1
|
Qu B, Zeng Z, Yang H, He J, Jiang T, Xu X, Liu J, Li Y, Xiang D, Pan X. Resveratrol reversed rosiglitazone administration induced bone loss in rats with type 2 diabetes mellitus. Biomed Pharmacother 2024; 178:117208. [PMID: 39088966 DOI: 10.1016/j.biopha.2024.117208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024] Open
Abstract
Rosiglitazone (RSG), as an insulin-sensitizing drug to treat type 2 diabetes mellitus (T2DM) is reported to decrease bone quality and increase bone fracture risk. The multiple off-target effects of Resveratrol (RSV), a natural specific agonist of Sirtuin1 (Sirt1) with pro-osteoblastogenesis and anti-adipogenesis effects, on bone loss in T2DM are still under discussion. In this study, successfully ovariectomized rats were fed with high-fat diet and STZ (HFD/STZ) to induced T2DM mice. RSV alone, RSG alone or co-administration of RSV and RSG were given orally to T2DM rats for 8 weeks to determine whether RSV administration had any prevention effect on T2DM osteoporosis. Bone mesenchymal stem cells (BMSCs) and bone marrow‑derived macrophages (BMMs) were cultured under high glucose condition and were induced to osteoblasts or adipocytes and osteoclasts, respectively. μCT and HE staining showed that in T2DM osteoporotic rats, RSV co-administration prevents RSG induced-bone loss. ELISA results confirmed that RSV suppressed osteoclast activity and promoted osteoblast activity in diabetic osteoporosis rats and RSG-administrated diabetic osteoporosis rats. In vitro study showed that RSV significantly reversed RSG induced inhibition on osteogenesis and promotion on adiopogenesis of BMSC under high glucose (HG). Moreover, RSV significantly reverse RSG induced osteoclast formation and mature under HG. Taken together, these findings uncover a previously unappreciated anti-osteoporosis effect of concomitant treatment with RSV in RSG-administrated diabetic rats, suggesting the clinical use of RSV as an adjuvant in the treatment of T2DM for preventing or reversing RSG administration-associated bone loss.
Collapse
Affiliation(s)
- Bo Qu
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Zhimou Zeng
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Hongsheng Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Jun He
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Tao Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Xiaoping Xu
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Jinwang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Yugang Li
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Deng Xiang
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Xianming Pan
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China.
| |
Collapse
|
2
|
Xu C, Wang Z, Liu YJ, Duan K, Guan J. Harnessing GMNP-loaded BMSC-derived EVs to target miR-3064-5p via MEG3 overexpression: Implications for diabetic osteoporosis therapy in rats. Cell Signal 2024; 118:111055. [PMID: 38246512 DOI: 10.1016/j.cellsig.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Diabetic osteoporosis (DO) is a significant complication of diabetes, characterized by a decrease in bone mineral density and an increase in fracture risk. Magnetic nanoparticles (GMNPs) have emerged as potential drug carriers for various therapeutic applications. This study investigated the molecular mechanism of GMNPs loaded with bone marrow mesenchymal stem cell (BMSC) derived extracellular vesicles (EVs) overexpressing MEG3 target miR-3064-5p to induce NR4A3 for treating DO in rats. Initial analysis was carried out on GEO datasets GSE7158 and GSE62589, revealing a notable downregulation of NR4A3 in osteoporotic samples. Subsequent in vitro studies demonstrated the effective uptake of BMSC-EVs-MEG3 by osteoblasts and its potential to inhibit miR-3064-5p, activating the PINK1/Parkin signaling pathway and thus promoting mitochondrial autophagy, osteoblast proliferation, and differentiation. In vivo, experiments using DO rat models further substantiated the therapeutic efficacy of GMNPE-EVs-MEG3 in alleviating osteoporosis symptoms. In conclusion, GMNPs loaded with BMSC-EVs, through the delivery of MEG3 targeting miR-3064-5p, can effectively promote NR4A3 expression, activate the PINK1/Parkin pathway, and thereby enhance osteoblast proliferation and differentiation, offering a promising treatment for DO.
Collapse
Affiliation(s)
- Chen Xu
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu 233000, Anhui Province, China; Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu 233030, Anhui Province, China
| | - Zhaodong Wang
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu 233000, Anhui Province, China; Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu 233030, Anhui Province, China
| | - Ya Jun Liu
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu 233000, Anhui Province, China; Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu 233030, Anhui Province, China
| | - Keyou Duan
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu 233000, Anhui Province, China; Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu 233030, Anhui Province, China
| | - Jianzhong Guan
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu 233000, Anhui Province, China; Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu 233030, Anhui Province, China.
| |
Collapse
|
3
|
Wu Z, Deng W, Ye Y, Xu J, Han D, Zheng Y, Zheng Q. Liraglutide, a glucagon-like peptide-1 receptor agonist, inhibits bone loss in an animal model of osteoporosis with or without diabetes. Front Endocrinol (Lausanne) 2024; 15:1378291. [PMID: 38868747 PMCID: PMC11167098 DOI: 10.3389/fendo.2024.1378291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Liraglutide (Lrg), a novel anti-diabetic drug that mimics the endogenous glucagon-like peptide-1 to potentiate insulin secretion, is observed to be capable of partially reversing osteopenia. The aim of the present study is to further investigate the efficacy and potential anti-osteoporosis mechanisms of Lrg for improving bone pathology, bone- related parameters under imageology, and serum bone metabolism indexes in an animal model of osteoporosis with or without diabetes. Methods Eight databases were searched from their inception dates to April 27, 2024. The risk of bias and data on outcome measures were analyzed by the CAMARADES 10-item checklist and Rev-Man 5.3 software separately. Results Seventeen eligible studies were ultimately included in this review. The number of criteria met in each study varied from 4/10 to 8/10 with an average of 5.47. The aspects of blinded induction of the model, blinding assessment of outcome and sample size calculation need to be strengthened with emphasis. The pre-clinical evidence reveals that Lrg is capable of partially improving bone related parameters under imageology, bone pathology, and bone maximum load, increasing serum osteocalcin, N-terminal propeptide of type I procollagen, and reducing serum c-terminal cross-linked telopeptide of type I collagen (P<0.05). Lrg reverses osteopenia likely by activating osteoblast proliferation through promoting the Wnt signal pathway, p-AMPK/PGC1α signal pathway, and inhibiting the activation of osteoclasts by inhibiting the OPG/RANKL/RANK signal pathway through anti-inflammatory, antioxidant and anti-autophagic pathways. Furthermore, the present study recommends that more reasonable usage methods of streptozotocin, including dosage and injection methods, as well as other types of osteoporosis models, be attempted in future studies. Discussion Based on the results, this finding may help to improve the priority of Lrg in the treatment of diabetes patients with osteoporosis.
Collapse
Affiliation(s)
- Zongyi Wu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Deng
- Department of Rheumatology Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiming Ye
- Department of Rheumatology Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Xu
- Department of Rheumatology Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Deyu Han
- Department of Rheumatology Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Zheng
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qun Zheng
- Department of Rheumatology Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Xue C, Lu X, Sun G, Wang N, He G, Xu W, Xi Z, Xie L. Efficacy of Opportunistic Screening with Chest CT in Identifying Osteoporosis and Osteopenia in Patients with T2DM. Diabetes Metab Syndr Obes 2024; 17:2155-2163. [PMID: 38827165 PMCID: PMC11143444 DOI: 10.2147/dmso.s462065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
Purpose To explore the validity of the thoracic spine Hounsfield Unit (HU) measured by chest computed tomography (CT) for opportunistic screening of diabetic osteoporosis. The current study attempted to establish a diagnostic threshold for thoracic spine HU in a type 2 diabetes mellitus (T2DM) population with osteoporosis. Patients and Methods The current study retrospectively included 334 patients with T2DM. They underwent chest CT and Dual-energy X-ray (DXA) between August 2021 and January 2022 in our hospital. HU values were measured on the resulting chest CT images at thoracic spine 11 and 12 to construct regions of interest. All patients were grouped according to the lowest T-value of DXA examination: osteoporosis, osteopenia and normal bone density. HU values were compared with T-values in each group of patients, and receiver operating characteristics curves were plotted to calculate diagnostic thresholds as well as sensitivity and specificity. Results There was a strong correlation between the HU values of chest CT and the T-values of DXA (p < 0.01). The sensitivity for osteoporosis was 88.7% for T11 attenuation≤ 98 HU and the specificity for osteoporosis was 87.5% for T12 attenuation ≤ 117HU; the specificity for normal BMD was 85.4% for T11 attenuation ≥ 147 HU and 82% for T12 attenuation ≥ 146 HU. Conclusion Chest CT can be used to screen patients with T2DM for opportunistic osteoporosis and help determine if they need DXA screening. The current study suggests that when the HU threshold of T11 ≤ 98/T12 ≤ 117, patients may need further osteoporosis screening.
Collapse
Affiliation(s)
- Congyang Xue
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Xiaopei Lu
- Department of Traditional Chinese Medicine Surgery, Nanjing Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Guangda Sun
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Nan Wang
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Gansheng He
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Wenqiang Xu
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Zhipeng Xi
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Lin Xie
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
5
|
Guimarães GC, Coelho JBC, Silva JGO, de Sant'Ana ACC, de Sá CAC, Moreno JM, Reis LM, de Oliveira Guimarães CS. Obesity, diabetes and risk of bone fragility: How BMAT behavior is affected by metabolic disturbances and its influence on bone health. Osteoporos Int 2024; 35:575-588. [PMID: 38055051 DOI: 10.1007/s00198-023-06991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE Osteoporosis is a metabolic bone disease characterized by decreased bone strength and mass, which predisposes patients to fractures and is associated with high morbidity and mortality. Like osteoporosis, obesity and diabetes are systemic metabolic diseases associated with modifiable risk factors and lifestyle, and their prevalence is increasing. They are related to decreased quality of life, functional loss and increased mortality, generating high costs for health systems and representing a worldwide public health problem. Growing evidence reinforces the role of bone marrow adipose tissue (BMAT) as an influential factor in the bone microenvironment and systemic metabolism. Given the impact of obesity and diabetes on metabolism and their possible effect on the bone microenvironment, changes in BMAT behavior may explain the risk of developing osteoporosis in the presence of these comorbidities. METHODS This study reviewed the scientific literature on the behavior of BMAT in pathological metabolic conditions, such as obesity and diabetes, and its potential involvement in the pathogenesis of bone fragility. RESULTS Published data strongly suggest a relationship between increased BMAT adiposity and the risk of bone fragility in the context of obesity and diabetes. CONCLUSION By secreting a broad range of factors, BMAT modulates the bone microenvironment and metabolism, ultimately affecting skeletal health. A better understanding of the relationship between BMAT expansion and metabolic disturbances observed in diabetic and obese patients will help to identify regulatory pathways and new targets for the treatment of bone-related diseases, with BMAT as a potential therapeutic target.
Collapse
Affiliation(s)
| | - João Bosco Costa Coelho
- Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | | | | | | | - Júlia Marques Moreno
- Department of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Lívia Marçal Reis
- Department of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Camila Souza de Oliveira Guimarães
- Department of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil.
- Departamento de Medicina, Universidade Federal de Lavras, Câmpus Universitário, Caixa Postal 3037, CEP 37200-900, Lavras, Minas Gerais, Brasil.
| |
Collapse
|
6
|
Chen M, Lin S, Chen W, Chen X. Antidiabetic drug administration prevents bone mineral density loss: Evidence from a two-sample Mendelian randomization study. PLoS One 2024; 19:e0300009. [PMID: 38451994 PMCID: PMC10919632 DOI: 10.1371/journal.pone.0300009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
The aim of this study was to investigate the effect of common antidiabetic drugs on BMD by two-sample Mendelian randomization (MR). The single nucleotide polymorphisms that were strongly associated with insulin, metformin, rosiglitazone and gliclazide were extracted as instrumental variables (IVs) for MR analysis. The inverse variance weighted (IVW) method was used as the primary MR method to assess the causal effect of antidiabetic drugs on BMD, and other MR methods, including Weighted median, MR Egger and Weighted mode, were used for complementary analysis. Reliability and stability were assessed by the leave-one-out test. In the present work, IVW estimation of the causal effect of insulin on heel BMD demonstrated that there was a null effect of insulin on heel BMD (β = 0.765; se = 0.971; P = 0.430), while metformin treatment had a positive effect on heel BMD (β = 1.414; se = 0.460; P = 2.118*10-3). The causal relationship between rosiglitazone and heel BMD analysed by IVW suggested that there was a null effect of rosiglitazone on heel BMD (β = -0.526; se = 1.744; P = 0.763), but the causal effect of gliclazide on heel BMD evaluated by IVW demonstrated that there was a positive effect of gliclazide on heel BMD (β = 2.671; se = 1.340; P = 0.046). In summary, the present work showed that metformin and gliclazide have a role in reducing BMD loss in patients with diabetes and are recommended for BMD loss prevention in diabetes.
