1
|
Wu C, Liu J, Li Y, Qin L, Gu R, Feng J, Xu L, Meng X, Chen J, Chen R, Shi Y, Kan H. Association of residential air pollution and green space with all-cause and cause-specific mortality in individuals with diabetes: an 11-year prospective cohort study. EBioMedicine 2024; 108:105376. [PMID: 39353278 PMCID: PMC11472637 DOI: 10.1016/j.ebiom.2024.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND To assess the long-term impact of residential air pollution and green space exposure on cause-specific mortality in individuals with type 2 diabetes mellitus (T2DM). METHODS This study includes 174,063 participants newly diagnosed with T2DM from a prospective cohort in Shanghai, China, enrolled between 2011 and 2013. Residential annual levels of air pollutants, including fine (PM2.5) and coarse (PM2.5-10) particulate matter, nitrogen dioxide (NO2), along with the normalized difference vegetation index (NDVI), were derived from satellite-based exposure models. FINDINGS During a median follow-up of 7.9 years (equivalent to 1,333,343 person-years), this study recorded 22,205 deaths. Higher exposure to PM2.5 was significantly associated with increased risks for all mortality outcomes, whilst PM2.5-10 showed no significant impacts. The strongest associations of PM2.5 were observed for diabetes with peripheral vascular diseases [hazard ratio (HR): 2.70; per 10 μg/m3 increase] and gastrointestinal cancer (2.44). Effects of NO2 became significant at concentrations exceeding approximately 45 μg/m³, with the highest associations for lung cancer (1.20) and gastrointestinal cancer (1.19). Conversely, each interquartile range increase in NDVI (0.10) was linked to reduced mortality risks across different causes, with HRs ranging from 0.76 to 1.00. The association between greenness and mortality was partly and significantly mediated by reduced PM2.5 (23.80%) and NO2 (26.60%). There was a significant and negative interaction between NO2 and greenness, but no interaction was found between PM2.5 and greenness. INTERPRETATION Our findings highlight the vulnerability of individuals with T2DM to the adverse health effects of air pollution and emphasise the potential protective effects of greenness infrastructure. FUNDING The 6th Three-year Action Program of Shanghai Municipality for Strengthening the Construction of Public Health System (GWVI-11.1-22), the National Key Research and Development Program (2022YFC3702701), and the National Natural Science Foundation of China (82030103, 82373532).
Collapse
Affiliation(s)
- Chunfeng Wu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Division of Integrated Management, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Jiangdong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yanyun Li
- Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Luxin Qin
- Division of Integrated Management, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Ruilong Gu
- Division of Integrated Management, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Jiachen Feng
- Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Lulu Xu
- Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jiaxin Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Yan Shi
- Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China.
| |
Collapse
|
2
|
Horsdal HT, Pedersen MG, Schullehner J, Østergaard CS, Mcgrath JJ, Agerbo E, Timmermann A, Closter AM, Brandt J, Christensen JH, Frohn LM, Geels C, Ketzel M, Khan J, Ørby PV, Olsen Y, Levin G, Svenning JC, Engemann K, Gyldenkærne S, Hansen B, Hertel O, Sabel CE, Erikstrup C, Sigsgaard T, Pedersen CB. Perspectives on environment and health research in Denmark. Scand J Public Health 2024; 52:741-751. [PMID: 37278162 PMCID: PMC11308320 DOI: 10.1177/14034948231178076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
AIMS We provide an overview of nationwide environmental data available for Denmark and its linkage potentials to individual-level records with the aim of promoting research on the potential impact of the local surrounding environment on human health. BACKGROUND Researchers in Denmark have unique opportunities for conducting large population-based studies treating the entire Danish population as one big, open and dynamic cohort based on nationally complete population and health registries. So far, most research in this area has utilised individual- and family-level information to study the clustering of disease in families, comorbidities, risk of, and prognosis after, disease onset, and social gradients in disease risk. Linking environmental data in time and space to individuals enables novel possibilities for studying the health effects of the social, built and physical environment. METHODS We describe the possible linkage between individuals and their local surrounding environment to establish the exposome - that is, the total environmental exposure of an individual over their life course. CONCLUSIONS The currently available nationwide longitudinal environmental data in Denmark constitutes a valuable and globally rare asset that can help explore the impact of the exposome on human health.
Collapse
Affiliation(s)
- Henriette T. Horsdal
- National Centre for Register-based Research, Aarhus University, Denmark
- Big Data Centre for Environment and Health, Aarhus University, Denmark
| | - Marianne G. Pedersen
- National Centre for Register-based Research, Aarhus University, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Denmark
| | - Jörg Schullehner
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Public Health, Aarhus University, Denmark
- Geological Survey of Denmark and Greenland, Denmark
| | - Cecilie S. Østergaard
- National Centre for Register-based Research, Aarhus University, Denmark
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Public Health, Aarhus University, Denmark
| | - John J. Mcgrath
- National Centre for Register-based Research, Aarhus University, Denmark
- Queensland Brain Institute, The University of Queensland, Australia
- Queensland Centre for Mental Health Research, Australia
| | - Esben Agerbo
- National Centre for Register-based Research, Aarhus University, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Denmark
| | - Allan Timmermann
- National Centre for Register-based Research, Aarhus University, Denmark
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Denmark
| | - Ane Marie Closter
- National Centre for Register-based Research, Aarhus University, Denmark
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Denmark
| | | | - Lise M. Frohn
- Department of Environmental Science, Aarhus University, Denmark
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Denmark
- Global Centre for Clean Air Research, University of Surrey, UK
| | - Jibran Khan
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Environmental Science, Aarhus University, Denmark
| | - Pia V. Ørby
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Environmental Science, Aarhus University, Denmark
| | - Yulia Olsen
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Public Health, Aarhus University, Denmark
| | - Gregor Levin
- Department of Environmental Science, Aarhus University, Denmark
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere & Center for Biodiversity Dynamics in a Changing World, Department of Biology, Aarhus University, Denmark
| | - Kristine Engemann
- Center for Ecological Dynamics in a Novel Biosphere & Center for Biodiversity Dynamics in a Changing World, Department of Biology, Aarhus University, Denmark
| | | | | | - Ole Hertel
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Ecoscience, Aarhus University, Denmark
| | - Clive E. Sabel
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Public Health, Aarhus University, Denmark
| | - Christian Erikstrup
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Denmark
| | - Torben Sigsgaard
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Public Health, Aarhus University, Denmark
| | - Carsten B. Pedersen
- National Centre for Register-based Research, Aarhus University, Denmark
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Denmark
| |
Collapse
|
3
|
Yu Y, Tang Z, Huang Y, Zhang J, Wang Y, Zhang Y, Wang Q. Assessing long-term effects of gaseous air pollution exposure on mortality in the United States using a variant of difference-in-differences analysis. Sci Rep 2024; 14:16220. [PMID: 39003417 PMCID: PMC11246484 DOI: 10.1038/s41598-024-66951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024] Open
Abstract
Long-term mortality effects of particulate air pollution have been investigated in a causal analytic frame, while causal evidence for associations with gaseous air pollutants remains extensively lacking, especially for carbon monoxide (CO) and sulfur dioxide (SO2). In this study, we estimated the causal relationship of long-term exposure to nitrogen dioxide (NO2), CO, SO2, and ozone (O3) with mortality. Utilizing the data from National Morbidity, Mortality, and Air Pollution Study, we applied a variant of difference-in-differences (DID) method with conditional Poisson regression and generalized weighted quantile sum regression (gWQS) to investigate the independent and joint effects. Independent exposures to NO2, CO, and SO2 were causally associated with increased risks of total, nonaccidental, and cardiovascular mortality, while no evident associations with O3 were identified in the entire population. In gWQS analyses, an interquartile range-equivalent increase in mixture exposure was associated with a relative risk of 1.067 (95% confidence interval: 1.010-1.126) for total mortality, 1.067 (1.009-1.128) for nonaccidental mortality, and 1.125 (1.060-1.193) for cardiovascular mortality, where NO2 was identified as the most significant contributor to the overall effect. This nationwide DID analysis provided causal evidence for independent and combined effects of NO2, CO, SO2, and O3 on increased mortality risks among the US general population.
Collapse
Affiliation(s)
- Yong Yu
- Center of Health Administration and Development Studies, School of Public Health, Hubei University of Medicine, Shiyan, 442000, China
| | - Ziqing Tang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yuqian Huang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jingjing Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yixiang Wang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yunquan Zhang
- Center of Health Administration and Development Studies, School of Public Health, Hubei University of Medicine, Shiyan, 442000, China.
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Qun Wang
- Center of Health Administration and Development Studies, School of Public Health, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
4
|
Wei X, Ho KF, Yu T, Lin C, Chang LY, Chen D, Tam T, Huang B, Lau AKH, Lao XQ. The joint effect of long-term exposure to multiple air pollutants on non-accidental and cause-specific mortality: A longitudinal cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134507. [PMID: 38718510 DOI: 10.1016/j.jhazmat.2024.134507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The long-term joint impacts of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) on mortality are inconclusive. To bridge this research gap, we included 283,568 adults from the Taiwan MJ cohort between 2005 and 2016 and linked with the mortality data until 31 May 2019. Participants' annual average exposures to PM2.5, NO2, and O3 were estimated using satellite-based spatial-temporal models. We applied elastic net-regularised Cox models to construct a weighted environmental risk score (WERS) for the joint effects of three pollutants on non-accidental, cardiovascular, and cancer mortality and evaluated the contribution of each pollutant. The three pollutants jointly raised non-accidental mortality risk with a WERS hazard ratio (HR) of 1.186 (95% CI: 1.118-1.259) per standard deviation increase in each pollutant and weights of 72.8%, 15.2%, and 12.0% for PM2.5, NO2, and O3, respectively. The WERS increased cardiovascular death risk [HR: 1.248 (1.042-1.496)], with PM2.5 as the first contributor and O3 as the second. The WERS also elevated the cancer death risk [HR: 1.173 (1.083-1.270)], where PM2.5 played the dominant role and NO2 ranked second. Coordinated control of these three pollutants can optimise the health benefits of air quality improvements.
Collapse
Affiliation(s)
- Xianglin Wei
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Kin Fai Ho
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Tsung Yu
- Department of Public Health, College of Medicine, National Cheng Kung University, Taiwan
| | - Changqing Lin
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China
| | - Ly-Yun Chang
- Institute of Sociology, Academia Sinica, Taipei, Taiwan
| | - Dezhong Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Tony Tam
- Department of Sociology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Bo Huang
- Department of Geography, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Alexis K H Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China
| | - Xiang Qian Lao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
5
|
Zhou C, Xv J, Xia W, Wu Y, Jia X, Li S. Greenness, air pollution, and mortality risk: a retrospective cohort study of patients with lung cancer in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-12. [PMID: 38770969 DOI: 10.1080/09603123.2024.2355278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
The association between long-term exposure to air pollution and mortality from lung cancer has been established, yet evaluations of the potential mitigating effects of greenness on this impact are scarce. We conducted a cohort study in Pingyi County. A two-level Cox proportional hazards regression model was used to examine the associations among long-term exposure to air pollution, residential greenness, and lung cancer mortality. Among the examined pollutants, nitrogen dioxide exhibited the most significant adverse effects and highest risk of lung cancer mortality, with hazard ratio (HR) = 2.783 (95% confidence interval [CI]: 1.885-4.107) for all-cause mortality, HR = 2.492 (95%CI: 1.659-3.741) for tumour-related mortality, and HR = 2.431 (95%CI: 1.606-3.678) for lung cancer mortality. Higher greenness values were associated with a reduced risk of lung cancer mortality. These findings suggest the importance of implementing strategies for increasing greenness to reduce the health impacts of air pollution.
Collapse
Affiliation(s)
- Changqiang Zhou
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- NHC Key Lab of Health Economics and Policy Research, Shandong University, Jinan, China
| | - Juan Xv
- Chronic Disease Department, Pingyi Center for Disease Control and Prevention, Pingyi, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wanning Xia
- Department of Epidemiology and Statistics, Bengbu Medical College, Bengbu, China
| | - Yue Wu
- Department of Epidemiology and Statistics, Bengbu Medical College, Bengbu, China
| | - Xianjie Jia
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Epidemiology and Statistics, Bengbu Medical College, Bengbu, China
| | - Shixue Li
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- NHC Key Lab of Health Economics and Policy Research, Shandong University, Jinan, China
| |
Collapse
|
6
|
Korchevskiy AA, Hill WC, Hull M, Korchevskiy A. Using particle dimensionality-based modeling to estimate lung carcinogenicity of 3D printer emissions. J Appl Toxicol 2024; 44:564-581. [PMID: 37950573 DOI: 10.1002/jat.4561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
The use of 3D printing technologies by industry and consumers is expanding. However, the approaches to assess the risk of lung carcinogenesis from the emissions of 3D printers have not yet been developed. The objective of the study was to demonstrate a methodology for modeling lung cancer risk related to specific exposure levels as derived from an experimental study of 3D printer emissions for various types of filaments (ABS, PLA, and PETG). The emissions of 15 filaments were assessed at varying extrusion temperatures for a total of 23 conditions in a Class 1,000 cleanroom following procedures described by ANSI/CAN/UL 2904. Three approaches were utilized for cancer risk estimation: (a) calculation based on PM2.5 and PM10 concentrations, (b) a proximity assessment based on the pulmonary deposition fraction, and (c) modeling based on the mass-weighted aerodynamic diameter of particles. The combined distribution of emitted particles had the mass median aerodynamic diameter (MMAD) of 0.35 μm, GSD 2.25. The average concentration of PM2.5 was 25.21 μg/m3 . The spline-based function of aerodynamic diameter allowed us to reconstruct the carcinogenic potential of seven types of fine and ultrafine particles (crystalline silica, fine TiO2 , ultrafine TiO2 , ambient PM2.5 and PM10, diesel particulates, and carbon nanotubes) with a correlation of 0.999, P < 0.00001. The central tendency estimation of lung cancer risk for 3D printer emissions was found at the level of 14.74 cases per 10,000 workers in a typical exposure scenario (average cumulative exposure of 0.3 mg/m3 - years), with the lowest risks for PLA filaments, and the highest for PETG type.
Collapse
Affiliation(s)
| | - W Cary Hill
- ITA International, LLC, Blacksburg, Virginia, USA
| | - Matthew Hull
- Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, Virginia, USA
| | | |
Collapse
|
7
|
Kaspersen KA, Antonsen S, Horsdal HT, Kjerulff B, Brandt J, Geels C, Christensen JH, Frohn LM, Sabel CE, Dinh KM, Hertel O, Sigsgaard T, Pedersen CB, Erikstrup C. Exposure to air pollution and risk of respiratory tract infections in the adult Danish population-a nationwide study. Clin Microbiol Infect 2024; 30:122-129. [PMID: 37858866 DOI: 10.1016/j.cmi.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES The association between air pollution and risk of respiratory tract infection (RTI) in adults needs to be clarified in settings with low to moderate levels of air pollution. We investigated this in the Danish population between 2004 and 2016. METHODS We included 3 653 490 persons aged 18-64 years in a nested case-control study. Exposure was defined as the average daily concentration at the individual's residential address of CO, NOX, NO2, O3, SO2, NH3, PPM2.5, black carbon, organic carbon, mineral dust, sea salt, secondary inorganic aerosols, SO42-, NO3-, NH4+, secondary organic aerosols, PM2.5, and PM10 during a 3-month exposure window. RTIs were defined by hospitalization for RTIs. Incidence rate ratios (IRRs) and 95% CIs were estimated comparing highest with lowest decile of exposure using conditional logistic regression models. RESULTS In total, 188 439 incident cases of RTI were identified. Exposure to most air pollutants was positively associated with risk of RTI. For example, NO2 showed an IRR of 1.52 (CI: 1.48-1.55), and PM2.5 showed an IRR of 1.45 (CI: 1.40-1.50). In contrast, exposure to sea salt, PM10, NH3, and O3 was negatively associated with a risk of RTIs. DISCUSSION In this nationwide study comprising adults, exposure to air pollution was associated with risk of RTIs and subgroups hereof. Sea salt, PM10, NH3, and O3 may be proxies for rural areas, as the levels of these species in Denmark are higher near the western coastlines and/or in rural areas with fewer combustion sources.
Collapse
Affiliation(s)
- Kathrine A Kaspersen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark.
| | - Sussie Antonsen
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark; National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus V, Denmark; Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Henriette T Horsdal
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark; National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus V, Denmark
| | - Bertram Kjerulff
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; iClimate - Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; iClimate - Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | | | - Lise M Frohn
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Clive E Sabel
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark; Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark; Department of Public Health, Aarhus University, Aarhus, Denmark; Health Research Institute, University of Canberra, Canberra, ACT, Australia
| | - Khoa M Dinh
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark
| | - Ole Hertel
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark; Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Torben Sigsgaard
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark; Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark; Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Carsten B Pedersen
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark; National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus V, Denmark; Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
8
|
Abed Al Ahad M, Demšar U, Sullivan F, Kulu H. Long-term exposure to air pollution and mortality in Scotland: A register-based individual-level longitudinal study. ENVIRONMENTAL RESEARCH 2023; 238:117223. [PMID: 37793592 DOI: 10.1016/j.envres.2023.117223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Air pollution is associated with several adverse health outcomes. However, heterogeneity in the size of effect estimates between cohort studies for long-term exposures exist and pollutants like SO2 and mental/behavioural health outcomes are little studied. This study examines the association between long-term exposure to multiple ambient air pollutants and all-cause and cause-specific mortality from both physical and mental illnesses. METHODS We used individual-level administrative data from the Scottish-Longitudinal-Study (SLS) on 202,237 individuals aged 17 and older, followed between 2002 and 2017. The SLS dataset was linked to annual concentrations of NO2, SO2, and particulate-matter (PM10, PM2.5) pollution at 1 km2 spatial resolution using the individuals' residential postcode. We applied survival analysis to assess the association between air pollution and all-cause, cardiovascular, respiratory, cancer, mental/behavioural disorders/suicides, and other-causes mortality. RESULTS Higher all-cause mortality was associated with increasing concentrations of PM2.5, PM10, NO2, and SO2 pollutants. NO2, PM10, and PM2.5 were also associated with cardiovascular, respiratory, cancer and other-causes mortality. For example, the mortality hazard from respiratory diseases was 1.062 (95%CI = 1.028-1.096), 1.025 (95%CI = 1.005-1.045), and 1.013 (95%CI = 1.007-1.020) per 1 μg/m3 increase in PM2.5, PM10 and NO2 pollutants, respectively. In contrast, mortality from mental and behavioural disorders was associated with 1 μg/m3 higher exposure to SO2 pollutant (HR = 1.042; 95%CI = 1.015-1.069). CONCLUSION This study revealed an association between long-term (16-years) exposure to ambient air pollution and all-cause and cause-specific mortality. The results suggest that policies and interventions to enhance air quality would reduce the mortality hazard from cardio-respiratory, cancer, and mental/behavioural disorders in the long-term.
Collapse
Affiliation(s)
- Mary Abed Al Ahad
- School of Geography and Sustainable Development, University of St Andrews, Scotland, United Kingdom.
| | - Urška Demšar
- School of Geography and Sustainable Development, University of St Andrews, Scotland, United Kingdom
| | - Frank Sullivan
- School of Medicine, University of St Andrews, Scotland, United Kingdom
| | - Hill Kulu
- School of Geography and Sustainable Development, University of St Andrews, Scotland, United Kingdom
| |
Collapse
|
9
|
Kjerulff B, Thisted Horsdal H, Kaspersen K, Mikkelsen S, Manh Dinh K, Hørup Larsen M, Rye Ostrowski S, Ullum H, Sørensen E, Birger Pedersen O, Topholm Bruun M, René Nielsen K, Brandt J, Geels C, Frohn LM, Christensen JH, Sigsgaard T, Eric Sabel C, Bøcker Pedersen C, Erikstrup C. Medium term moderate to low-level air pollution exposure is associated with higher C-reactive protein among healthy Danish blood donors. ENVIRONMENTAL RESEARCH 2023; 233:116426. [PMID: 37336432 DOI: 10.1016/j.envres.2023.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/10/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Air pollution is a significant contributor to the global burden of disease with a plethora of associated health effects such as pulmonary and systemic inflammation. C-reactive protein (CRP) is associated with a wide range of diseases and is associated with several exposures. Studies on the effect of air pollution exposure on CRP levels in low to moderate pollution settings have shown inconsistent results. In this cross-sectional study high sensitivity CRP measurements on 18,463 Danish blood donors were linked to modelled air pollution data for NOx, NO2, O3, CO, SO2, NH3, mineral dust, black carbon, organic carbon, sea salt, secondary inorganic aerosols and its components, primary PM2.5, secondary organic aerosols, total PM2.5, and total PM10 at their residential address over the previous month. Associations were analysed using ordered logistic regression with CRP quartile as individuals outcome and air pollution exposure as scaled deciles. Analyses were adjusted for health related and socioeconomic covariates using health questionnaires and Danish register data. Exposure to different air pollution components was generally associated with higher CRP (odds ratio estimates ranging from 1.11 to 1.67), while exposure to a few air pollution components was associated with lower CRP. For example, exposure to NO2 increased the odds of high CRP 1.32-fold (95%CI 1.16-1.49), while exposure to NH3 decreased the odds of high CRP 0.81-fold (95%CI 0.73-0.89). This large study among healthy individuals found air pollution exposure to be associated with increased levels of CRP even in a setting with low to moderate air pollution levels.
Collapse
Affiliation(s)
- Bertram Kjerulff
- Department of Clinical Immunology, Aarhus University Hospital, DK-8200, Aarhus N, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Denmark; Department of Clinical Medicine, Aarhus University, Denmark.
| | - Henriette Thisted Horsdal
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Denmark; National Centre for Register-based Research, Aarhus BSS, Aarhus University, DK-8210, Aarhus V, Denmark
| | - Kathrine Kaspersen
- Department of Clinical Immunology, Aarhus University Hospital, DK-8200, Aarhus N, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, DK-8200, Aarhus N, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Denmark
| | - Khoa Manh Dinh
- Department of Clinical Immunology, Aarhus University Hospital, DK-8200, Aarhus N, Denmark
| | - Margit Hørup Larsen
- Dept. of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Sisse Rye Ostrowski
- Dept. of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Denmark
| | | | - Erik Sørensen
- Dept. of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Denmark; Dept. of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | | | | | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, DK-4000, Roskilde, Denmark; IClimate - Interdisciplinary Centre for Climate Change, Aarhus University, DK-4000, Denmark
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, DK-4000, Roskilde, Denmark; IClimate - Interdisciplinary Centre for Climate Change, Aarhus University, DK-4000, Denmark
| | - Lise M Frohn
- Department of Environmental Science, Aarhus University, DK-4000, Roskilde, Denmark; IClimate - Interdisciplinary Centre for Climate Change, Aarhus University, DK-4000, Denmark
| | - Jesper H Christensen
- Department of Environmental Science, Aarhus University, DK-4000, Roskilde, Denmark; IClimate - Interdisciplinary Centre for Climate Change, Aarhus University, DK-4000, Denmark
| | - Torben Sigsgaard
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Denmark; Department of Public Health, Aarhus University, DK-8000, Aarhus, Denmark
| | - Clive Eric Sabel
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Denmark; Department of Public Health, Aarhus University, DK-8000, Aarhus, Denmark
| | - Carsten Bøcker Pedersen
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Denmark; National Centre for Register-based Research, Aarhus BSS, Aarhus University, DK-8210, Aarhus V, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, DK-8200, Aarhus N, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
10
|
Zhu X, Liu B, Guo C, Li Z, Cheng M, Zhu X, Wei Y. Short and long-term association of exposure to ambient black carbon with all-cause and cause-specific mortality: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121086. [PMID: 36649881 DOI: 10.1016/j.envpol.2023.121086] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Black carbon (BC) is a product of incomplete or inefficient combustion and may be associated with a variety of adverse effects on human health. The objective of this study was to analyze the association between various mortalities and long-/short-term exposure to BC as an independent pollutant. In this systematic review, we searched 4 databases for original research in English up to 6th October 2022, that investigated population-wide mortality due to BC exposure. We pooled mortality estimates and expressed them as relative risk (RR) per 10 μg/m3 increase in BC. We used a random-effect model to derive the pooled RRs. Of the 3186 studies identified, 29 articles met the eligibility criteria, including 18 long-term exposure studies and 11 short-term exposure studies. In the major meta-analysis and sensitivity analysis, positive associations were found between BC and total mortality and cause-specific disease mortalities. Among them, the short-term effects of BC on total mortality, cardiovascular disease mortality, respiratory disease mortality, and the long-term effects of BC on total mortality, ischemic heart disease mortality, respiratory disease mortality and lung cancer mortality were found to be statistically significant. The heterogeneity of the meta-analysis results was much lower for short-term studies than for long-term. Few studies were at a high risk of bias in any domain. The certainty of the evidence for most of the exposure-outcome pairs was moderate. Our study showed a significantly positive association between short-/long-term BC exposure and various mortalities. We speculate that BC has a higher adverse health effect on the respiratory system than on the cardiovascular system. This is different from the effect of PM2.5. Therefore, more studies are needed to consider BC as a separate pollutant, and not just as a component of PM2.5.
Collapse
Affiliation(s)
- Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bingqian Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Miaomiao Cheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoyan Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
11
|
Tsai CY, Su CL, Wang YH, Wu SM, Liu WT, Hsu WH, Majumdar A, Stettler M, Chen KY, Lee YT, Hu CJ, Lee KY, Tsuang BJ, Tseng CH. Impact of lifetime air pollution exposure patterns on the risk of chronic disease. ENVIRONMENTAL RESEARCH 2023; 229:115957. [PMID: 37084949 DOI: 10.1016/j.envres.2023.115957] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Long-term exposure to air pollution can lead to cardiovascular disease, metabolic syndrome, and chronic respiratory disease. However, from a lifetime perspective, the critical period of air pollution exposure in terms of health risk is unknown. This study aimed to evaluate the impact of air pollution exposure at different life stages. The study participants were recruited from community centers in Northern Taiwan between October 2018 and April 2021. Their annual averages for fine particulate matter (PM2.5) exposure were derived from a national visibility database. Lifetime PM2.5 exposures were determined using residential address information and were separated into three stages (<20, 20-40, and >40 years). We employed exponentially weighted moving averages, applying different weights to the aforementioned life stages to simulate various weighting distribution patterns. Regression models were implemented to examine associations between weighting distributions and disease risk. We applied a random forest model to compare the relative importance of the three exposure life stages. We also compared model performance by evaluating the accuracy and F1 scores (the harmonic mean of precision and recall) of late-stage (>40 years) and lifetime exposure models. Models with 89% weighting on late-stage exposure showed significant associations between PM2.5 exposure and metabolic syndrome, hypertension, diabetes, and cardiovascular disease, but not gout or osteoarthritis. Lifetime exposure models showed higher precision, accuracy, and F1 scores for metabolic syndrome, hypertension, diabetes, and cardiovascular disease, whereas late-stage models showed lower performance metrics for these outcomes. We conclude that exposure to high-level PM2.5 after 40 years of age may increase the risk of metabolic syndrome, hypertension, diabetes, and cardiovascular disease. However, models considering lifetime exposure showed higher precision, accuracy, and F1 scores and lower equal error rates than models incorporating only late-stage exposures. Future studies regarding long-term air pollution modelling are required considering lifelong exposure pattern. .1.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, United Kingdom; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235041, Taiwan
| | - Chien-Ling Su
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235041, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan; Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung City, 821004, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235041, Taiwan
| | - Sheng-Ming Wu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Wen-Te Liu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235041, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan; Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Research Center of Artificial Intelligence in Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Wen-Hua Hsu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Arnab Majumdar
- Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Marc Stettler
- Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235041, Taiwan
| | - Ya-Ting Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235041, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235041, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235041, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Ben-Jei Tsuang
- Department of Environmental Engineering, National Chung-Hsing University, Taichung, Taiwan
| | - Chien-Hua Tseng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235041, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan; Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
12
|
Wright N, Newell K, Chan KH, Gilbert S, Hacker A, Lu Y, Guo Y, Pei P, Yu C, Lv J, Chen J, Li L, Kurmi O, Chen Z, Lam KBH, Kartsonaki C. Long-term ambient air pollution exposure and cardio-respiratory disease in China: findings from a prospective cohort study. Environ Health 2023; 22:30. [PMID: 36973808 PMCID: PMC10041804 DOI: 10.1186/s12940-023-00978-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 03/07/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Existing evidence on long-term ambient air pollution (AAP) exposure and risk of cardio-respiratory diseases in China is mainly on mortality, and based on area average concentrations from fixed-site monitors for individual exposures. Substantial uncertainty persists, therefore, about the shape and strength of the relationship when assessed using more personalised individual exposure data. We aimed to examine the relationships between AAP exposure and risk of cardio-respiratory diseases using predicted local levels of AAP. METHODS A prospective study included 50,407 participants aged 30-79 years from Suzhou, China, with concentrations of nitrogen dioxide (NO2), sulphur dioxide (SO2), fine (PM2.5), and inhalable (PM10) particulate matter, ozone (O3) and carbon monoxide (CO) and incident cases of cardiovascular disease (CVD) (n = 2,563) and respiratory disease (n = 1,764) recorded during 2013-2015. Cox regression models with time-dependent covariates were used to estimate adjusted hazard ratios (HRs) for diseases associated with local-level concentrations of AAP exposure, estimated using Bayesian spatio-temporal modelling. RESULTS The study period of 2013-2015 included a total of 135,199 person-years of follow-up for CVD. There was a positive association of AAP, particularly SO2 and O3, with risk of major cardiovascular and respiratory diseases. Each 10 µg/m3 increase in SO2 was associated with adjusted hazard ratios (HRs) of 1.07 (95% CI: 1.02, 1.12) for CVD, 1.25 (1.08, 1.44) for COPD and 1.12 (1.02, 1.23) for pneumonia. Similarly, each 10 µg/m3 increase in O3 was associated with adjusted HR of 1.02 (1.01, 1.03) for CVD, 1.03 (1.02, 1.05) for all stroke, and 1.04 (1.02, 1.06) for pneumonia. CONCLUSIONS Among adults in urban China, long-term exposure to ambient air pollution is associated with a higher risk of cardio-respiratory disease.
Collapse
Affiliation(s)
- Neil Wright
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Big Data Institute Building, Old Road Campus, OX3 7LF, Oxford, UK
| | - Katherine Newell
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Big Data Institute Building, Old Road Campus, OX3 7LF, Oxford, UK
| | - Ka Hung Chan
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Big Data Institute Building, Old Road Campus, OX3 7LF, Oxford, UK
- Oxford British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Simon Gilbert
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Big Data Institute Building, Old Road Campus, OX3 7LF, Oxford, UK
| | - Alex Hacker
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Big Data Institute Building, Old Road Campus, OX3 7LF, Oxford, UK
| | - Yan Lu
- NCDs Prevention and Control Department, Suzhou CDC, Jiangsu, China
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Pei Pei
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
| | - Canqing Yu
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jun Lv
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Junshi Chen
- National Center for Food Safety Risk Assessment, Beijing, China
| | - Liming Li
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Om Kurmi
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Big Data Institute Building, Old Road Campus, OX3 7LF, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Kin Bong Hubert Lam
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Big Data Institute Building, Old Road Campus, OX3 7LF, Oxford, UK.
| | - Christiana Kartsonaki
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Big Data Institute Building, Old Road Campus, OX3 7LF, Oxford, UK.
- MRC Population Health Research Unit, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Raaschou-Nielsen O, Antonsen S, Agerbo E, Hvidtfeldt UA, Geels C, Frohn LM, Christensen JH, Sigsgaard T, Brandt J, Pedersen CB. PM 2.5 air pollution components and mortality in Denmark. ENVIRONMENT INTERNATIONAL 2023; 171:107685. [PMID: 36502699 DOI: 10.1016/j.envint.2022.107685] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ambient fine particulate matter (PM2.5) causes millions of deaths every year worldwide. Identification of the most harmful types of PM2.5 would facilitate efficient prevention strategies. OBJECTIVES The aim of this study was to investigate associations between components of PM2.5 and mortality in a nation-wide Danish population. METHODS Our study base was Danes born 1921-1985 and aged 30-85 years, who were followed up for mortality from 1991 to 2015. We included 678,465 natural cause mortality cases and selected five age, sex and calendar time matched controls to each case from the study base. We retrieved the address history of the study population from Danish registries and assessed five-year average concentrations of eight PM2.5 components using deterministic Chemistry-Transport Models air pollution models. We estimated mortality rate ratios (MRRs) by conditional logistic regression and adjusted for socio-demographical factors at individual and neighborhood level. RESULTS Single pollutant models showed the strongest associations between natural cause mortality and an interquartile increase in sulfate particles (SO4--) (MRR: 1.123; 95 % CI: 1.100-1.147 per 1.5 µg/m3) and secondary organic aerosol (SOA) (MRR: 1.054; 95 % CI: 1.048-1.061 per 0.050 µg/m3). Two-pollutant models showed robust associations between SO4-- and SOA and natural cause mortality. Elemental carbon and mineral dust showed robust associations with higher respiratory and lung cancer mortality. CONCLUSION This nation-wide study found robust associations between natural cause mortality and SO4-- particles and SOA, which is in line with the results of previous studies. Elemental carbon and mineral dust showed robust associations with higher respiratory and lung cancer mortality.
Collapse
Affiliation(s)
- Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Sussie Antonsen
- National Centre for Register-Based Research, Aarhus BSS, Department of Economics and Business Economics, Aarhus University, Fuglesangs allé 26, 8210 Aarhus V, Denmark; Centre for Integrated Register-based Research, CIRRAU, Aarhus University, Fuglesangs allé 26, 8210 Aarhus V, Denmark
| | - Esben Agerbo
- National Centre for Register-Based Research, Aarhus BSS, Department of Economics and Business Economics, Aarhus University, Fuglesangs allé 26, 8210 Aarhus V, Denmark; Centre for Integrated Register-based Research, CIRRAU, Aarhus University, Fuglesangs allé 26, 8210 Aarhus V, Denmark
| | - Ulla A Hvidtfeldt
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lise M Frohn
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Jesper H Christensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Torben Sigsgaard
- Department of Public Health, Aarhus University, Vennelyst Boulevard 2, 8000 Aarhus, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Carsten B Pedersen
- National Centre for Register-Based Research, Aarhus BSS, Department of Economics and Business Economics, Aarhus University, Fuglesangs allé 26, 8210 Aarhus V, Denmark; Centre for Integrated Register-based Research, CIRRAU, Aarhus University, Fuglesangs allé 26, 8210 Aarhus V, Denmark
| |
Collapse
|
14
|
Byun G, Choi Y, Kim S, Lee JT. Long-term exposure to ambient ozone and mortality in a population-based cohort of South Korea: Considering for an alternative exposure time metric. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120300. [PMID: 36181930 DOI: 10.1016/j.envpol.2022.120300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Studies on the health effects of long-term ozone exposure remain limited with mixed results. One potential source of this inconsistency is the difference in exposure time metrics. This study aimed to investigate the association between long-term exposure to ambient ozone and mortality in South Korea, using different exposure metrics. We also examined whether heterogeneity between previous studies was due to the different exposure metrics. The study population comprised 179,806 participants from the National Health Insurance Service-National Sample Cohort (2002-2015) residing in seven major cities in South Korea. Several ozone exposure metrics (year-round 24-h, year-round 8-h, warm-season 24-h, and warm-season 8-h) were calculated. Time-varying Cox proportional hazards models were used to estimate the association between ozone and all-cause and cause-specific mortalities. Random-effect meta-analysis and meta-regression analysis were performed to pool the effect estimates of previous studies and examine whether the exposure metric can explain the between-study heterogeneity. The hazard ratios (HRs) per 10 ppb increment in year-round 24-h ozone for all-cause (HR, 1.18; 95% CI, 1.07-1.29) and circulatory (HR, 1.52; 95% CI, 1.25-1.84) mortality were higher than those of the other metrics. Year-round 8-h ozone exhibited the largest association with respiratory mortality (HR, 1.43; 95% CI, 1.04-1.96). A meta-analysis of 29 previous studies and the present study showed the largest HR for all-cause mortality from studies using year-round 8-h exposure (HR, 1.014; 95% CI, 0.994-1.033). The exposure metric was significantly associated with effect estimates in the multivariable meta-regression model. In conclusion, in the population-based cohort in South Korea, we found positive associations between several long-term ozone exposure metrics and mortality. The different ozone exposure metrics exhibited heterogeneous effect estimates. A year-round 24-h average ozone metric also could be considered an alternative long-term standard for ozone.
Collapse
Affiliation(s)
- Garam Byun
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
| | - Yongsoo Choi
- Department of Public Health Science, Graduate School, Korea University, Seoul, Republic of Korea
| | - Sera Kim
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
| | - Jong-Tae Lee
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea; School of Health Policy and Management, College of Health Science, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Chai KC, Li Q, Jin C, Lu YJ, Cui Z, He X. The influence of social and commercial pension insurance differences and social capital on the mental health of older adults-Microdata from China. Front Public Health 2022; 10:1005257. [PMID: 36438206 PMCID: PMC9683030 DOI: 10.3389/fpubh.2022.1005257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
The number of older adults is rising rapidly in China. Various concerns such as chronic diseases, financial inadequacy, and a feeling of loneliness have adversely affected the mental health of older adults, and this has become an important public health and social issue. To realize healthy aging, the Nineteenth National People's Congress of China put forth the Healthy China strategy, speeding up the promotion activities of mental health and pension measures, carrying out public welfare pension insurance for the entire population, and contributing to the mental health of older adults. This study used data from China Family Panel Studies. This study mainly uses the random effect estimation method (random effect, RE) and the feasible generalized least squares estimation method (FGLS) to control for heterogeneity to explore the impact of social and commercial pension insurance on the mental health of older adults, the moderating effect of social capital on pension insurance, and the mental health of older adults. The results showed that social pension insurance is proportional to the mental health of older adults, whereas commercial pension insurance is inversely proportional to mental health. Social capital had a significant moderating effect on pension insurance. When a country develops an aging economy, the emphasis on social capital helps make targeted industrial development suggestions. The government's expansion of insurance coverage is crucial for improving the mental health of older adults.
Collapse
Affiliation(s)
- Kuang-Cheng Chai
- Business School, Guilin University of Electronic Technology, Guilin, China,GUET Nanning Research Institute, Nanning, China
| | - Qiang Li
- Business School, Guilin University of Electronic Technology, Guilin, China,GUET Nanning Research Institute, Nanning, China
| | - Chengsheng Jin
- Business School, Guilin University of Electronic Technology, Guilin, China
| | - Yu-Jiao Lu
- Business School, Guilin University of Electronic Technology, Guilin, China,GUET Nanning Research Institute, Nanning, China
| | - Zhenxin Cui
- Business School, Guilin University of Electronic Technology, Guilin, China,GUET Nanning Research Institute, Nanning, China
| | - Xingxing He
- Business School, Guilin University of Electronic Technology, Guilin, China,GUET Nanning Research Institute, Nanning, China,*Correspondence: Xingxing He
| |
Collapse
|
16
|
Benefits of future clean air policies in Europe. Environ Epidemiol 2022; 6:e221. [PMID: 36249272 PMCID: PMC9556041 DOI: 10.1097/ee9.0000000000000221] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
|
17
|
Michetti M, Gualtieri M, Anav A, Adani M, Benassi B, Dalmastri C, D'Elia I, Piersanti A, Sannino G, Zanini G, Uccelli R. Climate change and air pollution: Translating their interplay into present and future mortality risk for Rome and Milan municipalities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154680. [PMID: 35314224 DOI: 10.1016/j.scitotenv.2022.154680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Heat and cold temperatures associated with exposure to poor air quality lead to increased mortality. Using a generalized linear model with Poisson regression for overdispersion, this study quantifies the natural-caused mortality burden attributable to heat/cold temperatures and PM10 and O3 air pollutants in Rome and Milan, the two most populated Italian cities. We calculate local-specific mortality relative risks (RRs) for the period 2004-2015 considering the overall population and the most vulnerable age category (≥85 years). Combining a regional climate model with a chemistry-transport model under future climate and air pollution scenarios (RCP2.6 and RCP8.5), we then project mortality to 2050. Results show that for historical mortality the burden is much larger for cold than for warm temperatures. RR peaks during wintertime in Milan and summertime in Rome, highlighting the relevance of accounting for the effects of air pollution besides that of climate, in particular PM10 for Milan and O3 for Rome. Overall, Milan reports higher RRs while, in both cities, the elderly appear more susceptible to heat/cold and air pollution events than the average population. Two counterbalancing effects shape mortality in the future: an increase associated with higher and more frequent warmer daily temperatures - especially in the case of climate inaction - and a decrease due to declining cold-mortality burden. The outcomes highlight the urgent need to adopt more stringent and integrated climate and air quality policies to reduce the temperature and air pollution combined effects on health.
Collapse
Affiliation(s)
- M Michetti
- Division of Models and Technology for Risk Reduction, ENEA Centro Ricerche Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy.
| | - M Gualtieri
- Division of Models and Technology for Risk Reduction, ENEA Centro Ricerche Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| | - A Anav
- Division of Models and Technology for Risk Reduction, ENEA Centro Ricerche Roma Casaccia, Via Anguillarese 301, 00123 Santa Maria di Galeria, Rome, Italy
| | - M Adani
- Division of Models and Technology for Risk Reduction, ENEA Centro Ricerche Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| | - B Benassi
- Division of Health Protection Technologies, ENEA Centro Ricerche Roma Casaccia, Via Anguillarese 301, 00123 Santa Maria di Galeria, Rome, Italy
| | - C Dalmastri
- Division of Health Protection Technologies, ENEA Centro Ricerche Roma Casaccia, Via Anguillarese 301, 00123 Santa Maria di Galeria, Rome, Italy
| | - I D'Elia
- Division of Models and Technology for Risk Reduction, ENEA Centro Ricerche Roma, Lungotevere Thaon de Revel, 76, 00196 Rome, Italy
| | - A Piersanti
- Division of Models and Technology for Risk Reduction, ENEA Centro Ricerche Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| | - G Sannino
- Division of Models and Technology for Risk Reduction, ENEA Centro Ricerche Roma Casaccia, Via Anguillarese 301, 00123 Santa Maria di Galeria, Rome, Italy
| | - G Zanini
- Division of Models and Technology for Risk Reduction, ENEA Centro Ricerche Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| | - R Uccelli
- Division of Health Protection Technologies, ENEA Centro Ricerche Roma Casaccia, Via Anguillarese 301, 00123 Santa Maria di Galeria, Rome, Italy
| |
Collapse
|
18
|
So R, Andersen ZJ, Chen J, Stafoggia M, de Hoogh K, Katsouyanni K, Vienneau D, Rodopoulou S, Samoli E, Lim YH, Jørgensen JT, Amini H, Cole-Hunter T, Mahmood Taghavi Shahri S, Maric M, Bergmann M, Liu S, Azam S, Loft S, Westendorp RGJ, Mortensen LH, Bauwelinck M, Klompmaker JO, Atkinson R, Janssen NAH, Oftedal B, Renzi M, Forastiere F, Strak M, Thygesen LC, Brunekreef B, Hoek G, Mehta AJ. Long-term exposure to air pollution and mortality in a Danish nationwide administrative cohort study: Beyond mortality from cardiopulmonary disease and lung cancer. ENVIRONMENT INTERNATIONAL 2022; 164:107241. [PMID: 35544998 DOI: 10.1016/j.envint.2022.107241] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The association between long-term exposure to air pollution and mortality from cardiorespiratory diseases is well established, yet the evidence for other diseases remains limited. OBJECTIVES To examine the associations of long-term exposure to air pollution with mortality from diabetes, dementia, psychiatric disorders, chronic kidney disease (CKD), asthma, acute lower respiratory infection (ALRI), as well as mortality from all-natural and cardiorespiratory causes in the Danish nationwide administrative cohort. METHODS We followed all residents aged ≥ 30 years (3,083,227) in Denmark from 1 January 2000 until 31 December 2017. Annual mean concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (warm season) were estimated using European-wide hybrid land-use regression models (100 m × 100 m) and assigned to baseline residential addresses. We used Cox proportional hazard models to evaluate the association between air pollution and mortality, accounting for demographic and socioeconomic factors. We additionally applied indirect adjustment for smoking and body mass index (BMI). RESULTS During 47,023,454 person-years of follow-up, 803,881 people died from natural causes. Long-term exposure to PM2.5 (mean: 12.4 µg/m3), NO2 (20.3 µg/m3), and/or BC (1.0 × 10-5/m) was statistically significantly associated with all studied mortality outcomes except CKD. A 5 µg/m3 increase in PM2.5 was associated with higher mortality from all-natural causes (hazard ratio 1.11; 95% confidence interval 1.09-1.13), cardiovascular disease (1.09; 1.07-1.12), respiratory disease (1.11; 1.07-1.15), lung cancer (1.19; 1.15-1.24), diabetes (1.10; 1.04-1.16), dementia (1.05; 1.00-1.10), psychiatric disorders (1.38; 1.27-1.50), asthma (1.13; 0.94-1.36), and ALRI (1.14; 1.09-1.20). Associations with long-term exposure to ozone (mean: 80.2 µg/m3) were generally negative but became significantly positive for several endpoints in two-pollutant models. Generally, associations were attenuated but remained significant after indirect adjustment for smoking and BMI. CONCLUSION Long-term exposure to PM2.5, NO2, and/or BC in Denmark were associated with mortality beyond cardiorespiratory diseases, including diabetes, dementia, psychiatric disorders, asthma, and ALRI.
Collapse
Affiliation(s)
- Rina So
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Zorana J Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Environmental Research Group, School of Public Health, Imperial College London, London, UK
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jeanette T Jørgensen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Heresh Amini
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tom Cole-Hunter
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Matija Maric
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Marie Bergmann
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Shuo Liu
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Shadi Azam
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Rudi G J Westendorp
- Section of Epidemiology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Laust H Mortensen
- Section of Epidemiology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Denmark Statistics, Copenhagen, Denmark
| | - Mariska Bauwelinck
- Interface Demography - Department of Sociology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jochem O Klompmaker
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Richard Atkinson
- Population Health Research Institute, St George's University of London, London, UK
| | - Nicole A H Janssen
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Bente Oftedal
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Matteo Renzi
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy; Science Policy & Epidemiology Environmental Research Group King's College London, London, UK
| | - Maciek Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Lau C Thygesen
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Amar J Mehta
- Section of Epidemiology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Denmark Statistics, Copenhagen, Denmark
| |
Collapse
|
19
|
Plana-Ripoll O, Dreier JW, Momen NC, Prior A, Weye N, Mortensen PB, Pedersen CB, Iburg KM, Christensen MK, Laursen TM, Agerbo E, Pedersen MG, Brandt J, Frohn LM, Geels C, Christensen JH, McGrath JJ. Analysis of mortality metrics associated with a comprehensive range of disorders in Denmark, 2000 to 2018: A population-based cohort study. PLoS Med 2022; 19:e1004023. [PMID: 35709252 PMCID: PMC9202944 DOI: 10.1371/journal.pmed.1004023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/17/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The provision of different types of mortality metrics (e.g., mortality rate ratios [MRRs] and life expectancy) allows the research community to access a more informative set of health metrics. The aim of this study was to provide a panel of mortality metrics associated with a comprehensive range of disorders and to design a web page to visualize all results. METHODS AND FINDINGS In a population-based cohort of all 7,378,598 persons living in Denmark at some point between 2000 and 2018, we identified individuals diagnosed at hospitals with 1,803 specific categories of disorders through the International Classification of Diseases-10th Revision (ICD-10) in the National Patient Register. Information on date and cause of death was obtained from the Registry of Causes of Death. For each of the disorders, a panel of epidemiological and mortality metrics was estimated, including incidence rates, age-of-onset distributions, MRRs, and differences in life expectancy (estimated as life years lost [LYLs]). Additionally, we examined models that adjusted for measures of air pollution to explore potential associations with MRRs. We focus on 39 general medical conditions to simplify the presentation of results, which cover 10 broad categories: circulatory, endocrine, pulmonary, gastrointestinal, urogenital, musculoskeletal, hematologic, mental, and neurologic conditions and cancer. A total of 3,676,694 males and 3,701,904 females were followed up for 101.7 million person-years. During the 19-year follow-up period, 1,034,273 persons (14.0%) died. For 37 of the 39 selected medical conditions, mortality rates were larger and life expectancy shorter compared to the Danish general population. For these 37 disorders, MRRs ranged from 1.09 (95% confidence interval [CI]: 1.09 to 1.10) for vision problems to 7.85 (7.77 to 7.93) for chronic liver disease, while LYLs ranged from 0.31 (0.14 to 0.47) years (approximately 16 weeks) for allergy to 17.05 (16.95 to 17.15) years for chronic liver disease. Adjustment for air pollution had very little impact on the estimates; however, a limitation of the study is the possibility that the association between the different disorders and mortality could be explained by other underlying factors associated with both the disorder and mortality. CONCLUSIONS In this study, we show estimates of incidence, age of onset, age of death, and mortality metrics (both MRRs and LYLs) for a comprehensive range of disorders. The interactive data visualization site (https://nbepi.com/atlas) allows more fine-grained analysis of the link between a range of disorders and key mortality estimates.
Collapse
Affiliation(s)
- Oleguer Plana-Ripoll
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
- * E-mail:
| | - Julie W. