borgognone A. Exploring potential associations between the human microbiota and reservoir of latent HIV. Retrovirology 2024; 21:21. [PMID: 39614246 PMCID: PMC11605983 DOI: 10.1186/s12977-024-00655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND The rapid establishment and persistence of latent HIV-1 reservoirs is one of the main obstacles towards an HIV cure. While antiretroviral therapy supresses viral replication, it does not eradicate the latent reservoir of HIV-1-infected cells. Recent evidence suggests that the human microbiome, particularly the gut microbiome, may have the potential to modulate the HIV-1 reservoir. However, literature is limited and the exact mechanisms underlying the role of the microbiome in HIV immunity and potential regulation of the viral reservoir remain poorly understood. RESULTS Here, we review updated knowledge on the associations between the human microbiome and HIV reservoir across different anatomical sites, including the gut, the lungs and blood. We provide an overview of the predominant taxa associated with prominent microbiome changes in the context of HIV infection. Based on the current evidence, we summarize the main study findings, with specific focus on consistent bacterial and related byproduct associations. Specifically, we address the contribution of immune activation and inflammatory signatures on HIV-1 persistence. Furthermore, we discuss possible scenarios by which bacterial-associated inflammatory mediators, related metabolites and host immune signatures may modulate the HIV reservoir size. Finally, we speculate on potential implications of microbiome-based therapeutics for future HIV-1 cure strategies, highlighting challenges and limitations inherent in this research field. CONCLUSIONS Despite recent advances, this review underscores the need for further research to deepen the understanding of the complex interplay between the human microbiome and HIV reservoir. Further integrative multi-omics assessments and functional studies are crucial to test the outlined hypothesis and to identify potential therapeutic targets ultimately able to achieve an effective cure for HIV.
Collapse
Affiliation(s)
- Nel Marín-Sánchez
- IrsiCaixa, Badalona, Catalonia, Spain
- Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roger Paredes
- IrsiCaixa, Badalona, Catalonia, Spain.
- Department of Infectious Diseases, Hospital Germans Trias i Pujol, Badalona, Catalonia, Spain.
- Department of Pathology, Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | | |
Collapse
|
3
|
Trøseid M, Nielsen SD, Vujkovic-Cvijin I. Gut microbiome and cardiometabolic comorbidities in people living with HIV. MICROBIOME 2024; 12:106. [PMID: 38877521 PMCID: PMC11177534 DOI: 10.1186/s40168-024-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Despite modern antiretroviral therapy (ART), people living with HIV (PLWH) have increased relative risk of inflammatory-driven comorbidities, including cardiovascular disease (CVD). The gut microbiome could be one of several driving factors, along with traditional risk factors and HIV-related risk factors such as coinfections, ART toxicity, and past immunodeficiency. RESULTS PLWH have an altered gut microbiome, even after adjustment for known confounding factors including sexual preference. The HIV-related microbiome has been associated with cardiometabolic comorbidities, and shares features with CVD-related microbiota profiles, in particular reduced capacity for short-chain fatty acid (SCFA) generation. Substantial inter-individual variation has so far been an obstacle for applying microbiota profiles for risk stratification. This review covers updated knowledge and recent advances in our understanding of the gut microbiome and comorbidities in PLWH, with specific focus on cardiometabolic comorbidities and inflammation. It covers a comprehensive overview of HIV-related and comorbidity-related dysbiosis, microbial translocation, and microbiota-derived metabolites. It also contains recent data from studies in PLWH on circulating metabolites related to comorbidities and underlying gut microbiota alterations, including circulating levels of the SCFA propionate, the histidine-analogue imidazole propionate, and the protective metabolite indole-3-propionic acid. CONCLUSIONS Despite recent advances, the gut microbiome and related metabolites are not yet established as biomarkers or therapeutic targets. The review gives directions for future research needed to advance the field into clinical practice, including promises and pitfalls for precision medicine. Video Abstract.
Collapse
Affiliation(s)
- Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Section for Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Oe, 2100, Denmark
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
Nganou-Makamdop K, Douek DC. The Gut and the Translocated Microbiomes in HIV Infection: Current Concepts and Future Avenues. Pathog Immun 2024; 9:168-194. [PMID: 38807656 PMCID: PMC11132393 DOI: 10.20411/pai.v9i1.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
It is widely acknowledged that HIV infection results in disruption of the gut's mucosal integrity partly due a profound loss of gastrointestinal CD4+ T cells that are targets of the virus. In addition, systemic inflammation and immune activation that drive disease pathogenesis are reduced but not normalized by antiretroviral therapy (ART). It has long been postulated that through the process of microbial translocation, the gut microbiome acts as a key driver of systemic inflammation and immune recovery in HIV infection. As such, many studies have aimed at characterizing the gut microbiota in order to unravel its influence in people with HIV and have reported an association between various bacterial taxa and inflammation. This review assesses both contra-dictory and consistent findings among several studies in order to clarify the overall mechanisms by which the gut microbiota in adults may influence immune recovery in HIV infection. Independently of the gut microbiome, observations made from analysis of microbial products in the blood provide direct insight into how the translocated microbiome may drive immune recovery. To help better understand strengths and limitations of the findings reported, this review also highlights the numerous factors that can influence microbiome studies, be they experimental methodologies, and host-intrinsic or host-extrinsic factors. Altogether, a fuller understanding of the interplay between the gut microbiome and immunity in HIV infection may contribute to preventive and therapeutic approaches.
