1
|
Wu X, Wu H, Zhong M, Chen Y, Su W, Li P. Epigenetic regulation by naringenin and naringin: A literature review focused on the mechanisms underlying its pharmacological effects. Fitoterapia 2025; 181:106353. [PMID: 39706348 DOI: 10.1016/j.fitote.2024.106353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Epigenetics refers to heritable changes in gene expression or phenotypic changes that occur without changing the gene sequence. The main methods of epigenetics include non-coding RNA, histone modification, and DNA modification, which play an essential role in gene expression regulation and even the occurrence of diverse diseases. Naringenin, the aglycone form of naringin, is a natural flavonoid compound mainly found in fruits or plant derivatives such as citrus, tomatoes, and cherries. Naringenin and naringin exhibit a broad spectrum of biological activities and pharmacological effects, including anti-cancer, cardiovascular disease improving, anti-inflammatory, and anti-oxidant activities, all of which are advantageous for human health. Recent studies have uncovered that naringenin and naringin influence gene expression by modulating epigenetic pathways, including microRNA (miRNA) regulation. This mechanism plays a crucial role in the therapeutic potential for various diseases. This paper reviews the epigenetic researches on the physiological activities of naringenin and naringin. It highlights how these compounds can exert diverse effects through different signaling pathways, thereby ameliorating associated diseases. These findings provide valuable insights for the future applications of naringenin and naringin.
Collapse
Affiliation(s)
- Xiao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Mengli Zhong
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yixuan Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
2
|
Liu Q, Sun M, Liu Y, Xu W, Zheng H, Ning N, Huang R, Zhou J, Shao J, Zhou W, Chen S, Wu S, Ma Y. Chinese Visceral Adiposity Index Trajectory and Stroke in Prediabetes and Diabetes: A Prospective Cohort Study. Diabetes Metab Res Rev 2025; 41:e70025. [PMID: 39809727 DOI: 10.1002/dmrr.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/05/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
AIMS Stroke is a common diabetic complication, by which the Chinese visceral adiposity index (CVAI) is confirmed as a better predictor of visceral fat. However, the relationship between CVAI change and the stroke risk among patients with diabetes and prediabetes remains unclear. Therefore, we aimed to examine the association of CVAI trajectory with the risk of stroke. MATERIALS AND METHODS This prospective cohort study included 11,339 patients with prediabetes and diabetes from the Kailuan study. These participants had complete repeated metabolic and body measurements that formed the continuous CVAI records. The stroke cases were identified by medical records. Latent mixture modelling was conducted to fit four groups of CVAI trajectories. Cox proportional hazard regression models were used to examine the associations between CVAI trajectories and the risk of stroke and its subtypes. RESULTS Four distinct CVAI trajectories were identified: the low-stable, moderate low-stable, moderate high-stable, and high-increasing groups. Compared with low-stable CVAI, moderate high-stable (HR: 1.50, 95%CI: 1.10-2.04) and high-increasing CVAI (HR: 2.15, 95%CI: 1.49-3.10) were positively associated with the risk of stroke. Similarly, moderate high-stable (HR: 1.70, 95%CI: 1.21-2.39) and high-increasing CVAI trajectory groups (HR: 2.53, 95%CI: 1.71-3.73) had an increased risk of ischaemic stroke compared with the low-stable CVAI group. However, a significant association was not found between CVAI trajectory and risk of haemorrhage stroke. CONCLUSION A long-term elevated CVAI is associated with a higher risk of stroke, especially ischaemic stroke. This finding suggests the health benefits of low CVAI levels and the importance of regular surveillance among patients with prediabetes and diabetes.
Collapse
Affiliation(s)
- Qitong Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Department of Biostatistics and Epidemiology, Ministry of Education, School of Public Health, China Medical University, Shenyang, China
| | - Ming Sun
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Department of Biostatistics and Epidemiology, Ministry of Education, School of Public Health, China Medical University, Shenyang, China
| | - Yang Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Department of Biostatistics and Epidemiology, Ministry of Education, School of Public Health, China Medical University, Shenyang, China
| | - Wenqi Xu
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Huancong Zheng
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ning Ning
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Department of Biostatistics and Epidemiology, Ministry of Education, School of Public Health, China Medical University, Shenyang, China
| | - Rong Huang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Department of Biostatistics and Epidemiology, Ministry of Education, School of Public Health, China Medical University, Shenyang, China
| | - Jin Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Department of Biostatistics and Epidemiology, Ministry of Education, School of Public Health, China Medical University, Shenyang, China
| | - Jinang Shao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Department of Biostatistics and Epidemiology, Ministry of Education, School of Public Health, China Medical University, Shenyang, China
| | - Wenhui Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Department of Biostatistics and Epidemiology, Ministry of Education, School of Public Health, China Medical University, Shenyang, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Yanan Ma
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Department of Biostatistics and Epidemiology, Ministry of Education, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Naserian M, Alizadeh A, Nosrati M, Mahrooz A. Unraveling the understudied influence of a lead variant in the 9p21 locus on the atherogenic index among type 2 diabetes patients with coronary artery disease. J Diabetes Metab Disord 2024; 23:1879-1885. [PMID: 39610524 PMCID: PMC11599656 DOI: 10.1007/s40200-024-01437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/16/2024] [Indexed: 11/30/2024]
Abstract
Introduction The region on chromosome 9p21 has consistently been identified in genome-wide association studies (GWAS) as the top locus for type 2 diabetes (T2D), however, genetic variations in this locus affecting both T2D and coronary artery disease (CAD) require further characterized. Our aim was to assess the effects of rs10811661, a variant validated in GWAS, on log (TG/HDL-C), which has been associated with an atherogenic lipid profile. Methods A total of 121 patients with T2D who underwent coronary angiographic examination were included in this study. The patients were categorized into two groups, those with angiographically normal coronary arteries or less than 50% stenosis (non-CAD) and those having at least 70% stenosis in one of the main coronary arteries (severe CAD). The rs10811661 variant was genotyped using the restricted fragment length polymorphism (RFLP) analysis after PCR amplification. Results When the data was divided into tertiles according to HbA1c, our findings revealed that in tertile 3 (HbA1c ≥ 7.8%), the frequency of TT genotypes was higher compared to CT + CC genotypes (37.1% vs. 27.8%). T2D patients with CAD who carried the TT genotype had higher concentrations of log (TG/HDL) (p = 0.037) and TG (p = 0.003) compared to those with the C allele (CC or CT genotypes). After adjustment for covariates, the T allele of rs10811661 indicated significant associations with TG (OR = 1.66, 95% CI: 1.22-2.33, p = 0.002) and log (TG/HDL-C) (OR = 1.12, 95% CI: 1.02-2.13, p = 0.023) levels. Conclusion Our findings provide insight into how a GWAS-validated variant, rs10811661, can influence atherogenicity in patients with T2D and establish a link between this functional variant in the 9p21 locus and lipid factors associated with atherosclerosis. Further investigations are needed to understand the mechanisms by which this important variant influences lipid and lipoprotein levels, which could be useful in developing personalized medicine interventions.
Collapse
Affiliation(s)
- Mahsa Naserian
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Km 17 Khazarabad Road, Sari, Iran
| | - Ahad Alizadeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mani Nosrati
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Km 17 Khazarabad Road, Sari, Iran
| | - Abdolkarim Mahrooz
- Diabetes research center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Zhou X, Xiao L, Meng F, Zuo F, Wu W, Li G, Han F, Peng G, Shen H. GAS6-AS1 drives bladder cancer progression by increasing MMP7 expression in a ceRNA- and RBP-dependent manner. Transl Oncol 2024; 48:102065. [PMID: 39053343 PMCID: PMC11326496 DOI: 10.1016/j.tranon.2024.102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Numerous recent studies have underscored the indispensable roles of long non-coding RNAs (lncRNAs) in various diseases. However, their precise mechanisms in urinary bladder cancer (UBC) remain to be further elucidated. To delve into this inquiry, online databases were analyzed to identify differentially expressed lncRNAs in UBC, followed by the functional experiments in vivo and in vitro functional experiments. GAS6-AS1 exhibited high expression levels in UBC tissues and was shown to regulate the proliferation, migration, invasion, and cell cycle progression of UBC cells in vitro and in vivo. Then, a series of molecular biology experiments, including RNA pull-down, dual-luciferase reporter gene assays, RNA immunoprecipitation (RIP) assays, fluorescent in situ hybridization (FISH), and the triplex-capture assay demonstrated its interaction with miR-367-3p and PRC1. Mechanistically, GAS6-AS1 was found to enhance MMP7 expression by sequestering miR-367-3p. Moreover, GAS6-AS1 inhibited APC transcription by binding with PRC1, thereby activating several oncogenes downstream of the WNT pathway. To sum up, GAS6-AS1 promotes UBC progression through two distinct axes: the GAS6-AS1/miR-367-3p/MMP7 axis and the GAS6-AS1/PRC1/APC/Wnt/MMP7 axis, respectively. As a potential biomarker for UBC, GAS6-AS1 holds promising prospects for the diagnosis, treatment, and prognosis of UBC.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of General Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214000, China
| | - Linmei Xiao
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Fanyu Meng
- BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210019, China
| | - Fei Zuo
- BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210019, China
| | - Weili Wu
- BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210019, China
| | - Gongyu Li
- BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210019, China
| | - Fei Han
- BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210019, China
| | - Guohui Peng
- BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210019, China.
| | - Hua Shen
- BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210019, China.
| |
Collapse
|
5
|
Werner A, Kanhere A, Wahlestedt C, Mattick JS. Natural antisense transcripts as versatile regulators of gene expression. Nat Rev Genet 2024; 25:730-744. [PMID: 38632496 DOI: 10.1038/s41576-024-00723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as a major class of gene products that have central roles in cell and developmental biology. Natural antisense transcripts (NATs) are an important subset of lncRNAs that are expressed from the opposite strand of protein-coding and non-coding genes and are a genome-wide phenomenon in both eukaryotes and prokaryotes. In eukaryotes, a myriad of NATs participate in regulatory pathways that affect expression of their cognate sense genes. Recent developments in the study of NATs and lncRNAs and large-scale sequencing and bioinformatics projects suggest that whether NATs regulate expression, splicing, stability or translation of the sense transcript is influenced by the pattern and degrees of overlap between the sense-antisense pair. Moreover, epigenetic gene regulatory mechanisms prevail in somatic cells whereas mechanisms dependent on the formation of double-stranded RNA intermediates are prevalent in germ cells. The modulating effects of NATs on sense transcript expression make NATs rational targets for therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - John S Mattick
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Marchandot B, Faller E, Akladios C, Matsushita K, Bäck M, Jesel L, Schini-Kerth V, Morel O. Fostering cardio-endometriosis: a call to action for a comprehensive understanding of cardiovascular disease in endometriosis. Eur J Prev Cardiol 2024; 31:1574-1582. [PMID: 38421615 DOI: 10.1093/eurjpc/zwae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
Recently, a growing body of evidence has highlighted a concerning link between endometriosis and cardiovascular disease. Endometriosis, a chronic, inflammatory, hormone-dependent condition affecting 5-10% of reproductive-aged women worldwide, has long been associated with reproductive and gynaecological consequences. However, emerging research has suggested that it may also contribute to adverse cardiovascular outcomes. This paper aims to shed light on the importance of recognizing cardio-endometriosis as a new and developing sphere of research in the field of cardiology, thereby urging the medical community to address this pressing issue.
Collapse
Affiliation(s)
- Benjamin Marchandot
- Division of Cardiovascular Medicine, Strasbourg University Hospital, 1 Place de l'Hopital, 67000 Strasbourg, France
- UR 3074 Médecine Cardiovasculaire Translationnelle, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Emilie Faller
- Department of Obstetrics and Gynecology, Hautepierre Hospital, University Hospital, 1 Avenue Molière, 67000 Strasbourg, France
- ENDOALSACE, Strasbourg Expert Center for Endometriosis, Hautepierre Hospital, University Hospital, 1 Avenue Molière, 67000 Strasbourg, France
| | - Cherif Akladios
- Department of Obstetrics and Gynecology, Hautepierre Hospital, University Hospital, 1 Avenue Molière, 67000 Strasbourg, France
- ENDOALSACE, Strasbourg Expert Center for Endometriosis, Hautepierre Hospital, University Hospital, 1 Avenue Molière, 67000 Strasbourg, France
| | - Kensuke Matsushita
- UR 3074 Médecine Cardiovasculaire Translationnelle, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Magnus Bäck
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
- Section of Translational Cardiology, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
- Université de Lorraine, Institut National de la Sante et de la Recherche Medicale U1116, Nancy, France
| | - Laurence Jesel
- Division of Cardiovascular Medicine, Strasbourg University Hospital, 1 Place de l'Hopital, 67000 Strasbourg, France
- UR 3074 Médecine Cardiovasculaire Translationnelle, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Valérie Schini-Kerth
- UR 3074 Médecine Cardiovasculaire Translationnelle, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Olivier Morel
- Division of Cardiovascular Medicine, Strasbourg University Hospital, 1 Place de l'Hopital, 67000 Strasbourg, France
- UR 3074 Médecine Cardiovasculaire Translationnelle, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
- Hanoï Medical University, Vietnam
| |
Collapse
|
7
|
Aziz M, Jandeleit-Dahm KA, Khan AW. Interplay between epigenetic mechanisms and transcription factors in atherosclerosis. Atherosclerosis 2024; 395:117615. [PMID: 38917706 DOI: 10.1016/j.atherosclerosis.2024.117615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
Cardiovascular diseases (CVD), including coronary heart disease and stroke, comprise the number one cause of mortality worldwide. A major contributor to CVD is atherosclerosis, which is a low-grade inflammatory disease of vasculature that involves a pathological build-up of plaque within the arterial walls. Studies have shown that regulation of gene expression via transcription factors and epigenetic mechanisms play a fundamental role in transcriptomic changes linked to the development of atherosclerosis. Chromatin remodeling is a reversible phenomenon and studies have supported the clinical application of chromatin-modifying agents for the prevention and treatment of CVD. In addition, pre-clinical studies have identified multiple transcription factors as potential therapeutic targets in combating atherosclerotic CVD. Although interaction between transcription factors and epigenetic mechanisms facilitate gene regulation, a limited number of studies appreciate this crosstalk in the context of CVD. Here, we reviewed this gene regulatory mechanism underappreciated in atherosclerosis, which will highlight the mechanisms underlying novel therapeutics targeting epigenetic modifiers and transcription factors in atherosclerosis.
Collapse
Affiliation(s)
- Misbah Aziz
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Karin Am Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia; German Diabetes Centre, Leibniz Centre for Diabetes Research at the Heinrich Heine University, Dusseldorf, Germany
| | - Abdul Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
8
|
Tripathi A, Arsha S, Thapa A, Thapa S, Chand S, Frishman WH, Aronow WS. Cardiovascular Implications of Gynecological Disorders: Bridging the Gap Between Gynecology and Cardiology. Cardiol Rev 2024:00045415-990000000-00303. [PMID: 39078163 DOI: 10.1097/crd.0000000000000759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Gynecological disorders such as endometriosis, polycystic ovary syndrome, and gynecological cancers are increasingly recognized as potential risk factors for cardiovascular disease (CVD). Endometriosis, a chronic inflammatory condition, exhibits shared pathogenic mechanisms with CVD, including endothelial dysfunction and an atherogenic lipid profile. Emerging evidence suggests a link between endometriosis and an elevated risk of cardiovascular events such as myocardial infarction, ischemic heart disease, and hypertension. Polycystic ovary syndrome, characterized by hormonal imbalances and metabolic derangements, is associated with an increased risk of hypertension, myocardial infarction, and structural cardiac abnormalities, even after controlling for obesity. Gynecological cancers, such as ovarian, endometrial, and cervical cancers, are also associated with an increased burden of cardiovascular comorbidities and mortality. Cancer treatments, including chemotherapy and radiation therapy, can further contribute to cardiovascular toxicity. Understanding the interplay between gynecological disorders and CVD is crucial for identifying high-risk individuals, implementing preventive strategies, and providing comprehensive care. A multidisciplinary approach involving gynecologists, cardiologists, and other specialists is essential for optimizing the management of these complex conditions and improving overall patient outcomes.
Collapse
Affiliation(s)
- Ashish Tripathi
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
| | - Sanjana Arsha
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
| | - Anish Thapa
- Department of Medicine, Universal College of Medical Sciences, Bhairhawa, Nepal
| | - Sangharsha Thapa
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
| | - Swati Chand
- Department of Cardiology, Westchester Medical Center, Valhalla, NY
| | | | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center, Valhalla, NY
- Department of Medicine, New York Medical College, Valhalla, NY
| |
Collapse
|
9
|
Kettunen S, Suoranta T, Beikverdi S, Heikkilä M, Slita A, Räty I, Ylä-Herttuala E, Öörni K, Ruotsalainen AK, Ylä-Herttuala S. Deletion of the Murine Ortholog of the Human 9p21.3 Locus Leads to Insulin Resistance and Obesity in Hypercholesterolemic Mice. Cells 2024; 13:983. [PMID: 38891115 PMCID: PMC11171903 DOI: 10.3390/cells13110983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
The 9p21.3 genomic locus is a hot spot for disease-associated single-nucleotide polymorphisms (SNPs), and its strongest associations are with coronary artery disease (CAD). The disease-associated SNPs are located within the sequence of a long noncoding RNA ANRIL, which potentially contributes to atherogenesis by regulating vascular cell stress and proliferation, but also affects pancreatic β-cell proliferation. Altered expression of a neighboring gene, CDKN2B, has been also recognized to correlate with obesity and hepatic steatosis in people carrying the risk SNPs. In the present study, we investigated the impact of 9p21.3 on obesity accompanied by hyperlipidemia in mice carrying a deletion of the murine ortholog for the 9p21.3 (Chr4Δ70/Δ70) risk locus in hyperlipidemic Ldlr-/-ApoB100/100 background. The Chr4Δ70/Δ70 mice showed decreased mRNA expression of insulin receptors in white adipose tissue already at a young age, which developed into insulin resistance and obesity by aging. In addition, the Sirt1-Ppargc1a-Ucp2 pathway was downregulated together with the expression of Cdkn2b, specifically in the white adipose tissue in Chr4Δ70/Δ70 mice. These results suggest that the 9p21.3 locus, ANRIL lncRNA, and their murine orthologues may regulate the key energy metabolism pathways in a white adipose tissue-specific manner in the presence of hypercholesterolemia, thus contributing to the pathogenesis of metabolic syndrome.
Collapse
Affiliation(s)
- Sanna Kettunen
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Tuisku Suoranta
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Sadegh Beikverdi
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Minja Heikkilä
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Anna Slita
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Iida Räty
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Elias Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
- Imaging Center, Kuopio University Hospital, 70200 Kuopio, Finland
| | | | - Anna-Kaisa Ruotsalainen
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| |
Collapse
|
10
|
Xie F, Wang D, Cheng M. CDKN2B-AS1 may act as miR-92a-3p sponge in coronary artery disease. Minerva Cardiol Angiol 2024; 72:125-133. [PMID: 38231078 DOI: 10.23736/s2724-5683.23.06441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
BACKGROUND LncRNAs, miRNAs, and the sponge effect between them exert diverse biological influences on the pathogenesis and progression of coronary artery disease (CAD), thus necessitating an exploration of the lncRNA-miRNA-gene regulatory network in CAD. METHODS Expression profile GSE98583 was obtained from NCBI, containing the data of 12 CAD patients and 6 controls. Limma package was utilized to determine the differentially expressed genes (DEGs). Functional enrichment analysis was performed by DAVID. The CAD-related miRNA-DEG associations were retrieved via HMDD and miRTarBase, and the CAD-related lncRNA-miRNA associations were retrieved via LncRNADisease and starBase. The CAD-related lncRNA-miRNA-DEG regulatory network was constructed by combining these associations. The dual luciferase test was carried out to validate the connections among lncRNA, miRNA, and gene. RESULTS Overall, 534 DEGs were identified between CAD samples and controls, including 243 up-regulated and 291 down-regulated, and were enriched in various gene ontology biological processes and KEGG pathways. The CAD-related miRNAs targeting DEGs included hsa-miR-206, has-miR-320b, has-miR-4513, has-miR-765, and has-miR-92a-3p, and hsa-miR-92a-3p regulated the most DEGs. In the lncRNA-miRNA associations, only CDKN2B-AS1 regulated the CAD-related miRNA, hsa-miR-92a-3p, which was validated using the dual luciferase test. CONCLUSIONS CDKN2B-AS1 may act as an hsa-miR-92a-3p sponge to regulate the downstream DEGs in CAD. CDKN2B-AS1/ hsa-miR-92a-3p/GATA2 might be a novel mechanism for CAD.
Collapse
Affiliation(s)
- Fei Xie
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Dan Wang
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Ming Cheng
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China -
| |
Collapse
|
11
|
Bhatt U, Cucchiarini A, Luo Y, Evans CW, Mergny JL, Iyer KS, Smith NM. Preferential formation of Z-RNA over intercalated motifs in long noncoding RNA. Genome Res 2024; 34:217-230. [PMID: 38355305 PMCID: PMC10984386 DOI: 10.1101/gr.278236.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Secondary structure is a principal determinant of lncRNA function, predominantly regarding scaffold formation and interfaces with target molecules. Noncanonical secondary structures that form in nucleic acids have known roles in regulating gene expression and include G-quadruplexes (G4s), intercalated motifs (iMs), and R-loops (RLs). In this paper, we used the computational tools G4-iM Grinder and QmRLFS-finder to predict the formation of each of these structures throughout the lncRNA transcriptome in comparison to protein-coding transcripts. The importance of the predicted structures in lncRNAs in biological contexts was assessed by combining our results with publicly available lncRNA tissue expression data followed by pathway analysis. The formation of predicted G4 (pG4) and iM (piM) structures in select lncRNA sequences was confirmed in vitro using biophysical experiments under near-physiological conditions. We find that the majority of the tested pG4s form highly stable G4 structures, and identify many previously unreported G4s in biologically important lncRNAs. In contrast, none of the piM sequences are able to form iM structures, consistent with the idea that RNA is unable to form stable iMs. Unexpectedly, these C-rich sequences instead form Z-RNA structures, which have not been previously observed in regions containing cytosine repeats and represent an interesting and underexplored target for protein-RNA interactions. Our results highlight the prevalence and potential structure-associated functions of noncanonical secondary structures in lncRNAs, and show G4 and Z-RNA structure formation in many lncRNA sequences for the first time, furthering the understanding of the structure-function relationship in lncRNAs.
Collapse
Affiliation(s)
- Uditi Bhatt
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Anne Cucchiarini
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Yu Luo
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Nicole M Smith
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia;
| |
Collapse
|
12
|
Men X, Hu A, Xu T. CircLZIC regulates ox-LDL-induced HUVEC cell proliferation and apoptosis via Micro-330-5p/NOTCH2 axis in atherosclerosis. Clin Hemorheol Microcirc 2024; 87:115-127. [PMID: 38277288 PMCID: PMC11191521 DOI: 10.3233/ch-232063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Atherosclerosis (AS) is a major chronic non-communicable disease and a primary cause of cardiovascular disease. Recent studies have shown that circRNAs are potential epigenetic factors that regulate vascular endothelial inflammatory responses and AS progression. Therefore, identification of the circRNAs that regulate ox-LDL levels is a critical step to understanding the pathology of AS. Our study is aim to investigate how circLZIC regulates atherosclerosis (AS) via the Micro-330-5p/NOTCH2 regulatory axis. The results showed that CircLZIC and NOTCH2 are highly expressed in human AS clinical samples, while Micro-330-5p is expressed locally. The CCK-8 experiment results showed that circLZIC promotes the proliferation of HUVECS cells. Flow cytometry analysis showed that circLZIC act as an inhibitor of HUVEC cell apoptosis. The expression level of Micro-330-5p can be up-regulated by transfection of small interfering RNA against circLZIC. Further, Starbase predicted that Micro-330-5p could target and regulate NOTCH2. Next, we confirmed that overexpression of Micro-330-5p could significantly reduce the expression of fluorescein using the double Luciferase reporter assay. RIP-qRT-PCR experiment showed that Micro-330-5p and NOTCH2 mRNAs are effectively enriched by ago2 protein. Further, we found that knocking down circLZIC increases the expression of Micro-330-5p and promotes cell apoptosis, while inhibiting the expression of NOTCH2 and cell activity. On the other hand, co-transfection of Micro-330-5p inhibitor decreases Micro-330-5p expression and inhibit cell apoptosis, while increasing NOTCH2 expression and cell activity. In conclusion, CircLZIC regulates HUVEC cell activity by the Micro-330-5p/NOTCH2 signaling pathway, suggesting that circLZIC plays a key role in atherosclerosis development.
Collapse
Affiliation(s)
- Xingping Men
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Aizhen Hu
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Tingting Xu
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
13
|
Chen L, Zhao M, Zhou M, Luo J, Li S, Liu X, Cheng Z, Zhuo Y, Zeng W, Zhang Z, Zhou L. LncRNA RP1-276N6.2 Expression and RP1-276N6.2 Gene Polymorphisms Contribute to the Risk of Coronary Artery Disease in Chinese Han Population. DNA Cell Biol 2023; 42:746-752. [PMID: 37843894 DOI: 10.1089/dna.2023.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in coronary artery disease (CAD) processes. However, the relationship between the gene polymorphisms of lncRNA RP1-276N6.2 as a novel molecule and susceptibility to CAD remains unclear. In our case-control study, 949 CAD patients and 892 healthy controls were genotyped using the TaqMan genotyping assay. The quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay were performed to examine the expression levels of RP1-276N6.2 and SLC22A3(OCT3). We observed that CAD patients had significantly lower RP1-276N6.2 levels than those healthy participants (p < 0.05). Compared to the wild-type genotype, the rs611950 T allele and the rs10499313 AG genotype and G allele significantly increased the premature CAD risk (p = 0.02, p = 0.002, and p = 0.01, respectively), while the rs505000 G allele reduced this risk (p = 0.01); moreover, the rs505000 CG genotype significantly enhanced the delayed CAD risk (p = 0.03), and the rs505000 G allele reduced the expression levels of RP1-276N6.2 and SLC22A3 (p < 0.05 and p < 0.05, respectively). In addition, RP1-276N6.2 positively regulated the mRNA and secreted protein levels of SLC22A3 (p < 0.05). In conclusion, the RP1-276N6.2 gene polymorphisms were closely associated with CAD risk. LncRNA RP1-276N6.2 may be a potential genetic target for CAD early diagnosis and treatment.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Mingming Zhao
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Mingsha Zhou
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jia Luo
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Shan Li
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xing Liu
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zheng Cheng
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yang Zhuo
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Weiqi Zeng
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhiyu Zhang
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Jin HJ, Wu ZH, Zhang BF, Deng J, Xu YD, Wang XY, Song ZY, Lu XW, Wang WT, Zheng XT. CDKN2B-AS1 mediates proliferation and migration of vascular smooth muscle cells induced by insulin. Cell Tissue Res 2023; 394:455-469. [PMID: 37907763 DOI: 10.1007/s00441-023-03836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the intimal hyperplasia in type 2 diabetes mellitus (T2DM) patients after percutaneous coronary intervention. We aimed to investigate the role of lncRNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) in VSMC proliferation and migration, as well as the underlying mechanism. T2DM model mice with carotid balloon injury were used in vivo and mouse aortic vascular smooth muscle cells (MOVAS) stimulated by insulin were used in vitro to assess the role of CDKN2B-AS1 in VSMC proliferation and migration following vascular injury in T2DM state. To investigate cell viability and migration, MTT assay and Transwell assay were conducted. To elucidate the underlying molecular mechanisms, the methylation-specific polymerase chain reaction, RNA immunoprecipitation, RNA-pull down, co-immunoprecipitation, and chromatin immunoprecipitation were performed. In vivo, CDKN2B-AS1 was up-regulated in common carotid artery tissues. In vitro, insulin treatment increased CDKN2B-AS1 level, enhanced MOVAS cell proliferation and migration, while the promoting effect was reversed by CDKN2B-AS1 knockdown. CDKN2B-AS1 forms a complex with enhancer of zeste homolog 2 (EZH2) and DNA methyltransferase (cytosine-5) 1 (DNMT1) to regulate smooth muscle 22 alpha (SM22α) methylation levels. In insulin-stimulated cells, SM22α knockdown abrogated the inhibitory effect of CDKN2B-AS1 knockdown on cell viability and migration. Injection of lentivirus-sh-CDKN2B-AS1 relieved intimal hyperplasia in T2DM mice with carotid balloon injury. Up-regulation of CDKN2B-AS1 induced by insulin promotes cell proliferation and migration by targeting SM22α through forming a complex with EZH2 and DNMT1, thereby aggravating the intimal hyperplasia after vascular injury in T2DM.
Collapse
Affiliation(s)
- Hao-Jie Jin
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Zi-Heng Wu
- Department of Vascular Surgery, School of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Bao-Fu Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Jie Deng
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Yin-Dong Xu
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Xin-Yu Wang
- Institute of Ischemia-Reperfusion Injury, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zheng-Yang Song
- Institute of Ischemia-Reperfusion Injury, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xin-Wu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wan-Tie Wang
- Institute of Ischemia-Reperfusion Injury, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Xiang-Tao Zheng
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China.
| |
Collapse
|
15
|
Sakkers TR, Mokry M, Civelek M, Erdmann J, Pasterkamp G, Diez Benavente E, den Ruijter HM. Sex differences in the genetic and molecular mechanisms of coronary artery disease. Atherosclerosis 2023; 384:117279. [PMID: 37805337 DOI: 10.1016/j.atherosclerosis.2023.117279] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 09/01/2023] [Indexed: 10/09/2023]
Abstract
Sex differences in coronary artery disease (CAD) presentation, risk factors and prognosis have been widely studied. Similarly, studies on atherosclerosis have shown prominent sex differences in plaque biology. Our understanding of the underlying genetic and molecular mechanisms that drive these differences remains fragmented and largely understudied. Through reviewing genetic and epigenetic studies, we identified more than 40 sex-differential candidate genes (13 within known CAD loci) that may explain, at least in part, sex differences in vascular remodeling, lipid metabolism and endothelial dysfunction. Studies with transcriptomic and single-cell RNA sequencing data from atherosclerotic plaques highlight potential sex differences in smooth muscle cell and endothelial cell biology. Especially, phenotypic switching of smooth muscle cells seems to play a crucial role in female atherosclerosis. This matches the known sex differences in atherosclerotic phenotypes, with men being more prone to lipid-rich plaques, while women are more likely to develop fibrous plaques with endothelial dysfunction. To unravel the complex mechanisms that drive sex differences in CAD, increased statistical power and adjustments to study designs and analysis strategies are required. This entails increasing inclusion rates of women, performing well-defined sex-stratified analyses and the integration of multi-omics data.
Collapse
Affiliation(s)
- Tim R Sakkers
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands; Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, 1335 Lee St, Charlottesville, VA, 22908, USA; Department of Biomedical Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA, 22904, USA
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands.
| |
Collapse
|
16
|
Maldonado R, Längst G. The chromatin - triple helix connection. Biol Chem 2023; 404:1037-1049. [PMID: 37506218 DOI: 10.1515/hsz-2023-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Mammalian genomes are extensively transcribed, producing a large number of coding and non-coding transcripts. A large fraction of the nuclear RNAs is physically associated with chromatin, functioning in gene activation and silencing, shaping higher-order genome organisation, such as involvement in long-range enhancer-promoter interactions, transcription hubs, heterochromatin, nuclear bodies and phase transitions. Different mechanisms allow the tethering of these chromatin-associated RNAs (caRNA) to chromosomes, including RNA binding proteins, the RNA polymerases and R-loops. In this review, we focus on the sequence-specific targeting of RNA to DNA by forming triple helical structures and describe its interplay with chromatin. It turns out that nucleosome positioning at triple helix target sites and the nucleosome itself are essential factors in determining the formation and stability of triple helices. The histone H3-tail plays a critical role in triple helix stabilisation, and the role of its epigenetic modifications in this process is discussed.
Collapse
Affiliation(s)
- Rodrigo Maldonado
- Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Gernot Längst
- Regensburg Center for Biochemistry (RCB), University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
17
|
Zhou X, Lian P, Liu H, Wang Y, Zhou M, Feng Z. Causal Associations between Gut Microbiota and Different Types of Dyslipidemia: A Two-Sample Mendelian Randomization Study. Nutrients 2023; 15:4445. [PMID: 37892520 PMCID: PMC10609956 DOI: 10.3390/nu15204445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The determination of a causal association between gut microbiota and a range of dyslipidemia remains uncertain. To clarify these associations, we employed a two-sample Mendelian randomization (MR) analysis utilizing the inverse-variance weighted (IVW) method. This comprehensive analysis investigated the genetic variants that exhibited a significant association (p < 5 × 10-8) with 129 distinct gut microbiota genera and their potential link to different types of dyslipidemia. The results indicated a potential causal association between 22 gut microbiota genera and dyslipidemia in humans. Furthermore, these findings suggested that the impact of gut microbiota on dyslipidemia regulation is dependent on the specific phylum, family, and genus. Bacillota phylum demonstrated the greatest diversity, with 15 distinct genera distributed among eight families. Notably, gut microbiota-derived from the Lachnospiraceae and Lactobacillaceae families exhibit statistically significant associations with lipid levels that contribute to overall health (p < 0.05). The sensitivity analysis indicated that our findings possess robustness (p > 0.05). The findings of our investigation provide compelling evidence that substantiates a causal association between the gut microbiota and dyslipidemia in the human body. It is noteworthy to highlight the significant influence of the Bacillota phylum as a crucial regulator of lipid levels, and the families Lachnospiraceae and Lactobacillaceae should be recognized as probiotics that significantly contribute to this metabolic process.
Collapse
Affiliation(s)
| | | | | | | | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, China; (X.Z.); (P.L.); (H.L.); (Y.W.)
| | - Zhijun Feng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, China; (X.Z.); (P.L.); (H.L.); (Y.W.)
| |
Collapse
|
18
|
Badr EA, Elhelbawy NG, Nagy AO, Sultan AA, Elnaidany SS. Association between cyclin-dependent kinase inhibitor 2B antisense RNA 1 and zinc finger homeobox 3 gene polymorphisms and COVID-19 severity. BMC Infect Dis 2023; 23:568. [PMID: 37653506 PMCID: PMC10472581 DOI: 10.1186/s12879-023-08564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND There is no doubt about the cardiovascular complications of coronavirus disease 2019 (COVID-19). Several genetic studies have demonstrated an association between genetic variants in a region on chromosome 9p21 and in a region on chromosome 16q22 with myocardial infarction (MI) and atrial fibrillation (AF) accompanied by cerebral infarction (CI), respectively. OBJECTIVES MI and CI susceptibility in patients with CDKN2B-AS1 and ZFHX3 polymorphisms, respectively, may have an effect on COVID-19 severity. We aimed to investigate whether there is an association between the cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) rs1333049 and zinc finger homeobox 3 (ZFHX3) rs2106261 single nucleotide polymorphisms (SNPs) and the degree of COVID-19 severity. SUBJECTS AND METHODS This current work was carried out on 360 subjects. They were classified into three groups: 90 severe COVID-19 cases, 90 moderate COVID-19 cases and 180 age- and gender-matched healthy controls. All subjects underwent genotyping of CDKN2B-AS1 (rs1333049) and ZFHX3 (rs2106261) by real-time PCR. RESULTS The frequency of G/C in CDKN2B-AS1 (rs1333049) was higher in severe and moderate COVID-19 patients than in controls (71.1% and 53.3% vs. 37.8%). The frequency of the C/C of CDKN2B-AS1 (rs1333049) was higher in moderate COVID-19 patients than in controls (26.7% vs. 13.3%). There were no significant differences regarding genotype frequency and allelic distribution of ZFHX3 (rs2106261) between COVID-19 patients and healthy controls. CONCLUSION CDKN2B-AS1 (rs1333049) gene polymorphism may play a role in determining the degree of COVID-19 severity. Further studies on its effect on cyclins and cyclin-dependent kinases (CDKs) [not measured in our study] may shed light on new treatment options for COVID-19.