Collapse
Affiliation(s)
- Mingzhu Chen
- School of Pharmacy, Quanzhou Medical College, Quanzhou, China
| | - Shuisen Lin
- School of Pharmacy, Quanzhou Medical College, Quanzhou, China
| | - Wanqiong Chen
- School of Pharmacy, Quanzhou Medical College, Quanzhou, China
| | - Xiaoqiang Chen
- Department of Orthopaedic Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
7
|
Kim KM, Kim KJ, Han K, Rhee Y. Associations Between Physical Activity and the Risk of Hip Fracture Depending on Glycemic Status: A Nationwide Cohort Study. J Clin Endocrinol Metab 2024; 109:e1194-e1203. [PMID: 37850407 DOI: 10.1210/clinem/dgad601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
CONTEXT Although physical activity (PA) is recognized to reduce fracture risk, whether its benefits differ according to glycemic status remains unknown. OBJECTIVE We investigated the effect of PA on incident hip fracture (HF) according to glycemic status. METHODS We studied 3 723 097 patients older than 50 without type 1 diabetes mellitus (DM) or past fractures. HF risks were calculated using Cox proportional hazard regression. Participants were categorized by glycemic status into 5 groups: normal glucose tolerance, impaired fasting glucose, new-onset type 2 DM, type 2 DM less than 5 years, and type 2 DM of 5 years or greater. PA was evaluated using the Korean adaptation of the International Physical Activity Questionnaire Short Form. RESULTS The highest HF risk were associated with the lowest PA level (<500 metabolic equivalent task [MET]-min/wk). While similar risks emerged across MET 500 to 1000, 1000 to 1500, and greater than 1500 categories, the relationship showed variations in different glycemic status groups. Exceptions were particularly noted in women with normoglycemia. However, a consistent inverse pattern, with few exceptions, was observed both in men and women with type 2 DM of 5 years or greater. Furthermore, the benefit of PA in the prevention of HFs was most evident in participants with type 2 DM of 5 years or greater. Compared to the reference group (lowest physical activity level <500 MET-min/wk within type 2 DM ≥5 years), the adjusted hazard ratios were 0.74 (0.62-0.88) in men and 0.74 (0.62-0.89) in women, suggesting a significant reduction in risk. CONCLUSION Higher PA levels are associated with a lower risk of HF. This protective effect of PA on fracture risk is greatest in patients with DM, particularly in those with DM of 5 years or greater.
Collapse
Affiliation(s)
- Kyoung Min Kim
- Division of Endocrinology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi-do 16995, Republic of Korea
| | - Kyoung Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Yumie Rhee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Tang X, Huang Y, Fang X, Tong X, Yu Q, Zheng W, Fu F. Cornus officinalis: a potential herb for treatment of osteoporosis. Front Med (Lausanne) 2023; 10:1289144. [PMID: 38111697 PMCID: PMC10725965 DOI: 10.3389/fmed.2023.1289144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disorder characterized by a decline in bone mass, bone mineral density, and deterioration of bone microstructure. It is prevalent among the elderly, particularly postmenopausal women, and poses a substantial burden to patients and society due to the high incidence of fragility fractures. Kidney-tonifying Traditional Chinese medicine (TCM) has long been utilized for OP prevention and treatment. In contrast to conventional approaches such as hormone replacement therapy, TCM offers distinct advantages such as minimal side effects, low toxicity, excellent tolerability, and suitability for long-term administration. Extensive experimental evidence supports the efficacy of kidney-tonifying TCM, exemplified by formulations based on the renowned herb Cornus officinalis and its bioactive constituents, including morroniside, sweroside, flavonol kaempferol, Cornuside I, in OP treatment. In this review, we provide a comprehensive elucidation of the underlying pathological principles governing OP, with particular emphasis on bone marrow mesenchymal stem cells, the homeostasis of osteogenic and osteoclastic, and the regulation of vascular and immune systems, all of which critically influence bone homeostasis. Furthermore, the therapeutic mechanisms of Cornus officinalis-based TCM formulations and Cornus officinalis-derived active constituents are discussed. In conclusion, this review aims to enhance understanding of the pharmacological mechanisms responsible for the anti-OP effects of kidney-tonifying TCM, specifically focusing on Cornus officinalis, and seeks to explore more efficacious and safer treatment strategies for OP.
Collapse
Affiliation(s)
- Xinyun Tang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Yuxin Huang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuliang Fang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuanying Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Qian Yu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Wenbiao Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
9
|
Tan Y, Dong X, Zhuang D, Cao B, Jiang H, He Q, Zhao M. Emerging roles and therapeutic potentials of ferroptosis: from the perspective of 11 human body organ systems. Mol Cell Biochem 2023; 478:2695-2719. [PMID: 36913150 DOI: 10.1007/s11010-023-04694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
Since ferroptosis was first described as an iron-dependent cell death pattern in 2012, there has been increasing interest in ferroptosis research. In view of the immense potential of ferroptosis in treatment efficacy and its rapid development in recent years, it is essential to track and summarize the latest research in this field. However, few writers have been able to draw on any systematic investigation into this field based on human body organ systems. Hence, in this review, we provide a comprehensive description of the latest progress in unveiling the roles and functions, as well as the therapeutic potential of ferroptosis, in treating diseases from the aspects of 11 human body organ systems (including the nervous system, respiratory system, digestive system, urinary system, reproductive system, integumentary system, skeletal system, immune system, cardiovascular system, muscular system, and endocrine system) in the hope of providing references for further understanding the pathogenesis of related diseases and bringing an innovative train of thought for reformative clinical treatment.
Collapse
Affiliation(s)
- Yaochong Tan
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Medical School of Xiangya, Central South University, Changsha, 410013, Hunan, China
| | - Xueting Dong
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Medical School of Xiangya, Central South University, Changsha, 410013, Hunan, China
| | - Donglin Zhuang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Buzi Cao
- Hunan Normal University School of Medicine, Changsha, 410081, Hunan, China
| | - Hua Jiang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
10
|
Tan J, Zhang Z, He Y, Xu X, Yang Y, Xu Q, Yuan Y, Wu X, Niu J, Tang S, Wu X, Hu Y. Development and validation of a risk prediction model for osteoporosis in elderly patients with type 2 diabetes mellitus: a retrospective and multicenter study. BMC Geriatr 2023; 23:698. [PMID: 37891456 PMCID: PMC10604807 DOI: 10.1186/s12877-023-04306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND This study aimed to construct a risk prediction model to estimate the odds of osteoporosis (OP) in elderly patients with type 2 diabetes mellitus (T2DM) and evaluate its prediction efficiency. METHODS This study included 21,070 elderly patients with T2DM who were hospitalized at six tertiary hospitals in Southwest China between 2012 and 2022. Univariate logistic regression analysis was used to screen for potential influencing factors of OP and least absolute shrinkage. Further, selection operator regression (LASSO) and multivariate logistic regression analyses were performed to select variables for developing a novel predictive model. The area under the receiver operating characteristic curve (AUROC), calibration curve, decision curve analysis (DCA), and clinical impact curve (CIC) were used to evaluate the performance and clinical utility of the model. RESULTS The incidence of OP in elderly patients with T2DM was 7.01% (1,476/21,070). Age, sex, hypertension, coronary heart disease, cerebral infarction, hyperlipidemia, and surgical history were the influencing factors. The seven-variable model displayed an AUROC of 0.713 (95% confidence interval [CI]:0.697-0.730) in the training set, 0.716 (95% CI: 0.691-0.740) in the internal validation set, and 0.694 (95% CI: 0.653-0.735) in the external validation set. The optimal decision probability cut-off value was 0.075. The calibration curve (bootstrap = 1,000) showed good calibration. In addition, the DCA and CIC demonstrated good clinical practicality. An operating interface on a webpage ( https://juntaotan.shinyapps.io/osteoporosis/ ) was developed to provide convenient access for users. CONCLUSIONS This study constructed a highly accurate model to predict OP in elderly patients with T2DM. This model incorporates demographic characteristics and clinical risk factors and may be easily used to facilitate individualized prediction.
Collapse
Affiliation(s)
- Juntao Tan
- Operation Management Office, Affiliated Banan Hospital of Chongqing Medical University, Chongqing, 401320, China
| | - Zhengyu Zhang
- Medical Records Department, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yuxin He
- Department of Medical Administration, Affiliated Banan Hospital of Chongqing Medical University, Chongqing, 401320, China
| | - Xiaomei Xu
- Department of Infectious Diseases, Chengdu Fifth People's hospital, Chengdu, 611130, China
| | - Yanzhi Yang
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital, Chengdu, 610041, China
| | - Qian Xu
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
- Medical Data Science Academy, Chongqing Medical University, Chongqing, 400016, China
- Library, Chongqing Medical University, Chongqing, 400016, China
| | - Yuan Yuan
- Medical Records Department, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Xin Wu
- Department of Gastrointestinal surgery, Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Jianhua Niu
- Department of Critical Care, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, 310003, Zhejiang, China
| | - Songjia Tang
- Plastic and Aesthetic Surgery Department, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China.
| | - Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, 310003, Zhejiang, China.
| | - Yongjun Hu
- Department of Orthopedics, Affiliated Banan Hospital of Chongqing Medical University, Chongqing, 401320, China.
| |
Collapse
|
11
|
Shimizu Y, Hayakawa H, Honda E, Sasaki N, Takada M, Okada T, Ohira T, Kiyama M. HbA1c and height loss among Japanese workers: A retrospective study. PLoS One 2023; 18:e0291465. [PMID: 37796945 PMCID: PMC10553312 DOI: 10.1371/journal.pone.0291465] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/25/2023] [Indexed: 10/07/2023] Open
Abstract
Evaluating the risk of height loss could be an efficient way to evaluate endothelial health, which might be associated with all-cause and cardiovascular mortality. Diabetes is an established risk factor both for intervertebral disk degeneration and osteoporosis-related fractures, which are major risk factors for height loss among adults. Therefore, hemoglobin A1c (HbA1c), as an indicator of the presence of diabetes, could be positively associated with height loss. A retrospective study of 10,333 workers aged 40 to 74 years was conducted. Height loss was defined as being in the highest quintile of height decrease per year. HbA1c in the normal range was positively associated with height loss. The known cardiovascular risk factors-adjusted odds ratio (OR) and 95% confidence interval (CI) for height loss with a 1-standard deviation (SD) increase in HbA1c (0.38% for both men and women) was 1.06 (1.02, 1.10) for men and 1.15 (1.07, 1.23) for women, respectively. When limit those analysis among those without diabetes, the magnitude was slightly higher; the fully adjusted OR and 95% CI for height loss with a 1-SD increase in HbA1c was 1.19 (1.11, 1.28) for men and 1.32 (1.20, 1.44) for women, respectively. Even when HbA1c is within the normal range, higher HbA1c is a significant risk factor for height loss among workers.
Collapse
Affiliation(s)
- Yuji Shimizu
- Division of Public Health, Osaka Institute of Public Health, Epidemiology Section, Osaka, Japan
- Department of Cardiovascular Disease Prevention, Osaka Center for Cancer and Cardiovascular Disease Prevention, Osaka, Japan
| | - Hidenobu Hayakawa
- Department of Cardiovascular Disease Prevention, Osaka Center for Cancer and Cardiovascular Disease Prevention, Osaka, Japan
| | - Eiko Honda
- Division of Public Health, Osaka Institute of Public Health, Epidemiology Section, Osaka, Japan
- Department of Cardiovascular Disease Prevention, Osaka Center for Cancer and Cardiovascular Disease Prevention, Osaka, Japan
| | - Nagisa Sasaki
- Division of Public Health, Osaka Institute of Public Health, Epidemiology Section, Osaka, Japan
- Department of Cardiovascular Disease Prevention, Osaka Center for Cancer and Cardiovascular Disease Prevention, Osaka, Japan
| | - Midori Takada
- Division of Public Health, Osaka Institute of Public Health, Epidemiology Section, Osaka, Japan
- Department of Cardiovascular Disease Prevention, Osaka Center for Cancer and Cardiovascular Disease Prevention, Osaka, Japan
| | - Takeo Okada
- Department of Cardiovascular Disease Prevention, Osaka Center for Cancer and Cardiovascular Disease Prevention, Osaka, Japan
| | - Tetsuya Ohira
- Department of Epidemiology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Masahiko Kiyama
- Department of Cardiovascular Disease Prevention, Osaka Center for Cancer and Cardiovascular Disease Prevention, Osaka, Japan
| |
Collapse
|
12
|
Dong Y, Chen Y, Ma G, Cao H. The role of E3 ubiquitin ligases in bone homeostasis and related diseases. Acta Pharm Sin B 2023; 13:3963-3987. [PMID: 37799379 PMCID: PMC10547920 DOI: 10.1016/j.apsb.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) dedicates to degrade intracellular proteins to modulate demic homeostasis and functions of organisms. These enzymatic cascades mark and modifies target proteins diversly through covalently binding ubiquitin molecules. In the UPS, E3 ubiquitin ligases are the crucial constituents by the advantage of recognizing and presenting proteins to proteasomes for proteolysis. As the major regulators of protein homeostasis, E3 ligases are indispensable to proper cell manners in diverse systems, and they are well described in physiological bone growth and bone metabolism. Pathologically, classic bone-related diseases such as metabolic bone diseases, arthritis, bone neoplasms and bone metastasis of the tumor, etc., were also depicted in a UPS-dependent manner. Therefore, skeletal system is versatilely regulated by UPS and it is worthy to summarize the underlying mechanism. Furthermore, based on the current status of treatment, normal or pathological osteogenesis and tumorigenesis elaborated in this review highlight the clinical significance of UPS research. As a strategy possibly remedies the limitations of UPS treatment, emerging PROTAC was described comprehensively to illustrate its potential in clinical application. Altogether, the purpose of this review aims to provide more evidence for exploiting novel therapeutic strategies based on UPS for bone associated diseases.
Collapse
Affiliation(s)
| | | | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| |
Collapse
|
13
|
Yang S, Sun Y, Kapilevich L, Zhang X, Huang Y. Protective effects of curcumin against osteoporosis and its molecular mechanisms: a recent review in preclinical trials. Front Pharmacol 2023; 14:1249418. [PMID: 37790808 PMCID: PMC10544586 DOI: 10.3389/fphar.2023.1249418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Osteoporosis (OP) is one of the most common metabolic skeletal disorders and is commonly seen in the elderly population and postmenopausal women. It is mainly associated with progressive loss of bone mineral density, persistent deterioration of bone microarchitecture, and increased fracture risk. To date, drug therapy is the primary method used to prevent and treat osteoporosis. However, long-term drug therapy inevitably leads to drug resistance and specific side effects. Therefore, researchers are constantly searching for new monomer compounds from natural plants. As a candidate for the treatment of osteoporosis, curcumin (CUR) is a natural phenolic compound with various pharmacological and biological activities, including antioxidant, anti-apoptotic, and anti-inflammatory. This compound has gained research attention for maintaining bone health in various osteoporosis models. We reviewed preclinical and clinical studies of curcumin in preventing and alleviating osteoporosis. These results suggest that if subjected to rigorous pharmacological and clinical trials, naturally-derived curcumin could be used as a complementary and alternative medicine for the treatment of osteoporosis by targeting osteoporosis-related mechanistic pathways. This review summarizes the mechanisms of action and potential therapeutic applications of curcumin in the prevention and mitigation of osteoporosis and provides reference for further research and development of curcumin.
Collapse
Affiliation(s)
- Shenglei Yang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuying Sun
- School of Stomatology, Binzhou Medical College, Yantai, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Nаtionаl Reseаrch Tomsk Stаte University, Tomsk, Russiа
| | - Xin’an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yue Huang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
14
|
Tomasiuk JM, Nowakowska-Płaza A, Wisłowska M, Głuszko P. Osteoporosis and diabetes - possible links and diagnostic difficulties. Reumatologia 2023; 61:294-304. [PMID: 37745139 PMCID: PMC10515121 DOI: 10.5114/reum/170048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/26/2023] [Indexed: 09/26/2023] Open
Abstract
Objectives In this review, the authors aimed to clarify the relationship between the occurrence of osteoporosis and diabetes, analyze the differences between the pathogenesis of osteoporosis in different types of diabetes and propose the most effective diagnostic strategy and fracture risk assessment in diabetic patients. Material and methods A analysis of publications in MEDLINE, COCHRANE and SCOPUS databases was performed, searching for reports on the diagnostics, fracture risk assessment, prevention, and treatment of osteoporosis in patients with diabetes mellitus (DM) published in the years 2016-2022. The key words for the search were: diabetes, osteoporosis, and low-energy fracture. Results Bone complications of T1DM are more severe than T2DM, because of the lack of anabolic effect of insulin on bones. In T2DM the risk of fractures is elevated; however, identifying the mechanisms underlying the increased risk of fractures in T2DM is not clear. The FRAX tool is not appropriate for assessing the fracture risk in young patients with T1DM. It is quite useful in older patients with T2DM, but in these patients the calculated fracture risk may be underestimated. In T2DM the fracture risk often does not correspond to BMD value as measured by dual-energy X-ray absorptiometry (DXA). Diagnostic tools such as the trabecular bone score may play a significant role in this group of patients. Conclusions: Optimal strategies to identify and treat high risk individuals require further research and proper definition. The diagnostic criteria for osteoporosis should be clearly defined as well as fracture risk assessment and choice of anti-osteoporotic medication. In all cases of secondary osteoporosis, treatment of the underlying disease is the most important. The relationship between high risk of fractures and diabetes is inseparable, and its full understanding seems to be the key to effective management.
Collapse
Affiliation(s)
- Joanna Magdalena Tomasiuk
- Department of Rheumatology, National Institute of Geriatric, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Anna Nowakowska-Płaza
- Department of Rheumatology, National Institute of Geriatric, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Małgorzata Wisłowska
- Department of Rheumatology, National Institute of Geriatric, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Piotr Głuszko
- Department of Rheumatology, National Institute of Geriatric, Rheumatology and Rehabilitation, Warsaw, Poland
| |
Collapse
|
15
|
Wang R, Na H, Cheng S, Zheng Y, Yao J, Bian Y, Gu Y. Effects of glucagon‑like peptide‑1 receptor agonists on fracture healing in a rat osteoporotic model. Exp Ther Med 2023; 26:412. [PMID: 37559934 PMCID: PMC10407998 DOI: 10.3892/etm.2023.12111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/01/2023] [Indexed: 08/11/2023] Open
Abstract
Osteoporosis is a common disease characterized by reduced bone mass, microstructural deterioration, fragility and consequent fragility fractures and is particularly prevalent among the elderly population. Although glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have positive effects on bones, their role in the prevention of osteoporotic fractures remains to be elucidated. The present study assigned female Sprague Dawley rats with osteoporotic fractures into variectomized osteoporosis (OVX), OVX + liraglutide (LIRA) (50 µg/kg/day subcutaneous LIRA) and control groups. At 3 and 6 weeks postoperatively, X-ray, tartrate-resistant acid phosphatase (TRAP) staining, histological and biomechanical assays and assessment of femoral bone mineral density (BMD) were performed. Compared with the OVX group, GLP-1 RA treatment improved the formation of calluses and osseous union. TRAP staining showed significantly fewer osteoclasts in the OVX + LIRA group compared with the OVX group. In the osteoporotically fractured rats, LIRA improved bone strength at the femoral diaphysis, stiffness, ultimate load and femoral trabecular BMD Compared with the OVX group. GLP-1 RA treatment inhibited osteoclast formation and improved trabecular bone architecture and mass in osteoporotic fracture model rats, leading to improved biomechanical strength. GLP-1 RAs may be used as novel anti-osteoporotic fracture agents.
Collapse
Affiliation(s)
- Rong Wang
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Han Na
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Shaowen Cheng
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yanglin Zheng
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Jiangling Yao
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yangyang Bian
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yuntao Gu
- Department of Spinal Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| |
Collapse
|
16
|
Wu EL, Cheng M, Zhang XJ, Wu TG, Zhang L. The role of non-coding RNAs in diabetes-induced osteoporosis. Differentiation 2023; 133:98-108. [PMID: 37643534 DOI: 10.1016/j.diff.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/06/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
Diabetes mellitus (DM) and osteoporosis are two major health care problems worldwide. Emerging evidence suggests that DM poses a risk for osteoporosis and can contribute to the development of diabetes-induced osteoporosis (DOP). Interestingly, some epidemiological studies suggest that DOP may be at least partially distinct from those skeletal abnormalities associated with old age or postmenopausal osteoporosis. The increasing number of DM patients who also have DOP calls for a discussion of the pathogenesis of DOP and the investigation of drugs to treat DOP. Recently, non-coding RNAs (ncRNAs) have received more attention due to their significant role in cellular functions and bone formation. It is worth noting that ncRNAs have also been demonstrated to participate in the progression of DOP. Meanwhile, nano-delivery systems are considered a promising strategy to treat DOP because of their cellular targeting, sustained release, and controlled release characteristics. Additionally, the utilization of novel technologies such as the CRISPR system has expanded the scope of available options for treating DOP. Hence, this paper explores the functions and regulatory mechanisms of ncRNAs in DOP and highlights the advantages of employing nanoparticle-based drug delivery techniques to treat DOP. Finally, this paper also explores the potential of ncRNAs as diagnostic DOP biomarkers.
Collapse
Affiliation(s)
- Er-Li Wu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| | - Ming Cheng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| | - Xin-Jing Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| | - Tian-Gang Wu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| | - Lei Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China; Department of Periodontology, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
17
|
Li Q, Tian C, Liu X, Li D, Liu H. Anti-inflammatory and antioxidant traditional Chinese Medicine in treatment and prevention of osteoporosis. Front Pharmacol 2023; 14:1203767. [PMID: 37441527 PMCID: PMC10335577 DOI: 10.3389/fphar.2023.1203767] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
A metabolic bone disorder called osteoporosis is characterized by decreased bone mass and compromised microarchitecture. This condition can deteriorate bones and raise the risk of fractures. The two main causes of osteoporosis are an increase in osteoclast activity or quantity and a decrease in osteoblast viability. Numerous mechanisms, including estrogen shortage, aging, chemical agents, and decreased mechanical loads, have been linked to osteoporosis. Inflammation and oxidative stress have recently been linked to osteoporosis, according to an increasing number of studies. The two primary medications used to treat osteoporosis at the moment are bisphosphonates and selective estrogen receptor modulators (SERMs). These medications work well for osteoporosis brought on by aging and estrogen deprivation, however, they do not target inflammation and oxidative stress-induced osteoporosis. In addition, these drugs have some limitations that are attributed to various side effects that have not been overcome. Traditional Chinese medicine (TCM) has been applied in osteoporosis for many years and has a high safety profile. Therefore, in this review, literature related to botanical drugs that have an effect on inflammation and oxidative stress-induced osteoporosis was searched for. Moreover, the pharmacologically active ingredients of these herbs and the pathways were discussed and may contribute to the discovery of more safe and effective drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Ciqiu Tian
- Hubei University of Chinese Medicine, City Wuhan, Hubei Province, China
| | - Xiangjie Liu
- Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Geriatric Department, City Wuhan, Hubei Province, China
| | - Dinglin Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Hao Liu
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| |
Collapse
|
18
|
Yang S, Li H, Gu Y, Wang Q, Dong L, Xu C, Fan Y, Liu M, Guan Q, Ma L. The association between total bile acid and bone mineral density among patients with type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1153205. [PMID: 37033244 PMCID: PMC10080120 DOI: 10.3389/fendo.2023.1153205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Objective Bile acids have underlying protective effects on bones structure. Long-term diabetes also causes skeletal disorders including osteoporosis, Charcot arthropathy and renal osteodystrophy. Nevertheless, few studies have reported whether bile acid is associated with bone metabolism in diabetics. This study aimed to explore the relationship between total bile acid (TBA) and bone mineral density (BMD) among patients with type 2 diabetes mellitus (T2DM). Methods We retrospectively included 1,701 T2DM patients who were hospitalized in Taian City Central Hospital (TCCH), Shandong Province, China between January 2017 to December 2019. The participants were classified into the osteopenia (n = 573), osteoporosis (n= 331) and control groups (n= 797) according to BMD in the lumbar spine and femoral. The clinical parameters, including TBA, bilirubin, vitamin D, calcium, phosphorus and alkaline phosphatase were compared between groups. Multiple linear regression was used to analyze the relationship between TBA and BMD in lumbar spine, femoral, trochiter, ward's triangle region. A logistic regression was conducted to develop a TBA-based diagnostic model for differentiating abnormal bone metabolism from those with normal BMD. We evaluated the performance of model using ROC curves. Results The TBA level was significantly higher in patients with osteoporosis (Median[M]= 3.300 μmol/L, interquartile range [IQR] = 1.725 to 5.250 μmol/L) compared to the osteopenia group (M = 3.200 μmol/L, IQR = 2.100 to 5.400 μmol/L) and control group (M = 2.750 μmol/L, IQR = 1.800 to 4.600 μmol/L) (P <0.05). Overall and subgroup analyses indicated that TBA was negatively associated with BMD after adjusted for the co-variates (i.e., age, gender, diabetes duration, BMI, total bilirubin, direct bilirubin, indirect bilirubin) (P <0.05). Logistic regression revealed that higher TBA level was associated with increased risk for abnormal bone metabolism (OR = 1.044, 95% CI = 1.005 to 1.083). A TBA-based diagnostic model was established to identify individuals with abnormal bone metabolism (T-score ≤ -1.0). The area under ROC curve (AUC) of 0.767 (95% CI = 0.730 to 0.804). Conclusion Our findings demonstrated the potential role of bile acids in bone metabolism among T2DM patients. The circulating TBA might be employed as an indicator of abnormal bone metabolism.
Collapse
Affiliation(s)
- Song Yang
- Department of Endocrinology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Endocrinology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Hongyun Li
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuanyuan Gu
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Qiang Wang
- Department of Joint Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Li Dong
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuxin Fan
- Department of Endocrinology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Liu
- Department of Endocrinology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lixing Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
19
|
Sargent S, Brennan A, Clark JK. Regenerative potential and limitations in a zebrafish model of hyperglycemia-induced nerve degeneration. Dev Dyn 2023. [PMID: 36879394 DOI: 10.1002/dvdy.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/04/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Previous work from our lab has described a model of motor nerve degeneration in hyperglycemic zebrafish larvae which resembles mammalian models of diabetic peripheral neuropathy (DPN). Here, we optimized the hyperglycemic-induction protocol, characterized deficits in nerve structure and behavioral function, and then examined the regenerative potential following recovery from the hyperglycemic state. RESULTS In agreement with our previous work, hyperglycemia induced motor nerve degeneration and behavioral deficits. However, the optimized protocol initiated disruption of tight junctions within the blood-nerve barrier, a phenotype apparent in mammalian models of DPN. Following a 10-day recovery period, regeneration of motor nerve components was apparent, but behavioral deficits persisted. We next examined the effect of hyperglycemia on the musculoskeletal system and found subtle deficits in muscle that resolved following recovery, and robust deficits in the skeletal system which persisted following recovery. CONCLUSION Here we optimized our previous model of hyperglycemia-induced motor nerve degeneration to more closely align with that observed in mammalian models and then characterized the regenerative potential following recovery from hyperglycemia. Notably, we observed striking impairments to skeletal development, which underscores the global impact hyperglycemia has across systems, and provides a framework for elucidating molecular mechanisms responsible for regenerative events moving forward.
Collapse
Affiliation(s)
- Sheridan Sargent
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland, USA
| | - Anna Brennan
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland, USA
| | | |
Collapse
|
20
|
The neuroprotective and antidiabetic effects of trigonelline: A review of signaling pathways and molecular mechanisms. Biochimie 2023; 206:93-104. [PMID: 36257493 DOI: 10.1016/j.biochi.2022.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/07/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022]
Abstract
The global epidemic of diabetes has brought heavy pressure on public health. New effective anti-diabetes strategies are urgently needed. Trigonelline is the main component of fenugreek, which has been proved to have a good therapeutic effect on diabetes and diabetic complications. Trigonelline achieves amelioration of diabetes, the mechanisms of which include the modulation of insulin secretion, a reduction in oxidative stress, and the improvement of glucose tolerance and insulin resistance. Besides, trigonelline has been reported to be a neuroprotective agent against many neurologic diseases including Alzheimer's disease, Parkinson's disease, stroke, and depression. Concerning the potential therapeutic effects of trigonelline, comprehensive clinical trials are warranted to evaluate this valuable molecule.
Collapse
|
21
|
Liu B, Liu J, Pan J, Zhao C, Wang Z, Zhang Q. The association of diabetes status and bone mineral density among US adults: evidence from NHANES 2005-2018. BMC Endocr Disord 2023; 23:27. [PMID: 36721144 PMCID: PMC9890809 DOI: 10.1186/s12902-023-01266-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/03/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUNDS We aimed to explore the relationship between diabetes status and bone mineral density (BMD) among adults with pre-diabetes and diabetes. METHODS We collected and analyzed five cycles (2005-2006, 2007-2008, 2009-2010, 2013-2014, and 2017-2018) data from NHANES. We removed the individuals containing missing values. The linear regression models were used to explore the relationship between diabetes status and bone mineral density. Finally, we performed subgroup analyzes by age, sex and race to find special populations. RESULT Finally, 9661 participants with complete data were involved in the study. 944 were diagnosed with pre-diabetes, and 2043 were with diabetes. We found that bone mineral density in the hip, femoral neck, and lumbar spine showed an upward trend in both prediabetic and diabetic patients in the three linear regression models. Further, after subgroup analysis, we found that this trend was more prominent in whites race, women, and those over 50 years old. CONCLUSION Using NHANES data from 2005 to 2018, we found that patients with abnormal glucose metabolism had increased bone mineral density.
Collapse
Affiliation(s)
- Bo Liu
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Jingshuang Liu
- Department of Emergency Internal Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266000 Shandong China
| | - Junpeng Pan
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266071 China
| | - Chengliang Zhao
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266071 China
| | - Zhijie Wang
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266071 China
| | - Qiang Zhang
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| |
Collapse
|
22
|
Chacon EL, Bertolo MRV, de Guzzi Plepis AM, da Conceição Amaro Martins V, dos Santos GR, Pinto CAL, Pelegrine AA, Teixeira ML, Buchaim DV, Nazari FM, Buchaim RL, Sugano GT, da Cunha MR. Collagen-chitosan-hydroxyapatite composite scaffolds for bone repair in ovariectomized rats. Sci Rep 2023; 13:28. [PMID: 36593236 PMCID: PMC9807587 DOI: 10.1038/s41598-022-24424-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/15/2022] [Indexed: 01/03/2023] Open
Abstract
Lesions with bone loss may require autologous grafts, which are considered the gold standard; however, natural or synthetic biomaterials are alternatives that can be used in clinical situations that require support for bone neoformation. Collagen and hydroxyapatite have been used for bone repair based on the concept of biomimetics, which can be combined with chitosan, forming a scaffold for cell adhesion and growth. However, osteoporosis caused by gonadal hormone deficiency can thus compromise the expected results of the osseointegration of scaffolds. The aim of this study was to investigate the osteoregenerative capacity of collagen (Co)/chitosan (Ch)/hydroxyapatite (Ha) scaffolds in rats with hormone deficiency caused by experimental bilateral ovariectomy. Forty-two rats were divided into non-ovariectomized (NO) and ovariectomized (O) groups, divided into three subgroups: control (empty defect) and two subgroups receiving collagen/chitosan/hydroxyapatite scaffolds prepared using different methods of hydroxyapatite incorporation, in situ (CoChHa1) and ex situ (CoChHa2). The defect areas were submitted to macroscopic, radiological, and histomorphometric analysis. No inflammatory processes were found in the tibial defect area that would indicate immune rejection of the scaffolds, thus confirming the biocompatibility of the biomaterials. Bone formation starting from the margins of the bone defect were observed in all rats, with a greater volume in the NO groups, particularly the group receiving CoChHa2. Less bone formation was found in the O subgroups when compared to the NO. In conclusion, collagen/chitosan/hydroxyapatite scaffolds stimulate bone growth in vivo but abnormal conditions of bone fragility caused by gonadal hormone deficiency may have delayed the bone repair process.
Collapse
Affiliation(s)
- Erivelto Luís Chacon
- Department of Morphology and Pathology, Jundiai Medical School, Jundiai, 13202-550 Brazil
| | | | - Ana Maria de Guzzi Plepis
- grid.11899.380000 0004 1937 0722Sao Carlos Institute of Chemistry, University of Sao Paulo (USP), Sao Carlos, 13566-590 Brazil ,grid.11899.380000 0004 1937 0722Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), Sao Carlos, 13566-970 Brazil
| | | | | | | | - André Antônio Pelegrine
- grid.456544.20000 0004 0373 160XDepartment of Implant Dentistry, Faculdade Sao Leopoldo Mandic, Campinas, 13045-755 Brazil
| | - Marcelo Lucchesi Teixeira
- grid.456544.20000 0004 0373 160XProsthodontics Department, Faculdade Sao Leopoldo Mandic, Campinas, 13045-755 Brazil
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia, 17525-902 Brazil ,Teaching and Research Coordination of the Medical School, University Center of Adamantina (UNIFAI), Adamantina, 17800-000 Brazil
| | | | - Rogerio Leone Buchaim
- grid.11899.380000 0004 1937 0722Department of Biological Sciences, Bauru School of Dentistry (FOB), University of Sao Paulo (USP), Bauru, 17012-901 Brazil ,grid.11899.380000 0004 1937 0722Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science (FMVZ), University of Sao Paulo (USP), Sao Paulo, 05508-270 Brazil
| | - Gustavo Tenório Sugano
- Department of Morphology and Pathology, Jundiai Medical School, Jundiai, 13202-550 Brazil
| | - Marcelo Rodrigues da Cunha
- Department of Morphology and Pathology, Jundiai Medical School, Jundiai, 13202-550 Brazil ,grid.11899.380000 0004 1937 0722Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), Sao Carlos, 13566-970 Brazil
| |
Collapse
|
23
|
Fauny M, Halin M, Allado E, Quilliot D, Brunaud L, Albuisson E, Chary-Valckenaere I, Loeuille D. CT evaluation of bone fragility 2 years after bariatric surgery: an observational study. J Bone Miner Metab 2023; 41:105-112. [PMID: 36418588 DOI: 10.1007/s00774-022-01386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/30/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The objectives were to evaluate bone fragility on computed tomography (CT) in patients with obesity before and 2 years after bariatric surgery and to identify risk factors for a decrease in the scanographic bone attenuation coefficient of the first lumbar vertebra (SBAC-L1). MATERIALS AND METHODS Patients with obesity who underwent bariatric surgery and CT before and 2 years (± 6 months) after bariatric surgery were included. SBAC-L1 was measured on CT with a fracture threshold at 145 HU. RESULTS 78 patients were included, 85.9% women, mean age of 48.5 years (± 11.4); the mean BMI was 46.2 kg/m2 (± 7) before surgery and 29.8 kg/m2 (± 6.7) 2 years after surgery. There was a significant change in SBAC-L1 2 years after surgery (p = 0.037). In multivariate analysis, the risk factors for having an SBAC-L1 ≤ 145HU 2 years after bariatric surgery in those with an SBAC-L1 > 145HU before surgery were age and sex, with men and older patients having a higher risk (OR 32.6, CI 95% [1.86-568.77], and OR 0.85, CI 95% [0.74-0.98], respectively). CONCLUSION SBAC-L1 was significantly lower two years after bariatric surgery. Men sex and older patients were the risk factors for having an SBAC-L1 below the fracture threshold 2 years after surgery.
Collapse
Affiliation(s)
- Marine Fauny
- Department of Rheumatology, University Hospital Nancy, 5 Rue du Morvan, Vandoeuvre‑Lès‑Nancy, 54500, Nancy, France.
- Department of Rheumatology, Saint Charles Hospital, Toul, France.
| | - Marion Halin
- Department of Rheumatology, University Hospital Nancy, 5 Rue du Morvan, Vandoeuvre‑Lès‑Nancy, 54500, Nancy, France
| | - Edem Allado
- University Center of Sports Medicine and Adapted Physical Activity, CHRU-Nancy, 54000, Nancy, France
- Université de Lorraine, DevAH, 54000, Nancy, France
| | - Didier Quilliot
- Department of Endocrinology Diabetology and Nutrition, University Hospital, Nancy, France
- Unité Multidisciplinaire de la Chirurgie de l'obésité (UMCO), University Hospital, Nancy, France
- Inserm UMRS 1256 N-GERE (Nutrition-Genetics-Environmental Risks), Faculty of Medicine, University de Lorraine, Nancy, France
| | - Laurent Brunaud
- Unité Multidisciplinaire de la Chirurgie de l'obésité (UMCO), University Hospital, Nancy, France
- Inserm UMRS 1256 N-GERE (Nutrition-Genetics-Environmental Risks), Faculty of Medicine, University de Lorraine, Nancy, France
- Department of Digestive, Hepato-Biliary and Endocrine Surgery, University Hospital, Nancy, France
| | - Eliane Albuisson
- Département du Grand Est de Recherche en Soins Primaires: DEGERESP, Faculté de Médecine, Université de Lorraine, 54000, Nancy, France
- Université de Lorraine, CNRS, IECL, 54000, Nancy, France
- Département MPI, Unité de Méthodologie, Data Management et Statistiques UMDS, CHRU-Nancy, DRCI, 54000, Nancy, France
| | - Isabelle Chary-Valckenaere
- Department of Rheumatology, University Hospital Nancy, 5 Rue du Morvan, Vandoeuvre‑Lès‑Nancy, 54500, Nancy, France
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA) UMR 7365 CNRS, University of Lorraine, Nancy, France
| | - Damien Loeuille
- Department of Rheumatology, University Hospital Nancy, 5 Rue du Morvan, Vandoeuvre‑Lès‑Nancy, 54500, Nancy, France
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA) UMR 7365 CNRS, University of Lorraine, Nancy, France
| |
Collapse
|
24
|
Yuan HL, Zhang X, Peng DZ, Lin GB, Li HH, Li FX, Lu JJ, Chu WW. Development and Validation of a Risk Nomogram Model for Predicting Constipation in Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2023; 16:1109-1120. [PMID: 37114216 PMCID: PMC10126724 DOI: 10.2147/dmso.s406884] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Purpose Constipation is a common complication of diabetic patients, which has a negative impact on their own health. This study aims to establish and internally validate the risk nomogram of constipation in patients with type 2 diabetes mellitus (T2DM) and to test its predictive ability. Patients and Methods This retrospective study included 746 patients with T2DM at two medical centers. Among the 746 patients with T2DM, 382 and 163 patients in the Beilun branch of the First Affiliated Hospital of Zhejiang University were enrolled in the training cohort and the validation cohort, respectively. A total of 201 patients in the First Affiliated Hospital of Nanchang University were enrolled in external validation cohorts. The nomogram was established by optimizing the predictive factors through univariate and multivariable logistic regression analysis. The prediction performance of the nomogram was measured by the area under the receiver operating characteristic curve (AUROC), the calibration curve, and the decision curve analysis (DCA). Furthermore, its applicability was internally and independently validated. Results Among the 16 clinicopathological features, five variables were selected to develop the prediction nomogram, including age, glycated hemoglobin (HbA1c), calcium, anxiety, and regular exercise. The nomogram revealed good discrimination with an area under the receiver operating characteristic curve (AUROC) of 0.908 (95% CI = 0.865-0.950) in the training cohort, and 0.867 (95% CI = 0.790-0.944) and 0.816 (95% CI = 0.751-0.881) in the internal and external validation cohorts, respectively. The calibration curve presented a good agreement between the prediction by the nomogram and the actual observation. The DCA revealed that the nomogram had a high clinical application value. Conclusion In this study, the nomogram for pretreatment risk management of constipation in patients with T2DM was developed which could help in making timely personalized clinical decisions for different risk populations.
Collapse
Affiliation(s)
- Hai-Liang Yuan
- Department of Gastroenterology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| | - Xian Zhang
- Department of Endocrinology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Dong-Zhu Peng
- Department of Gastroenterology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| | - Guan-Bin Lin
- Department of Gastroenterology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| | - Hui-Hui Li
- Department of Gastroenterology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| | - Fang-Xian Li
- Department of Gastroenterology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| | - Jing-Jing Lu
- Department of Gastroenterology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| | - Wei-Wei Chu
- Department of Gastroenterology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
- Correspondence: Wei-Wei Chu, Department of Gastroenterology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, No. 1288, Lushan East Road, Beilun District, Ningbo, Zhejiang Province, People’s Republic of China, Tel +86-134 56123811, Fax +86- 574 86100266, Email
| |
Collapse
|
25
|
Chen X, Li Y, Zhang Z, Chen L, Liu Y, Huang S, Zhang X. Xianling Gubao attenuates high glucose-induced bone metabolism disorder in MG63 osteoblast-like cells. PLoS One 2022; 17:e0276328. [PMID: 36548302 PMCID: PMC9778583 DOI: 10.1371/journal.pone.0276328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus (DM) patients are prone to osteoporosis, and high glucose (HG) can affect bone metabolism. In the present study, we investigated the protective effects of traditional Chinese herbal formulation Xianling Gubao (XLGB) on HG-treated MG63 osteoblast-like cells. MG63 cells were incubated with control (mannitol), HG (20 mM glucose) or HG + XLGB (20 mM glucose+200 mg/L XLGB) mediums. Cell proliferation, apoptosis, migration and invasion were examined using CCK8, colony-formation, flow cytometry, Hoechst/PI staining, wound-healing and transwell assays, respectively. ELISA, RT-PCR and western blot analysis were used to detect the levels of osteogenesis differentiation-associated markers such as ALP, OCN, OPN, RUNX2, OPG, and OPGL in MG63 cells. The levels of the PI3K/Akt signaling pathway related proteins, cell cycle-related proteins, and mitochondrial apoptosis-related proteins were detected using western blot analysis. In HG-treated MG63 cells, XLGB significantly attenuated the suppression on the proliferation, migration and invasion of MG63 cells caused by HG. HG downregulated the activation of the PI3K/Akt signaling pathway and the expressions of cell cycle-related proteins, while XLGB reversed the inhibition of HG on MG63 cells. Moreover, XLGB significantly reduced the promotion on the apoptosis of MG63 cells induced by HG, the expressions of mitochondrial apoptosis-related proteins were suppressed by XLGB treatment. In addition, the expressions of osteogenesis differentiation-associated proteins were also rescued by XLGB in HG-treated MG63 cells. Our data suggest that XLGB rescues the MG63 osteoblasts against the effect of HG. The potential therapeutic mechanism of XLGB partially attributes to inhibiting the osteoblast apoptosis and promoting the bone formation of osteoblasts.
Collapse
Affiliation(s)
- Xinlong Chen
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan Li
- Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Jinan, China
| | - Zhongwen Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China
| | - Liping Chen
- Department of Endocrinology and Metabology, Weifang Medical University, Shandong Provincial Qianfoshan Hospital, Weifang, China
| | - Yaqian Liu
- Department of Endocrinology and Metabology, Weifang Medical University, Shandong Provincial Qianfoshan Hospital, Weifang, China
| | - Shuhong Huang
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Xiaoqian Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China
- * E-mail:
| |
Collapse
|
26
|
Muacevic A, Adler JR. Effects of Linagliptin and Pioglitazone on Fracture Healing in an Experimental Type 2 Diabetes Rat Model. Cureus 2022; 14:e32204. [PMID: 36479259 PMCID: PMC9721100 DOI: 10.7759/cureus.32204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
AIM Our study aimed to examine the effects of Linagliptin, Pioglitazone, and their combination on fracture healing in a diabetes rat femur fracture model. MATERIAL AND METHODS Type 2 diabetes mellitus (T2DM) induced rats were randomly divided into four groups: non-treated diabetes group (TD), Pioglitazone group (P), Linagliptin group (L), and Pioglitazone and Linagliptin group (PL). Daily oral dosage of pioglitazone (10 mg/kg/day), linagliptin (10 mg/kg/day), and their combination were administered. Femur fractures were stabilized intramedullary. At weeks 2 and 6, rats were sacrificed for evaluation radiologically, biomechanically, histopathologically, histomorphometrically, and immunohistochemically. RESULTS Flexural strength of the L and PL groups were significantly higher compared to the P group. The highest healing score was in the L group and lowest in the P group, while the highest inflammation score was in the P group and lowest in the L group. A cluster of differentiation (CD) CD 34 reactivity was highest in the L group and lowest in the PL group. CONCLUSION Linagliptin treatment significantly increased histological healing scores, callus volume, biomechanical strength, and vascularity, however, minimized the inflammatory process, which was increased by pioglitazone. The combination of linagliptin and pioglitazone restored BMD and increased biomechanical strength. Linagliptin monotherapy is rarely indicated; hence, T2DM patients with a high risk of bone fractures can be considered for combined therapy of pioglitazone and linagliptin.
Collapse
|
27
|
Huang CB, Hu JS, Tan K, Zhang W, Xu TH, Yang L. Application of machine learning model to predict osteoporosis based on abdominal computed tomography images of the psoas muscle: a retrospective study. BMC Geriatr 2022; 22:796. [PMID: 36229793 PMCID: PMC9563158 DOI: 10.1186/s12877-022-03502-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With rapid economic development, the world's average life expectancy is increasing, leading to the increasing prevalence of osteoporosis worldwide. However, due to the complexity and high cost of dual-energy x-ray absorptiometry (DXA) examination, DXA has not been widely used to diagnose osteoporosis. In addition, studies have shown that the psoas index measured at the third lumbar spine (L3) level is closely related to bone mineral density (BMD) and has an excellent predictive effect on osteoporosis. Therefore, this study developed a variety of machine learning (ML) models based on psoas muscle tissue at the L3 level of unenhanced abdominal computed tomography (CT) to predict osteoporosis. METHODS Medical professionals collected the CT images and the clinical characteristics data of patients over 40 years old who underwent DXA and abdominal CT examination in the Second Affiliated Hospital of Wenzhou Medical University database from January 2017 to January 2021. Using 3D Slicer software based on horizontal CT images of the L3, the specialist delineated three layers of the region of interest (ROI) along the bilateral psoas muscle edges. The PyRadiomics package in Python was used to extract the features of ROI. Then Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) algorithm were used to reduce the dimension of the extracted features. Finally, six machine learning models, Gaussian naïve Bayes (GNB), random forest (RF), logistic regression (LR), support vector machines (SVM), Gradient boosting machine (GBM), and Extreme gradient boosting (XGBoost), were applied to train and validate these features to predict osteoporosis. RESULTS A total of 172 participants met the inclusion and exclusion criteria for the study. 82 participants were enrolled in the osteoporosis group, and 90 were in the non-osteoporosis group. Moreover, the two groups had no significant differences in age, BMI, sex, smoking, drinking, hypertension, and diabetes. Besides, 826 radiomic features were obtained from unenhanced abdominal CT images of osteoporotic and non-osteoporotic patients. Five hundred fifty radiomic features were screened out of 826 by the Mann-Whitney U test. Finally, 16 significant radiomic features were obtained by the LASSO algorithm. These 16 radiomic features were incorporated into six traditional machine learning models (GBM, GNB, LR, RF, SVM, and XGB). All six machine learning models could predict osteoporosis well in the validation set, with the area under the receiver operating characteristic (AUROC) values greater than or equal to 0.8. GBM is more effective in predicting osteoporosis, whose AUROC was 0.86, sensitivity 0.70, specificity 0.92, and accuracy 0.81 in validation sets. CONCLUSION We developed six machine learning models to predict osteoporosis based on psoas muscle images of abdominal CT, and the GBM model had the best predictive performance. GBM model can better help clinicians to diagnose osteoporosis and provide timely anti-osteoporosis treatment for patients. In the future, the research team will strive to include participants from multiple institutions to conduct external validation of the ML model of this study.
Collapse
Affiliation(s)
- Cheng-Bin Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Jia-Sen Hu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Kai Tan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Wei Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tian-Hao Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Lei Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China.
| |
Collapse
|
28
|
Abula A, Cheng E, Abulaiti A, Liu K, Liu Y, Ren P. Risk factors of transport gap bending deformity in the treatment of critical-size bone defect after bone transport. BMC Musculoskelet Disord 2022; 23:900. [PMID: 36209097 PMCID: PMC9548124 DOI: 10.1186/s12891-022-05852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Background The purpose of this study was to investigate the risk factors of transport gap bending deformity (TGBD) in the treatment of critical-size bone defect (CSBD) after the removal of the external fixator. Methods From January 2008 to December 2019, 178 patients with bone defects of the lower extremity caused by infection were treated by bone transport using a unilateral external fixator in our medical institution. TGBD was defined as the bone callus in the distraction area with a deviation to the force line of the femur (> 10°) or tibia (> 12°) after removal of the external fixator. The Association for the Study and Application of the Method of Ilizarov (ASAMI) standard was applied to assess the bone and functional outcomes. After the data were significant by the T-test or Pearson’s Chi-square test was analyzed, odds ratios were calculated using logistic regression tests to describe factors associated with the diagnosis of TGBD. Results A total of 178 patients were enrolled in the study, with a mean follow-up time of 28.6 ± 3.82 months. The positive result of the bacteria isolated test was observed in 144 cases (80.9%). The rate of excellent and good in the bone outcomes (excellent/good/fair/poor/failure, 41/108/15/14/0) was 83.7%, and 92.3% in the functional results (excellent/good/fair/poor/failure, 50/98/16/14/0) according to the ASAMI criteria. TGBD after removal of external fixator occurred in twenty-two patients (12.3%), including 6 tibias, and 16 femurs. Age > 45 years, BMI > 25 kg/m2, femoral defect, diabetes, osteoporosis, glucocorticoid intake, duration of infection > 24 months, EFT > 9 months, EFI > 1.8 month/cm were associated significantly with a higher incidence of TGBD in the binary logistic regression analysis (P < 0.05). The incidence more than 50% was found in patients with femoral defect (76.1%), osteoporosis (72.7%), BMI > 25 kg/m2 (69.0%), diabetes (59.5%), glucocorticoid intake (54.7%). In the multivariate logistic regression analyses, the following factors were associated independently with TGBD, including age > 45 years, BMI > 25 kg/m2, femoral defect, diabetes, and osteoporosis. Conclusions Bone transport using a unilateral external fixator was a safe and practical method in the treatment of CSBD caused by infection. The top five risk factors of TGBD included femoral defect, BMI > 25 kg/m2, duration of bone infection > 24 months, age > 45 years, and diabetes. Age > 45 years, BMI > 25 kg/m2, femoral defect, osteoporosis, and diabetes were the independent risk factors. The higher incidence of TGBD may be associated with more risk factors.
Collapse
Affiliation(s)
- Abulaiti Abula
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Erlin Cheng
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Alimujiang Abulaiti
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Kai Liu
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Yanshi Liu
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Peng Ren
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
29
|
De Vincentis S, Domenici D, Ansaloni A, Boselli G, D'Angelo G, Russo A, Taliani E, Rochira V, Simoni M, Madeo B. COVID-19 lockdown negatively impacted on adherence to denosumab therapy: incidence of non-traumatic fractures and role of telemedicine. J Endocrinol Invest 2022; 45:1887-1897. [PMID: 35590044 PMCID: PMC9119380 DOI: 10.1007/s40618-022-01820-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/04/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Coronavirus disease (COVID-19) lockdowns have impacted on management of osteoporosis and the use of telemedicine is increasingly widespread albeit supported by little evidence so far. The aim of the study is to assess adherence to denosumab and incidence of non-traumatic fractures during the lockdown compared to the pre-COVID-19 year and to explore the effectiveness of telemedicine in the management of osteoporotic patients. METHODS Retrospective, longitudinal, single-center study on patients receiving subcutaneous denosumab therapy every 6 months. Each patient was scheduled to undergo 2 visits: one during the pre-COVID-19 period (March 2019-March 2020) and another visit during the lockdown period (March 2020-March 2021). Data on new fractures, adherence, risk factors for osteoporosis and the modality of visit (telemedicine or face-to-face) were collected. RESULTS The prevalence of non-adherent patients was higher during the lockdown (35 of 269 patients, 13.0%) than the pre-COVID-19 period (9 of 276 patients, 3.3%) (p < 0.0001). During the lockdown, the number of new non-traumatic fractures was higher than the pre-COVID-19 year (p < 0.0001): 10 patients out of 269 (3.7%) experienced a fragility fracture and 2 patients (0.7%) a probable rebound fracture during the lockdown period, whereas no patient had fragility/rebound fractures during the pre-COVID-19 period. No difference was found in the prevalence of non-adherence and new non-traumatic fractures comparing patients evaluated with tele-medicine to those evaluated with face-to-face visit. CONCLUSION Non-adherent patients and new non-traumatic fractures (including rebound fractures) were more prevalent during the lockdown in comparison to the pre-COVID-19 period, regardless of the modality of medical evaluation.
Collapse
Affiliation(s)
- S De Vincentis
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria Policlinico di Modena, Ospedale Civile di Baggiovara, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - D Domenici
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria Policlinico di Modena, Ospedale Civile di Baggiovara, Modena, Italy
| | - A Ansaloni
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria Policlinico di Modena, Ospedale Civile di Baggiovara, Modena, Italy
| | - G Boselli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria Policlinico di Modena, Ospedale Civile di Baggiovara, Modena, Italy
| | - G D'Angelo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria Policlinico di Modena, Ospedale Civile di Baggiovara, Modena, Italy
| | - A Russo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria Policlinico di Modena, Ospedale Civile di Baggiovara, Modena, Italy
| | - E Taliani
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria Policlinico di Modena, Ospedale Civile di Baggiovara, Modena, Italy
| | - V Rochira
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria Policlinico di Modena, Ospedale Civile di Baggiovara, Modena, Italy.
| | - M Simoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria Policlinico di Modena, Ospedale Civile di Baggiovara, Modena, Italy
| | - B Madeo
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria Policlinico di Modena, Ospedale Civile di Baggiovara, Modena, Italy
| |
Collapse
|
30
|
Xia SL, Ma ZY, Wang B, Gao F, Guo SY, Chen XH. A gene expression profile for the lower osteogenic potent of bone-derived MSCs from osteoporosis with T2DM and the potential mechanism. J Orthop Surg Res 2022; 17:402. [PMID: 36050744 PMCID: PMC9438120 DOI: 10.1186/s13018-022-03291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
Background Osteoporosis (OP) patients complicated with type II diabetes mellitus (T2DM) has a higher fracture risk than the non-diabetic patients, and mesenchymal stem cells (MSCs) from T2DM patients also show a weaker osteogenic potent. The present study aimed to provide a gene expression profile in MSCs from diabetic OP and investigated the potential mechanism. Methods The bone-derived MSC (BMSC) was isolated from OP patients complicated with or without T2DM (CON-BMSC, T2DM-BMSC). Osteogenic differentiation was evaluated by qPCR analysis of the expression levels of osteogenic markers, ALP activity and mineralization level. The differentially expressed genes (DEGs) in T2DM-BMSC was identified by RNA-sequence, and the biological roles of DEGs was annotated by bioinformatics analyses. The role of silencing the transcription factor (TF), Forkhead box Q1 (FOXQ1), on the osteogenic differentiation of BMSC was also investigated. Results T2DM-BMSC showed a significantly reduced osteogenic potent compare to the CON-BMSC. A total of 448 DEGs was screened in T2DM-BMSC, and bioinformatics analyses showed that many TFs and the target genes were enriched in various OP- and diabetes-related biological processes and pathways. FOXQ1 had the highest verified fold change (abs) among the top 8 TFs, and silence of FOXQ1 inhibited the osteogenic differentiation of CON-BMSC. Conclusions Our study provided a comprehensive gene expression profile of BMSC in diabetic OP, and found that downregulated FOXQ1 was responsible for the reduced osteogenic potent of T2DM-BSMC. This is of great importance for the special mechanism researches and the treatment of diabetic OP. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03291-2.
Collapse
Affiliation(s)
- Sheng-Li Xia
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Zi-Yuan Ma
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Bin Wang
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Feng Gao
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Sheng-Yang Guo
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Xu-Han Chen
- Zhoupu Community Health Service Center, 163 Shenmei East Road, Pudong New Area, Shanghai, 201318, China.
| |
Collapse
|
31
|
Huang X, Li S, Lu W, Xiong L. Metformin activates Wnt/β-catenin for the treatment of diabetic osteoporosis. BMC Endocr Disord 2022; 22:189. [PMID: 35869471 PMCID: PMC9306077 DOI: 10.1186/s12902-022-01103-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With the deepening of social aging, the incidence rate of osteoporosis and diabetes continues to rise. More and more clinical studies show that diabetes is highly correlated with osteoporosis. Diabetes osteoporosis is considered as a metabolic bone disease of diabetes patients. This study aims to explore the role and mechanism of metformin (Met) in diabetic osteoporosis. METHODS Mouse MC3T3-E1 cells were treated with Met (0.5 mM) and exposed to high glucose (HG, 35 mM). The cells were cultured in an osteogenic medium for osteogenic differentiation, and the cell proliferation ability was determined using Cell Counting Kit-8; Alkaline phosphatase (ALP) activity detection and alizarin red staining were utilized to evaluate the effect of Met on MC3T3-E1 osteogenic differentiation. Western blot was used to detect the expressions of osteogenesis-related proteins (Runx2 and OCN) as well as Wnt/β-catenin signaling pathway-related proteins in MC3T3-E1 cells. RESULTS HG inhibited proliferation and calcification of MC3T3-E1 cells, down-regulated ALP activity, and the expression of Runx2 and OCN in MC3T3-E1 cells. Meanwhile, the activity of the Wnt/β-catenin signaling pathway was inhibited. Met treatment was found to significantly stimulate the proliferation and calcification of MC3T3-E1 cells under HG conditions, as well as increase the ALP activity and the protein expression level of Runx2 and OCN in the cells. As a result, osteogenic differentiation was promoted and osteoporosis was alleviated. Apart from this, Met also increased the protein expression level of Wnt1, β-catenin, and C-myc to activate the Wnt/β-catenin signaling pathway. CONCLUSION Met can stimulate the proliferation and osteogenic differentiation of MC3T3-E1 cells under HG conditions. Met may also treat diabetic osteoporosis through Wnt/β-catenin activation.
Collapse
Affiliation(s)
- Xiaopeng Huang
- Department of Orthopedics, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Nanchang, 330003, China
| | - Siyun Li
- Department of Orthopedics, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Nanchang, 330003, China
| | - Wenjie Lu
- Department of Orthopedics, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Nanchang, 330003, China
| | - Longjiang Xiong
- Department of Orthopedics, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Nanchang, 330003, China.
| |
Collapse
|
32
|
Chen LS, Zhang M, Chen P, Xiong XF, Liu PQ, Wang HB, Wang JJ, Shen J. The m 6A demethylase FTO promotes the osteogenesis of mesenchymal stem cells by downregulating PPARG. Acta Pharmacol Sin 2022; 43:1311-1323. [PMID: 34462564 PMCID: PMC9061799 DOI: 10.1038/s41401-021-00756-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant posttranscriptional methylation modification that occurs in mRNA and modulates the fine-tuning of various biological processes in mammalian development and human diseases. In this study we investigated the role of m6A modification in the osteogenesis of mesenchymal stem cells (MSCs), and the possible mechanisms by which m6A modification regulated the processes of osteoporosis and bone necrosis. We performed systematic analysis of the differential gene signatures in patients with osteoporosis and bone necrosis and conducted m6A-RNA immunoprecipitation (m6A-RIP) sequencing to identify the potential regulatory genes involved in osteogenesis. We showed that fat mass and obesity (FTO), a primary m6A demethylase, was significantly downregulated in patients with osteoporosis and osteonecrosis. During the differentiation of human MSCs into osteoblasts, FTO was markedly upregulated. Both depletion of FTO and application of the FTO inhibitor FB23 or FB23-2 impaired osteogenic differentiation of human MSCs. Knockout of FTO in mice resulted in decreased bone mineral density and impaired bone formation. PPARG, a biomarker for osteoporosis, was identified as a critical downstream target of FTO. We further revealed that FTO mediated m6A demethylation in the 3'UTR of PPARG mRNA, and reduced PPARG mRNA stability in an YTHDF1-dependent manner. Overexpression of PPARG alleviated FTO-mediated osteogenic differentiation of MSCs, whereas knockdown of PPARG promoted FTO-induced expression of the osteoblast biomarkers ALPL and OPN during osteogenic differentiation. Taken together, this study demonstrates the functional significance of the FTO-PPARG axis in promoting the osteogenesis of human MSCs and sheds light on the role of m6A modification in mediating osteoporosis and osteonecrosis.
Collapse
Affiliation(s)
- Liu-shan Chen
- grid.411847.f0000 0004 1804 4300Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006 China
| | - Meng Zhang
- grid.414011.10000 0004 1808 090XDepartment of Orthopedics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, 450003 China
| | - Peng Chen
- grid.411866.c0000 0000 8848 7685The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Xiao-feng Xiong
- grid.12981.330000 0001 2360 039XDepartment of Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Pei-qing Liu
- grid.12981.330000 0001 2360 039XDepartment of Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Hai-bin Wang
- grid.411866.c0000 0000 8848 7685The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Jun-jian Wang
- grid.12981.330000 0001 2360 039XDepartment of Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Juan Shen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
33
|
Hemoglobin level and osteoporosis in Chinese elders with type 2 diabetes mellitus. Nutr Diabetes 2022; 12:19. [PMID: 35414128 PMCID: PMC9005625 DOI: 10.1038/s41387-022-00198-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Objectives Several studies demonstrated a positive relationship between hemoglobin level and bone mineral density (BMD). Thus, the association between hemoglobin concentration and osteoporosis in elders with type 2 diabetes mellitus (T2DM) was explored in this study. Methods Totally, 573 elders with T2DM were included in the study. BMD was measured by dual-energy X-ray absorptiometry. Hemoglobin levels were tested. The association between the hemoglobin level and osteoporosis was subjected to logistic regression analysis. Results For men, the hemoglobin levels were significantly lower in osteoporosis group than that in non-osteoporosis group (135.98 ± 16.20 vs. 142.84 ± 13.78 g/L, P = 0.002). Hemoglobin levels were positively related with BMD of total hip and femoral neck in men (r = 0.170, P = 0.004; r = 0.148, P = 0.012, respectively). After adjusting for age, body mass index (BMI), hemoglobin A1c (HbA1c), estimated glomerular filtration rate (eGFR) and 25-hydroxyvitamin D3 [25(OH) D3], the hemoglobin level was related with a 0.97-fold lower risk of osteoporosis (odds ratio (OR): 0.97; 95% confidence interval (CI): 0.95–0.99; P = 0.004) in men, but no such association was found in women. Conclusion Higher levels of hemoglobin play a protective role against osteoporosis in older men with T2DM.
Collapse
|
34
|
Song Y, Wu Z, Zhao P. The Function of Metformin in Aging-Related Musculoskeletal Disorders. Front Pharmacol 2022; 13:865524. [PMID: 35392559 PMCID: PMC8982084 DOI: 10.3389/fphar.2022.865524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Metformin is a widely accepted first-line hypoglycemic agent in current clinical practice, and it has been applied to the clinic for more than 60 years. Recently, researchers have identified that metformin not only has an efficient capacity to lower glucose but also exerts anti-aging effects by regulating intracellular signaling molecules. With the accelerating aging process and mankind’s desire for a long and healthy life, studies on aging have witnessed an unprecedented boom. Osteoporosis, sarcopenia, degenerative osteoarthropathy, and frailty are age-related diseases of the musculoskeletal system. The decline in motor function is a problem that many elderly people have to face, and in serious cases, they may even fail to self-care, and their quality of life will be seriously reduced. Therefore, exploring potential treatments to effectively prevent or delay the progression of aging-related diseases is essential to promote healthy aging. In this review, we first briefly describe the origin of metformin and the aging of the movement system, and next review the evidence associated with its ability to extend lifespan. Furthermore, we discuss the mechanisms related to the modulation of aging in the musculoskeletal system by metformin, mainly its contribution to bone homeostasis, muscle aging, and joint degeneration. Finally, we analyze the protective benefits of metformin in aging-related diseases of the musculoskeletal system.
Collapse
Affiliation(s)
- Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Liu YD, Liu JF, Liu B. N,N-Dimethylformamide inhibits high glucose-induced osteoporosis via attenuating MAPK and NF-κB signalling. Bone Joint Res 2022; 11:200-209. [PMID: 35369730 PMCID: PMC9057521 DOI: 10.1302/2046-3758.114.bjr-2020-0308.r2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aims The role of N,N-dimethylformamide (DMF) in diabetes-induced osteoporosis (DM-OS) progression remains unclear. Here, we aimed to explore the effect of DMF on DM-OS development. Methods Diabetic models of mice, RAW 264.7 cells, and bone marrow macrophages (BMMs) were established by streptozotocin stimulation, high glucose treatment, and receptor activator of nuclear factor-κB ligand (RANKL) treatment, respectively. The effects of DMF on DM-OS development in these models were examined by micro-CT analysis, haematoxylin and eosin (H&E) staining, osteoclast differentiation of RAW 264.7 cells and BMMs, H&E and tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA) of TRAP5b and c-terminal telopeptides of type 1 (CTX1) analyses, reactive oxygen species (ROS) analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), Cell Counting Kit-8 (CCK-8) assay, and Western blot. Results The established diabetic mice were more sensitive to ovariectomy (OVX)-induced osteoporosis, and DMF treatment inhibited the sensitivity. OVX-treated diabetic mice exhibited higher TRAP5b and c-terminal telopeptides of type 1 (CTX1) levels, and DMF treatment inhibited the enhancement. DMF reduced RAW 264.7 cell viability. Glucose treatment enhanced the levels of TRAP5b, cathepsin K, Atp6v0d2, and H+-ATPase, ROS, while DMF reversed this phenotype. The glucose-increased protein levels were inhibited by DMF in cells treated with RANKL. The expression levels of antioxidant enzymes Gclc, Gclm, Ho-1, and Nqo1 were upregulated by DMF. DMF attenuated high glucose-caused osteoclast differentiation by targeting mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signalling in BMMs. Conclusion DMF inhibits high glucose-induced osteoporosis by targeting MAPK and NF-κB signalling. Cite this article: Bone Joint Res 2022;11(4):200–209.
Collapse
Affiliation(s)
- Ya Dong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jian Feng Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Ikezaki-Amada K, Miyamoto Y, Sasa K, Yamada A, Kinoshita M, Yoshimura K, Kawai R, Yano F, Shirota T, Kamijo R. Extracellular acidification augments sclerostin and osteoprotegerin production by Ocy454 mouse osteocytes. Biochem Biophys Res Commun 2022; 597:44-51. [PMID: 35123265 DOI: 10.1016/j.bbrc.2022.01.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/21/2022]
Abstract
Osteocytes sense the microenvironmental stimuli, including mechanical stress, and regulate bone resorption by osteoclasts and bone formation by osteoblasts. Diabetes and cancer metastasis to bone raise l-lactic acid in the bone tissue, causing acidification. Here, we investigated the effects of l-lactic acid and extracellular acidification on the function of mouse Ocy454 osteocytes. L- and d-lactic acid with low chiral selectivity and acidification of the medium raised the production of sclerostin and osteoprotegerin by Ocy454 cells. The mRNA expression of their genes increased after either treatment of L- and d-lactic acid or acidification of the medium. Furthermore, the conditioned medium of Ocy454 cells cultured in an acidic environment suppressed the induction of alkaline phosphatase activity in MC3T3-E1 cells, which was recovered by the anti-sclerostin antibody. While it is reported that HDAC5 inhibits the transcription of the sclerostin gene, extracellular acidification reduced the nuclear localization of HDAC5 in Ocy454 cells. While calmodulin kinase II (CaMKII) is known to phosphorylate and induce extranuclear translocation of HDAC5, KN-62, an inhibitor of CaMKII lowered the expression of the sclerostin gene in Ocy454 cells. Collectively, extracellular acidification is a microenvironmental factor that modulates osteocyte functions.
Collapse
Affiliation(s)
- Kaori Ikezaki-Amada
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.
| | - Kiyohito Sasa
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Atsushi Yamada
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Mitsuhiro Kinoshita
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Kentaro Yoshimura
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Ryota Kawai
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan; Department of Orthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Fumiko Yano
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
37
|
Li Q, Tao X, Zhang Y. Rosmarinic acid alleviates diabetic osteoporosis by suppressing the activation of NLRP3 inflammasome in rats. Physiol Int 2022; 109:46-57. [PMID: 35230263 DOI: 10.1556/2060.2022.00154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/21/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Diabetic osteoporosis is a common metabolic bone disorder characterized by bone loss in diabetic patients, which causes an enormous social burden due to the unsatisfactory outcome of current therapeutic strategy. METHODS Based on the importance of inflammasome activation in diabetic osteoporosis, we evaluated the protective effect of an antioxidant, rosmarinic acid (RA) in diabetic osteoporosis. Bone marrow-derived monocytes isolated from rats were treated with receptor activator of nuclear factor kappa-Β ligand (RANKL) and macrophage colony stimulating factor to differentiate into mature osteoclasts (OCs). Next OCs were stimulated with RA under high glucose condition to evaluate bone resorption. Next, streptozotocin (STZ)-injected rats were orally treated with 50 mg kg-1 RA to analyze its effect on diabetic osteoporosis. RESULTS RA inhibited high glucose-stimulated inflammation and inflammasome activation in OCs. Bone resorption was also reduced after RA treatment as shown by the resorption pits assay. Moreover, RA significantly reduced bone resorption, alleviated bone weight loss and increased bone mineral density by inhibiting the activation of NACHT-LRR-PYD domains-containing protein 3 (NLRP3) inflammasome in STZ-induced diabetic rats, leading to the improvement of diabetic osteoporosis. CONCLUSION RA effectively ameliorates diabetic osteoporosis in STZ-induced rats by inhibiting the activation of NLRP3 inflammasome in OCs, which suggests that RA might serve as a potential candidate drug for treating diabetic osteoporosis.
Collapse
Affiliation(s)
- Qingsong Li
- Department of Orthopedics, Second People's Hospital of Anhui Province, Hefei, 230041, Anhui,China
| | - Xueshun Tao
- Department of Orthopedics, Second People's Hospital of Anhui Province, Hefei, 230041, Anhui,China
| | - Yubing Zhang
- Department of Orthopedics, Second People's Hospital of Anhui Province, Hefei, 230041, Anhui,China
| |
Collapse
|
38
|
Ge W, Jie J, Yao J, Li W, Cheng Y, Lu W. Advanced glycation end products promote osteoporosis by inducing ferroptosis in osteoblasts. Mol Med Rep 2022; 25:140. [PMID: 35211757 PMCID: PMC8908347 DOI: 10.3892/mmr.2022.12656] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Advanced glycation end products (AGEs) have been widely reported to play an important role in osteoporosis (OP), particularly in diabetes-related OP. The aim of the present study was to investigate the effect of AGEs on osteoblast function and the underlying mechanisms. The level of bone mineral density (BMD), serum AGEs and fasting blood glucose (FBG) was measured in patients with OP and healthy individuals, and the correlation between AGE levels and BMD or FBG was then analyzed. For the in vitro experiments, the hFOB1.19 osteoblast cell line was cultured in medium containing AGEs and serum from healthy individuals or patients with OP, and with or without type-2 diabetes mellitus (T2DM). Cell proliferation, differentiation, mineralization, apoptosis and ferroptosis were evaluated using Cell Counting Kit-8 and alkaline phosphatase (ALP) assays, Alizarin red and TUNEL staining, iron indicator, lipid peroxidation tests and western blot analysis, respectively. In a separate set of experiments, the ferroptosis inhibitor, deferoxamine (DFO), was also added to the culture medium of cells treated with AGEs and serum from patients with OP and T2DM. The results demonstrated that patients with OP had a higher level of serum AGEs and FBG compared with that in healthy individuals. The level of serum AGEs in patients with OP was negatively correlated with BMD, but was positively correlated with FBG. In addition, AGEs and serum from patients with OP markedly inhibited hFOB1.19 cell proliferation, ALP production and mineralized nodule formation. Apoptosis and ferroptosis were significantly promoted by AGEs and serum from patients with OP. Moreover, serum from OP patients with T2DM caused stronger effect than that from OP patients with normal FBG. However, DFO reversed the effects induced by AGEs and serum from patients with OP and T2DM on hFOB1.19 cells. Collectively, AGEs could disrupt the functions of osteoblasts by inducing cell ferroptosis, thus contributing to OP.
Collapse
Affiliation(s)
- Weiwei Ge
- Department of Radiology, Pukou Branch of Jiangsu People's Hospital (Nanjing Pukou District Central Hospital), Nanjing, Jiangsu 210018, P.R. China
| | - Jian Jie
- Department of Orthopedics, Pukou Branch of Jiangsu People's Hospital (Nanjing Pukou District Central Hospital), Nanjing, Jiangsu 210018, P.R. China
| | - Jie Yao
- Department of Radiology, Nanjing Central Hospital (Nanjing Municipal Government Hospital), Nanjing, Jiangsu 210018, P.R. China
| | - Wei Li
- Department of Radiology, Pukou Branch of Jiangsu People's Hospital (Nanjing Pukou District Central Hospital), Nanjing, Jiangsu 210018, P.R. China
| | - Yahui Cheng
- Department of Radiology, Pukou Branch of Jiangsu People's Hospital (Nanjing Pukou District Central Hospital), Nanjing, Jiangsu 210018, P.R. China
| | - Wenjuan Lu
- Department of Radiology, Nanjing Central Hospital (Nanjing Municipal Government Hospital), Nanjing, Jiangsu 210018, P.R. China
| |
Collapse
|
39
|
Tang C, Liang D, Qiu Y, Zhu J, Tang G. Omentin‑1 induces osteoblast viability and differentiation via the TGF‑β/Smad signaling pathway in osteoporosis. Mol Med Rep 2022; 25:132. [PMID: 35179221 PMCID: PMC8867465 DOI: 10.3892/mmr.2022.12648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
Osteoporosis is a bone-related disease that results from impaired bone formation and excessive bone resorption. The potential value of adipokines has been investigated previously, due to their influence on osteogenesis. However, the osteogenic effects induced by omentin-1 remain unclear. The aim of the present study was to determine the regulatory effects of omentin-1 on osteoblast viability and differentiation, as well as to explore the underlying molecular mechanism. The present study investigated the effects of omentin-1 on the viability and differentiation of mouse pre-osteoblast cells (MC3T3-E1) using quantitative and qualitative measures. A Cell Counting Kit-8 assay was used to assess the viability of MC3T3-E1 cells following treatment with different doses of omentin-1. Omentin-1 and bone morphogenetic protein (BMP) inhibitor were added to osteogenic induction mediums in different ways to assess their effect. The alkaline phosphatase (ALP) activity and Alizarin Red S (ARS) staining of MC3T3-E1 cells treated with omentin-1 and/or BMP inhibitor were used to examine the effects of omentin-1 on differentiation and mineralization. Western blotting was used to further explore its potential mechanism, and to study the role of omentin-1 on the viability and differentiation of osteoblasts. The results showed that omentin-1 altered the viability of MC3T3-E1 cells in a dose-dependent manner. Omentin-1 treatment significantly increased the expression of members of the TGF-β/Smad signaling pathway. In the omentin-1 group, the ALP activity of the MC3T3-E1 cells was increased, and the ARS staining area was also increased. The mRNA and protein expression levels of BMP2, Runt-related transcription factor 2, collagen1, osteopontin, osteocalcin and osterix in the omentin-1 group were also significantly upregulated. All these effects were reversed following treatment with SIS3 HCl. These results demonstrated that omentin-1 can significantly promote osteoblast viability and differentiation via the TGF-β/Smad signaling pathway, thereby promoting bone formation and preventing osteoporosis.
Collapse
Affiliation(s)
- Cuisong Tang
- Department of Radiology, Clinical Medical College of Shanghai Tenth People's Hospital of Nanjing Medical University, Shanghai 200072, P.R. China
| | - Dengpan Liang
- Department of Cardiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yuyou Qiu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jingqi Zhu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Guangyu Tang
- Department of Radiology, Clinical Medical College of Shanghai Tenth People's Hospital of Nanjing Medical University, Shanghai 200072, P.R. China
| |
Collapse
|
40
|
Tonk CH, Shoushrah SH, Babczyk P, El Khaldi-Hansen B, Schulze M, Herten M, Tobiasch E. Therapeutic Treatments for Osteoporosis-Which Combination of Pills Is the Best among the Bad? Int J Mol Sci 2022; 23:1393. [PMID: 35163315 PMCID: PMC8836178 DOI: 10.3390/ijms23031393] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a chronical, systemic skeletal disorder characterized by an increase in bone resorption, which leads to reduced bone density. The reduction in bone mineral density and therefore low bone mass results in an increased risk of fractures. Osteoporosis is caused by an imbalance in the normally strictly regulated bone homeostasis. This imbalance is caused by overactive bone-resorbing osteoclasts, while bone-synthesizing osteoblasts do not compensate for this. In this review, the mechanism is presented, underlined by in vitro and animal models to investigate this imbalance as well as the current status of clinical trials. Furthermore, new therapeutic strategies for osteoporosis are presented, such as anabolic treatments and catabolic treatments and treatments using biomaterials and biomolecules. Another focus is on new combination therapies with multiple drugs which are currently considered more beneficial for the treatment of osteoporosis than monotherapies. Taken together, this review starts with an overview and ends with the newest approaches for osteoporosis therapies and a future perspective not presented so far.
Collapse
Affiliation(s)
- Christian Horst Tonk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Sarah Hani Shoushrah
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Patrick Babczyk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Basma El Khaldi-Hansen
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Monika Herten
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| |
Collapse
|
41
|
The effects of metformin and alendronate in attenuating bone loss and improving glucose metabolism in diabetes mellitus mice. Aging (Albany NY) 2022; 14:272-285. [PMID: 35027504 PMCID: PMC8791222 DOI: 10.18632/aging.203729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
Background: To explore the anti-osteoporosis and anti-diabetes effects and potential underlying mechanisms of treatment with metformin and alendronate in diabetes mellitus mice. Methods: Eight-week-old C57 BL/KS db/db and db/+ female mice were evaluated according to the following treatment group for 12 weeks: control group, diabetes mellitus group, diabetes mellitus with metformin group, diabetes mellitus with Alendronate group, diabetes mellitus with metformin plus alendronate group. Glucose level, glucose tolerance test, bone mineral density, bone microarchitecture, bone histomorphometry, serum biomarkers, and qPCR analysis. Results: Combined metformin and alendronate can improve progression in glucose metabolism and bone metabolism, including blood glucose levels, blood glucose levels after 4 and 16 hours fasting, glucose tolerance test results, insulin sensitivity and reduces bone loss than the diabetes group. The use of alendronate alone can increase significantly serum glucagon-like peptide-1 levels than the diabetes group. The use of metformin alone can improve bone microstructure such as Tb.Sp and Tb.N of spine in diabetic mice. Conclusion: The combined use of alendronate and metformin has an anti-diabetes and anti-osteoporotic effect compared with diabetic mice, but they appear to act no obvious synergistically between alendronate and metformin.
Collapse
|
42
|
Musleh S, Nazeemudeen A, Islam MT, El Hajj N, Alam T. A machine learning based study to assess bone health in a diabetic cohort. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
43
|
Zhao Z, Lu Y, Wang H, Gu X, Zhu L, Guo H, Li N. ALK7 Inhibition Protects Osteoblast Cells Against High Glucoseinduced ROS Production via Nrf2/HO-1 Signaling Pathway. Curr Mol Med 2022; 22:354-364. [PMID: 34126915 DOI: 10.2174/1566524021666210614144337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Some studies demonstrated that under high-glucose (HG) condition, osteoblasts develop oxidative stress, which will impair their normal functions. The effects of activin receptor-like kinase 7 (ALK7) silencing on HG-induced osteoblasts remained unclear. OBJECTIVE The aim of this study was to explore the effect of ALK7 on HG-induced osteoblasts. METHODS MC3T3-E1 cells were treated with different concentrations of HG (0, 50, 100, 200 and 300mg/dL), and the cell viability was detected using cell counting kit-8 (CCK-8). HG-treated MC3T3-E1 cells were transfected with siALK7 or ALK7 overexpression plasmid or siNrf2, and then the viability and apoptosis were detected by CCK-8 and flow cytometry. The levels of Reactive Oxygen Species (ROS), collagen I and calcification nodule were determined by oxidative stress kits, Enzyme-linked immunosorbent assay and Alizarin red staining. The expressions of NF-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and osteoblast-associated genes were determined by quantitative real-time PCR (qRT-PCR) and Western blot. RESULTS Cell viability was reduced with HG treatment. Silencing ALK7 inhibited the effect of HG on increasing cell apoptosis and ROS production, reduced cell viability, mineralized nodules, and downregulated collagen I and osteoblast-associated genes expression in MC3T3-E1 cells. ALK7 silencing activated the Nrf2/HO-1 signaling pathway by affecting expressions of HO-1 and Nrf2. ALK7 overexpression had the opposite effects. In addition, siNrf2 partially reversed the effects of ALK7 silencing on HG-induced MC3T3-E1 cells. CONCLUSION ALK7 silencing protected osteoblasts under HG condition possibly through activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, 100050, China
| | - Yu Lu
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, 100050, China
| | - Huan Wang
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, 100050, China
| | - Xiang Gu
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, 100050, China
| | - Luting Zhu
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, 100050, China
| | - Hong Guo
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, 100050, China
| | - Nan Li
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center, Chinese PLA General Hospital, Haidian District, Beijing, 100853, China
| |
Collapse
|
44
|
Xu J, Zuo C. The Fate Status of Stem Cells in Diabetes and its Role in the Occurrence of Diabetic Complications. Front Mol Biosci 2021; 8:745035. [PMID: 34796200 PMCID: PMC8592901 DOI: 10.3389/fmolb.2021.745035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus (DM) is becoming a growing risk factor for public health worldwide. It is a very common disease and is widely known for its susceptibility to multiple complications which do great harm to the life and health of patients, some even lead to death. To date, there are many mechanisms for the complications of diabetes, including the generation of reactive oxygen species (ROS) and the abnormal changes of gas transmitters, which ultimately lead to injuries of cells, tissues and organs. Normally, even if injured, the body can quickly repair and maintain its homeostasis. This is closely associated with the repair and regeneration ability of stem cells. However, many studies have demonstrated that stem cells happen to be damaged under DM, which may be a nonnegligible factor in the occurrence and progression of diabetic complications. Therefore, this review summarizes how diabetes causes the corresponding complications by affecting stem cells from two aspects: stem cells dysfunctions and stem cells quantity alteration. In addition, since mesenchymal stem cells (MSCs), especially bone marrow mesenchymal stem cells (BMMSCs), have the advantages of strong differentiation ability, large quantity and wide application, we mainly focus on the impact of diabetes on them. The review also puts forward the basis of using exogenous stem cells to treat diabetic complications. It is hoped that through this review, researchers can have a clearer understanding of the roles of stem cells in diabetic complications, thus promoting the process of using stem cells to treat diabetic complications.
Collapse
Affiliation(s)
- Jinyi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Chen M, Jing D, Ye R, Yi J, Zhao Z. PPARβ/δ accelerates bone regeneration in diabetic mellitus by enhancing AMPK/mTOR pathway-mediated autophagy. Stem Cell Res Ther 2021; 12:566. [PMID: 34736532 PMCID: PMC8567548 DOI: 10.1186/s13287-021-02628-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/16/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetic patients are more vulnerable to skeletal complications. Peroxisome proliferators-activated receptor (PPAR) β/δ has a positive regulatory effect on bone turnover under physiologic glucose concentration; however, the regulatory effect in diabetes mellitus has not been investigated yet. Herein, we explored the effects of PPARβ/δ agonist on the regeneration of diabetic bone defects and the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) under a pathological high-glucose condition. METHODS We detected the effect of PPARβ/δ agonist on osteogenic differentiation of rBMSCs in vitro and investigated the bone healing process in diabetic rats after PPARβ/δ agonist treatment in vivo. RNA sequencing was performed to detect the differentially expressed genes and enriched pathways. Western blot was performed to detect the autophagy-related protein level. Laser confocal microscope (LSCM) and transmission electron microscope (TEM) were used to observe the formation of autophagosomes. RESULTS Our results demonstrated that the activation of PPARβ/δ can improve the osteogenic differentiation of rBMSCs in high-glucose condition and promote the bone regeneration of calvarial defects in diabetic rats, while the inhibition of PPARβ/δ alleviated the osteogenic differentiation of rBMSCs. Mechanistically, the activation of PPARβ/δ up-regulates AMPK phosphorylation, yielding mTOR suppression and resulting in enhanced autophagy activity, which further promotes the osteogenic differentiation of rBMSCs in high-glucose condition. The addition of AMPK inhibitor Compound C or autophagy inhibitor 3-MA inhibited the osteogenesis of rBMSCs in high-glucose condition, suggesting that PPARβ/δ agonist promotes osteogenic differentiation of rBMSCs through AMPK/mTOR-regulated autophagy. CONCLUSION In conclusion, our study demonstrates the potential role of PPARβ/δ as a molecular target for the treatment of impaired bone quality and delayed bone healing in diabetic patients for the first time.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
46
|
Yang H, Cui X, Zheng X, Li J, Yao Q, Li X, Qin J. Preliminary quantitative analysis of vertebral microenvironment changes in type 2 diabetes mellitus using FOCUS IVIM-DWI and IDEAL-IQ sequences. Magn Reson Imaging 2021; 84:84-91. [PMID: 34560231 DOI: 10.1016/j.mri.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To explore the application of intravoxel incoherent motion diffusion-weighted imaging(IVIM-DWI) on account of field-of-view optimized and constrained undistorted single shot (FOCUS) and iteraterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation(IDEAL-IQ) sequences in evaluating the vertebral microenvironment changes of type 2 diabetes mellitus(T2DM) patients and the correlation with bone mineral density(BMD). METHOD 128 T2DM patients (mean age 63.4 ± 5.28 years) underwent both dual-energy X-ray absorptiometry (DEXA) and spine MRI. The FOCUS IVIM-DWI and IDEAL-IQ derived parameters of the vertebral body(L1, L2, L3, L4)were measured on corresponding maps of the lumbar spine. The subjects were divided into 3 groups according to T-scores as follows: normal (n = 37), osteopenia (n = 43), and osteoporosis(n = 48) group.One-way analysis of variance (ANOVA) were used to compare the vertebral parameters(ADCslow, ADCfast, f, FF, R2*) among three BMD cohorts.Receiver operating characteristic (ROC) analyses and Spearman's rank correlation were performed to test the diagnostic performance and the correlation between them respectively. RESULTS There were significant differences in vertebral ADCslow, ADCfast, FF and R2* between the three groups (P < 0.05).Statistically, BMD was moderately negatively correlated with FF (r = -0.584, P < 0.001) and weakly positively with ADCslow (r = 0.334, P < 0.001), meanwhile moderately positively correlated with R2*(r = 0.509, P < 0.001) and ADCfast(0.545, P < 0.001).ADCfast was moderately negatively correlated with FF (r = -0.417, P < 0.001), weakly positively correlated with R2*(0.359, P < 0.001).Compared with the area under the curve (AUC) of ADCslow, ADCfast, FF and R2*, the AUC of ADCfast was higher in identifying between normal and abnormal(osteopenia and osteoporosis), normal from osteopenia, while the AUC of FF was higher in identifying osteopenia from osteoporosis. CONCLUSIONS FOCUS IVIM-DWI and IDEAL-IQ of lumbar spine might be useful to evaluate the vertebral microenvironment changes of T2DM patients.
Collapse
Affiliation(s)
- Hui Yang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Xiaojie Cui
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Xiuzhu Zheng
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Jiang Li
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Qianqian Yao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Xiaoqian Li
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Jian Qin
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China.
| |
Collapse
|
47
|
Kan B, Zhao Q, Wang L, Xue S, Cai H, Yang S. Association between lipid biomarkers and osteoporosis: a cross-sectional study. BMC Musculoskelet Disord 2021; 22:759. [PMID: 34488720 PMCID: PMC8419899 DOI: 10.1186/s12891-021-04643-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 08/23/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Osteoporosis and cardiovascular diseases (CVDs) are 2 major public health problems. Osteoporosis and CVDs may be linked but the association between lipid profile and osteoporosis is still controversial. The purpose of this study was to examine the associations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglyceride (TG) with osteoporosis. METHODS Using inpatients' and outpatients' electronic medical records (EMR) and dual X-ray absorptiometry (DXA) database stored at The Second Hospital of Jilin University, we included 481 individuals with complete and valid lipid and bone mineral density (BMD) data in 2017. Serum samples were used to measure TC, LDL-C, HDL-C and TG. Femoral neck and total hip BMD were measured by DXA; osteoporosis was defined as femoral neck or total hip T-score ≤ -2.5. Multivariable logistic regression models were used to test the associations of TC, LDL-C, HDL-C and TG with osteoporosis. RESULTS The mean age for included individuals was 62.7 years (SD = 8.6 years); 60.1 % of them were female. Each standard deviation (SD) increase in TC (Odds Ratio [OR]: 1.48; 95 % Confidence Interval [CI]: 1.06-2.07) and TG (OR: 1.67; 95 % CI: 1.16-2.39) were associated with increased risk of osteoporosis; LDL-C and HDL-C levels were not associated with osteoporosis. Age, sex and body mass index (BMI) did not interact with the relationships of TC and TG with osteoporosis (all P > 0.10). CONCLUSIONS Higher TC and TG levels were associated with greater risk of osteoporosis in this cross-sectional study.
Collapse
Affiliation(s)
- Bo Kan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Jilin, Changchun, China
| | - Qianqian Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 232-1163 Xinmin Street, Jilin, 130021, Changchun, China
| | - Lijuan Wang
- Department of Endocrine, The Second Hospital of Jilin University, Jilin, Changchun, China
| | - Shanshan Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 232-1163 Xinmin Street, Jilin, 130021, Changchun, China
| | - Hanqing Cai
- Department of Endocrine, The Second Hospital of Jilin University, Jilin, Changchun, China.
| | - Shuman Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 232-1163 Xinmin Street, Jilin, 130021, Changchun, China.
| |
Collapse
|
48
|
Li L, Zheng B, Zhang F, Luo X, Li F, Xu T, Zhao H, Shi G, Guo Y, Shi J, Sun J. LINC00370 modulates miR-222-3p-RGS4 axis to protect against osteoporosis progression. Arch Gerontol Geriatr 2021; 97:104505. [PMID: 34450404 DOI: 10.1016/j.archger.2021.104505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND We aimed to determine the role of the LINC00370/miR-222-3p/RGS4 axis in modulating the process of adipose-derived stem cell (ADSC) osteogenic differentiation. METHODS We first evaluated the differential expression of LINC00370, miR-222-3p and RGS4 between normal and osteogenically induced ADSCs. Moreover, we transfected ADSCs with LINC00370 siRNA and an miR-222-3p inhibitor to determine the role of LINC00370 in modulating the process of ADSC osteogenic differentiation. Finally, we analyzed the dual-luciferase reporter gene to identify the relationship between LINC00370 and miR-222-3p. We first created osteoporotic rat models by ovariectomy (OVX) and treated with pcDNA-LINC00370. HE and immunohistochemical staining of OCN were performed to assess the changes in bone microarchitecture. RESULTS LINC00370 and RGS4 expression was remarkably upregulated in the osteogenic ADSC group compared with the normal medium group. On the other hand, miR-222-3p expression was remarkably decreased in the osteogenic group compared with the normal medium group. Knockdown of LINC00370 reduced the osteogenic differentiation of ADSCs. Moreover, the inhibitor of miR-222-3p partially reversed the reduction of osteogenic differentiation by LINC00370 knockdown. Knockdown of LINC00370 reduced the expression of p-Akt and p-PI3K. The inhibitor of miR-222-3p partially reversed the reduction of the expression of p-Akt and p-PI3K by LINC00370 knockdown. A dual luciferase reporter assay indicated that LINC00370 can directly bind miR-222-3p. LINC00370 suppressed OP progression in OVX and partially upregulated OCN protein expression. CONCLUSION Collectively, the above results confirm that LINC00370 promotes the process of ADSC osteogenic differentiation via the miR-222-3p/RGS4 axis. Moreover, LINC00370 could protect against OVX-induced OP.
Collapse
Affiliation(s)
- Lintao Li
- Department of Orthopedic Surgery, Jinling Hospital, Nanjing University, Nanjing, China
| | - Bing Zheng
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Fan Zhang
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Xi Luo
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Fudong Li
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Tao Xu
- Department of Orthopedic Surgery, No. 906 Hospital of the People's Liberation Army, Zhejiang, China
| | - Hong Zhao
- Department of Orthopedic Surgery, No. 906 Hospital of the People's Liberation Army, Zhejiang, China
| | - Guodong Shi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Yongfei Guo
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Jiangang Shi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China.
| | - Jingchuan Sun
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China.
| |
Collapse
|
49
|
Zhang M, Sheng C, You H, Cai M, Gao J, Cheng X, Sheng H, Qu S. Comparing the bone mineral density among male patients with latent autoimmune diabetes and classical type 1 and type 2 diabetes, and exploring risk factors for osteoporosis. J Endocrinol Invest 2021; 44:1659-1665. [PMID: 33387352 DOI: 10.1007/s40618-020-01472-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/21/2020] [Indexed: 12/21/2022]
Abstract
AIMS This study aimed to compare the bone mineral densities (BMDs) among male patients with latent autoimmune diabetes in adults (LADA), classical type 1 diabetes (T1DM), and type 2 diabetes (T2DM), and to examine the risk factors for developing low BMD in these patients. PATIENTS AND METHODS Between January 2017 and October 2020, a total of 57, 67, and 223 male patients with LADA, classical T1DM, and T2DM, respectively, were recruited from the endocrinology department of Shanghai Tenth People's Hospital. Hormonal markers of bone metabolism, lipid profiles, uric acid, glycosylated hemoglobin A1c (HbA1c), and beta-cell function were measured using blood samples. BMD was measured at the lumbar spine, femoral neck, and right hip by dual-energy X-ray absorptiometry. RESULTS The mean BMD values from all three skeletal sites in male patients with LADA were comparable to those with classical T1DM but were much lower than those with T2DM. After adjusting for confounding factors, multiple linear regression analysis demonstrated that in all male patients with diabetes, body mass index (BMI), uric acid, and fasting C-peptide showed significant positive associations with BMD at all three skeletal sites; however, osteocalcin showed a negative association at all three sites. CONCLUSIONS Compared with male patients with T2DM, lower BMDs were observed in patients with LADA and T1DM. Low BMI, uric acid, C-peptide levels, and high osteocalcin levels are risk factors for developing low BMD in male patients with diabetes.
Collapse
Affiliation(s)
- M Zhang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China.
| | - C Sheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - H You
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - M Cai
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - J Gao
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - X Cheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - H Sheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - S Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| |
Collapse
|
50
|
Colleluori G, Aguirre L, Napoli N, Qualls C, Villareal DT, Armamento-Villareal R. Testosterone Therapy Effects on Bone Mass and Turnover in Hypogonadal Men with Type 2 Diabetes. J Clin Endocrinol Metab 2021; 106:e3058-e3068. [PMID: 33735389 PMCID: PMC8599870 DOI: 10.1210/clinem/dgab181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Indexed: 12/21/2022]
Abstract
CONTEXT Male hypogonadism is associated with low bone mineral density (BMD) and increased fragility fracture risk. Patients with type 2 diabetes (T2D) have relatively higher BMD, but greater fracture risk. OBJECTIVE Evaluate the skeletal response to testosterone therapy in hypogonadal men with T2D compared with hypogonadal men without T2D. METHODS Single arm, open-label clinical trial (NCT01378299) involving 105 men (40-74 years old), with average morning testosterone <300 ng/dL. Subjects were injected intramuscularly with testosterone cypionate (200 mg) every 2 weeks for 18 months. Testosterone and estradiol were assessed by liquid chromatography/mass spectrometry; serum C-terminal telopeptide of type I collagen (CTX), osteocalcin and sclerostin by enzyme-linked immunosorbent assay; glycated hemoglobin (HbA1c) by high-performance liquid chromatography, areal BMD (aBMD) and body composition by dual-energy x-ray absorptiometry; tibial volumetric BMD (vBMD) and bone geometry by peripheral quantitative computed tomography. RESULTS Among our population of hypogonadal men, 49 had T2D and 56 were non-T2D. After 18 months of testosterone therapy, there were no differences in circulating testosterone and estradiol between the groups. Hypogonadal men with T2D had increased osteocalcin, reflecting increased osteoblast activity, compared with non-T2D men (P < .01). T2D men increased lumbar spine aBMD (P < .05), total area at 38% tibia (P < .01) and periosteal and endosteal circumferences at the same site (P < .01 for both). T2D men had reduced tibial vBMD (P < .01), but preserved bone mineral content (P = .01). Changes in HbA1c or body composition were similar between the 2 groups. CONCLUSION Testosterone therapy results in greater improvements in the skeletal health of hypogonadal men with T2D than their nondiabetic counterparts.
Collapse
Affiliation(s)
- Georgia Colleluori
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston 77030, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, , Houston 77030, TX, USA
- Current Affiliation: Georgia Colleluori, Marche Polytechnic University, Department of Experimental and Clinical Medicine, Center of Obesity, via Tronto 10A, 60020, Ancona, Italy
| | - Lina Aguirre
- New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| | - Nicola Napoli
- Department of Endocrinology and Diabetes, Campus Biomedico University, Via Alvaro del Portillo Rome, Italy
| | - Clifford Qualls
- Division of Mathematics and Statistics, University of New Mexico School of Medicine, Albuquerque, NM 87108, USA
| | - Dennis T Villareal
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston 77030, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, , Houston 77030, TX, USA
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston 77030, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, , Houston 77030, TX, USA
- Correspondence: Reina Armamento-Villareal, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|