Collapse
Affiliation(s)
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
5
|
Sereti I, Verburgh ML, Gifford J, Lo A, Boyd A, Verheij E, Verhoeven A, Wit FWNM, Schim van der Loeff MF, Giera M, Kootstra NA, Reiss P, Vujkovic-Cvijin I. Impaired gut microbiota-mediated short-chain fatty acid production precedes morbidity and mortality in people with HIV. Cell Rep 2023; 42:113336. [PMID: 37918403 PMCID: PMC10872975 DOI: 10.1016/j.celrep.2023.113336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Antiretroviral therapy (ART) has dramatically lengthened lifespan among people with HIV (PWH), but this population experiences heightened rates of inflammation-related comorbidities. HIV-associated inflammation is linked with an altered microbiome; whether such alterations precede inflammation-related comorbidities or occur as their consequence remains unknown. We find that ART-treated PWH exhibit depletion of gut-resident bacteria that produce short-chain fatty acids (SCFAs)-crucial microbial metabolites with anti-inflammatory properties. Prior reports establish that fecal SCFA concentrations are not depleted in PWH. We find that gut-microbiota-mediated SCFA production capacity is better reflected in serum than in feces and that PWH exhibit reduced serum SCFA, which associates with inflammatory markers. Leveraging stool and serum samples collected prior to comorbidity onset, we find that HIV-specific microbiome alterations precede morbidity and mortality in ART-treated PWH. Among these microbiome alterations, reduced microbiome-mediated conversion of lactate to propionate precedes mortality in PWH. Thus, gut microbial fiber/lactate conversion to SCFAs may modulate HIV-associated comorbidity risk.
Collapse
Affiliation(s)
- Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, NIAID/NIH, Rockville, MD, USA; Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Myrthe L Verburgh
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Jacob Gifford
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alice Lo
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anders Boyd
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; HIV Monitoring Foundation, Amsterdam, the Netherlands; Public Health Service of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands
| | - Eveline Verheij
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Aswin Verhoeven
- Leiden University Medical Center, Center for Proteomics & Metabolomics, Leiden, the Netherlands
| | - Ferdinand W N M Wit
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; HIV Monitoring Foundation, Amsterdam, the Netherlands
| | - Maarten F Schim van der Loeff
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Public Health Service of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics & Metabolomics, Leiden, the Netherlands
| | - Neeltje A Kootstra
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Experimental Immunology, Amsterdam, the Netherlands
| | - Peter Reiss
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands; Amsterdam University Medical Centers, University of Amsterdam, Department of Global Health, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Rodriguez MT, McLaurin KA, Shtutman M, Kubinak JL, Mactutus CF, Booze RM. Therapeutically targeting the consequences of HIV-1-associated gastrointestinal dysbiosis: Implications for neurocognitive and affective alterations. Pharmacol Biochem Behav 2023; 229:173592. [PMID: 37390973 PMCID: PMC10494709 DOI: 10.1016/j.pbb.2023.173592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Approximately 50 % of the individuals living with human immunodeficiency virus type 1 (HIV-1) are plagued by debilitating neurocognitive impairments (NCI) and/or affective alterations. Sizeable alterations in the composition of the gut microbiome, or gastrointestinal dysbiosis, may underlie, at least in part, the NCI, apathy, and/or depression observed in this population. Herein, two interrelated aims will be critically addressed, including: 1) the evidence for, and functional implications of, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals; and 2) the potential for therapeutically targeting the consequences of this dysbiosis for the treatment of HIV-1-associated NCI and affective alterations. First, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals is characterized by decreased alpha (α) diversity, a decreased relative abundance of bacterial species belonging to the Bacteroidetes phylum, and geographic-specific alterations in Bacillota (formerly Firmicutes) spp. Fundamentally, changes in the relative abundance of Bacteroidetes and Bacillota spp. may underlie, at least in part, the deficits in γ-aminobutyric acid and serotonin neurotransmission, as well as prominent synaptodendritic dysfunction, observed in this population. Second, there is compelling evidence for the therapeutic utility of targeting synaptodendritic dysfunction as a method to enhance neurocognitive function and improve motivational dysregulation in HIV-1. Further research is needed to determine whether the therapeutics enhancing synaptic efficacy exert their effects by altering the gut microbiome. Taken together, understanding gastrointestinal microbiome dysbiosis resulting from chronic HIV-1 viral protein exposure may afford insight into the mechanisms underlying HIV-1-associated neurocognitive and/or affective alterations; mechanisms which can be subsequently targeted via novel therapeutics.
Collapse
Affiliation(s)
- Mason T Rodriguez
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Kristen A McLaurin
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Michael Shtutman
- Drug Discovery and Biomedical Sciences, College of Pharmacy, 715 Sumter Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Jason L Kubinak
- Pathology, Microbiology & Immunology, School of Medicine Columbia, 6311 Garners Ferry Road, Building 2, Columbia, SC 29209, United States of America
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America.
| |
Collapse
|
7
|
Premeaux TA, Ndhlovu LC. Decrypting biological hallmarks of aging in people with HIV. Curr Opin HIV AIDS 2023:01222929-990000000-00054. [PMID: 37421383 DOI: 10.1097/coh.0000000000000810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW HIV infection adds further complexity to the heterogenous process of aging. In this focused review, we examine and discuss recent advances to better elucidate mechanisms of biological aging perturbed and accelerated in the context of HIV, particularly among those with viral suppression through the benefits of antiretroviral therapy (ART). New hypotheses from these studies are poised to provide an improved understanding of multifaceted pathways that converge and likely form the basis for effective interventions toward successful aging. RECENT FINDINGS Evidence to date suggests multiple mechanisms of biological aging impact people living with HIV (PLWH). Recent literature delves and expands on how epigenetic alterations, telomere attrition, mitochondrial perturbations, and intercellular communications may underpin accelerated or accentuated aging phenotypes and the disproportionate prevalence of age-related complications among PLWH. Although most hallmarks of aging are likely exacerbated in the setting of HIV, ongoing research efforts are providing new insight on the collective impact these conserved pathways may have in the aging disease processes. SUMMARY New knowledge on underlying molecular disease mechanisms impacting people aging with HIV are reviewed. Also examined are studies that may facilitate the development and implementation of effective therapeutics and guidance on improving geriatric HIV clinical care.