Collapse
Affiliation(s)
- Eman A Badr
- Medical Biochemistry & Molecular Biology, Menofia University, Shebin- El-Kom, Egypt
| | - Nesreen G Elhelbawy
- Medical Biochemistry & Molecular Biology, Menofia University, Shebin- El-Kom, Egypt
| | - Alaa Osama Nagy
- Medical Biochemistry & Molecular Biology, Menofia University, Shebin- El-Kom, Egypt.
| | - Amany A Sultan
- Anaesthesiology, Intensive Care & Pain Management Departments, Faculty of Medicine, Menofia University, Shebin- El-Kom, Egypt
| | - Shereen S Elnaidany
- Medical Biochemistry & Molecular Biology, Menofia University, Shebin- El-Kom, Egypt
| |
Collapse
|
19
|
Sanchez A, Lhuillier J, Grosjean G, Ayadi L, Maenner S. The Long Non-Coding RNA ANRIL in Cancers. Cancers (Basel) 2023; 15:4160. [PMID: 37627188 PMCID: PMC10453084 DOI: 10.3390/cancers15164160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
ANRIL (Antisense Noncoding RNA in the INK4 Locus), a long non-coding RNA encoded in the human chromosome 9p21 region, is a critical factor for regulating gene expression by interacting with multiple proteins and miRNAs. It has been found to play important roles in various cellular processes, including cell cycle control and proliferation. Dysregulation of ANRIL has been associated with several diseases like cancers and cardiovascular diseases, for instance. Understanding the oncogenic role of ANRIL and its potential as a diagnostic and prognostic biomarker in cancer is crucial. This review provides insights into the regulatory mechanisms and oncogenic significance of the 9p21 locus and ANRIL in cancer.
Collapse
Affiliation(s)
| | | | | | - Lilia Ayadi
- CNRS, Université de Lorraine, IMoPA, F-54000 Nancy, France
| | | |
Collapse
|
20
|
Yuan S, Li Y, Wang L, Xu F, Chen J, Levin MG, Xiong Y, Voight BF, Damrauer SM, Gill D, Burgess S, Åkesson A, Michaëlsson K, Li X, Shen X, Larsson SC. Deciphering the genetic architecture of atrial fibrillation offers insights into disease prediction, pathophysiology and downstream sequelae. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.20.23292938. [PMID: 37546828 PMCID: PMC10402218 DOI: 10.1101/2023.07.20.23292938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Aims The study aimed to discover novel genetic loci for atrial fibrillation (AF), explore the shared genetic etiologies between AF and other cardiovascular and cardiometabolic traits, and uncover AF pathogenesis using Mendelian randomization analysis. Methods and results We conducted a genome-wide association study meta-analysis including 109,787 AF cases and 1,165,920 controls of European ancestry and identified 215 loci, among which 91 were novel. We performed Genomic Structural Equation Modeling analysis between AF and four cardiovascular comorbidities (coronary artery disease, ischemic stroke, heart failure, and vneous thromboembolism) and found 189 loci shared across these diseases as well as a universal genetic locus shared by atherosclerotic outcomes (i.e., rs1537373 near CDKN2B). Three genetic loci (rs10740129 near JMJD1C, rs2370982 near NRXN3, and rs9931494 near FTO) were associated with AF and cardiometabolic traits. A polygenic risk score derived from this genome-wide meta-analysis was associated with AF risk (odds ratio 2.36, 95% confidence interval 2.31-2.41 per standard deviation increase) in the UK biobank. This score, combined with age, sex, and basic clinical features, predicted AF risk (AUC 0.784, 95% CI 0.781-0.787) in Europeans. Phenome-wide association analysis of the polygenic risk score identified many AF-related comorbidities of the circulatory, endocrine, and respiratory systems. Phenome-wide and multi-omic Mendelian randomization analyses identified associations of blood lipids and pressure, diabetes, insomnia, obesity, short sleep, and smoking, 27 blood proteins, one gut microbe (genus.Catenibacterium), and 11 blood metabolites with risk to AF. Conclusions This genome-wide association study and trans-omic Mendelian randomization analysis provides insights into disease risk prediction, pathophysiology and downstream sequelae.
Collapse
Affiliation(s)
- Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yuying Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Lijuan Wang
- School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fengzhe Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jie Chen
- School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Michael G Levin
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Ying Xiong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin F. Voight
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott M Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Agneta Åkesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karl Michaëlsson
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xue Li
- School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xia Shen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Susanna C. Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Sun L, Li X, Luo H, Guo H, Zhang J, Chen Z, Lin F, Zhao G. EZH2 can be used as a therapeutic agent for inhibiting endothelial dysfunction. Biochem Pharmacol 2023; 213:115594. [PMID: 37207700 DOI: 10.1016/j.bcp.2023.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of polycomb repressor complex 2 and plays important roles in endothelial cell homeostasis. EZH2 functionally methylates lysine 27 of histone H3 and represses gene expression through chromatin compaction. EZH2 mediates the effects of environmental stimuli by regulating endothelial functions, such as angiogenesis, endothelial barrier integrity, inflammatory signaling, and endothelial mesenchymal transition. Numerous studies have been conducted to determine the significance of EZH2 in endothelial function. The aim of this review is to provide a concise summary of the roles EZH2 plays in endothelial function and elucidate its therapeutic potential in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Sun
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Xuefang Li
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Hui Luo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Huige Guo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Jie Zhang
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Zhigang Chen
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Fei Lin
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| | - Guoan Zhao
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| |
Collapse
|
22
|
Del Moral-Morales A, Salgado-Albarrán M, Sánchez-Pérez Y, Wenke NK, Baumbach J, Soto-Reyes E. CTCF and Its Multi-Partner Network for Chromatin Regulation. Cells 2023; 12:1357. [PMID: 37408191 DOI: 10.3390/cells12101357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Architectural proteins are essential epigenetic regulators that play a critical role in organizing chromatin and controlling gene expression. CTCF (CCCTC-binding factor) is a key architectural protein responsible for maintaining the intricate 3D structure of chromatin. Because of its multivalent properties and plasticity to bind various sequences, CTCF is similar to a Swiss knife for genome organization. Despite the importance of this protein, its mechanisms of action are not fully elucidated. It has been hypothesized that its versatility is achieved through interaction with multiple partners, forming a complex network that regulates chromatin folding within the nucleus. In this review, we delve into CTCF's interactions with other molecules involved in epigenetic processes, particularly histone and DNA demethylases, as well as several long non-coding RNAs (lncRNAs) that are able to recruit CTCF. Our review highlights the importance of CTCF partners to shed light on chromatin regulation and pave the way for future exploration of the mechanisms that enable the finely-tuned role of CTCF as a master regulator of chromatin.
Collapse
Affiliation(s)
- Aylin Del Moral-Morales
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City 05348, Mexico
- Institute for Computational Systems Biology, University of Hamburg, D-22607 Hamburg, Germany
| | - Marisol Salgado-Albarrán
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City 05348, Mexico
- Institute for Computational Systems Biology, University of Hamburg, D-22607 Hamburg, Germany
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - Nina Kerstin Wenke
- Institute for Computational Systems Biology, University of Hamburg, D-22607 Hamburg, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, D-22607 Hamburg, Germany
- Computational BioMedicine Lab., University of Southern Denmark, DK-5230 Odense, Denmark
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City 05348, Mexico
| |
Collapse
|
23
|
Zhang S, Sun Y, Xiao Q, Niu M, Pan X, Zhu X. Lnc_000048 Promotes Histone H3K4 Methylation of MAP2K2 to Reduce Plaque Stability by Recruiting KDM1A in Carotid Atherosclerosis. Mol Neurobiol 2023; 60:2572-2586. [PMID: 36689133 PMCID: PMC10039837 DOI: 10.1007/s12035-023-03214-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Stabilizing and inhibiting plaque formation is a key challenge for preventing and treating ischemic stroke. KDM1A-mediated histone modifications, which involved in the development of training immunity, ultimately exacerbate the outcomes of inflammation. Although lncRNAs can recruit KDM1A to participate in histone methylation modification and regulate inflammation, cell proliferation, and other biological processes, little is known about the role of KDM1A-lncRNA interaction during atherosclerosis. The present study sought to delineate the effect of the interaction between lnc_000048 and KDM1A on plaque rupture in carotid atherosclerosis, as well as the potential mechanism. Our results revealed that lnc_000048 reduced the activity of histone demethylase and activated MAP2K2 expression by interacting with KDM1A. Furthermore, upregulated lnc_000048 indirectly regulated ERK phosphorylation by MAP2K2 and eventually activated the inflammatory response through the MAPK pathway, which was involved in atherosclerosis. Importantly, our study using ApoE-/- mice confirmed the regulatory role of lnc_000048 in promoting inflammation and collagen degradation in atherosclerotic plaques. These results suggest that targeting the lnc_000048 /KDM1A/MAP2K2/ERK axis may be a promising strategy for preventing atherosclerosis.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengying Niu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
24
|
Chen Y, Zhang Y, Li S, Zhou L, Li H, Li D, Wang Y, Yang H. Cardiometabolic diseases, polygenic risk score, APOE genotype, and risk of incident dementia: A population-based prospective cohort study. Arch Gerontol Geriatr 2023; 105:104853. [PMID: 36347157 DOI: 10.1016/j.archger.2022.104853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/07/2022]
Abstract
Objective We aimed to prospective investigate the association between cardiometabolic diseases (CMDs) with dementia, and to examine whether genetic factors and CMDs jointly contribute to the incidence of dementia. Methods We used data from the UK biobank of 204,646 adults aged 37-73 free of dementia at baseline. Genetic risk for dementia including APOE ε4 status and polygenic risk score (PRS) categorized as low, intermediate, and high. CMDs including ischemic heart disease (IHD), stroke, and type 2 diabetes (T2D) were confirmed by touchscreen questionnaires, medical examinations, and hospital inpatient records. Results Over the follow-up (median: 12.5 years), 5,750 participants developed dementia. The HRs (95% CI) of those with APOE ε4 carriers and high PRS were 3.16 (3.00-3.33) and 1.50 (1.41-1.60), respectively. The risk of dementia was 70% higher among those with CMDs (HR: 1.70; 95% CI: 1.60-1.82). In joint effect analyses, compared to no CMDs and APOE ε4 non-carriers, the HRs (95% CIs) of dementia were 3.53 (3.31-3.76)/2.06 (1.89-2.23) in participants with only APOE ε4 carriers and CMDs, and 5.06 (4.64-5.53) for those with APOE ε4 carriers plus CMDs. Compared to no CMDs and low PRS, the HRs (95% CIs) of dementia were 1.29 (1.19-1.40)/1.60 (1.48-1.73) in participants with only intermediate and high PRS, and 2.00 (1.79-2.23)/2.63 (2.38-2.92) for those with intermediate, and high PRS plus CMDs. Moreover, there were significant additive and multiplication interactions between CMDs and APOE ε4 carriers of dementia, but only multiplication interaction was observed for PRS. Conclusions CMDs were associated with higher risk of dementia regardless of genetic risk for dementia.
Collapse
Affiliation(s)
- Yanchun Chen
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shu Li
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lihui Zhou
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Huiping Li
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Dun Li
- The Discipline of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaogang Wang
- School of Public Health, Tianjin Medical University, Tianjin, China; The Discipline of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongxi Yang
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
25
|
Warwick T, Brandes RP, Leisegang MS. Computational Methods to Study DNA:DNA:RNA Triplex Formation by lncRNAs. Noncoding RNA 2023; 9:ncrna9010010. [PMID: 36827543 PMCID: PMC9965544 DOI: 10.3390/ncrna9010010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) impact cell function via numerous mechanisms. In the nucleus, interactions between lncRNAs and DNA and the consequent formation of non-canonical nucleic acid structures seems to be particularly relevant. Along with interactions between single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA), such as R-loops, ssRNA can also interact with double-stranded DNA (dsDNA) to form DNA:DNA:RNA triplexes. A major challenge in the study of DNA:DNA:RNA triplexes is the identification of the precise RNA component interacting with specific regions of the dsDNA. As this is a crucial step towards understanding lncRNA function, there exist several computational methods designed to predict these sequences. This review summarises the recent progress in the prediction of triplex formation and highlights important DNA:DNA:RNA triplexes. In particular, different prediction tools (Triplexator, LongTarget, TRIPLEXES, Triplex Domain Finder, TriplexFFP, TriplexAligner and Fasim-LongTarget) will be discussed and their use exemplified by selected lncRNAs, whose DNA:DNA:RNA triplex forming potential was validated experimentally. Collectively, these tools revealed that DNA:DNA:RNA triplexes are likely to be numerous and make important contributions to gene expression regulation.
Collapse
Affiliation(s)
- Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site RheinMain, 60590 Frankfurt, Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site RheinMain, 60590 Frankfurt, Germany
| | - Matthias S. Leisegang
- Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site RheinMain, 60590 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-6301-6996; Fax: +49-69-6301-7668
| |
Collapse
|
26
|
Naringenin Prevents Oxidative Stress and Inflammation in LPS-Induced Liver Injury through the Regulation of LncRNA-mRNA in Male Mice. Molecules 2022; 28:molecules28010198. [PMID: 36615393 PMCID: PMC9821796 DOI: 10.3390/molecules28010198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Inflammation accompanies hepatic dysfunction resulting from tissue oxidative damage. Naringenin (Nar), a natural flavanone, has known antioxidant and anti-inflammatory activities, but its mechanism of action in the regulation of liver dysfunction requires further investigation. In this study, the role of naringenin in lipopolysaccharide (LPS)-induced hepatic oxidative stress and inflammation was explored, as well as its mechanism by transcriptome sequencing. The results indicated that compared with the LPS group, Nar treatment caused a significant increase in the mRNA levels of antioxidant factors glutamate-cysteine ligase catalytic subunit (GCLC) and glutamate-cysteine ligase modifier subunit (GCLM), yet the expression of related inflammatory factors (MCP1, TNFα, IL-1β and IL-6) showed less of an increase. RNA sequencing identified 36 differentially expressed lncRNAs and 603 differentially expressed mRNAs. KEGG enrichment analysis indicated that oxidative stress and inflammation pathways are meticulously linked with naringenin treatment. The Co-lncRNA-mRNA network was also constructed. Tissue expression profiles showed that lncRNA played a higher role in the liver. Subsequently, expression levels of inflammatory factors indicated that lncRNAs and target mRNAs were significantly reduced after naringenin treatment in mouse liver AML12 cells and obese mouse. These results suggest that naringenin helps to prevent liver dysfunction through the regulation of lncRNA-mRNA axis to reduce oxidative stress and inflammatory factors.
Collapse
|
27
|
Wei B, Liu Y, Li H, Peng Y, Luo Z. Effect of 9p21.3 (lncRNA and CDKN2A/2B) variant on lipid profile. Front Cardiovasc Med 2022; 9:946289. [PMID: 36158791 PMCID: PMC9489913 DOI: 10.3389/fcvm.2022.946289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background Several 9p21.3 variants, such as rs1333049, rs4977574, rs10757274, rs10757278, and rs10811661, identified from recent genome-wide association studies (GWASs) are reported to be associated with coronary artery disease (CAD) susceptibility but independent of dyslipidemia. This study investigated whether these 9p21.3 variants influenced lipid profiles. Methods and results By searching the PubMed and Cochrane databases, 101,099 individuals were included in the analysis. The consistent finding for the rs1333049 C allele on lipid profiles increased the triglyceride (TG) levels. Moreover, the rs4977574 G allele and the rs10757274 G allele, respectively, increased low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels. However, the rs10811661 C allele largely reduced LDL-C levels. Subgroup analyses indicated that the effects of the rs1333049 C allele, rs4977574 G allele, and rs10757274 G allele on lipid profiles were stronger in Whites compared with Asians. In contrast, the effect of the rs10811661 C allele on lipid profiles was stronger in Asians compared with Whites. Conclusion The rs1333049 C allele, rs4977574 G allele, and rs10757274 G allele of lncRNA, and the rs10811661 G allele of CDKN2A/2B had a significant influence on lipid levels, which may help the understanding of the underlying mechanisms between 9p21.3 variants and CAD.
Collapse
Affiliation(s)
- Baozhu Wei
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
- *Correspondence: Baozhu Wei,
| | - Yang Liu
- Department of Endocrinology, China Resources and WISCO General Hospital, Wuhan, China
| | - Hang Li
- Department of Gerontology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yuanyuan Peng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhi Luo
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Zhi Luo,
| |
Collapse
|
28
|
The Roles of Tumor-Associated Macrophages in Prostate Cancer. JOURNAL OF ONCOLOGY 2022; 2022:8580043. [PMID: 36117852 PMCID: PMC9473905 DOI: 10.1155/2022/8580043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
The morbidity of prostate cancer (PCa) is rising year by year, and it has become the primary cause of tumor-related mortality in males. It is widely accepted that macrophages account for 50% of the tumor mass in solid tumors and have emerged as a crucial participator in multiple stages of PCa, with the huge potential for further treatment. Oftentimes, tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) behave like M2-like phenotypes that modulate malignant hallmarks of tumor lesions, ranging from tumorigenesis to metastasis. Several clinical studies indicated that mean TAM density was higher in human PCa cores versus benign prostatic hyperplasia (BPH), and increased biopsy TAM density potentially predicts worse clinicopathological characteristics as well. Therefore, TAM represents a promising target for therapeutic intervention either alone or in combination with other strategies to halt the “vicious cycle,” thus improving oncological outcomes. Herein, we mainly focus on the fundamental aspects of TAMs in prostate adenocarcinoma, while reviewing the mechanisms responsible for macrophage recruitment and polarization, which has clinical translational implications for the exploitation of potentially effective therapies against TAMs.
Collapse
|
29
|
Keshavarz Alikhani H, Pourhamzeh M, Seydi H, Shokoohian B, Hossein-khannazer N, Jamshidi-adegani F, Al-Hashmi S, Hassan M, Vosough M. Regulatory Non-Coding RNAs in Familial Hypercholesterolemia, Theranostic Applications. Front Cell Dev Biol 2022; 10:894800. [PMID: 35813199 PMCID: PMC9260315 DOI: 10.3389/fcell.2022.894800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a common monogenic disease which is associated with high serum levels of low-density lipoprotein cholesterol (LDL-C) and leads to atherosclerosis and cardiovascular disease (CVD). Early diagnosis and effective treatment strategy can significantly improve prognosis. Recently, non-coding RNAs (ncRNAs) have emerged as novel biomarkers for the diagnosis and innovative targets for therapeutics. Non-coding RNAs have essential roles in the regulation of LDL-C homeostasis, suggesting that manipulation and regulating ncRNAs could be a promising theranostic approach to ameliorate clinical complications of FH, particularly cardiovascular disease. In this review, we briefly discussed the mechanisms and pathophysiology of FH and novel therapeutic strategies for the treatment of FH. Moreover, the theranostic effects of different non-coding RNAs for the treatment and diagnosis of FH were highlighted. Finally, the advantages and disadvantages of ncRNA-based therapies vs. conventional therapies were discussed.
Collapse
Affiliation(s)
- Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahare Shokoohian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jamshidi-adegani
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Sulaiman Al-Hashmi
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- *Correspondence: Massoud Vosough,
| |
Collapse
|
30
|
High expression of lncRNA PELATON serves as a risk factor for the incidence and prognosis of acute coronary syndrome. Sci Rep 2022; 12:8030. [PMID: 35577857 PMCID: PMC9110396 DOI: 10.1038/s41598-022-11260-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
Atherosclerosis is the primary origin of acute coronary syndrome (ACS) diseases. Previous studies have shown that lncRNA plaque-enriched long noncoding RNA in atherosclerotic macrophage regulation (lncRNA PELATON) is a specific lncRNA in macrophage nuclei. This study aims to identify serum lncRNA PELATON as a biomarker for assessing the incidence and prognosis of ACS. Levels of serum lncRNA PELATON were detected by real-time polymerase chain reaction (RT–PCR) in patients with ACS and healthy individuals. The clinical significance of lncRNA PELATON in patients with ACS was assessed by analyzing receiver operating characteristic and survival curves. The serum levels of lncRNA PELATON in patients with ACS were significantly higher than those in healthy individuals. LncRNA PELATON expression was positively correlated with the expression levels of high sensitivity C-reactive protein (hs-CRP), cardiac troponin T (cTnT) and creatine kinase MB (CK-MB) (p < 0.05). LncRNA PELATON can be used as a potential diagnostic index with an AUC of 0.706 for unstable angina pectoris (UA), 0.782 for acute non-ST-segment elevation myocardial infarction (NSTEMI) and 0.900 for acute ST-segment elevation myocardial infarction (STEMI). The incidence of major cardiovascular events in patients with ACS with high lncRNA PELATON expression was higher than that in those with low lncRNA PELATON expression. However, the mortality between patients in the high and low lncRNA PELATON groups was not significantly different. This study showed that higher levels of lncRNA PELATON were negatively correlated with the prognosis of ACS, revealing the potential of this measurement to serve as an index to assess the incidence and prognosis of ACS.
Collapse
|
31
|
Gui Y, Zheng H, Cao RY. Foam Cells in Atherosclerosis: Novel Insights Into Its Origins, Consequences, and Molecular Mechanisms. Front Cardiovasc Med 2022; 9:845942. [PMID: 35498045 PMCID: PMC9043520 DOI: 10.3389/fcvm.2022.845942] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Foam cells play a vital role in the initiation and development of atherosclerosis. This review aims to summarize the novel insights into the origins, consequences, and molecular mechanisms of foam cells in atherosclerotic plaques. Foam cells are originated from monocytes as well as from vascular smooth muscle cells (VSMC), stem/progenitor cells, and endothelium cells. Novel technologies including lineage tracing and single-cell RNA sequencing (scRNA-seq) have revolutionized our understanding of subtypes of monocyte- and VSMC-derived foam cells. By using scRNA-seq, three main clusters including resident-like, inflammatory, and triggering receptor expressed on myeloid cells-2 (Trem2 hi ) are identified as the major subtypes of monocyte-derived foam cells in atherosclerotic plaques. Foam cells undergo diverse pathways of programmed cell death including apoptosis, autophagy, necroptosis, and pyroptosis, contributing to the necrotic cores of atherosclerotic plaques. The formation of foam cells is affected by cholesterol uptake, efflux, and esterification. Novel mechanisms including nuclear receptors, non-coding RNAs, and gut microbiota have been discovered and investigated. Although the heterogeneity of monocytes and the complexity of non-coding RNAs make obstacles for targeting foam cells, further in-depth research and therapeutic exploration are needed for the better management of atherosclerosis.
Collapse
Affiliation(s)
- Yuzhou Gui
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai, China
| | - Hongchao Zheng
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Richard Y. Cao
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Secreted frizzled-related protein 4 exerts anti-atherosclerotic effects by reducing inflammation and oxidative stress. Eur J Pharmacol 2022; 923:174901. [PMID: 35364070 DOI: 10.1016/j.ejphar.2022.174901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
Abstract
Atherosclerosis and its sequelae, such as coronary artery disease (CAD), are the most common diseases worldwide and the leading causes of morbidity and mortality in most countries. Our previous studies have shown that circulating secreted frizzled-related protein 4 (SFRP4) levels are increased in patients with CAD. However, the role of SFRP4 in the development of atherosclerosis remains unclear; thus, the purpose of this study was to determine the effect of SFRP4 on high-fat diet (HFD)-induced atherosclerosis and explore the possible mechanisms. In this study, we found for the first time that administration of recombinant SFRP4 alleviates atherosclerosis in ApoE-/- mice by reducing inflammation and oxidative stress. In addition, the anti-atherosclerotic effect of SFRP4 was associated with inhibition of the Wnt/β-catenin signaling pathway, and Wnt1 overexpression abolished the anti-atherosclerotic effects of SFRP4. Taken together, our results highlight the potential beneficial effect of SFRP4 as a therapeutic agent for atherosclerosis and CAD.
Collapse
|
33
|
Yang M, Yin E, Xu Y, Liu Y, Li T, Dong Z, Tai W. CDKN2B antisense RNA 1 expression alleviates idiopathic pulmonary fibrosis by functioning as a competing endogenouse RNA through the miR-199a-5p/Sestrin-2 axis. Bioengineered 2022; 13:7746-7759. [PMID: 35291918 PMCID: PMC9208479 DOI: 10.1080/21655979.2022.2044252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an idiopathic interstitial lung disease. At present, the pathogenesis of IPF has not been fully elucidated, which has affected the development of effective treatment methods. Here, we explored the function and potential mechanism of long noncoding RNA (lncRNA) CDKN2B antisense RNA 1 (CDKN2B-AS1) in IPF.Transforming growth factor-β (TGF-β) and bleomycin (BLM) were used to induce IPF in cells and animal models. Real Time quantitative Polymerase Chain Reaction (RT-qPCR) showed the expression of CDKN2B-AS1, miR-199a-5p and Sestrin-2 (SESN2) in cells and tissues. The double luciferase reporter gene assay confirmed the targeting relationship among CDKN2B-AS1, miR-199a-5p, and SESN2. Related protein levels were detected by Western blot combined with Cell Counting Kit-8 (CCK-8), wound healing, and flow cytometry to analyze cell proliferation, migration, and apoptosis. The pathological characteristics of mouse lung tissue were determined by Hematoxylin-eosin (HE) and Masson staining. We found that the expression of CDKN2B-AS1 was decreased in TGF-β-treated cells and BLM-treated mice. Overexpression of CDKN2B-AS1 inhibited cell proliferation and migration, promoted apoptosis, decreased the expression of fibrosis-related proteins and promoted autophagy. In addition, overexpression of CDKN2B-AS1 alleviated pulmonary fibrosis in BLM-treated mice. Mechanistically, CDKN2B-AS1 acts as a miR-199a-5p sponge to regulate SESN2 expression. Our results indicate the importance of the CDKN2B-AS1/miR-199a-5p/SESN2 axis.
Collapse
Affiliation(s)
- Mei Yang
- Department of Respiration, The Sencond Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.,Department of Respiratory and Critical Care, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Egao Yin
- Department of Respiration, The Sencond Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yiheng Xu
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, the Sencond Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yongjun Liu
- Department of Respiration, The Sencond Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ting Li
- Department of Respiration, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China.,Department of Respiration, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Zhaoxing Dong
- Department of Respiration, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China.,Department of Respiration, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Wenlin Tai
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, the Sencond Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
34
|
Niu Y, Chen J, Qiao Y. Epigenetic Modifications in Tumor-Associated Macrophages: A New Perspective for an Old Foe. Front Immunol 2022; 13:836223. [PMID: 35140725 PMCID: PMC8818998 DOI: 10.3389/fimmu.2022.836223] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
Tumorigenesis is frequently accompanied by chronic inflammation, and the tumor microenvironment (TME) can be considered an ecosystem that consists of tumor cells, endotheliocytes, fibroblasts, immune cells and acellular components such as extracellular matrix. For tumor cells, their survival advantages are dependent on both genetic and epigenetic alterations, while other cells mainly present epigenetic modifications. Macrophages are the most plastic type of immune cells and undergo diverse epigenetic alterations in the TME. Some of these epigenetic modifications mitigate against cancer progression, and others accelerate this process. Due to the complex roles of macrophages in the TME, it is urgent to understand their epigenetic modifications associated with the TME. Here, we mainly summarize recent findings on TME-associated epigenetic alterations of tumor-associated macrophages (TAMs), including DNA methylation, posttranslational modifications of histone proteins, chromatin remodeling, and noncoding RNA-mediated epigenetic regulation. At the end of this review, we also discuss the translational potential of these epigenetic modifications for developing novel cancer therapies targeting TAMs.
Collapse
Affiliation(s)
- Yuqin Niu
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jianxiang Chen
- School of Pharmacy, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Yiting Qiao, ; Jianxiang Chen,
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Yiting Qiao, ; Jianxiang Chen,
| |
Collapse
|
35
|
Marchandot B, Curtiaud A, Matsushita K, Trimaille A, Host A, Faller E, Garbin O, Akladios C, Jesel L, Morel O. Endometriosis and cardiovascular disease. EUROPEAN HEART JOURNAL OPEN 2022; 2:oeac001. [PMID: 35919664 PMCID: PMC9242051 DOI: 10.1093/ehjopen/oeac001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Indexed: 11/21/2022]
Abstract
Endometriosis is a chronic gynaecological disease affecting 1 in 10 reproductive-age women. It is defined as the presence of endometrium-like tissue outside the uterus. Beyond this placid anatomical definition, endometriosis is a complex, hormonal, inflammatory, and systemic condition that poses significant familial, psychological, and economic burden. The interaction between the cardiovascular system and endometriosis has become a field of interest as the underlying mutual mechanisms become better understood. On the basis of accumulating fundamental and clinical evidence, it is likely that there exists a close relationship between endometriosis and the cardiovascular system. Therefore, investigating the endometriosis-cardiovascular interaction is highly clinically significant. In this review, we highlight our current understanding of the pathophysiology of endometriosis with systemic hormonal, pro-inflammatory, pro-angiogenic, immunologic, and genetic processes beyond the peritoneal microenvironment. Additionally, we provide current clinical evidence about how endometriosis interacts with cardiovascular risk factors and cardiovascular disease (CVD). To date, only small associations between endometriosis and CVD have been reported in observational studies, inherently limited by the potential influence of unmeasured confounding. Cardiovascular disease in women with endometriosis remains understudied, under-recognized, and underdiagnosed. More detailed study of the cardiovascular-endometriosis interaction is needed to fully understand its clinical relevance, underlying pathophysiology, possible means of early diagnosis and prevention.
Collapse
Affiliation(s)
- Benjamin Marchandot
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Anais Curtiaud
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Kensuke Matsushita
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France
| | - Antonin Trimaille
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France
| | - Aline Host
- Department of Obstetrics and Gynecology, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- ENDOALSACE, Strasbourg Expert Center for Endometriosis, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Emilie Faller
- Department of Obstetrics and Gynecology, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- ENDOALSACE, Strasbourg Expert Center for Endometriosis, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Olivier Garbin
- Department of Obstetrics and Gynecology, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- ENDOALSACE, Strasbourg Expert Center for Endometriosis, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Chérif Akladios
- Department of Obstetrics and Gynecology, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- ENDOALSACE, Strasbourg Expert Center for Endometriosis, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Laurence Jesel
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France
| | - Olivier Morel
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France
| |
Collapse
|
36
|
Rozhkova AV, Dmitrieva VG, Nosova EV, Dergunov AD, Limborska SA, Dergunova LV. Genomic Variants and Multilevel Regulation of ABCA1, ABCG1, and SCARB1 Expression in Atherogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8120170. [PMID: 34940525 PMCID: PMC8707585 DOI: 10.3390/jcdd8120170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.
Collapse
Affiliation(s)
- Alexandra V. Rozhkova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Veronika G. Dmitrieva
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Elena V. Nosova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence:
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| |
Collapse
|
37
|
Li Y, Zhang L, Ren P, Yang Y, Li S, Qin X, Zhang M, Zhou M, Liu W. Qing-Xue-Xiao-Zhi formula attenuates atherosclerosis by inhibiting macrophage lipid accumulation and inflammatory response via TLR4/MyD88/NF-κB pathway regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153812. [PMID: 34753029 DOI: 10.1016/j.phymed.2021.153812] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Atherosclerosis is a progressive chronic disease characterised by aberrant lipid metabolism and a maladaptive inflammatory response. As atherosclerosis-driven cardiovascular disease remains the major cause of morbidity and mortality worldwide, more effective clinical therapies are urgently needed. Traditional Chinese Medicine (TCM) has demonstrated efficacy against atherosclerosis, with Qing-Xue-Xiao-Zhi formula (QXXZF) having been approved for clinical treatment of patients with atherosclerosis. However, the mechanisms underlying the anti-atherosclerotic activity of QXXZF remain unknown. PURPOSE To investigate the anti-atherosclerotic effect of QXXZF and reveal its mechanisms using preclinical models. METHODS In vivo, apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat and high-choline diet (HHD) to induce atherosclerosis. Serum metabolomic profiling was used to identify the concentration of trimethylamine N-oxide (TMAO) in mice. In vitro, RAW264.7 macrophages and bone marrow-derived macrophages (BMDMs) from WT and TLR4-/- C57BL/6 mice were used to explore the effects of QXXZF on macrophages. After confirming the therapeutic effects of QXXZF, mass spectrometry and network pharmacology analyses were used to predict and investigate the main components and the anti-atherogenic mechanisms of QXXZF in the context of atherosclerosis. RESULTS Our results showed QXXZF significantly suppressed the development of atherosclerosis, as evidenced by the decreased atherosclerotic plaques in the aorta and aortic root, reduced plasma lipid levels and decreased serum TMAO content in HHD-fed ApoE-/- mice. Meanwhile, QXXZF effectively reduced foam cell formation in oxidized low-density lipoprotein (ox-LDL) and TMAO-stimulated RAW264.7 macrophages and BMDMs. Moreover, QXXZF facilitated reverse cholesterol transport (RCT) in macrophages by upregulating the expression of cholesterol efflux-related genes PPARγ/LXRα/ABCA1/ABCG1. Mechanistic studies revealed that QXXZF influenced cholesterol metabolism by inhibiting the TLR4-mediated nuclear factor kappa B (NF-κB) axis. Importantly, TLR4 knockout abolished the influence of QXXZF on macrophages. CONCLUSION QXXZF promotes lipid efflux and inhibits macrophage-mediated inflammation, producing a therapeutic effect against atherosclerosis. Our study provides new insight into the mechanism of QXXZF against atherosclerosis.
Collapse
Affiliation(s)
- Yue Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Backstreet of Art Gallery, Dongcheng District, Beijing 100010, China.; Beijing Institute of Traditional Chinese Medicine,23 Backstreet of Art Gallery, Dongcheng District, Beijing 100010, China
| | - Lei Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Backstreet of Art Gallery, Dongcheng District, Beijing 100010, China.; Beijing Institute of Traditional Chinese Medicine,23 Backstreet of Art Gallery, Dongcheng District, Beijing 100010, China
| | - Pan Ren
- Weihai Hospital of Traditional Chinese Medicine, Shandong 264200, China
| | - Yang Yang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Sinai Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Backstreet of Art Gallery, Dongcheng District, Beijing 100010, China.; Beijing Institute of Traditional Chinese Medicine,23 Backstreet of Art Gallery, Dongcheng District, Beijing 100010, China
| | - Xiaomei Qin
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Backstreet of Art Gallery, Dongcheng District, Beijing 100010, China.; Beijing Institute of Traditional Chinese Medicine,23 Backstreet of Art Gallery, Dongcheng District, Beijing 100010, China
| | - Meng Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Backstreet of Art Gallery, Dongcheng District, Beijing 100010, China.; Beijing Institute of Traditional Chinese Medicine,23 Backstreet of Art Gallery, Dongcheng District, Beijing 100010, China
| | - Mingxue Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Backstreet of Art Gallery, Dongcheng District, Beijing 100010, China.; Beijing Institute of Traditional Chinese Medicine,23 Backstreet of Art Gallery, Dongcheng District, Beijing 100010, China..
| | - Weihong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Backstreet of Art Gallery, Dongcheng District, Beijing 100010, China.; Beijing Institute of Traditional Chinese Medicine,23 Backstreet of Art Gallery, Dongcheng District, Beijing 100010, China..
| |
Collapse
|
38
|
Zhang H, Hao Y, Yang A, Xie L, Ding N, Xu L, Wang Y, Yang Y, Bai Y, Zhang H, Jiang Y. TGFB3-AS1 promotes Hcy-induced inflammation of macrophages via inhibiting the maturity of miR-144 and upregulating Rap1a. MOLECULAR THERAPY - NUCLEIC ACIDS 2021; 26:1318-1335. [PMID: 34853730 PMCID: PMC8609111 DOI: 10.1016/j.omtn.2021.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/23/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
It has been demonstrated that homocysteine (Hcy) can cause inflammatory diseases. Long noncoding RNAs (lncRNA) and microRNAs (miRNAs) are involved in this biological process, but the mechanism underlying Hcy-induced inflammation remains poorly understood. Here, we found that lncRNA TGFB3-AS1 was highly expressed in macrophages treated with Hcy and the peripheral blood monocytes from cystathionine beta-synthase heterozygous knockout (CBS+/−) mice with a high-methionine diet using lncRNA microarray. In vivo and in vitro experiments further confirmed that TGFB3-AS1 accelerated Hcy-induced inflammation of macrophages through the Rap1a/wnt signaling pathway. Meanwhile, TGFB3-AS1 interacted with Rap1a and reduced degradation of Rap1a through inhibiting its ubiquitination in macrophages treated with Hcy. Rap1a mediated inflammation induced by Hcy and serves as a direct target of miR-144. Moreover, TGFB3-AS1 regulated miR-144 by binding to pri-miR-144 and inhibiting its maturation, which further regulated Rap1a expression. More importantly, we found that high expression of TGFB3-AS1 was positively correlated with the levels of Hcy and proinflammatory cytokines in serum of healthy individuals and patients with HHcy. Our study revealed a novel mechanism by which TGFB3-AS1 promoted inflammation of macrophages through inhibiting miR-144 maturation to stay miR-144 regulated inhibition of functional Rap1a expression.
Collapse
Affiliation(s)
- Hui Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Yinju Hao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Anning Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Lin Xie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Ning Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Lingbo Xu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Yanhua Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Yong Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Department of Neurology, Region People's Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yongsheng Bai
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Department of Neurology, Region People's Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Huiping Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Corresponding author Huiping Zhang, Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, 804 Sheng Li Street, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China.
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
- Corresponding author Yideng Jiang, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Sheng Li Street, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China.
| |
Collapse
|
39
|
Salybekov AA, Wolfien M, Kobayashi S, Steinhoff G, Asahara T. Personalized Cell Therapy for Patients with Peripheral Arterial Diseases in the Context of Genetic Alterations: Artificial Intelligence-Based Responder and Non-Responder Prediction. Cells 2021; 10:3266. [PMID: 34943774 PMCID: PMC8699290 DOI: 10.3390/cells10123266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023] Open
Abstract
Stem/progenitor cell transplantation is a potential novel therapeutic strategy to induce angiogenesis in ischemic tissue, which can prevent major amputation in patients with advanced peripheral artery disease (PAD). Thus, clinicians can use cell therapies worldwide to treat PAD. However, some cell therapy studies did not report beneficial outcomes. Clinical researchers have suggested that classical risk factors and comorbidities may adversely affect the efficacy of cell therapy. Some studies have indicated that the response to stem cell therapy varies among patients, even in those harboring limited risk factors. This suggests the role of undetermined risk factors, including genetic alterations, somatic mutations, and clonal hematopoiesis. Personalized stem cell-based therapy can be developed by analyzing individual risk factors. These approaches must consider several clinical biomarkers and perform studies (such as genome-wide association studies (GWAS)) on disease-related genetic traits and integrate the findings with those of transcriptome-wide association studies (TWAS) and whole-genome sequencing in PAD. Additional unbiased analyses with state-of-the-art computational methods, such as machine learning-based patient stratification, are suited for predictions in clinical investigations. The integration of these complex approaches into a unified analysis procedure for the identification of responders and non-responders before stem cell therapy, which can decrease treatment expenditure, is a major challenge for increasing the efficacy of therapies.
Collapse
Affiliation(s)
- Amankeldi A. Salybekov
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan;
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan
| | - Markus Wolfien
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstrasse 69, 18057 Rostock, Germany;
| | - Shuzo Kobayashi
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan;
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan
| | - Gustav Steinhoff
- Department of Cardiac Surgery, Rostock University Medical Center, 18059 Rostock, Germany;
- Department Life, Light & Matter, University of Rostock, 18057 Rostock, Germany
| | - Takayuki Asahara
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan
| |
Collapse
|
40
|
Bao MH, Zhang RQ, Huang XS, Zhou J, Guo Z, Xu BF, Liu R. Transcriptomic and Proteomic Profiling of Human Stable and Unstable Carotid Atherosclerotic Plaques. Front Genet 2021; 12:755507. [PMID: 34804124 PMCID: PMC8599967 DOI: 10.3389/fgene.2021.755507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/12/2021] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease with high prevalence and mortality. The rupture of atherosclerotic plaque is the main reason for the clinical events caused by atherosclerosis. Making clear the transcriptomic and proteomic profiles between the stabe and unstable atherosclerotic plaques is crucial to prevent the clinical manifestations. In the present study, 5 stable and 5 unstable human carotid atherosclerotic plaques were obtained by carotid endarterectomy. The samples were used for the whole transcriptome sequencing (RNA-Seq) by the Next-Generation Sequencing using the Illumina HiSeq, and for proteome analysis by HPLC-MS/MS. The lncRNA-targeted genes and circRNA-originated genes were identified by analyzing their location and sequence. Gene Ontology and KEGG enrichment was carried out to analyze the functions of differentially expressed RNAs and proteins. The protein-protein interactions (PPI) network was constructed by the online tool STRING. The consistency of transcriptome and proteome were analyzed, and the lncRNA/circRNA-miRNA-mRNA interactions were predicted. As a result, 202 mRNAs, 488 lncRNAs, 91 circRNAs, and 293 proteins were identified to be differentially expressed between stable and unstable atherosclerotic plaques. The 488 lncRNAs might target 381 protein-coding genes by cis-acting mechanisms. Sequence analysis indicated the 91 differentially expressed circRNAs were originated from 97 protein-coding genes. These differentially expressed RNAs and proteins were mainly enriched in the terms of the cellular response to stress or stimulus, the regulation of gene transcription, the immune response, the nervous system functions, the hematologic activities, and the endocrine system. These results were consistent with the previous reported data in the dataset GSE41571. Further analysis identified CD5L, S100A12, CKB (target gene of lncRNA MSTRG.11455.17), CEMIP (target gene of lncRNA MSTRG.12845), and SH3GLB1 (originated gene of hsacirc_000411) to be critical genes in regulating the stability of atherosclerotic plaques. Our results provided a comprehensive transcriptomic and proteomic knowledge on the stability of atherosclerotic plaques.
Collapse
Affiliation(s)
- Mei-Hua Bao
- Academician Workstation, Changsha, China.,School of Stomatology, Changsha Medical University, Changsha, China
| | - Ruo-Qi Zhang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Xiao-Shan Huang
- Department of Pharmacology, Changsha Health Vocational College, Changsha, China
| | - Ji Zhou
- Academician Workstation, Changsha, China
| | - Zhen Guo
- Academician Workstation, Changsha, China
| | - Bao-Feng Xu
- Academician Workstation, Changsha, China.,First Hospital of Jilin University, Changchun, Jilin, China
| | - Rui Liu
- Academician Workstation, Changsha, China.,Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Liu J, Li Z, Yu G, Wang T, Qu G, Wang Y. LINC01232 Promotes Gastric Cancer Proliferation through Interacting with EZH2 to Inhibit the Transcription of KLF2. J Microbiol Biotechnol 2021; 31:1358-1365. [PMID: 34409953 PMCID: PMC9705925 DOI: 10.4014/jmb.2106.06041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022]
Abstract
To clarify the role of long intergenic nonprotein-coding RNA 1232 (LINC01232) in the progression of gastric cancer and the potential mechanism, we analyzed the expression of LINC01232 in TCGA database using the GEPIA online tool, and the LINC01232 level in gastric cancer cell lines was detected by quantitative real time-polymerase chain reaction (qRT-PCR) as well. Cell proliferation assay, colony formation assay, transwell assay and tumor formation experiment in nude mice were conducted to observe the biological behavior changes of gastric cancer cells through the influence of LINC01232 knockdown. LncATLAS database and subcellular isolation assay were used for subcellular distribution of LINC01232 in gastric cancer cells. The interaction among LINC01232, zeste homolog 2 (EZH2) and kruppel-like factor 2 (KLF2) was clarified by RNA-protein interaction prediction (RPISeq), RNA immunoprecipitation (RIP), qRT-PCR and chromatin immunoprecipitation (ChIP) assay. Rescue experiments were further conducted to elucidate the biological function of LINC01232/KLF2 axis in the progression of gastric cancer. LINC01232 was upregulated in stomach adenocarcinoma (STAD) tissues and gastric cancer lines. LINC01232 knockdown inhibited the proliferative capacities of gastric cancer cells in vitro, and impaired in vivo tumorigenicity. LINC01232 was mainly distributed in the cell nucleus where it epigenetically repressed KLF2 expression via binding to the enhancer of EZH2, which was capable of binding to promoter regions of KLF2 to induce histone H3 lysine 27 trimethylation (H3K27me3). LINC01232 exerts oncogenic activities in gastric cancer via inhibition of KLF2, and therefore, the knockdown of KLF2 could reverse the regulatory effect of LINC01232 in the proliferative ability of gastric cancer cells.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Yantai Yuhuangding Hospital, Yantai 264000, P.R. China
| | - Zhen Li
- Department of General and Pediatric Surgery, Yantai Yuhuangding Hospital, Yantai 264000, P.R. China
| | - Guohua Yu
- Department of Pathology, Yantai Yuhuangding Hospital, Yantai 264000, P.R. China
| | - Ting Wang
- Department of Pathology, Yantai Yuhuangding Hospital, Yantai 264000, P.R. China
| | - Guimei Qu
- Department of Pathology, Yantai Yuhuangding Hospital, Yantai 264000, P.R. China
| | - Yunhui Wang
- Department of General and Pediatric Surgery, Yantai Yuhuangding Hospital, Yantai 264000, P.R. China
| |
Collapse
|
42
|
Long Non-Coding RNA Regulation of Epigenetics in Vascular Cells. Noncoding RNA 2021; 7:ncrna7040062. [PMID: 34698214 PMCID: PMC8544676 DOI: 10.3390/ncrna7040062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
The vascular endothelium comprises the interface between the circulation and the vessel wall and, as such, is under the dynamic regulation of vascular signalling, nutrients, and hypoxia. Understanding the molecular drivers behind endothelial cell (EC) and vascular smooth muscle cell (VSMC) function and dysfunction remains a pivotal task for further clinical progress in tackling vascular disease. A newly emerging era in vascular biology with landmark deep sequencing approaches has provided us with the means to profile diverse layers of transcriptional regulation at a single cell, chromatin, and epigenetic level. This review describes the roles of major vascular long non-coding RNA (lncRNAs) in the epigenetic regulation of EC and VSMC function and discusses the recent progress in their discovery, detection, and functional characterisation. We summarise new findings regarding lncRNA-mediated epigenetic mechanisms—often regulated by hypoxia—within the vascular endothelium and smooth muscle to control vascular homeostasis in health and disease. Furthermore, we outline novel molecular techniques being used in the field to delineate the lncRNA subcellular localisation and interaction with proteins to unravel their biological roles in the epigenetic regulation of vascular genes.
Collapse
|
43
|
Huang SF, Peng XF, Jiang L, Hu CY, Ye WC. LncRNAs as Therapeutic Targets and Potential Biomarkers for Lipid-Related Diseases. Front Pharmacol 2021; 12:729745. [PMID: 34421622 PMCID: PMC8371450 DOI: 10.3389/fphar.2021.729745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/26/2021] [Indexed: 12/30/2022] Open
Abstract
Lipid metabolism is an essential biological process involved in nutrient adjustment, hormone regulation, and lipid homeostasis. An irregular lifestyle and long-term nutrient overload can cause lipid-related diseases, including atherosclerosis, myocardial infarction (MI), obesity, and fatty liver diseases. Thus, novel tools for efficient diagnosis and treatment of dysfunctional lipid metabolism are urgently required. Furthermore, it is known that lncRNAs based regulation like sponging microRNAs (miRNAs) or serving as a reservoir for microRNAs play an essential role in the progression of lipid-related diseases. Accordingly, a better understanding of the regulatory roles of lncRNAs in lipid-related diseases would provide the basis for identifying potential biomarkers and therapeutic targets for lipid-related diseases. This review highlighted the latest advances on the potential biomarkers of lncRNAs in lipid-related diseases and summarised current knowledge on dysregulated lncRNAs and their potential molecular mechanisms. We have also provided novel insights into the underlying mechanisms of lncRNAs which might serve as potential biomarkers and therapeutic targets for lipid-related diseases. The information presented here may be useful for designing future studies and advancing investigations of lncRNAs as biomarkers for diagnosis, prognosis, and therapy of lipid-related diseases.
Collapse
Affiliation(s)
- Shi-Feng Huang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Xiao-Fei Peng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Lianggui Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ching Yuan Hu
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Wen-Chu Ye
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
44
|
Li J, Chen J, Zhang F, Li J, An S, Cheng M, Li J. LncRNA CDKN2B-AS1 hinders the proliferation and facilitates apoptosis of ox-LDL-induced vascular smooth muscle cells via the ceRNA network of CDKN2B-AS1/miR-126-5p/PTPN7. Int J Cardiol 2021; 340:79-87. [PMID: 34384839 DOI: 10.1016/j.ijcard.2021.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The patterns of lncRNA CDKN2B-AS1 in coronary heart disease (CHD) have been extensively studied. This study investigated the competing endogenous RNA (ceRNA) network of CDKN2B-AS1 in coronary atherosclerosis (CAS). METHODS Microarray analyses were performed to screen out the CHD-related lncRNAs (CDKN2B-AS1) and the downstream microRNAs (miR-126-5p). The expression of CDKN2B-AS1 in serum of patients with CHD and healthy volunteers was detected. Vascular smooth muscle cells (VSMCs) were treated with oxidized low density lipoprotein (ox-LDL) to establish the cell model. Then pcDNA-CDKN2B-AS1 and/or miR-126-5p mimic were transfected into ox-LDL-treated VSMCs to estimate cell proliferation, apoptosis and inflammation. The ceRNA network of CDKN2B-AS1 along with the possible pathway in CHD was testified. RESULTS CDKN2B-AS1 expression was low in patients with CHD and ox-LDL-treated VSMCs. Upon CDKN2B-AS1 overexpression, TNF-α, NF-κB and IL-1β levels in VSMCs were decreased, the proliferation of VSMCs was inhibited and the apoptosis rate was increased. Overexpression of miR-126-5p could reverse these trends. CDKN2B-AS1 as a ceRNA competitively bound to miR-126-5p to upregulate PTPN7. CDKN2B-AS1 inhibited VSMC proliferation and accelerated apoptosis by inhibiting the PI3K-Akt pathway. CONCLUSION LncRNA CDKN2B-AS1 upregulates PTPN7 by absorbing miR-126-5p and inhibits the PI3K-Akt pathway, thus hindering the proliferation and accelerating apoptosis of VSMCs induced by ox-LDL, thus being a therapeutic approach for CAS.
Collapse
Affiliation(s)
- Jie Li
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Jia Chen
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Fan Zhang
- Department of Cardiac Vascular Surgery, Linfen City Center Hospital, Linfen 041000, Shanxi, China
| | - Jianfeng Li
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Shoukuan An
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Ming Cheng
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| | - Junquan Li
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
45
|
Moukette B, Barupala NP, Aonuma T, Sepulveda M, Kawaguchi S, Kim IM. Interactions between noncoding RNAs as epigenetic regulatory mechanisms in cardiovascular diseases. Methods Cell Biol 2021; 166:309-348. [PMID: 34752338 DOI: 10.1016/bs.mcb.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cardiovascular diseases (CVDs) represent the foremost cause of mortality in the United States and worldwide. It is estimated that CVDs account for approximately 17.8 million deaths each year. Despite the advances made in understanding cellular mechanisms and gene mutations governing the pathophysiology of CVDs, they remain a significant cause of mortality and morbidity. A major segment of mammalian genomes encodes for genes that are not further translated into proteins. The roles of the majority of such noncoding ribonucleic acids (RNAs) have been puzzling for a long time. However, it is becoming increasingly clear that noncoding RNAs (ncRNAs) are dynamically expressed in different cell types and have a comprehensive selection of regulatory roles at almost every step involved in DNAs, RNAs and proteins. Indeed, ncRNAs regulate gene expression through epigenetic interactions, through direct binding to target sequences, or by acting as competing endogenous RNAs. The profusion of ncRNAs in the cardiovascular system suggests that they may modulate complex regulatory networks that govern cardiac physiology and pathology. In this review, we summarize various functions of ncRNAs and highlight the recent literature on interactions between ncRNAs with an emphasis on cardiovascular disease regulation. Furthermore, as the broad-spectrum of ncRNAs potentially establishes new avenues for therapeutic development targeting CVDs, we discuss the innovative prospects of ncRNAs as therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Bruno Moukette
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nipuni P Barupala
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tatsuya Aonuma
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Marisa Sepulveda
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Satoshi Kawaguchi
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Il-Man Kim
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States; Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, United States; Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
46
|
Long non-coding RNA CDKN2B-AS1 enhances LPS-induced apoptotic and inflammatory damages in human lung epithelial cells via regulating the miR-140-5p/TGFBR2/Smad3 signal network. BMC Pulm Med 2021; 21:200. [PMID: 34126975 PMCID: PMC8201744 DOI: 10.1186/s12890-021-01561-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/04/2021] [Indexed: 12/29/2022] Open
Abstract
Background Sepsis is a complicated disease with systemic inflammation or organ dysfunction, and it is the leading cause of acute lung injury (ALI). Long non-coding RNAs (lncRNAs) have played important roles in the pathogenesis of sepsis. This study was designed to explore the biological function and regulatory mechanism of cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) in lipopolysaccharide (LPS)-induced lung injury. Methods ALI model was established after human lung epithelial cell line BEAS-2B was exposed to LPS. CDKN2B-AS1, microRNA-140-5p (miR-140-5p) and transforming Growth Factor Beta Receptor II (TGFBR2) levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was measured using Cell Counting Kit-8 (CCK-8). Cell apoptosis was assessed by caspase3 activity and flow cytometry. Inflammatory cytokines were examined via enzyme-linked immunosorbent assay (ELISA). Protein analysis was performed through western blot. Dual-luciferase reporter, RNA immunoprecipitation (RIP) and pull-down assays were applied to validate the interaction between targets. Results CDKN2B-AS1 and TGFBR2 were abnormally upregulated in sepsis patients. Functionally, CDKN2B-AS1 or TGFBR2 knockdown promoted cell growth but inhibited cell apoptosis and inflammatory response in LPS-treated BEAS-2B cells. Moreover, the regulation of CDKN2B-AS1 in LPS-induced cell injury was achieved by increasing the TGFBR2 expression. CDKN2B-AS1 was identified as a miR-140-5p sponge and TGFBR2 was a target of miR-140-5p. Furthermore, CDKN2B-AS1 could regulate the TGFBR2/Smad3 pathway by sponging miR-140-5p. Conclusions These results suggested that CDKN2B-AS1 contributed to the LPS-mediated apoptosis and inflammation in BEAS-2B cells via the miR-140-5p/TGFBR2/Smad3 axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01561-z.
Collapse
|
47
|
Ye WC, Huang SF, Hou LJ, Long HJ, Yin K, Hu CY, Zhao GJ. Potential Therapeutic Targeting of lncRNAs in Cholesterol Homeostasis. Front Cardiovasc Med 2021; 8:688546. [PMID: 34179148 PMCID: PMC8224755 DOI: 10.3389/fcvm.2021.688546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Maintaining cholesterol homeostasis is essential for normal cellular and systemic functions. Long non-coding RNAs (lncRNAs) represent a mechanism to fine-tune numerous biological processes by controlling gene expression. LncRNAs have emerged as important regulators in cholesterol homeostasis. Dysregulation of lncRNAs expression is associated with lipid-related diseases, suggesting that manipulating the lncRNAs expression could be a promising therapeutic approach to ameliorate liver disease progression and cardiovascular disease (CVD). However, given the high-abundant lncRNAs and the poor genetic conservation between species, much work is required to elucidate the specific role of lncRNAs in regulating cholesterol homeostasis. In this review, we highlighted the latest advances in the pivotal role and mechanism of lncRNAs in regulating cholesterol homeostasis. These findings provide novel insights into the underlying mechanisms of lncRNAs in lipid-related diseases and may offer potential therapeutic targets for treating lipid-related diseases.
Collapse
Affiliation(s)
- Wen-Chu Ye
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Shi-Feng Huang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Lian-Jie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Hai-Jiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China.,Xiangya Hospital, Central South University, Changsha, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Ching Yuan Hu
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Guo-Jun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
48
|
Alfeghaly C, Sanchez A, Rouget R, Thuillier Q, Igel-Bourguignon V, Marchand V, Branlant C, Motorin Y, Behm-Ansmant I, Maenner S. Implication of repeat insertion domains in the trans-activity of the long non-coding RNA ANRIL. Nucleic Acids Res 2021; 49:4954-4970. [PMID: 33872355 PMCID: PMC8136789 DOI: 10.1093/nar/gkab245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 11/14/2022] Open
Abstract
Long non-coding RNAs have emerged as critical regulators of cell homeostasis by modulating gene expression at chromatin level for instance. Here, we report that the lncRNA ANRIL, associated with several pathologies, binds to thousands of loci dispersed throughout the mammalian genome sharing a 21-bp motif enriched in G/A residues. By combining ANRIL genomic occupancy with transcriptomic analysis, we established a list of 65 and 123 genes potentially directly activated and silenced by ANRIL in trans, respectively. We also found that Exon8 of ANRIL, mainly made of transposable elements, contributes to ANRIL genomic association and consequently to its trans-activity. Furthermore, we showed that Exon8 favors ANRIL's association with the FIRRE, TPD52L1 and IGFBP3 loci to modulate their expression through H3K27me3 deposition. We also investigated the mechanisms engaged by Exon8 to favor ANRIL's association with the genome. Our data refine ANRIL's trans-activity and highlight the functional importance of TEs on ANRIL's activity.
Collapse
Affiliation(s)
| | | | - Raphael Rouget
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | - Valérie Igel-Bourguignon
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, F-54000 Nancy, France
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, F-54000 Nancy, France
| | | | - Yuri Motorin
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | | |
Collapse
|
49
|
EZH2 as an epigenetic regulator of cardiovascular development and diseases. J Cardiovasc Pharmacol 2021; 78:192-201. [PMID: 34029268 DOI: 10.1097/fjc.0000000000001062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/29/2021] [Indexed: 02/04/2023]
Abstract
ABSTRACT Enhancer of zeste homolog 2(EZH2) is an enzymatic subunit of polycomb repressive complex 2 (PRC2) and is responsible for catalyzing mono-, di-, and trimethylation of histone H3 at lysine-27(H3K27me1/2/3). Many noncoding RNAs or signaling pathways are involved in EZH2 functional alterations. This new epigenetic regulation of target genes is able to silence downstream gene expression and modify physiological and pathological processes in heart development, cardiomyocyte regeneration and cardiovascular diseases such as hypertrophy, ischemic heart diseases, atherosclerosis and cardiac fibrosis. Targeting the function of EZH2 could be a potential therapeutic approach for cardiovascular diseases.
Collapse
|
50
|
Brázda V, Bartas M, Bowater RP. Evolution of Diverse Strategies for Promoter Regulation. Trends Genet 2021; 37:730-744. [PMID: 33931265 DOI: 10.1016/j.tig.2021.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022]
Abstract
DNA is fundamentally important for all cellular organisms due to its role as a store of hereditary genetic information. The precise and accurate regulation of gene transcription depends primarily on promoters, which vary significantly within and between genomes. Some promoters are rich in specific types of bases, while others have more varied, complex sequence characteristics. However, it is not only base sequence but also epigenetic modifications and altered DNA structure that regulate promoter activity. Significantly, many promoters across all organisms contain sequences that can form intrastrand hairpins (cruciforms) or four-stranded structures (G-quadruplex or i-motif). In this review we integrate recent studies on promoter regulation that highlight the importance of DNA structure in the evolutionary adaptation of promoter sequences.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Richard P Bowater
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|