1
|
Jarmakiewicz-Czaja S, Sokal-Dembowska A, Ferenc K, Filip R. Mechanisms of Insulin Signaling as a Potential Therapeutic Method in Intestinal Diseases. Cells 2024; 13:1879. [PMID: 39594627 PMCID: PMC11593555 DOI: 10.3390/cells13221879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Gastrointestinal diseases are becoming a growing public health problem. One of them is inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). The incidence of IBD is increasing in developing countries and declining in developed countries, affecting people of all ages. Researchers have been exploring new treatment options including insulin signaling pathways in the inflammation of the gastrointestinal tract. It seems that a better understanding of the mechanism of IGF-1, GLP-1 and TL1A on the gut microbiota and inflammation may provide new advances in future therapeutic strategies for patients with IBD, but also other intestinal diseases. This review aims to synthesize insights into the effects of GLP, IGF and anti-TL1A on inflammation and the gut microbiota, which may enable their future use in therapy for people with intestinal diseases.
Collapse
Affiliation(s)
- Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
2
|
Kübler IC, Kretzschmar J, Arredondo-Lasso MN, Keeley SD, Rößler LC, Ganss K, Sandoval-Guzmán T, Brankatschk M. Systemic and local lipid adaptations underlie regeneration in Drosophila melanogaster and Ambystoma mexicanum. NPJ Regen Med 2024; 9:33. [PMID: 39472660 PMCID: PMC11522293 DOI: 10.1038/s41536-024-00375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
In regenerating tissues, synthesis and remodeling of membranes rely on lipid turnover and transport. Our study addresses lipid adaptations in intestinal regeneration of Drosophila melanogaster and limb regeneration of Ambystoma mexicanum. We found changes in lipid profiles at different locations: transport, storage organs and regenerating tissues. We demonstrate that attenuating insulin signaling, exclusively in fat storage, inhibits the regeneration-specific response in both the fat storage and the regenerating tissue in Drosophila. Furthermore, in uninjured axolotls we found sex-specific lipid profiles in both storage and circulation, while in regenerating animals these differences subside. The regenerating limb presents a unique sterol profile, albeit with no sex differences. We postulate that regeneration triggers a systemic response, where organs storing lipids play a significant role in the regulation of systemic lipid traffic. Second, that this response may be an active and well-regulated mechanism, as observed when homeostatic sex-differences disappear in regenerating salamanders.
Collapse
Affiliation(s)
- Ines C Kübler
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jenny Kretzschmar
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Trumpington, Cambridge, UK
| | - Maria Nieves Arredondo-Lasso
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
- Metabolic Programming, Technische Universität München, Freising-Weihenstephan, Germany
| | - Sean D Keeley
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Luca Claudia Rößler
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Katharina Ganss
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany.
| | - Marko Brankatschk
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany.
- Faculty of Biology Technische Universität Dresden, Dresden, Germany. Zellescher Weg 23b, Dresden, Germany.
| |
Collapse
|
3
|
Kocadag HB, Weischendorff S, De Pietri S, Nielsen CH, Rathe M, Als-Nielsen B, Hasle H, Juul A, Müller K, Sørum ME. Upregulation of Insulin-like Growth Factor-I in Response to Chemotherapy in Children with Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:9582. [PMID: 39273528 PMCID: PMC11394967 DOI: 10.3390/ijms25179582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
The treatment of childhood cancer is challenged by toxic side effects mainly due to chemotherapy-induced organ damage and infections, which are accompanied by severe systemic inflammation. Insulin-like growth factor I (IGF-I) is a key regulating factor in tissue repair. This study investigated associations between the circulating IGF-I levels and chemotherapy-related toxicity in pediatric acute lymphoblastic leukemia (ALL). In this prospective study, we included 114 patients (age: 1-17 years) with newly diagnosed ALL treated according to The Nordic Society of Paediatric Haematology and Oncology (NOPHO) ALL2008 protocol between 2013 and 2018. The patients' plasma levels of IGF-I, and the primary binding protein, IGFBP-3, were measured weekly during the first six weeks of treatment, including the induction therapy. The patients' systemic inflammation was monitored by their C-reactive protein (CRP) and interleukin (IL)-6 levels and their intestinal epithelial damage by their plasma citrulline levels. IGF-I and IGFBP-3 were converted into sex-and age-adjusted standard deviation scores (SDS) using 1621 healthy children as reference. At ALL diagnosis, IGF-I levels were decreased (median (quartiles): -1.2 SDS (-1.9 to -0.5), p = 0.001), but increased significantly following the initiation of chemotherapy, peaking on day 8 (0.0 SDS (from -0.8 to 0.7), p < 0.001). This increase correlated with the levels of CRP (rho = 0.37, p < 0.001) and IL-6 (rho = 0.39, p = 0.03) on day 15, when these markers reached maximum levels. A larger IGF-I increase from day 1 to 15 correlated with a slower recovery rate of the intestinal damage marker citrulline from day 15 to 29 (rho = -0.28, p = 0.01). Likewise, IGFBP-3 was reduced at diagnosis, followed by an increase after treatment initiation, and was highly correlated with same-day IGF-I levels. This study demonstrates a chemotherapy-induced increase in IGF-I, with a response that appears to reflect the severity of tissue damage and systemic inflammation, preceding CRP and IL-6 increases. IGF-I may have potential as an early reactive biomarker for acute toxicity in patients with ALL.
Collapse
Affiliation(s)
- Helin Berna Kocadag
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Sarah Weischendorff
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Silvia De Pietri
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Mathias Rathe
- Hans Christian Andersen Children's Hospital, Odense University Hospital, 5000 Odense, Denmark
| | - Bodil Als-Nielsen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- International Research Centre for Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Klaus Müller
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Institute for Inflammation Research, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maria Ebbesen Sørum
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Wu J, Wang Y, An Y, Tian C, Wang L, Liu Z, Qi D. Identification of genes related to growth and amino acid metabolism from the transcriptome profile of the liver of growing laying hens. Poult Sci 2024; 103:103181. [PMID: 37939592 PMCID: PMC10656263 DOI: 10.1016/j.psj.2023.103181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
The growing period is a critical period for the growth and development of hens and affects their production performance during the laying period. During the early stage of growing, bone and muscle growth is rapid, making it necessary to provide sufficient amino acids (AA) to support the growth and development of laying hens. In this experiment, RNA-Sequencing (RNA-Seq) was applied to compare the liver tissues from 6- to 12-wk-old growing laying hens to identify candidate genes related to growth and AA transport and metabolism. In the liver tissues, 596 differentially expressed genes (DEG) were identified, of which 424 genes were up-regulated and 172 were down-regulated. Through enrichment analysis and DEGs analysis, some DEGs and pathways related to AA transport and metabolism were identified. Additionally, there were significantly increased activities in the liver of glutamate dehydrogenase (GDH), glutamic oxaloacetic transaminase (GOT), and glutamate pyruvate transaminase (GPT). Meanwhile, the level of serum insulin-like growth factor binding protein-5 (IGFBP-5) significantly elevated, and insulin-like growth factor-1 (IGF-1) levels significantly reduced at 12 wk compared to 6 wk. The AA contents in the breast muscle were not significantly altered, while the levels of the free AA in the serum underwent significant changes. This study discovered that the transport and metabolism of AAs in growing laying hens at different ages changed, which influenced the growth and development of growing laying hens. This contributes to future research on the mechanisms of growth and AA metabolism during the growing period of laying hens.
Collapse
Affiliation(s)
- Jiayu Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanan Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu An
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changyu Tian
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingfeng Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuhong Liu
- Institute of Animal Husbandry and Veterinary Sciences, Wuhan Academy of Agricultural Sciences, Wuhan 430208, China
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Chen L, Zhong XL, Cao WY, Mao ML, Liu DD, Liu WJ, Zu XY, Liu JH. IGF2/IGF2R/Sting signaling as a therapeutic target in DSS-induced ulcerative colitis. Eur J Pharmacol 2023; 960:176122. [PMID: 37863414 DOI: 10.1016/j.ejphar.2023.176122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Ulcerative colitis is an inflammatory bowel disease with increasing prevalence and incidence. Current treatments for ulcerative colitis are not generally applicative and are often accompanied by side effects. IGF2 is an endogenous protein that plays roles in anti-inflammation and stemness maintenance, but little is known about its mechanism and function in the progression of ulcerative colitis. In this study, mouse recombinant IGF2 was used in a mouse model of ulcerative colitis established by DSS. IGF2 expression was reduced in colon tissues but not plasma of DSS-induced colitis mice. IGF2R expression was also decreased in colitis colons, which was then elevated by recombinant IGF2. Recombinant IGF2 alleviated colon injury in colitis, which was evaluated by colon shortening, body weight loss and DAI score. IGF2 treatment also relieved the inflammatory response in colitis, which was assessed by the spleen weight index, MPO activity and proinflammatory cytokine expression and was also detected in LPS-stimulated RAW264.7 cells in vitro. Moreover, IGF2R was predicted and further verified to interact with the Sting protein, and the cGAS-Sting pathway as a key pathway for stemness regulation, was upregulated in colonic colons, which was blocked by IGF2 treatment. Additionally, IGF2 treatment can maintain colonic stemness and further repair colonic tight junction function in DSS-induced colitis. In conclusion, IGF2/IGF2R downregulated the cGAS-Sting pathway to sustain colonic stemness and barrier integrity to protect against ulcerative colitis induced by DSS.
Collapse
Affiliation(s)
- Ling Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiao-Lin Zhong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wen-Yu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ming-Li Mao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Dan-Dan Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wen-Jia Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xu-Yu Zu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China; Department of Tumor Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
6
|
Wade H, Pan K, Duan Q, Kaluzny S, Pandey E, Fatumoju L, Saraswathi V, Wu R, Harris EN, Su Q. Akkermansia muciniphila and its membrane protein ameliorates intestinal inflammatory stress and promotes epithelial wound healing via CREBH and miR-143/145. J Biomed Sci 2023; 30:38. [PMID: 37287024 DOI: 10.1186/s12929-023-00935-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND The intestinal epithelial barrier is the interface for interaction between gut microbiota and host metabolic systems. Akkermansia muciniphila (A. muciniphila) is a key player in the colonic microbiota that resides in the mucus layer, whose abundance is selectively decreased in the faecal microbiota of inflammatory bowel disease (IBD) patients. This study aims to investigate the regulatory mechanism among A. muciniphila, a transcription factor cAMP-responsive element-binding protein H (CREBH), and microRNA-143/145 (miR-143/145) in intestinal inflammatory stress, gut barrier integrity and epithelial regeneration. METHODS A novel mouse model with increased colonization of A muciniphila in the intestine of CREBH knockout mice, an epithelial wound healing assay and several molecular biological techniques were applied in this study. Results were analysed using a homoscedastic 2-tailed t-test. RESULTS Increased colonization of A. muciniphila in mouse gut enhanced expression of intestinal CREBH, which was associated with the mitigation of intestinal endoplasmic reticulum (ER) stress, gut barrier leakage and blood endotoxemia induced by dextran sulfate sodium (DSS). Genetic depletion of CREBH (CREBH-KO) significantly inhibited the expression of tight junction proteins that are associated with gut barrier integrity, including Claudin5 and Claudin8, but upregulated Claudin2, a tight junction protein that enhances gut permeability, resulting in intestinal hyperpermeability and inflammation. Upregulation of CREBH by A. muciniphila further coupled with miR-143/145 promoted intestinal epithelial cell (IEC) regeneration and wound repair via insulin-like growth factor (IGF) and IGFBP5 signalling. Moreover, the gene expressing an outer membrane protein of A. muciniphila, Amuc_1100, was cloned into a mammalian cell-expression vector and successfully expressed in porcine and human IECs. Expression of Amuc_1100 in IECs could recapitulate the health beneficial effect of A. muciniphila on the gut by activating CREBH, inhibiting ER stress and enhancing the expression of genes involved in gut barrier integrity and IEC's regeneration. CONCLUSIONS This study uncovers a novel mechanism that links A. muciniphila and its membrane protein with host CREBH, IGF signalling and miRNAs in mitigating intestinal inflammatory stress-gut barrier permeability and promoting intestinal wound healing. This novel finding may lend support to the development of therapeutic approaches for IBD by manipulating the interaction between host genes, gut bacteria and its bioactive components.
Collapse
Affiliation(s)
- Henry Wade
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Kaichao Pan
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA
| | - Qihua Duan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Szczepan Kaluzny
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Ekta Pandey
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Linda Fatumoju
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | | | - Rongxue Wu
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK.
| |
Collapse
|
7
|
Liu H, Guo Q, Zhang L, Tian X, Ma X, Zhang J, Li X. The insulin-like growth factor 1 stimulates ovarian steroidogenesis and oocyte maturation in spotted steed Hemibarbus maculatus. J Steroid Biochem Mol Biol 2022; 224:106159. [PMID: 35931326 DOI: 10.1016/j.jsbmb.2022.106159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 10/31/2022]
Abstract
The insulin-like growth factor 1 (IGF1) plays important roles in fish reproduction. To understand the role of IGF1 in steroidogenesis and oocyte maturation, we investigated expression pattern and functions of Igf1 during in vitro maturation of spotted steed (Hemibarbus maculatus) oocytes. Igf1 expression quantified by qPCR and western blotting revealed that both Igf1 mRNA and protein was significantly increased in mature follicles. The immunofluorescence analyses showed IGF1 protein signal was detected in the theca cells of ovarian follicles during vitellogenesis stage, and in both theca cells and granulosa cells of matured oocytes. Incubation of ovarian follicles with recombinant IGF1 (rIGF1) significantly enhanced the rate of spotted steed oocyte germinal vesicle breakdown (GVBD), a marker of oocyte maturation. qPCR analysis showed that the transcription of steroidogenesis-related genes (3β-hsd, 20β-hsd, Cyp17a and Cyp19a1a) were influenced after IGF1 treatment. In addition, the expression profiles of receptors of Igf1, Fsh and Lh indicated that a cross talk response to IGF1 induced oocyte maturation. Furthermore, IGF1 treatment did not affect ERK protein expression but significantly upregulated CyclinB and AKT protein expression. All together, these findings help us to understand the molecular mechanism of IGF1 in regulation ovarian steroidogenesis and oocyte maturation of spotted steed.
Collapse
Affiliation(s)
- Huifen Liu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| | - Qi Guo
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| | - Limin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| | - Xue Tian
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| | - Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| | - JianXin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
8
|
Abstract
Prior study has demonstrated that gut microbiota at the genus level is significantly altered in patients with growth hormone (GH)-secreting pituitary adenoma (GHPA). Yet, no studies exist describing the state of gut microbiota at species level in GHPA. We performed a study using 16S rRNA amplicon sequencing in a cohort of patients with GH-secreting pituitary adenoma (GHPA, n = 28) and healthy controls (n = 67). Among them, 9 patients and 10 healthy controls were randomly chosen and enrolled in metagenomics shotgun sequencing, generating 280,426,512 reads after aligning to NCBI GenBank DataBase to acquire taxa information at the species level. Weighted UniFrac analysis revealed that microbial diversity was notably decreased in patients with GHPA, consistent with a previous study. With 16S rRNA sequencing, after correction for false-discovery rate (FDR), rank-sum test at the genus level revealed that the relative abundance of Oscillibacter and Enterobacter was remarkably increased in patients and Blautia and Romboutsia genera predominated in the controls, augmented by additional LEfSe (linear discriminant analysis effect size) analysis. As for further comparison at the species level with metagenomics sequencing, rank-sum test together with LEfSe analysis confirmed the enrichment of Alistipes shahii and Odoribacter splanchnicus in the patient group. Notably, LEfSe analysis with metagenomics also demonstrated that Enterobacter sp. DC1 and Enterobacter sp. 940 PEND, derived from Enterobacter, were both significantly enriched in patients. Functional analysis showed that amino acid metabolism pathway was remarkably enriched in GHPA, while carbohydrate metabolism pathway was notably enriched in controls. Further, significant positive correlations were observed between Enterobacter and baseline insulin-like growth factor 1 (IGF-1), indicating that Enterobacter may be strongly associated with GH/IGF-1 axis in GHPA. Our data extend our insight into the GHPA microbiome, which may shed further light on GHPA pathogenesis and facilitate the exploration of novel therapeutic targets based on microbiota manipulation. IMPORTANCE Dysbiosis of gut microbiota is associated not only with intestinal disorders but also with numerous extraintestinal diseases. Growth hormone-secreting pituitary adenoma (GHPA) is an insidious disease with persistent hypersecretion of GH and IGF-1, causing increased morbidity and mortality. Researches have reported that the GH/IGF-1 axis exerts its own influence on the intestinal microflora. Here, the results showed that compared with healthy controls, GHPA patients not only decreased the alpha diversity of the intestinal flora but also significantly changed their beta diversity. Further, metagenomics shotgun sequencing in the present study exhibited that Enterobacter sp. DC1 and Enterobacter sp. 940 PEND were enriched in patients. Also, we were pleasantly surprised to find that the Enterobacter genus was strongly positively correlated with baseline IGF-1 levels. Collectively, our work provides the first glimpse of the dysbiosis of the gut microbiota at species level, providing a better understanding of the pathophysiological process of GHPA.
Collapse
|
9
|
Bahman F, Butt AM, Ashi L, Mohd Amin MCI, Greish K. Polymeric micelles for oral drug delivery. POLYMERIC MICELLES FOR DRUG DELIVERY 2022:89-113. [DOI: 10.1016/b978-0-323-89868-3.00015-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Guijarro LG, Cano-Martínez D, Toledo-Lobo MV, Salinas PS, Chaparro M, Gómez-Lahoz AM, Zoullas S, Rodríguez-Torres R, Román ID, Monasor LS, Ruiz-Llorente L, Del Carmen Boyano-Adánez M, Guerra I, Iborra M, Cabriada JL, Bujanda L, Taxonera C, García-Sánchez V, Marín-Jiménez I, Acosta MBD, Vera I, Martín-Arranz MD, Mesonero F, Sempere L, Gomollón F, Hinojosa J, Alvarez-Mon M, Gisbert JP, Ortega MA, Hernández-Breijo B, On Behalf Of The Predicrohn Study Group From Geteccu. Relationship between IGF-1 and body weight in inflammatory bowel diseases: Cellular and molecular mechanisms involved. Biomed Pharmacother 2021; 144:112239. [PMID: 34601192 DOI: 10.1016/j.biopha.2021.112239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022] Open
Abstract
Inflammatory bowel diseases (IBD), represented by ulcerative colitis (UC) and Crohn's disease (CD), are characterized by chronic inflammation of the gastrointestinal tract, what leads to diarrhea, malnutrition, and weight loss. Depression of the growth hormone-insulin-like growth factor-1 axis (GH-IGF-1 axis) could be responsible of these symptoms. We demonstrate that long-term treatment (54 weeks) of adult CD patients with adalimumab (ADA) results in a decrease in serum IGF-1 without changes in serum IGF-1 binding protein (IGF1BP4). These results prompted us to conduct a preclinical study to test the efficiency of IGF-1 in the medication for experimental colitis. IGF-1 treatment of rats with DSS-induced colitis has a beneficial effect on the following circulating biochemical parameters: glucose, albumin, and total protein levels. In this experimental group we also observed healthy maintenance of colon size, body weight, and lean mass in comparison with the DSS-only group. Histological analysis revealed restoration of the mucosal barrier with the IGF-1 treatment, which was characterized by healthy quantities of mucin production, structural maintenance of adherers junctions (AJs), recuperation of E-cadherin and β-catenin levels and decrease in infiltrating immune cells and in metalloproteinase-2 levels. The experimentally induced colitis caused activation of apoptosis markers, including cleaved caspase 3, caspase 8, and PARP and decreases cell-cycle checkpoint activators including phosphorylated Rb, cyclin E, and E2F1. The IGF-1 treatment inhibited cyclin E depletion and partially protects PARP levels. The beneficial effects of IGF-1 in experimental colitis could be explained by a re-sensitization of the IGF-1/IRS-1/AKT cascade to exogenous IGF-1. Given these results, we postulate that IGF-1 treatment of IBD patients could prove to be successful in reducing disease pathology.
Collapse
Affiliation(s)
- Luis G Guijarro
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - David Cano-Martínez
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain
| | - M Val Toledo-Lobo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Spain
| | | | - María Chaparro
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; Gastroenterology Unit Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Spain
| | - Ana M Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Sofía Zoullas
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain
| | - Rosa Rodríguez-Torres
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Irene D Román
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain
| | | | - Lidia Ruiz-Llorente
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain
| | | | - Iván Guerra
- Gastroenterology Department, Hospital Universitario de Fuenlabrada & Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Spain
| | - Marisa Iborra
- Gastroenterology Unit, Hospital Universitario de La Fe (CIBEREHD), Valencia, Spain
| | - José Luis Cabriada
- Gastroenterology Unit, Hospital Universitario de Galdakano, Vizcaya, Spain
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; Department of Gastroenterology. Biodonostia Health Research Institute. Universidad del País Vasco (UPV/EHU). San Sebastián, Spain
| | - Carlos Taxonera
- Gastroenterology Unit, Hospital Universitario Clínico San Carlos and IdISSC, Madrid, Spain
| | - Valle García-Sánchez
- Gastroenterology Unit, Hospital Universitario Reina Sofía/Universidad de Córdoba, Spain
| | - Ignacio Marín-Jiménez
- Gastroenterology Unit, Hospital Universitario Gregorio Marañón e IiSGM, Madrid, Spain
| | | | - Isabel Vera
- Gastroenterology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - Francisco Mesonero
- Gastroenterology Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Laura Sempere
- Gastroenterology Unit, Hospital Universitario Alicante, Alicante, Spain
| | - Fernando Gomollón
- Gastroenterology Unit, Hospital Clínico Universitario, Lozano Blesa, IIS Aragón, Zaragoza, Spain
| | - Joaquín Hinojosa
- Gastroenterology Unit, Hospital Universitario Manises, Valencia, Spain
| | - Melchor Alvarez-Mon
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Javier P Gisbert
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; Gastroenterology Unit Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Spain.
| | - Miguel A Ortega
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Spain.
| | - Borja Hernández-Breijo
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain; Immuno-Rheumatology Research Group. IdiPaz. Hospital Universitario La Paz, Madrid, Spain
| | | |
Collapse
|
11
|
Meirelles MG, Nornberg BF, da Silveira TLR, Kütter MT, Castro CG, Ramirez JRB, Pedrosa V, Romano LA, Marins LF. Growth Hormone Overexpression Induces Hyperphagia and Intestinal Morphophysiological Adaptations to Improve Nutrient Uptake in Zebrafish. Front Physiol 2021; 12:723853. [PMID: 34539447 PMCID: PMC8442846 DOI: 10.3389/fphys.2021.723853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
The excess of circulating growth hormone (GH) in most transgenic animals implies mandatory growth resulting in higher metabolic demand. Considering that the intestine is the main organ responsible for the digestion, absorption, and direction of dietary nutrients to other tissues, this study aimed to investigate the mechanisms by which gh overexpression modulates the intestine to support higher growth. For this purpose, we designed an 8-weeks feeding trial to evaluate growth parameters, feed intake, and intestinal morphometric indices in the adult gh-transgenic zebrafish (Danio rerio) model. To access the sensitivity of the intestine to the excess of circulating GH, the messenger RNA (mRNA) expression of intestine GH receptors (GHRs) (ghra and ghrb) was analyzed. In addition, the expression of insulin-like growth factor 1a (igf1a) and genes encoding for di and tripeptide transporters (pept1a and pept1b) were assessed. Gh-transgenic zebrafish had better growth performance and higher feed intake compared to non-transgenic sibling controls. Chronic excess of GH upregulates the expression of its cognate receptor (ghrb) and the main growth factor related to trophic effects in the intestine (igf1a). Moreover, transgenic zebrafish showed an increased intestinal absorptive area and higher expression of crucial genes related to the absorption of products from meal protein degradation. These results reinforce the ability of GH to modulate intestinal morphology and the mechanisms of assimilation of nutrients to sustain the energy demand for the continuous growth induced by the excess of circulating GH.
Collapse
Affiliation(s)
- Marcela G Meirelles
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Bruna F Nornberg
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Tony L R da Silveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Mateus T Kütter
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Caroline G Castro
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Juan Rafael B Ramirez
- Laboratório de Bioquímica Funcional de Organismos Aquáticos, Instituto de Oceanografia, Estação Marinha de Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Virgínia Pedrosa
- Laboratório de Imunologia e Patologia de Organismos Aquáticos, Instituto de Oceanografia, Estação Marinha de Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Luis Alberto Romano
- Laboratório de Imunologia e Patologia de Organismos Aquáticos, Instituto de Oceanografia, Estação Marinha de Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Luis Fernando Marins
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| |
Collapse
|
12
|
De Sanctis V, Soliman A, Elsiddig S, Alyafei F, Alaaraj N, Itani M, Jour C, Elawwa A. Impact of oral nutritional supplements (ONS) on growth outcomes and IGF-1 level in underweight older children and young adolescents (5-14 years) with short stature and no systemic disease: High versus normal calories density formula. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021320. [PMID: 34487062 PMCID: PMC8477105 DOI: 10.23750/abm.v92i4.11868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/01/2022]
Abstract
Objectives: This controlled trial investigated the effects of energy-dense pediatric oral nutritional supplements ONS versus standard ONS in pediatric patients requiring oral nutritional support for low body mass index (BMI) or weight gain per day (WGD) below the average for age and sex. Patients and Methods: 34 children and adolescents (mean age 10.2 years) with faltering growth requiring ONS were randomized to cONS (n =22) or sONS (n = 12) for a year. We recorded their weight (WT), height (HT) and calculated height growth velocity (GV), Ht-SDS, BMI, WGD, every 3 months for a year. Results: The WGD, height growth velocity (GV: cm/year), and Ht-SDS increased significantly, in both groups, during the year of ONS. The use of the cONS resulted in significantly greater mean total WGD and BMI-SDS after 6 months and 1 year, compared to the sONS group. The increase in IGF1-SDS was significantly higher in the cONS groups versus the sONS group. Moreover, the WGD was correlated significantly with the height GV during the year of ONS intake. Conclusions: ONS improved the growth of underweight old children and adolescents who had no systemic illness. There was a significantly higher WGD and BMI-SDS in the group on cONS compared to those on sONS. In both groups, long-term use of ONS significantly improved Ht-SDS. (www.actabiomedica.it)
Collapse
Affiliation(s)
| | - Ashraf Soliman
- Department of Pediatrics, Hamad Medical Center, Doha, Qatar.
| | - Suhair Elsiddig
- Department of Pediatrics, Hamad Medical Center, Doha, Qatar.
| | - Fawziya Alyafei
- Department of Pediatrics, Hamad Medical Center, Doha, Qatar.
| | - Nada Alaaraj
- Department of Pediatrics, Hamad Medical Center, Doha, Qatar.
| | - Maya Itani
- Department of Nutrition and Dietetics, Hamad Medical Center, Doha. Qatar .
| | - Celine Jour
- Department of Nutrition and Dietetics, Hamad Medical Center, Doha. Qatar .
| | - Ahmed Elawwa
- Department of Pediatrics, University of Alexandria, Egypt.
| |
Collapse
|
13
|
Sienkiewicz M, Szymańska P, Fichna J. Supplementation of Bovine Colostrum in Inflammatory Bowel Disease: Benefits and Contraindications. Adv Nutr 2021; 12:533-545. [PMID: 33070186 PMCID: PMC8009748 DOI: 10.1093/advances/nmaa120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic relapsing disorders whose etiology has not been fully explained. Therefore, available therapeutic approaches for IBD patients are still insufficient. Current treatment strategies are targeted to immune system dysfunctions, often associated with alternations in the microbiota, which contribute to the development of chronic intestinal inflammation. Therapeutics include anti-inflammatory drugs such as aminosalicylates and corticosteroids, immunosuppressive agents, antibiotics, and biological agents such as infliximab and vedolizumab. Auxiliary therapies involve a balanced and personalized diet, healthy lifestyle, avoiding stress, as well as dietary supplements. In this review, we discuss the use of bovine colostrum (BC) as a therapeutic agent, including its advantages and contraindications. We summarize our knowledge on well-researched BC constituents and their effects on the gastrointestinal tract as evidenced in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Patrycja Szymańska
- Department of Hemostasis and Hemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
14
|
Ebbesen M, Enevold C, Juul A, Heilmann C, Sengeløv H, Müller K. Insulin-Like Growth Factor Gene Polymorphisms Predict Clinical Course in Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2020; 11:1646. [PMID: 32793242 PMCID: PMC7393983 DOI: 10.3389/fimmu.2020.01646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/19/2020] [Indexed: 12/27/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is challenged by significant toxicities that are propagated by systemic inflammation caused by cytotoxic damage. Insulin-like growth factor-1 (IGF-1) is key in repair of most tissues and is to a large extent genetically determined. We investigated eight single nucleotide polymorphisms (SNPs) in the genes encoding IGF-1 and its binding protein (IGFBP3) in 543 patients undergoing HSCT to access their impact on systemic inflammation and clinical outcomes. Overall, median serum levels of both IGF-1 and IGFBP3 were found reduced from the referral until 2 years post-HSCT compared with healthy sex- and age-matched individuals, but, for individuals homozygous of the known high-producer minor allele of rs1520220 (IGF1), rs978458 (IGF1), or rs2854744 (IGFBP3) serum levels remained normal during the whole period. In accordance, maximum C-reactive protein levels were lower for these genotypes of IGF1 (rs1520220: median 66 vs. 102 mg/L, P = 0.005 and rs978458: 53 vs. 104 mg/L, P < 0.001), translating into borderline significant superior survival (P = 0.060 for rs1520220) and reduced treatment-related mortality (P = 0.050 for rs978458). In conclusion, we found that three SNPs in the IGF-1 axis with known functional impact were associated with circulating IGF-1 or IGFBP-3 levels also in the setting of HSCT, and predictive of the severity of the toxic-inflammatory response during the treatment.
Collapse
Affiliation(s)
- Maria Ebbesen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Christian Enevold
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Carsten Heilmann
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Henrik Sengeløv
- Department of Hematology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Klaus Müller
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
15
|
Li J, Dedloff MR, Stevens K, Maney L, Prochaska M, Hongay CF, Wallace KN. A novel group of secretory cells regulates development of the immature intestinal stem cell niche through repression of the main signaling pathways driving proliferation. Dev Biol 2019; 456:47-62. [PMID: 31398318 DOI: 10.1016/j.ydbio.2019.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium has constant turnover throughout the life of the organ, with apoptosis of cells at the tips of folds or villi releasing cells into the lumen. Due to constant turnover, epithelial cells need to be constantly replaced. Epithelial cells are supplied by stem cell niches that form at the base of the interfold space (zebrafish) and crypts (birds and mammals). Within the adult stem cell niche of mammals, secretory cells such as Paneth and goblet cells play a role in modulation of proliferation and stem cell activity, producing asymmetric divisions. Progeny of asymmetric divisions move up the fold or villi, giving rise to all of the epithelial cell types. Although much is known about function and organization of the adult intestinal stem cell niche, less is understood about regulation within the immature stem cell compartment. Following smooth muscle formation, the intestinal epithelium folds and proliferation becomes restricted to the interfold base. Symmetric divisions continue in the developing interfold niche until stem cell progeny begin asymmetric divisions, producing progeny that migrate up the developing folds. Proliferative progeny from the developing stem cell niche begin migrating out of the niche during the third week post-embryogenesis (zebrafish) or during the postnatal period (mammals). Regulation and organization of epithelial proliferation in the immature stem cell niche may be regulated by signals comparable to the adult niche. Here we identify a novel subset of secretory cells associated with the developing stem cell niche that receive Notch signaling (referred to as NRSCs). Inhibition of the embryonic NRSCs between 74 hpf to 120 hpf increases epithelial proliferation as well as EGF and IGF signaling. Inhibition of post-embryonic NRSCs (6 hpf to 12 dpf) also increases epithelial proliferation and expression level of Wnt target genes. We conclude that NRSCs play a role in modulation of epithelial proliferation through repression of signaling pathways that drive proliferation during both embryogenesis and the post embryonic period.
Collapse
Affiliation(s)
- Jianlong Li
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | | | - Katrina Stevens
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Lea Maney
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | | | - Cintia F Hongay
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | | |
Collapse
|
16
|
Pavone S, Stazi M, Cambiotti V, Castro V, Gobbi M, Zema J, Filippini G. Cases of intestinal smooth muscle hypertrophy/hyperplasia in pigeon and chickens. J Vet Med Sci 2019; 81:1351-1354. [PMID: 31366815 PMCID: PMC6785616 DOI: 10.1292/jvms.19-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Intestinal smooth muscle hypertrophy and hyperplasia has been described in human and several mammal species. In birds, only one case of intestinal smooth muscle hyperplasia has been
reported. This paper describes the anatomopathological and histological findings of three cases of intestinal smooth muscle hypertrophy/hyperplasia in two different avian species belonging
to the family Gallinidae and Columbidae. Grossly, it involved all tracts of the small intestine. Histologically, hyperplasia involved the mucosal villi,
muscularis mucosa and inner and outer layers of the tunica muscularis. Hypertrophy was apparently detected only in the inner circular muscle layer. Lack of submucosal plexuses was also
observed in all three animals. The results confirm the remarkable histological difference between mammals and avian species and show as these pathological changes can occur in different
species of birds.
Collapse
Affiliation(s)
- Silvia Pavone
- Zooprophylactic Experimental Institute of Umbria and Marche "Togo Rosati", Via G. Salvemini, 1, 06126 Perugia, Italy
| | - Marica Stazi
- Zooprophylactic Experimental Institute of Umbria and Marche "Togo Rosati", Via G. Salvemini, 1, 06126 Perugia, Italy
| | - Valentina Cambiotti
- Zooprophylactic Experimental Institute of Umbria and Marche "Togo Rosati", Via G. Salvemini, 1, 06126 Perugia, Italy
| | - Valeria Castro
- Zooprophylactic Experimental Institute of Umbria and Marche "Togo Rosati", Via G. Salvemini, 1, 06126 Perugia, Italy
| | - Marco Gobbi
- Zooprophylactic Experimental Institute of Umbria and Marche "Togo Rosati", Via G. Salvemini, 1, 06126 Perugia, Italy
| | - Jacopo Zema
- Zooprophylactic Experimental Institute of Umbria and Marche "Togo Rosati", Via G. Salvemini, 1, 06126 Perugia, Italy
| | - Giovanni Filippini
- Zooprophylactic Experimental Institute of Umbria and Marche "Togo Rosati", Via G. Salvemini, 1, 06126 Perugia, Italy
| |
Collapse
|
17
|
Li J, Mao R, Kurada S, Wang J, Lin S, Chandra J, Rieder F. Pathogenesis of fibrostenosing Crohn's disease. Transl Res 2019; 209:39-54. [PMID: 30981697 DOI: 10.1016/j.trsl.2019.03.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Crohn's disease (CD) is a chronic inflammatory disease, which could affect any part of the gastrointestinal tract. A severe complication of CD is fibrosis-associated strictures, which can cause bowel obstruction. Unfortunately, there is no specific antifibrotic therapy available. More than 80% of the patients with CD will have to undergo at least 1 surgery in their life and recurrence of strictures after surgery is common. Investigations on the mechanism of fibrostenosing CD have revealed that fibrosis is mainly driven by expansion of mesenchymal cells including fibroblasts, myofibroblasts, and smooth muscle cells. Being exposed to a pro-fibrotic milieu, these cells increase the secretion of extracellular matrix, as well as crosslinking enzymes, which drive tissue stiffness and remodeling. Fibrogenesis can become independent of inflammation in later stages of disease, which offers unique therapeutic potential. Exciting new evidence suggests smooth muscle cell hyperplasia as a strong contributor to luminal narrowing in fibrostenotic CD. Approval of new drugs in other fibrotic diseases, such as idiopathic pulmonary fibrosis, as well as new targets associated with fibrosis found in CD, such as cadherins or specific integrins, shed light on the development of novel antifibrotic approaches in CD.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ren Mao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Satya Kurada
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| |
Collapse
|
18
|
Hu Z, Ai N, Chen W, Wong QWL, Ge W. Loss of Growth Hormone Gene (gh1) in Zebrafish Arrests Folliculogenesis in Females and Delays Spermatogenesis in Males. Endocrinology 2019; 160:568-586. [PMID: 30668682 DOI: 10.1210/en.2018-00878] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022]
Abstract
As a master hormone controlling growth and metabolism, GH is also known to regulate reproduction. Studies in mammals have shown that mutations in GH or its receptor (GHR) not only result in retardation in body growth but also reproductive dysfunctions in both sexes. However, the roles of GH in reproduction of other vertebrates are poorly defined. In this study, we created two zebrafish GH (gh1) mutant lines using CRISPR/Cas9. The mutant developed normally up to 14 days postfertilization (dpf); however, a high rate of mortality was observed afterward in both lines, and only a small number of mutant fish could survive to adult stage. The body growth of the mutants was significantly retarded in both sexes in a gene dose-dependent manner compared with their wild-type siblings. A severe dysfunction of gonadal development was observed in survived mutant females, with ovarian folliculogenesis being arrested completely at primary growth stage until 100 dpf. Interestingly, the folliculogenesis in the mutant resumed after months of delay with a certain number of follicles entering vitellogenic growth. As for male reproduction, although the spermatogenesis in mutant males seemed normal in adults, the GH-insufficient heterozygote showed an obvious delay of spermatogenesis (puberty onset) at early developmental stages. The adult mutant males could not breed with wild-type females through natural spawning; however, the sperm isolated from the mutant testes could fertilize eggs through artificial fertilization. This study provides further genetic evidence for the dependence of puberty onset on somatic growth, but not age, in fish.
Collapse
Affiliation(s)
- Zhe Hu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Nana Ai
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Weiting Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Queenie Wing-Lei Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
19
|
Zheng Y, Song Y, Han Q, Liu W, Xu J, Yu Z, Zhang R, Li N. Intestinal epithelial cell-specific IGF1 promotes the expansion of intestinal stem cells during epithelial regeneration and functions on the intestinal immune homeostasis. Am J Physiol Endocrinol Metab 2018; 315:E638-E649. [PMID: 29783855 DOI: 10.1152/ajpendo.00022.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is well known that insulin-like growth factor 1 (IGF1) acts as a trophic factor in small intestine under both physiological and pathophysiological conditions. However, it still lacks direct in vivo evidence of the functions of intestinal epithelial cell (IEC)-specific IGF1 under both normal and pathological conditions. Using IEC-specific IGF1-knockout (cKO) mice and Lgr5-eGFP-CreERT mice, we demonstrate that IEC-specific IGF1 can enhance nutrient uptake, reduce protein catabolism and energy consumption, and promote the proliferation and expansion of intestinal epithelial cells, including intestinal epithelial stem cells and intestinal secretory cells. Next, we showed that IEC-specific IGF1 renders IECs resistant to irradiation and promotes epithelial regeneration. Strikingly, transcriptome profiling assay revealed that many differentially expressed genes involved in the differentiation and maturation of lymphoid lineages were significantly suppressed in the cKO mice as compared with the control mice. We demonstrated that deletion of IGF1 in IECs enhances bacterial translocation to the mesenteric lymph nodes and liver. Furthermore, high-throughput sequencing of 16S ribosomal RNA genes of gut microbiota revealed that IEC-specific IGF1 loss profoundly affected the gut microbial composition at various levels of classification. Therefore, our findings shed light on the in vivo roles of IEC-specific IGF1 in intestinal homeostasis, epithelial regeneration, and immunity, broadening our current insights on IGF1 functions.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University , Beijing , China
| | - Yongli Song
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University , Beijing , China
| | - Qi Han
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University , Beijing , China
| | - Wenjie Liu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University , Beijing , China
| | - Jiuzhi Xu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University , Beijing , China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University , Beijing , China
| | - Ran Zhang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University , Beijing , China
| | - Ning Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University , Beijing , China
| |
Collapse
|
20
|
Cai C, Ahmad T, Valencia GB, Aranda JV, Xu J, Beharry KD. Intermittent hypoxia suppression of growth hormone and insulin-like growth factor-I in the neonatal rat liver. Growth Horm IGF Res 2018; 41:54-63. [PMID: 29544682 PMCID: PMC6064669 DOI: 10.1016/j.ghir.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Extremely low gestational age neonates with chronic lung disease requiring oxygen therapy frequently experience fluctuations in arterial oxygen saturation or intermittent hypoxia (IH). These infants are at risk for multi-organ developmental delay, reduced growth, and short stature. The growth hormone (GH)/insulin-like growth factor-I (IGF-1) system, an important hormonal regulator of lipid and carbohydrate metabolism, promotes neonatal growth and development. We tested the hypothesis that increasing episodes of IH delay neonatal growth by influencing the GH/IGF-I axis. DESIGN Newborn rats were exposed to 2, 4, 6, 8, 10, or 12 hypoxic episodes (12% O2) during hyperoxia (50% O2) from P0-P7, P0-P14 (IH), or allowed to recover from P7-P21 or P14-P21 (IHR) in room air (RA). RA littermates at P7, P14, and P21 served as RA controls; and groups exposed to hyperoxia only (50% O2) served as zero IH controls. Histopathology of the liver; hepatic levels of GH, GHBP, IGF-I, IGFBP-3, and leptin; and immunoreactivities of GH, GHR, IGF-I and IGF-IR were determined. RESULTS Pathological findings of the liver, including cellular swelling, steatosis, necrosis and focal sinusoid congestion were seen in IH, and were particularly severe in the P7 animals. Hepatic GH levels were significantly suppressed in the IH groups exposed to 6-12 hypoxic episodes per day and were not normalized during IHR. Deficits in the GH levels were associated with reduced body length and increase body weight during IHR suggesting increased adiposity and catchup fat. Catchup fat was also associated with elevations in GHBP, IGF-I, leptin. CONCLUSIONS IH significantly impairs hepatic GH/IGF-1 signaling during the first few weeks of life, which is likely responsible for hepatic GH resistance, increased body fat, and hepatic steatosis. These hormonal perturbations may contribute to long-term organ and body growth impairment, and metabolic dysfunction in preterm infants experiencing frequent IH and/or apneic episodes.
Collapse
Affiliation(s)
- Charles Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Taimur Ahmad
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Gloria B Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; SUNY Eye Institute, NY, NY, USA
| | - Jiliu Xu
- Department of Pediatrics, Richmond University Medical Center, Staten Island, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; SUNY Eye Institute, NY, NY, USA.
| |
Collapse
|
21
|
Villalona G, Price A, Blomenkamp K, Manithody C, Saxena S, Ratchford T, Westrich M, Kakarla V, Pochampally S, Phillips W, Heafner N, Korremla N, Greenspon J, Guzman MA, Kumar Jain A. No Gut No Gain! Enteral Bile Acid Treatment Preserves Gut Growth but Not Parenteral Nutrition-Associated Liver Injury in a Novel Extensive Short Bowel Animal Model. JPEN J Parenter Enteral Nutr 2018; 42:1238-1251. [PMID: 29701901 DOI: 10.1002/jpen.1167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Parenteral nutrition (PN) provides nutrition intravenously; however, this life-saving therapy is associated with significant liver disease. Recent evidence indicates improvement in PN-associated injury in animals with intact gut treated with enteral bile acid (BA), chenodeoxycholic acid (CDCA), and a gut farnesoid X receptor (FXR) agonist, which drives the gut-liver cross talk (GLCT). We hypothesized that similar improvement could be translated in animals with short bowel syndrome (SBS). METHODS Using piglets, we developed a novel 90% gut-resected SBS model. Fifteen SBS piglets receiving PN were given CDCA or control (vehicle control) for 2 weeks. Tissue and serum were analyzed posteuthanasia. RESULTS CDCA increased gut FXR (quantitative polymerase chain reaction; P = .008), but not downstream FXR targets. No difference in gut fibroblast growth factor 19 (FGF19; P = .28) or hepatic FXR (P = .75), FGF19 (P = .86), FGFR4 (P = .53), or Cholesterol 7 α-hydroxylase (P = .61) was noted. PN resulted in cholestasis; however, no improvement was noted with CDCA. Hepatic fibrosis or immunostaining for Ki67, CD3, or Cytokeratin 7 was not different with CDCA. PN resulted in gut atrophy. CDCA preserved (P = .04 vs control) gut mass and villous/crypt ratio. The median (interquartile range) for gut mass for control was 0.28 (0.17-0.34) and for CDCA was 0.33 (0.26-0.46). CONCLUSIONS We note that, unlike in animals with intact gut, in an SBS animal model there is inadequate CDCA-induced activation of gut-derived signaling to cause liver improvement. Thus, it appears that activation of GLCT is critically dependent on the presence of adequate gut. This is clinically relevant because it suggests that BA therapy may not be as effective for patients with SBS.
Collapse
Affiliation(s)
- Gustavo Villalona
- Department of Surgery, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Amber Price
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Keith Blomenkamp
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | - Saurabh Saxena
- Department of Surgery, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Thomas Ratchford
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Matthew Westrich
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Vindhya Kakarla
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Shruthika Pochampally
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - William Phillips
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Nicole Heafner
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Niraja Korremla
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jose Greenspon
- Department of Surgery, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Miguel A Guzman
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Ajay Kumar Jain
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
22
|
Pang M, Luo W, Fu B, Yu X, Zhou Y, Tong J. Transcriptomic Profiles of Brain Provide Insights into Molecular Mechanism of Feed Conversion Efficiency in Crucian Carp (Carassius auratus). Int J Mol Sci 2018. [PMID: 29538345 PMCID: PMC5877719 DOI: 10.3390/ijms19030858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Feed efficiency is an economically crucial trait for cultured animals, however, progress has been scarcely made in the genetic analyses of feed conversion efficiency (FCE) in fish because of the difficulties in measurement of trait phenotypes. In the present investigation, we present the first application of RNA sequencing (RNA-Seq) combined with differentially expressed genes (DEGs) analysis for identification of functional determinants related to FCE at the gene level in an aquaculture fish, crucian carp (Carassius auratus). Brain tissues of six crucian carp with extreme FCE performances were subjected to transcriptome analysis. A total of 544,612 unigenes with a mean size of 644.38 bp were obtained from Low- and High-FCE groups, and 246 DEGs that may be involved in FCE traits were identified in these two groups. qPCR confirmed that genes previously identified as up- or down-regulated by RNA-Seq were effectively up- or down-regulated under the studied conditions. Thirteen key genes, whose functions are associated with metabolism (Dgkk, Mgst3 and Guk1b), signal transduction (Vdnccsa1b, Tgfα, Nr4a1 and Tacr2) and growth (Endog, Crebrtc2, Myh7, Myh1,Myh14 and Igfbp7) were identified according to GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) annotations. Our novel findings provide useful pathway information and candidate genes for future studies of genetic mechanisms underlying FCE in crucian carp.
Collapse
Affiliation(s)
- Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weiwei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
| | - Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
23
|
Sipos F, Székely H, Kis ID, Tulassay Z, Műzes G. Relation of the IGF/IGF1R system to autophagy in colitis and colorectal cancer. World J Gastroenterol 2017; 23:8109-8119. [PMID: 29290648 PMCID: PMC5739918 DOI: 10.3748/wjg.v23.i46.8109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 10/28/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MetS), as a chronic inflammatory disorder has a potential role in the development of inflammatory and cancerous complications of the colonic tissue. The interaction of DNA damage and inflammation is affected by the insulin-like growth factor 1 receptor (IGF1R) signaling pathway. The IGF1R pathway has been reported to regulate autophagy, as well, but sometimes through a bidirectional context. Targeting the IGF1R-autophagy crosstalk could represent a promising strategy for the development of new antiinflammatory and anticancer therapies, and may help for subjects suffering from MetS who are at increased risk of colorectal cancer. However, therapeutic responses to targeted therapies are often shortlived, since a signaling crosstalk of IGF1R with other receptor tyrosine kinases or autophagy exists, leading to acquired cellular resistance to therapy. From a pharmacological point of view, it is attractive to speculate that synergistic benefits could be achieved by inhibition of one of the key effectors of the IGF1R pathway, in parallel with the pharmacological stimulation of the autophagy machinery, but cautiousness is also required, because pharmacologic IGF1R modulation can initiate additional, sometimes unfavorable biologic effects.
Collapse
Affiliation(s)
- Ferenc Sipos
- 2nd Department of Internal Medicine, Semmelweis University, Budapest 1088, Hungary
| | - Hajnal Székely
- 2nd Department of Internal Medicine, Semmelweis University, Budapest 1088, Hungary
| | - Imre Dániel Kis
- Faculty of Medicine, Semmelweis University, Budapest 1088, Hungary
| | - Zsolt Tulassay
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest 1088, Hungary
| | - Györgyi Műzes
- 2nd Department of Internal Medicine, Semmelweis University, Budapest 1088, Hungary
| |
Collapse
|
24
|
Gedawy A, Martinez J, Al-Salami H, Dass CR. Oral insulin delivery: existing barriers and current counter-strategies. J Pharm Pharmacol 2017; 70:197-213. [DOI: 10.1111/jphp.12852] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022]
Abstract
Abstract
Objectives
The chronic and progressive nature of diabetes is usually associated with micro- and macrovascular complications where failure of pancreatic β-cell function and a general condition of hyperglycaemia is created. One possible factor is failure of the patient to comply with and adhere to the prescribed insulin due to the inconvenient administration route. This review summarizes the rationale for oral insulin administration, existing barriers and some counter-strategies trialled.
Key findings
Oral insulin mimics the physiology of endogenous insulin secreted by pancreas. Following the intestinal absorption of oral insulin, it reaches the liver at high concentration via the portal vein. Oral insulin on the other hand has the potential to protect pancreatic β-cells from autoimmune destruction. Structural modification, targeting a particular tissue/receptor, and the use of innovative pharmaceutical formulations such as nanoparticles represent strategies introduced to improve oral insulin bioavailability. They showed promising results in overcoming the hurdles facing oral insulin delivery, although delivery is far from ideal.
Summary
The use of advanced pharmaceutical technologies and further research in particulate carrier system delivery predominantly nanoparticle utilization would offer useful tools in delivering insulin via the oral route which in turn would potentially improve diabetic patient compliance to insulin and the overall management of diabetes.
Collapse
Affiliation(s)
- Ahmed Gedawy
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia
| | - Jorge Martinez
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia
- Curtin Health Innovation Research Institute, Bentley, WA, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia
- Curtin Health Innovation Research Institute, Bentley, WA, Australia
| |
Collapse
|
25
|
Barbeiro HV, Machado MAC, de Souza HP, da Silva FP, Machado MCC. Reduction of venous pressure during the resection of liver metastases compromises enteric blood flow: IGFBP-1 as a novel biomarker of intestinal barrier injury. Clinics (Sao Paulo) 2017; 72:645-648. [PMID: 29160429 PMCID: PMC5666439 DOI: 10.6061/clinics/2017(10)10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Disruption of the intestinal barrier and bacterial translocation commonly occur when intestinal blood flow is compromised. The aim of this study was to determine whether liver resection induces intestinal damage. METHODS We investigated intestinal fatty-acid binding protein and insulin-like growth factor binding protein levels in the plasma of patients who underwent liver resection. RESULTS We show that liver resection is associated with significant intestinal barrier injury, even if the Pringle maneuver is not performed. CONCLUSION We propose the use of insulin-like growth factor binding protein-1 as a novel biomarker of intestinal damage in such situations.
Collapse
Affiliation(s)
- Hermes Vieira Barbeiro
- Departamento de Emergencias Clinicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | | - Heraldo Possolo de Souza
- Departamento de Emergencias Clinicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Fabiano Pinheiro da Silva
- Departamento de Emergencias Clinicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Marcel Cerqueira César Machado
- Departamento de Emergencias Clinicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Hospital Sirio Libanes, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
26
|
Cooperative Repression of Insulin-Like Growth Factor Type 2 Receptor Translation by MicroRNA 195 and RNA-Binding Protein CUGBP1. Mol Cell Biol 2017; 37:MCB.00225-17. [PMID: 28716948 DOI: 10.1128/mcb.00225-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/06/2017] [Indexed: 12/14/2022] Open
Abstract
Insulin-like growth factor type 2 (IGF2) receptor (IGF2R) recognizes mannose 6-phosphate-containing molecules and IGF2 and plays an important role in many pathophysiological processes, including gut mucosal adaptation. However, the mechanisms that control cellular IGF2R abundance are poorly known. MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) critically regulate gene expression programs in mammalian cells by modulating the stability and translation of target mRNAs. Here we report that miRNA 195 (miR-195) and RBP CUG-binding protein 1 (CUGBP1) jointly regulate IGF2R expression at the posttranscriptional level in intestinal epithelial cells. Both miR-195 and CUGBP1 interacted with the 3' untranslated region (3'-UTR) of Igf2r mRNA, and the association of CUGBP1 with Igf2r mRNA enhanced miR-195 binding to Igf2r mRNA. Ectopically expressed CUGBP1 and miR-195 repressed IGF2R translation cooperatively without altering the stability of Igf2r mRNA. Importantly, the miR-195- and CUGBP1-repressed levels of cellular IGF2R led to a disruption in the structure of the trans-Golgi network. These findings indicate that IGF2R expression is controlled posttranscriptionally by two factors that associate with Igf2r mRNA and suggest that miR-195 and CUGBP1 dampen IGF signaling by inhibiting IGF2R translation.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW To examine the most recent literature on the clinical trials associated with the relevant growth factors that have been of interest in the treatment of short bowel. RECENT FINDINGS Short bowel is a rare but devastating condition that condemns patients to lifelong parenteral support. Historically, treatment options negating the need for parenteral support were limited. Therapeutic growth factor use is of interest, but the clinical trial data are inconclusive. The STEPS-2 trial was the first trial that showed a sustained positive effect of the growth factor glucagon-like peptide-2 (GLP-2). This led to a phase shift in the management of short bowel, with the US Food and Drug Administration approval of the GLP-2 analogue teduglutide in 2012. This review summarizes all the relevant clinical trials of growth factors in the treatment of short bowel. SUMMARY GLP-2 has shown that growth factors can revolutionize the treatment of short bowel. Data however are lacking with regards to the solitary use of other factors. This review highlights the need for further work using the factors in combination as well as considering their use in novel methods for example in the field of regenerative medicine.
Collapse
|
28
|
EGR-1 is an active transcription factor in TGF-β2-mediated small intestinal cell differentiation. J Nutr Biochem 2016; 37:101-108. [DOI: 10.1016/j.jnutbio.2016.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/24/2016] [Accepted: 07/29/2016] [Indexed: 12/16/2022]
|
29
|
Suman S, Kumar S, Fornace AJ, Datta K. Space radiation exposure persistently increased leptin and IGF1 in serum and activated leptin-IGF1 signaling axis in mouse intestine. Sci Rep 2016; 6:31853. [PMID: 27558773 PMCID: PMC4997262 DOI: 10.1038/srep31853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/28/2016] [Indexed: 12/21/2022] Open
Abstract
Travel into outer space is fraught with risk of exposure to energetic heavy ion radiation such as 56Fe ions, which due to its high linear energy transfer (high-LET) characteristics deposits higher energy per unit volume of tissue traversed and thus more damaging to cells relative to low-LET radiation such as γ rays. However, estimates of human health risk from energetic heavy ion exposure are hampered due to lack of tissue specific in vivo molecular data. We investigated long-term effects of 56Fe radiation on adipokines and insulin-like growth factor 1 (IGF1) signaling axis in mouse intestine and colon. Six- to eight-week-old C57BL/6J mice were exposed to 1.6 Gy of 56Fe ions. Serum and tissues were collected up to twelve months post-irradiation. Serum was analyzed for leptin, adiponectin, IGF1, and IGF binding protein 3. Receptor expressions and downstream signaling pathway alterations were studied in tissues. Irradiation increased leptin and IGF1 levels in serum, and IGF1R and leptin receptor expression in tissues. When considered along with upregulated Jak2/Stat3 pathways and cell proliferation, our data supports the notion that space radiation exposure is a risk to endocrine alterations with implications for chronic pathophysiologic changes in gastrointestinal tract.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Biochemistry and Molecular &Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Santosh Kumar
- Department of Biochemistry and Molecular &Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular &Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.,Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kamal Datta
- Department of Biochemistry and Molecular &Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
30
|
Chen T, Zheng F, Tao J, Tan S, Zeng L, Peng X, Wu B. Insulin-Like Growth Factor-1 Contributes to Mucosal Repair by β-Arrestin2-Mediated Extracellular Signal-Related Kinase Signaling in Experimental Colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:2441-53. [PMID: 26362717 DOI: 10.1016/j.ajpath.2015.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/19/2015] [Accepted: 05/28/2015] [Indexed: 12/12/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) possesses the ability to attenuate intestinal damage and promote mucosal repair of colitis. β-Arrestins, as the scaffolding proteins of G protein-coupled receptors or non-G protein-coupled receptors signaling, can be involved in IGF-1-mediated signaling pathways. However, the interaction of IGF-1 and β-arrestin2 in the mucosal repair of experimental colitis remains unexplored. Ulcerative colitis was induced in β-arrestin2 wild-type mice and β-arrestin2 knockout littermates by using 3% dextran sulfate sodium for 5 days, followed by regular water consumption for 1, 2, 3, and 4 weeks to analyze the mucosal repair from experimental colitis. Disease activity index and histologic score analyses were performed. Apoptosis and proliferation were assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and Ki-67 staining, respectively. The expressions of β-arrestin2, phospho (p)-IGF-1R, and p-extracellular signal-regulated kinase (ERK)1/2 were examined. Furthermore, β-arrestin2 was overexpressed or altered in HCT116 cells by transfection before IGF-1 treatment in vitro. IGF-1 and β-arrestin2 expression was up-regulated in the repairing phase of experimental colitis. Targeted deletion of β-arrestin2 delayed the repair of colitis by inhibiting cell proliferation without affecting the levels of IGF-1 and p-IGF-1R. The β-arrestin2/ERK signaling pathway was involved in IGF-1-mediated mucosal repair through promoting epithelial cell and goblet cell regeneration from experimental colitis. These results indicate that IGF-1 contributes to the mucosal repair by β-arrestin2-mediated ERK signaling in experimental colitis.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fengping Zheng
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jin Tao
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Siwei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lixian Zeng
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaojie Peng
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
31
|
Zatorski H, Marynowski M, Fichna J. Is insulin-like growth factor 1 (IGF-1) system an attractive target inflammatory bowel diseases? Benefits and limitation of potential therapy. Pharmacol Rep 2016; 68:809-15. [PMID: 27117379 DOI: 10.1016/j.pharep.2016.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/12/2016] [Accepted: 03/04/2016] [Indexed: 01/26/2023]
Abstract
Inflammatory bowel diseases (IBD) are chronic gastrointestinal disorders with unknown etiology, whose incidence dramatically increased over the past 50 years. Currently available strategies for IBD treatment, such as biological therapies, corticosteroids, and immunosuppressive agents are effective, but their side effects and economic costs cannot be ignored. Better understanding of IBD etiology and new therapeutics are thus needed. The aim of this paper is to briefly discuss IGF-1 dependent functions, with particular focus on IGF-1 use in IBD therapy. Data collection was based on records found in medical literature. Data analysis included records published between 1984 and 2014. The IGF-1 system is involved in major physiological functions, such as cell proliferation and metabolism, and growth promotion. Most importantly IGF-1 has anti-inflammatory properties and its use in IBD treatment can be recommended. However, potential IGF-1 therapy has some limitations, which include aggravation of fibrosis in Crohn's patients and facilitated transformation to malignancy. Taken into consideration their possible side effects, IGF-1 analogs and recombinants are nonetheless a promising target for IBD therapy for a specific group of patients. Further studies, at the clinical level are thus recommended.
Collapse
Affiliation(s)
- Hubert Zatorski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Mateusz Marynowski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland.
| |
Collapse
|
32
|
Lim DW, Wales PW, Turner JM, Bigam DL, Brubaker PL. On the horizon: trophic peptide growth factors as therapy for neonatal short bowel syndrome. Expert Opin Ther Targets 2016; 20:819-30. [DOI: 10.1517/14728222.2016.1146695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- David W. Lim
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Paul W. Wales
- Department of Surgery, University of Toronto & Hospital for Sick Children, Toronto, ON, Canada
| | - Justine M. Turner
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - David L. Bigam
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Patricia L. Brubaker
- Departments of Physiology and Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Paradis F, Yue S, Grant JR, Stothard P, Basarab JA, Fitzsimmons C. Transcriptomic analysis by RNA sequencing reveals that hepatic interferon-induced genes may be associated with feed efficiency in beef heifers1. J Anim Sci 2015; 93:3331-41. [DOI: 10.2527/jas.2015-8975] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Interaction of AIM with insulin-like growth factor-binding protein-4. Int J Mol Med 2015; 36:833-8. [PMID: 26135353 PMCID: PMC4533773 DOI: 10.3892/ijmm.2015.2262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/22/2015] [Indexed: 11/11/2022] Open
Abstract
Apoptosis inhibitor of macrophages (AIM/cluster of differentiation 5 antigen-like/soluble protein α) has been shown to inhibit cellular apoptosis; however, the underlying molecular mechanism has not been elucidated. Using yeast two-hybrid screening, the present study uncovered that AIM binds to insulin-like growth factor binding protein-4 (IGFBP-4). AIM interaction with IGFBP-4, as well as IGFBP-2 and -3, but not with IGFBP-1, -5 and -6, was further confirmed by co-immunoprecipitation (co-IP) using 293 cells. The binding activity and affinity between AIM and IGFBP-4 in vitro were analyzed by co-IP and biolayer interferometry. Serum depletion-induced cellular apoptosis was attenuated by insulin-like growth factor-I (IGF-I), and this effect was abrogated by IGFBP-4. Of note, in the presence of AIM, the inhibitory effect of IGFBP-4 on the anti-apoptosis function of IGF-I was attenuated, possibly through binding of AIM with IGFBP-4. In conclusion, to the best of our knowledge, the present study provides the first evidence that AIM binds to IGFBP-2, -3 and -4. The data suggest that this interaction may contribute to the mechanism of AIM-mediated anti-apoptosis function.
Collapse
|
35
|
Pedersen J, Pedersen NB, Brix SW, Grunddal KV, Rosenkilde MM, Hartmann B, Ørskov C, Poulsen SS, Holst JJ. The glucagon-like peptide 2 receptor is expressed in enteric neurons and not in the epithelium of the intestine. Peptides 2015; 67:20-8. [PMID: 25748021 DOI: 10.1016/j.peptides.2015.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide 2 (GLP-2) is a potent intestinotrophic growth factor with therapeutic potential in the treatment of intestinal deficiencies. It has recently been approved for the treatment of short bowel syndrome. The effects of GLP-2 are mediated by specific binding of the hormone to the GLP-2 receptor (GLP-2R) which was cloned in 1999. However, consensus about the exact receptor localization in the intestine has never been established. By physical, chemical and enzymatic tissue fragmentation, we were able to divide rat jejunum into different compartments consisting of: (1) epithelium alone, (2) mucosa with lamina propria and epithelium, (3) the external muscle coat including myenteric plexus, (4) a compartment enriched for the myenteric plexus and (5) intestine without epithelium. Expression of Glp2r; chromogranin A; tubulin, beta 3; actin, gamma 2, smooth muscle, enteric and glial fibrillary acidic protein in these isolated tissue fractions was quantified with qRT-PCR. Expression of the Glp2r was confined to compartments containing enteric neurons and receptor expression was absent in the epithelium. Our findings provide evidence for the expression of the GLP-2R in intestinal compartments rich in enteric neurons and, importantly they exclude significant expression in the epithelium of rat jejunal mucosa.
Collapse
Affiliation(s)
- Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Nis B Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Sophie W Brix
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kaare Villum Grunddal
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Steen S Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
36
|
Li P, Liang ML, Zhu Y, Gong YY, Wang Y, Heng D, Lin L. Resveratrol inhibits collagen I synthesis by suppressing IGF-1R activation in intestinal fibroblasts. World J Gastroenterol 2014; 20:4648-4661. [PMID: 24782617 PMCID: PMC4000501 DOI: 10.3748/wjg.v20.i16.4648] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/13/2014] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether resveratrol (3,4,5-trihydroxy-trans-stilbene) inhibits collagen I synthesis induced by insulin growth factor-1 (IGF-1) in intestinal fibroblasts, and to explore the possible molecular mechanisms.
METHODS: Male Sprague-Dawley rats were randomly divided into two groups: a control group and a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis group. After 21 d of TNBS administration, the degree of inflammation and fibrosis in colon was measured by HE staining and Masson’s trichrome staining. Western blotting was used to examine collagen I, IGF-1 and silent information regulator 1 (SIRT1) protein expression in colitis tissues. Western blotting and quantitative real-time polymerase chain reaction were used to characterize collagen I protein and col1a2 mRNA expression in mouse intestinal fibroblasts and CCD-18Co cells treated with IGF-1. A MEK inhibitor (U0126) was used to determine whether IGF-1-induced collagen I expression was mediated by extracellular signal-regulated kinase 1/2 (ERK1/2)-dependent mechanism. Effects of resveratrol on collagen I protein level, insulin growth factor-1 receptor (IGF-1R) and ERK1/2 phosphorylation levels were also examined after IGF-1 treatment in fibroblasts. To evaluate whether SIRT1 was necessary for the anti-fibrosis effect of resveratrol, cells were transfected with SIRT1-specific small interfering RNAs, wild-type SIRT1, and deacetylase-inactive mutant SIRT1.
RESULTS: Collagen I and IGF-1 expression was increased, and SIRT1 expression was decreased (0.67 ± 0.04 vs 1.05 ± 0.07, P < 0.001) in TNBS-induced colitis compared with the control group. In vitro, IGF-1 could induce collagen I expression, mainly through the ERK 1/2 signal pathway. Resveratrol reduced basal and IGF-1-induced collagen I gene and protein expression in intestinal fibroblasts. Overexpression of wild-type SIRT1, not deacetylase-inactive mutant SIRT1, decreased expression of collagen I induced by IGF-1. Moreover, silencing SIRT1 restored collagen I expression in fibroblasts challenged with resveratrol. However, disruption of SIRT1 did not influence the anti-fibrotic effects of resveratrol and IGF-1-induced collagen I expression. Further analysis revealed that resveratrol significantly decreased phosphorylation of IGF-1R and its downstream signaling molecules by inhibiting IGF-1 binding to its receptor.
CONCLUSION: Our data suggest that resveratrol effectively inhibits collagen I synthesis in IGF-1-stimulated fibroblasts, partly by inhibiting IGF-1R activation, and SIRT1 is also responsible for the process.
Collapse
|
37
|
Akiel M, Rajasekaran D, Gredler R, Siddiq A, Srivastava J, Robertson C, Jariwala NH, Fisher PB, Sarkar D. Emerging role of insulin-like growth factor-binding protein 7 in hepatocellular carcinoma. J Hepatocell Carcinoma 2014; 1:9-19. [PMID: 27508172 PMCID: PMC4918263 DOI: 10.2147/jhc.s44460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a vicious and highly vascular cancer with a dismal prognosis. It is a life-threatening illness worldwide that ranks fifth in terms of cancer prevalence and third in cancer deaths. Most patients are diagnosed at an advanced stage by which time conventional therapies are no longer effective. Targeted molecular therapies, such as the multikinase inhibitor sorafenib, provide a modest increase in survival for advanced HCC patients and display significant toxicity. Thus, there is an immense need to identify novel regulators of HCC that might be targeted effectively. The insulin-like growth factor (IGF) axis is commonly abnormal in HCC. Upon activation, the IGF axis controls metabolism, tissue homeostasis, and survival. Insulin-like growth factor-binding protein 7 (IGFBP7) is a secreted protein of a family of low-affinity IGF-binding proteins termed “IGFBP-related proteins” that have been identified as a potential tumor suppressor in HCC. IGFBP7 has been implicated in regulating cellular proliferation, senescence, and angiogenesis. In this review, we provide a comprehensive discussion of the role of IGFBP7 in HCC and the potential use of IGFBP7 as a novel biomarker for drug resistance and as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Maaged Akiel
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Devaraja Rajasekaran
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rachel Gredler
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ayesha Siddiq
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jyoti Srivastava
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Chadia Robertson
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Nidhi Himanshu Jariwala
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
38
|
Abstract
Epidemics of obesity, diabetes, nonalcoholic fatty liver disease, and cognitive impairment/Alzheimer disease have emerged over the past 3 to 4 decades. These diseases share in common target-organ insulin resistance with a constellation of molecular and biochemical abnormalities that lead to organ/tissue degeneration over time. This article discusses the fundamental links among these diseases and how peripheral organ insulin resistance diseases contribute to cognitive impairment and neurodegeneration. A future role of endocrinologists and diabetologists could be to provide integrative diagnostic and treatment approaches for this collection of diseases that seem to share pathophysiological and pathogenetic bases.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Department of Pathology (Neuropathology), Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA; Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA; Department of Neurosurgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA; Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
39
|
Nair DG, Miller KG, Lourenssen SR, Blennerhassett MG. Inflammatory cytokines promote growth of intestinal smooth muscle cells by induced expression of PDGF-Rβ. J Cell Mol Med 2014; 18:444-54. [PMID: 24417820 PMCID: PMC3955151 DOI: 10.1111/jcmm.12193] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022] Open
Abstract
Thickening of the inflamed intestinal wall involves growth of smooth muscle cells (SMC), which contributes to stricture formation. Earlier, the growth factor platelet-derived growth factor (PDGF)-BB was identified as a key mitogen for SMC from the rat colon (CSMC), and CSMC growth in colitis was associated with both appearance of its receptor, PDGF-Rβ and modulation of phenotype. Here, we examined the role of inflammatory cytokines in inducing and modulating the growth response to PDGF-BB. CSMC were enzymatically isolated from Sprague–Dawley rats, and the effect of tumour necrosis factor (TNF)-α, interleukin (IL)-1β, transforming growth factor (TGF), IL-17A and IL-2 on CSMC growth and responsiveness to PDGF-BB were assessed using proliferation assays, PCR and western blotting. Conditioned medium (CM) was obtained at 48 hrs of trinitrobenzene sulphonic acid-induced colitis. Neither CM alone nor cytokines caused proliferation of early-passage CSMC. However, CM from inflamed, but not control colon significantly promoted the effect of PDGF-BB. IL-1β, TNF-α and IL-17A, but not other cytokines, increased the effect of PDGF-BB because of up-regulation of mRNA and protein for PDGF-Rβ without change in receptor phosphorylation. PDGF-BB was identified in adult rat serum (RS) and RS-induced CSMC proliferation was inhibited by imatinib, suggesting that blood-derived PDGF-BB is a local mitogen in vivo. In freshly isolated CSMC, CM from the inflamed colon as well as IL-1β and TNF-α induced the early expression of PDGF-Rβ, while imatinib blocked subsequent RS-induced cell proliferation. Thus, pro-inflammatory cytokines both initiate and maintain a growth response in CSMC via PDGF-Rβ and serum-derived PDGF-BB, and control of PDGF-Rβ expression may be beneficial in chronic intestinal inflammation.
Collapse
Affiliation(s)
- Dileep G Nair
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
40
|
de la Monte SM, Tong M. Brain metabolic dysfunction at the core of Alzheimer's disease. Biochem Pharmacol 2013; 88:548-59. [PMID: 24380887 DOI: 10.1016/j.bcp.2013.12.012] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 02/06/2023]
Abstract
Growing evidence supports the concept that Alzheimer's disease (AD) is fundamentally a metabolic disease with molecular and biochemical features that correspond with diabetes mellitus and other peripheral insulin resistance disorders. Brain insulin/IGF resistance and its consequences can readily account for most of the structural and functional abnormalities in AD. However, disease pathogenesis is complicated by the fact that AD can occur as a separate disease process, or arise in association with systemic insulin resistance diseases, including diabetes, obesity, and non-alcoholic fatty liver disease. Whether primary or secondary in origin, brain insulin/IGF resistance initiates a cascade of neurodegeneration that is propagated by metabolic dysfunction, increased oxidative and ER stress, neuro-inflammation, impaired cell survival, and dysregulated lipid metabolism. These injurious processes compromise neuronal and glial functions, reduce neurotransmitter homeostasis, and cause toxic oligomeric pTau and (amyloid beta peptide of amyloid beta precursor protein) AβPP-Aβ fibrils and insoluble aggregates (neurofibrillary tangles and plaques) to accumulate in brain. AD progresses due to: (1) activation of a harmful positive feedback loop that progressively worsens the effects of insulin resistance; and (2) the formation of ROS- and RNS-related lipid, protein, and DNA adducts that permanently damage basic cellular and molecular functions. Epidemiologic data suggest that insulin resistance diseases, including AD, are exposure-related in etiology. Furthermore, experimental and lifestyle trend data suggest chronic low-level nitrosamine exposures are responsible. These concepts offer opportunities to discover and implement new treatments and devise preventive measures to conquer the AD and other insulin resistance disease epidemics.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Departments of Pathology (Neuropathology), Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA; Departments of Neurology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA; Departments of Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA; Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Ming Tong
- Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
41
|
Zhang J, Hochwald SN. The role of FAK in tumor metabolism and therapy. Pharmacol Ther 2013; 142:154-63. [PMID: 24333503 DOI: 10.1016/j.pharmthera.2013.12.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023]
Abstract
Focal adhesion kinase (FAK) plays a vital role in tumor cell proliferation, survival and migration. Altered metabolic pathways fuel rapid tumor growth by accelerating glucose, lipid and glutamine processing. Besides the mitogenic effects of FAK, evidence is accumulating supporting the association between hyper-activated FAK and aberrant metabolism in tumorigenesis. FAK can promote glucose consumption, lipogenesis, and glutamine dependency to promote cancer cell proliferation, motility, and survival. Clinical studies demonstrate that FAK-related alterations of tumor metabolism are associated with increased risk of developing solid tumors. Since FAK contributes to the malignant phenotype, small molecule inhibition of FAK-stimulated bioenergetic and biosynthetic processes can provide a novel approach for therapeutic intervention in tumor growth and invasion.
Collapse
Affiliation(s)
- Jianliang Zhang
- Department of Surgical Oncology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Steven N Hochwald
- Department of Surgical Oncology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States.
| |
Collapse
|
42
|
Li B, Luo C, Chowdhury S, Gao ZH, Liu JL. Parp1 deficient mice are protected from streptozotocin-induced diabetes but not caerulein-induced pancreatitis, independent of the induction of Reg family genes. ACTA ACUST UNITED AC 2013; 186:83-91. [PMID: 23954400 DOI: 10.1016/j.regpep.2013.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 06/12/2013] [Accepted: 07/13/2013] [Indexed: 12/12/2022]
Abstract
Poly(ADP-ribose) polymerase (Parp) 1 is a key regulator of cell death, its inhibition prevented streptozotocin-induced diabetes and attenuated caerulein-induced acute pancreatitis. Reg family proteins are significantly induced by Parp1 inhibitor, experimental diabetes and/or acute pancreatitis. We propose that Reg proteins are involved in the protection of pancreatic cells by Parp1 inhibition. To test this possibility, Parp1-/- and wild-type mice were injected with streptozotocin to induce diabetes. Separately, acute pancreatitis was induced with repeated injections of caerulein. Upon streptozotocin administration, Parp1-/- mice displayed much decreased hyperglycemia and preserved serum insulin level. The treatment induced similar levels of Reg1, -2, -3α and -3β genes in the pancreas of both wild-type and Parp1-/- mice, suggesting that the upregulation of Reg family genes during streptozotocin-induced diabetes was independent of Parp1 ablation. In caerulein-induced pancreatitis, unlike being reported, Parp1 knockout caused no relief on the severity of pancreatitis; the upregulation of pancreatic Reg1, -2, -3α and -3β genes upon caerulein was unaffected by Parp1 deletion. Our results reconfirmed the protective effect of Parp1 gene deletion on islet β-cells but questioned its effect on the acinar cells. In either case, the significant induction of Reg family genes seemed independent of Parp1-mediated cell death.
Collapse
Affiliation(s)
- Bing Li
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | | | | | | | | |
Collapse
|
43
|
Duncan MB. Extracellular matrix transcriptome dynamics in hepatocellular carcinoma. Matrix Biol 2013; 32:393-8. [PMID: 23727079 DOI: 10.1016/j.matbio.2013.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 02/07/2023]
Abstract
The extracellular matrix undergoes extensive remodeling during hepatocellular carcinoma and functions as a critical component of the tumor microenvironment by providing a substratum for cell adhesion and serving as a reservoir for a variety of cytokines and growth factors. Despite the clinical correlation between ECM deposition and hepatocellular carcinoma progression, it remains unclear how global extracellular matrix gene expression is altered in hepatocellular carcinoma and the molecular pathways that govern this change. Herein, a comprehensive analysis of the extracellular matrix transcriptome using an RNA-sequencing dataset provided by The Cancer Genome Atlas consortium was conducted and indicates substantial differential gene expression of key extracellular matrix collagens, glycoproteins, and proteoglycans in hepatocellular carcinoma. This analysis also reveals alternative expression of extracellular matrix gene transcript variants that could impact biological activity and serves as a framework for exploring the dynamic nature of the extracellular matrix transcriptome in cancer and identifying candidate genes for future exploration.
Collapse
Affiliation(s)
- Michael B Duncan
- Section of Gastroenterology/Hepatology, Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, United States; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, United States; Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912, United States.
| |
Collapse
|