Collapse
Affiliation(s)
- Thomas A Premeaux
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
8
|
Fenn J, Taylor C, Goertz S, Wanelik KM, Paterson S, Begon M, Jackson J, Bradley J. Discrete patterns of microbiome variability across timescales in a wild rodent population. BMC Microbiol 2023; 23:87. [PMID: 36997846 PMCID: PMC10061908 DOI: 10.1186/s12866-023-02824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Mammalian gastrointestinal microbiomes are highly variable, both within individuals and across populations, with changes linked to time and ageing being widely reported. Discerning patterns of change in wild mammal populations can therefore prove challenging. We used high-throughput community sequencing methods to characterise the microbiome of wild field voles (Microtus agrestis) from faecal samples collected across 12 live-trapping field sessions, and then at cull. Changes in α- and β-diversity were modelled over three timescales. Short-term differences (following 1–2 days captivity) were analysed between capture and cull, to ascertain the degree to which the microbiome can change following a rapid change in environment. Medium-term changes were measured between successive trapping sessions (12–16 days apart), and long-term changes between the first and final capture of an individual (from 24 to 129 days). The short period between capture and cull was characterised by a marked loss of species richness, while over medium and long-term in the field, richness slightly increased. Changes across both short and long timescales indicated shifts from a Firmicutes-dominant to a Bacteroidetes-dominant microbiome. Dramatic changes following captivity indicate that changes in microbiome diversity can be rapid, following a change of environment (food sources, temperature, lighting etc.). Medium- and long-term patterns of change indicate an accrual of gut bacteria associated with ageing, with these new bacteria being predominately represented by Bacteroidetes. While the patterns of change observed are unlikely to be universal to wild mammal populations, the potential for analogous shifts across timescales should be considered whenever studying wild animal microbiomes. This is especially true if studies involve animal captivity, as there are potential ramifications both for animal health, and the validity of the data itself as a reflection of a ‘natural’ state of an animal.
Collapse
Affiliation(s)
- Jonathan Fenn
- grid.4563.40000 0004 1936 8868School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Christopher Taylor
- grid.4563.40000 0004 1936 8868School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Sarah Goertz
- grid.4563.40000 0004 1936 8868School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Klara M. Wanelik
- grid.10025.360000 0004 1936 8470University of Liverpool, Liverpool, UK
| | - Steve Paterson
- grid.10025.360000 0004 1936 8470University of Liverpool, Liverpool, UK
| | - Mike Begon
- grid.10025.360000 0004 1936 8470University of Liverpool, Liverpool, UK
| | - Joe Jackson
- grid.8752.80000 0004 0460 5971University of Salford, Salford, UK
| | - Jan Bradley
- grid.4563.40000 0004 1936 8868School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
9
|
The Gut Microbiome, Microbial Metabolites, and Cardiovascular Disease in People Living with HIV. Curr HIV/AIDS Rep 2023; 20:86-99. [PMID: 36708497 DOI: 10.1007/s11904-023-00648-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW To synthesize recent evidence relating the gut microbiome and microbial metabolites to cardiovascular disease (CVD) in people living with HIV (PLWH). RECENT FINDINGS A few cross-sectional studies have reported on the gut microbiome and cardiovascular outcomes in the context of HIV, with no consistent patterns emerging. The largest such study found that gut Fusobacterium was associated with carotid artery plaque. More studies have evaluated microbial metabolite trimethylamine N-oxide with CVD risk in PLWH, but results were inconsistent, with recent prospective analyses showing null effects. Studies of other microbial metabolites are scarce. Microbial translocation biomarkers (e.g., lipopolysaccharide binding protein) have been related to incident CVD in PLWH. Microbial translocation may increase CVD risk in PLWH, but there is insufficient and/or inconsistent evidence regarding specific microbial species and microbial metabolites associated with cardiovascular outcomes in PLWH. Further research is needed in large prospective studies integrating the gut microbiome, microbial translocation, and microbial metabolites with cardiovascular outcomes in PLWH.
Collapse
|
10
|
Zhang Y, Xie Z, Zhou J, Li Y, Ning C, Su Q, Ye L, Ai S, Lai J, Pan P, Liu N, Liao Y, Su Q, Li Z, Liang H, Cui P, Huang J. The altered metabolites contributed by dysbiosis of gut microbiota are associated with microbial translocation and immune activation during HIV infection. Front Immunol 2023; 13:1020822. [PMID: 36685491 PMCID: PMC9845923 DOI: 10.3389/fimmu.2022.1020822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
Background The immune activation caused by microbial translocation has been considered to be a major driver of HIV infection progression. The dysbiosis of gut microbiota has been demonstrated in HIV infection, but the interplay between gut microbiota and its metabolites in the pathogenesis of HIV is seldom reported. Methods We conducted a case-controlled study including 41 AIDS patients, 39 pre-AIDS patients and 34 healthy controls. Both AIDS group and pre-AIDS group were divided according to clinical manifestations and CD4 + T cell count. We collected stool samples for 16S rDNA sequencing and untargeted metabolomics analysis, and examined immune activation and microbial translocation for blood samples. Results The pre-AIDS and AIDS groups had higher levels of microbial translocation and immune activation. There were significant differences in gut microbiota and metabolites at different stages of HIV infection. Higher abundances of pathogenic bacteria or opportunistic pathogen, as well as lower abundances of butyrate-producing bacteria and bacteria with anti-inflammatory potential were associated with HIV severity. The metabolism of tryptophan was disordered after HIV infection. Lower level of anti-inflammatory metabolites and phosphonoacetate, and higher level of phenylethylamine and polyamines were observed in HIV infection. And microbial metabolic pathways related to altered metabolites differed. Moreover, disrupted metabolites contributed by altered microbiota were found to be correlated to microbial translocation and immune activation. Conclusions Metabolites caused by dysbiosis of gut microbiota and related metabolic function are correlated to immune activation and microbial translocation, suggesting that the effect of microbiota on metabolites is related to intestinal barrier disruption in HIV infection.
Collapse
Affiliation(s)
- Yu Zhang
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
- The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou, China
| | - Zhiman Xie
- Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, China
| | - Jie Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Yanjun Li
- Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, China
| | - Chuanyi Ning
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
| | - Qisi Su
- Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Sufang Ai
- Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, China
| | - Jingzhen Lai
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Peijiang Pan
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Ningmei Liu
- Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, China
| | - Yanyan Liao
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Qijian Su
- The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou, China
| | - Zhuoxin Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Ping Cui
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| |
Collapse
|
11
|
Gan Q, Ye W, Zhao X, Teng Y, Mei S, Long Y, Ma J, Rehemutula R, Zhang X, Zeng F, Jin H, Liu F, Huang Y, Gao X, Zhu C. Mediating effects of gut microbiota in the associations of air pollutants exposure with adverse pregnancy outcomes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113371. [PMID: 35248925 DOI: 10.1016/j.ecoenv.2022.113371] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The aim of this study was to investigate alterations in gut microbiota after exposure to air pollutants during pregnancy and its mediation effect in inducing adverse pregnancy outcomes (APOs). METHODS Participants (n = 916) were enrolled between 2017 and 2018 from a prospective cohort study of pregnant women in Guangzhou, China. The relative abundance of fecal microbiota was profiled using 16SrRNA V4 region sequencing. Exposure to air pollutants in each trimester of pregnancy was assessed using measurements from the nearest monitoring station. APOs including pre-term birth (PTB), post-term birth (POTB), low birth weight (LBW), macrosomia fetus (MF), birth defects (BDs), pathological cesarean section (PCS) and postpartum hemorrhage (PPH)) were determined by referring to reliable clinical records and diagnostic criteria. Univariate analysis, multivariate analysis and mediation analysis were performed to estimate the association among air pollutants, gut microbiota and APOs. RESULTS Air pollutants exposure during pregnancy was significantly correlated with the alterations in the gut microbiota, and increased risks of various APOs by 1.07-1.36-fold (P < 0.05). The mediation analyses indicated that alterations in Eggerthella, Phascolarctobacterium and Clostridium partially mediated the effects of air pollutants exposure (PM2.5, PM10, O3, NO2 and SO2) on APOs. The relative abundance of f_Micrococcaceae explained 11.39%, 64.90% and 54.80% of the correlation between SO2, PM2.5, PM10 and POTB, respectively; whereas g_Rothia explained 11.97%, 67.80% and 54.50%, respectively. g_Parabacteroides explained 53.0% of the correlation between PM2.5 and PTB. CONCLUSIONS Increased air pollutants exposure during pregnancy may induce adverse pregnancy outcomes via alteration of the gut microbiota.
Collapse
Affiliation(s)
- Qiangsheng Gan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Weitao Ye
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xueqin Zhao
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510623, China
| | - Yaoyao Teng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Shanshan Mei
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510623, China
| | - Yan Long
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510623, China
| | - Jun Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Rehemayi Rehemutula
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoyan Zhang
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510623, China
| | - Fangling Zeng
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510623, China
| | - Hongmei Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Fei Liu
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510623, China
| | - Yaogang Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoli Gao
- Faculty of Dentistry, National University of Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Chunyan Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
12
|
Mechanisms of immune aging in HIV. Clin Sci (Lond) 2022; 136:61-80. [PMID: 34985109 DOI: 10.1042/cs20210344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022]
Abstract
Massive CD4+ T-cell depletion as well as sustained immune activation and inflammation are hallmarks of Human Immunodeficiency Virus (HIV)-1 infection. In recent years, an emerging concept draws an intriguing parallel between HIV-1 infection and aging. Indeed, many of the alterations that affect innate and adaptive immune subsets in HIV-infected individuals are reminiscent of the process of immune aging, characteristic of old age. These changes, of which the presumed cause is the systemic immune activation established in patients, likely participate in the immuno-incompetence described with HIV progression. With the success of antiretroviral therapy (ART), HIV-seropositive patients can now live for many years despite chronic viral infection. However, acquired immunodeficiency syndrome (AIDS)-related opportunistic infections have given way to chronic diseases as the leading cause of death since HIV infection. Therefore, the comparison between HIV-1 infected patients and uninfected elderly individuals goes beyond the sole onset of immunosenescence and extends to the deterioration of several physiological functions related to inflammation and systemic aging. In light of this observation, it is interesting to understand the precise link between immune activation and aging in HIV-1 infection to figure out how to best care for people living with HIV (PLWH).
Collapse
|
13
|
Dillon SM, Abdo MH, Wilson MP, Liu J, Jankowski CM, Robertson CE, Tuncil Y, Hamaker B, Frank DN, MaWhinney S, Wilson CC, Erlandson KM. A Unique Gut Microbiome-Physical Function Axis Exists in Older People with HIV: An Exploratory Study. AIDS Res Hum Retroviruses 2021; 37:542-550. [PMID: 33787299 PMCID: PMC8260890 DOI: 10.1089/aid.2020.0283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Impairments in physical function and increased systemic levels of inflammation have been observed in middle-aged and older persons with HIV (PWH). We previously demonstrated that in older persons, associations between gut microbiota and inflammation differed by HIV serostatus. To determine whether relationships between the gut microbiome and physical function measurements would also be distinct between older persons with and without HIV, we reanalyzed existing gut microbiome and short chain fatty acid (SCFA) data in conjunction with previously collected measurements of physical function and body composition from the same cohorts of older (51-74 years), nonfrail PWH receiving effective antiretroviral therapy (N = 14) and age-balanced uninfected controls (N = 22). Associations between relative abundance (RA) of the most abundant bacterial taxa or stool SCFA levels with physical function and body composition were tested using HIV-adjusted linear regression models. In older PWH, but not in controls, greater RA of Alistipes, Escherichia, Prevotella, Megasphaera, and Subdoligranulum were associated with reduced lower extremity muscle function, decreased lean mass, or lower Short Physical Performance Battery (SPPB) scores. Conversely, greater RA of Dorea, Coprococcus, and Phascolarctobacterium in older PWH were associated with better muscle function, lean mass, and SPPB scores. Higher levels of the SCFA butyrate associated with increased grip strength in both PWH and controls. Our findings indicate that in older PWH, both negative and positive associations exist between stool microbiota abundance and physical function. Different relationships were observed in older uninfected persons, suggesting features of a unique gut-physical function axis in PWH.
Collapse
Affiliation(s)
- Stephanie M. Dillon
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mona H. Abdo
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Melissa P. Wilson
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Jay Liu
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Catherine M. Jankowski
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Charles E. Robertson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yunus Tuncil
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| | - Bruce Hamaker
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Samantha MaWhinney
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Cara C. Wilson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristine M. Erlandson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
14
|
DeJong EN, Surette MG, Bowdish DME. The Gut Microbiota and Unhealthy Aging: Disentangling Cause from Consequence. Cell Host Microbe 2021; 28:180-189. [PMID: 32791111 DOI: 10.1016/j.chom.2020.07.013] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
The gut microbiota changes with age, but it is not clear to what degree these changes are due to physiologic changes, age-associated inflammation or immunosenescence, diet, medications, or chronic health conditions. Observational studies in humans find that there are profound differences between the microbiomes of long-lived and frail individuals, but the degree to which these differences promote or prevent late-life health is unclear. Studies in model organisms demonstrate that age-related microbial dysbiosis causes intestinal permeability, systemic inflammation, and premature mortality, but identifying causal relationships have been challenging. Herein, we review how physiological and immune changes contribute to microbial dysbiosis and the degree to which microbial dysbiosis contributes to late-life health conditions. We discuss the features of the aging microbiota that make it more amenable to diet and pre- and probiotic interventions. Health interventions that promote a diverse microbiome could influence the health of older adults.
Collapse
Affiliation(s)
- Erica N DeJong
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8N 3Z5, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Michael G Surette
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Dawn M E Bowdish
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8N 3Z5, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
15
|
Watson MD, Cross BL, Grosicki GJ. Evidence for the Contribution of Gut Microbiota to Age-Related Anabolic Resistance. Nutrients 2021; 13:706. [PMID: 33672207 PMCID: PMC7926629 DOI: 10.3390/nu13020706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Globally, people 65 years of age and older are the fastest growing segment of the population. Physiological manifestations of the aging process include undesirable changes in body composition, declines in cardiorespiratory fitness, and reductions in skeletal muscle size and function (i.e., sarcopenia) that are independently associated with mortality. Decrements in muscle protein synthetic responses to anabolic stimuli (i.e., anabolic resistance), such as protein feeding or physical activity, are highly characteristic of the aging skeletal muscle phenotype and play a fundamental role in the development of sarcopenia. A more definitive understanding of the mechanisms underlying this age-associated reduction in anabolic responsiveness will help to guide promyogenic and function promoting therapies. Recent studies have provided evidence in support of a bidirectional gut-muscle axis with implications for aging muscle health. This review will examine how age-related changes in gut microbiota composition may impact anabolic response to protein feeding through adverse changes in protein digestion and amino acid absorption, circulating amino acid availability, anabolic hormone production and responsiveness, and intramuscular anabolic signaling. We conclude by reviewing literature describing lifestyle habits suspected to contribute to age-related changes in the microbiome with the goal of identifying evidence-informed strategies to preserve microbial homeostasis, anabolic sensitivity, and skeletal muscle with advancing age.
Collapse
Affiliation(s)
| | | | - Gregory J. Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, GA 31419, USA; (M.D.W.); (B.L.C.)
| |
Collapse
|
16
|
Erlandson KM, Liu J, Johnson R, Dillon S, Jankowski CM, Kroehl M, Robertson CE, Frank DN, Tuncil Y, Higgins J, Hamaker B, Wilson CC. An exercise intervention alters stool microbiota and metabolites among older, sedentary adults. Ther Adv Infect Dis 2021; 8:20499361211027067. [PMID: 34262758 PMCID: PMC8246564 DOI: 10.1177/20499361211027067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/03/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Physiologic aging has been associated with gut dysbiosis. Although short exercise interventions have been linked to beneficial changes in gut microbiota in younger adults, limited data are available from older populations. We hypothesized that exercise would produce beneficial shifts in microbiota and short-chain fatty acid (SCFA) levels in older persons. METHODS Stool samples were collected before and at completion of a supervised 24-week cardiovascular and resistance exercise intervention among 50-75-year-old participants. SCFA levels were analyzed by gas chromatography and microbiome by 16S rRNA gene sequencing. Negative binomial regression models compared pre- and post-differences using false discovery rates for multiple comparison. RESULTS A total of 22 participants provided pre-intervention samples; 15 provided samples at study completion. At baseline, the majority of participants were men (95%), mean age 58.0 (8.8) years, mean body mass index 27.4 (6.4) kg/m2. After 24 weeks of exercise, at the genus level, exercise was associated with significant increases in Bifidobacterium (and other unidentified genera within Bifidobacteriaceae), Oscillospira, Anaerostipes, and decreased Prevotella and Oribacterium (p < 0.001). Stool butyrate increased with exercise [5.44 (95% confidence interval 1.54, 9.24) mmol/g, p = 0.02], though no significant differences in acetate or propionate (p ⩾ 0.09) were seen. CONCLUSION Our pilot study suggested that an exercise intervention is associated with changes in the microbiome of older adults and a key bacterial metabolite, butyrate. Although some of these changes could potentially reverse age-related dysbiosis, future studies are required to determine the contribution of changes to the microbiome in the beneficial effect of exercise on overall health of older adults. Clinical Trials NCT02404792.
Collapse
Affiliation(s)
- Kristine M. Erlandson
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO 80045, USA
| | - Jay Liu
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel Johnson
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Stephanie Dillon
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Miranda Kroehl
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Charles E. Robertson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel N. Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yunus Tuncil
- Food Engineering Department, Ordu University, Ordu, Turkey
| | - Janine Higgins
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bruce Hamaker
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Cara C. Wilson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
17
|
Kimber C, Zhang S, Johnson C, West RE, Prokopienko AJ, Mahnken JD, Yu AS, Hoofnagle AN, Ir D, Robertson CE, Miyazaki M, Chonchol M, Jovanovich A, Kestenbaum B, Frank DN, Nolin TD, Stubbs JR. Randomized, Placebo-Controlled Trial of Rifaximin Therapy for Lowering Gut-Derived Cardiovascular Toxins and Inflammation in CKD. ACTA ACUST UNITED AC 2020; 1:1206-1216. [PMID: 34322673 PMCID: PMC8315698 DOI: 10.34067/kid.0003942020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Recent evidence suggests the systemic accumulation of by-products of gut microbes contributes to cardiovascular morbidity in patients with CKD. Limiting the generation of toxic bacterial by-products by manipulating the intestinal microbiota may be a novel strategy for reducing cardiovascular disease in CKD. Rifaximin is a minimally absorbed, oral antibiotic that targets intestinal pathogens and is commonly used as chronic therapy for the prevention of encephalopathy in patients with cirrhosis. Methods We conducted a randomized, double-blinded, placebo-controlled trial to determine the effect of a 10-day course of oral rifaximin 550 mg BID versus placebo on circulating concentrations of gut-derived cardiovascular toxins and proinflammatory cytokines in patients with stage 3-5 CKD (n=38). The primary clinical outcome was change in serum trimethylamine N-oxide (TMAO) concentrations from baseline to study end. Secondary outcomes included change in serum concentrations of p-cresol sulfate, indoxyl sulfate, kynurenic acid, deoxycholic acid, and inflammatory cytokines (C-reactive protein, IL-6, IL-1β), and change in composition and diversity of fecal microbiota. Results A total of 19 patients were randomized to each of the rifaximin and placebo arms, with n=17 and n=14 completing both study visits in these respective groups. We observed no difference in serum TMAO change (post-therapy minus baseline TMAO) between the rifaximin and placebo groups (mean TMAO change -3.9±15.4 for rifaximin versus 0.5±9.5 for placebo, P=0.49). Similarly, we found no significant change in serum concentrations for p-cresol sulfate, indoxyl sulfate, kynurenic acid, deoxycholic acid, and inflammatory cytokines. We did observe differences in colonic bacterial communities, with the rifaximin group exhibiting significant decreases in bacterial richness (Chao1, P=0.02) and diversity (Shannon H, P=0.05), along with altered abundance of several bacterial genera. Conclusions Short-term rifaximin treatment failed to reduce gut-derived cardiovascular toxins and inflammatory cytokines in patients with CKD. Clinical Trial registry name and registration number Rifaximin Therapy in Chronic Kidney Disease, NCT02342639.
Collapse
Affiliation(s)
- Cassandra Kimber
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Division of Nephrology and Hypertension, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Shiqin Zhang
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Division of Nephrology and Hypertension, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Cassandra Johnson
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Raymond E West
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alexander J Prokopienko
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan D Mahnken
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan S Yu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Division of Nephrology and Hypertension, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Diana Ir
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Charles E Robertson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anna Jovanovich
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Bryan Kestenbaum
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington.,Kidney Research Institute, Seattle, Washington
| | - Daniel N Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Thomas D Nolin
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jason R Stubbs
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Division of Nephrology and Hypertension, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
18
|
Ashuro AA, Lobie TA, Ye DQ, Leng RX, Li BZ, Pan HF, Fan YG. Review on the Alteration of Gut Microbiota: The Role of HIV Infection and Old Age. AIDS Res Hum Retroviruses 2020; 36:556-565. [PMID: 32323556 PMCID: PMC7398441 DOI: 10.1089/aid.2019.0282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection results in gut microbiota alteration and this is associated with immune activation and chronic inflammation. The gastrointestinal tract is a primary site of viral replication and thus HIV-induced loss of T-helper (Th) cells in the gut causes impairments in intestinal barriers, resulting in disruptions in intestinal immunity and precipitating into gut dysbiosis. Here, we show that late HIV diagnosis can negatively affect the immunological, virological, and clinical prognosis of the patients with its higher implication at an older age. Further, the review indicates that antiretroviral therapy affects the gut microbiota. We discussed the use of probiotics and prebiotics that have been indicated to play a promising role in reversing gut microbiota alteration in HIV patients. Though there are several studies reported with regard to such alterations in gut microbiota regarding HIV infection, there is a need to provide comprehensive updates. It is, therefore, the objective of this review to present most recently available evidence on the alteration of gut microbiota among HIV patients.
Collapse
Affiliation(s)
- Akililu Alemu Ashuro
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Tekle Airgecho Lobie
- Department of Microbiology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Piggott DA, Tuddenham S. The gut microbiome and frailty. Transl Res 2020; 221:23-43. [PMID: 32360945 PMCID: PMC8487348 DOI: 10.1016/j.trsl.2020.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
The human microbiome is constituted by an extensive network of organisms that lie at the host/environment interface and transduce signals that play vital roles in human health and disease across the lifespan. Frailty is a critical aging-related syndrome marked by diminished physiological reserve and heightened vulnerability to stress, predictive of major adverse clinical outcomes including death. While recent studies suggest the microbiome may impact key pathways critical to frailty pathophysiology, direct evaluation of the microbiome-frailty relationship remains limited. In this article, we review the complex interplay of biological, behavioral, and environmental factors that may influence shifts in gut microbiome composition and function in aging populations and the putative implications of such shifts for progression to frailty. We discuss HIV infection as a key prototype for elucidating the complex pathways via which the microbiome may precipitate frailty. Finally, we review considerations for future research efforts.
Collapse
Affiliation(s)
- Damani A Piggott
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland.
| | - Susan Tuddenham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Jobira B, Frank DN, Pyle L, Silveira LJ, Kelsey MM, Garcia-Reyes Y, Robertson CE, Ir D, Nadeau KJ, Cree-Green M. Obese Adolescents With PCOS Have Altered Biodiversity and Relative Abundance in Gastrointestinal Microbiota. J Clin Endocrinol Metab 2020; 105:dgz263. [PMID: 31970418 PMCID: PMC7147870 DOI: 10.1210/clinem/dgz263] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
CONTEXT Alterations in gut microbiota relate to the metabolic syndrome, but have not been examined in at-risk obese youth with polycystic ovary syndrome (PCOS). OBJECTIVE Compare the composition and diversity of the gut microbiota and associations with metabolic and hormonal measures between 2 groups of female adolescents with equal obesity with or without PCOS. DESIGN Prospective, case-control cross-sectional study. SETTING Tertiary-care center. PARTICIPANTS A total of 58 obese female adolescents (n = 37 with PCOS; 16.1 ± 0.3 years of age; body mass index [BMI] 98.5th percentile) and (n = 21 without PCOS; 14.5 ± 0.4 years of age; BMI 98.7th percentile). OUTCOMES Bacterial diversity, percent relative abundance (%RA), and correlations with hormonal and metabolic measures. RESULTS Participants with PCOS had decreased α-diversity compared with the non-PCOS group (Shannon diversity P = 0.045 and evenness P = 0.0052). β-diversity, reflecting overall microbial composition, differed between groups (P < 0.001). PCOS had higher %RA of phyla Actinobacteria (P = 0.027), lower Bacteroidetes (P = 0.004), and similar Firmicutes and Proteobacteria. PCOS had lower %RA of families Bacteroidaceae (P < 0.001) and Porphyromonadaceae (P = 0.024) and higher Streptococcaceae (P = 0.047). Lower bacterial α-diversity was strongly associated with higher testosterone concentrations. Several individual taxa correlated with testosterone and metabolic measures within PCOS and across the entire cohort. Receiver operative curve analysis showed 6 taxa for which the %RA related to PCOS status and lower Bacteroidaceae conferred a 4.4-fold likelihood ratio for PCOS. CONCLUSION Alterations in the gut microbiota exist in obese adolescents with PCOS versus obese adolescents without PCOS and these changes relate to markers of metabolic disease and testosterone. Further work is needed to determine if microbiota changes are reflective of, or influencing, hormonal metabolism.
Collapse
Affiliation(s)
- Beza Jobira
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniel N Frank
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laura Pyle
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado
| | - Lori J Silveira
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado
| | - Megan M Kelsey
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Yesenia Garcia-Reyes
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Charles E Robertson
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Diana Ir
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kristen J Nadeau
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Melanie Cree-Green
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Aging and HIV share features of intestinal damage and alterations in the communities of enteric bacteria, termed dysbiosis. The purpose of this review is to highlight the various features of the gut microbiome in aging and in people with HIV (PWH) and to discuss how aging and HIV converge to impact the gut microbiome. The term microbiome reflects the combined genetic material of micro-organisms present including bacteria, viruses, bacteriophages, and fungi. To date, the majority of studies investigating the impact of aging and HIV on the gut microbiome have focused on bacteria, and therefore, for the purposes of this review, the term 'microbiome' is used to reflect enteric bacterial communities. RECENT FINDINGS Aging is associated with alterations in the gut bacterial microbiome. Although changes vary by the age of the population, lifestyle (diet, physical activity) and geographic location, the age-associated dysbiosis is typically characterized by an increase in facultative anaerobes with inflammatory properties and a decrease in obligate anaerobes that play critical roles in maintaining intestinal homeostasis and in regulating host immunity. PWH also have dysbiotic gut microbiomes, many features of which reflect those observed in elderly persons. In one study, the age effect on the gut microbiome differed based on HIV serostatus in older adults. SUMMARY HIV and age may interact to shape the gut microbiome. Future studies should investigate relationships between the gut microbiome and age-associated comorbidities in older PWH populations. Identifying these links will provide new avenues for treatments and interventions to improve the healthspan and lifespan of older PWH.
Collapse
|
22
|
Abstract
Recent studies have raised interest in the possibility that dysbiosis of the gut microbiome (i.e., the communities of bacteria residing in the intestine) in HIV-infected patients could contribute to chronic immune activation, and, thus, to elevated mortality and increased risk of inflammation-related clinical diseases (e.g., stroke, cardiovascular disease, cancer, long-bone fractures, and renal dysfunction) found even in those on effective antiretroviral therapy. Yet, to date, a consistent pattern of HIV-associated dysbiosis has not been identified. What is becoming clear, however, is that status as a man who has sex with men (MSM) may profoundly impact the structure of the gut microbiota, and that this factor likely confounded many HIV-related intestinal microbiome studies. However, what factor associated with MSM status drives these gut microbiota-related changes is unclear, and what impact, if any, these changes may have on the health of MSM is unknown. In this review, we outline available data on changes in the structure of the gut microbiome in HIV, based on studies that controlled for MSM status. We then examine what is known regarding the gut microbiota in MSM, and consider possible implications for research and the health of this population. Lastly, we discuss knowledge gaps and needed future studies.
Collapse
Affiliation(s)
- Susan Tuddenham
- Division of Infectious Diseases, Johns Hopkins School of
Medicine, Baltimore, MD
| | - Wei Li Koay
- Department of Infectious Disease, Children’s
National Hospital, Washington, D.C.;,School of Medicine and Health Sciences, George Washington
University, Washington, D.C
| | - Cynthia Sears
- Division of Infectious Diseases, Johns Hopkins School of
Medicine, Baltimore, MD
| |
Collapse
|
23
|
Walker EM, Slisarenko N, Gerrets GL, Kissinger PJ, Didier ES, Kuroda MJ, Veazey RS, Jazwinski SM, Rout N. Inflammaging phenotype in rhesus macaques is associated with a decline in epithelial barrier-protective functions and increased pro-inflammatory function in CD161-expressing cells. GeroScience 2019; 41:739-757. [PMID: 31713098 PMCID: PMC6925095 DOI: 10.1007/s11357-019-00099-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
The development of chronic inflammation, called inflammaging, contributes to the pathogenesis of age-related diseases. Although it is known that both B and T lymphocyte compartments of the adaptive immune system deteriorate with advancing age, the impact of aging on immune functions of Th17-type CD161-expressing innate immune cells and their role in inflammaging remain incompletely understood. Here, utilizing the nonhuman primate model of rhesus macaques, we report that a dysregulated Th17-type effector function of CD161+ immune cells is associated with leaky gut and inflammatory phenotype of aging. Higher plasma levels of inflammatory cytokines IL-6, TNF-α, IL-1β, GM-CSF, IL-12, and Eotaxin correlated with elevated markers of gut permeability including LPS-binding protein (LBP), intestinal fatty acid binding protein (I-FABP), and sCD14 in aging macaques. Further, older macaques displayed significantly lower frequencies of circulating Th17-type immune cells comprised of CD161+ T cell subsets, NK cells, and innate lymphoid cells. Corresponding with the increased markers of gut permeability, production of the type-17 cytokines IL-17 and IL-22 was impaired in CD161+ T cell subsets and NK cells, along with a skewing towards IFN-γ cytokine production. These findings suggest that reduced frequencies of CD161+ immune cells along with a specific loss in Th17-type effector functions contribute to impaired gut barrier integrity and systemic inflammation in aging macaques. Modulating type-17 immune cell functions via cytokine therapy or dietary interventions towards reducing chronic inflammation in inflammaging individuals may have the potential to prevent or delay age-related chronic diseases and improve immune responses in the elderly population.
Collapse
Affiliation(s)
- Edith M Walker
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Nadia Slisarenko
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Giovanni L Gerrets
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Patricia J Kissinger
- School of Public Health & Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Elizabeth S Didier
- Center for Comparative Medicine and California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Marcelo J Kuroda
- Center for Comparative Medicine and California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Ronald S Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | | | - Namita Rout
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA.
- Tulane Center for Aging, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
24
|
Pellicano C, Leodori G, Innocenti GP, Gigante A, Rosato E. Microbiome, Autoimmune Diseases and HIV Infection: Friends or Foes? Nutrients 2019; 11:E2629. [PMID: 31684052 PMCID: PMC6893726 DOI: 10.3390/nu11112629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Several studies highlighted the importance of the interaction between microbiota and the immune system in the development and maintenance of the homeostasis of the human organism. Dysbiosis is associated with proinflammatory and pathological state-like metabolic diseases, autoimmune diseases and HIV infection. In this review, we discuss the current understanding of the possible role of dysbiosis in triggering and/or exacerbating symptoms of autoimmune diseases and HIV infection. There are no data about the influence of the microbiome on the development of autoimmune diseases during HIV infection. We can hypothesize that untreated patients may be more susceptible to the development of autoimmune diseases, due to the presence of dysbiosis. Eubiosis, re-established by probiotic administration, can be used to reduce triggers for autoimmune diseases in untreated HIV patients, although clinical studies are needed to evaluate the role of the microbiome in autoimmune diseases in HIV patients.
Collapse
Affiliation(s)
- Chiara Pellicano
- Department of Translational and Precision Medicine-Scleroderma Unit, Sapienza University of Rome, 00185 Rome, Italy.
| | - Giorgia Leodori
- Department of Translational and Precision Medicine-Scleroderma Unit, Sapienza University of Rome, 00185 Rome, Italy.
| | | | - Antonietta Gigante
- Department of Translational and Precision Medicine-Scleroderma Unit, Sapienza University of Rome, 00185 Rome, Italy.
| | - Edoardo Rosato
- Department of Translational and Precision Medicine-Scleroderma Unit, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
25
|
Dillon SM, Liu J, Purba CM, Christians AJ, Kibbie JJ, Castleman MJ, McCarter MD, Wilson CC. Age-related alterations in human gut CD4 T cell phenotype, T helper cell frequencies, and functional responses to enteric bacteria. J Leukoc Biol 2019; 107:119-132. [PMID: 31573727 DOI: 10.1002/jlb.5a0919-177rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Intestinal lamina propria (LP) CD4 T cells play critical roles in maintaining intestinal homeostasis and in immune responses to enteric microbes, yet little is known regarding whether they contribute to age-associated intestinal immune dysfunction. In this study, we evaluated the direct ex vivo frequency, activation/inhibitory phenotype, death profiles, and in vitro functional responses of human jejunum LP CD4 T cells, including Th1, Th17, and Th22 subsets isolated from younger (<45 years) and older (>65years) persons. Expression of the co-inhibitory molecule CTLA-4 was significantly lower in older CD4 T cells, whereas expression of HLA-DR, CD38, CD57, and PD-1 were not significantly different between groups. Total CD4 T cell frequencies were similar between age groups, but lower frequencies and numbers of Th17 cells were observed directly ex vivo in older samples. Older Th17 and Th1 cells proliferated to a lesser degree following in vitro exposure to bacterial antigens vs. their younger counterparts. Levels of spontaneous cell death were increased in older CD4 T cells; however, cellular death profiles following activation did not differ based on age. Thus, small intestinal CD4 T cells from older persons have altered phenotypic and functional profiles including reduced expression of a co-inhibitory molecule, increased spontaneous cell death, and both reduced frequencies and altered functional responses of specific Th cell subsets. These changes may contribute to altered intestinal homeostasis and loss of protective gut immunity with aging.
Collapse
Affiliation(s)
- Stephanie M Dillon
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jay Liu
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christine M Purba
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Allison J Christians
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jon J Kibbie
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Moriah J Castleman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Martin D McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cara C Wilson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|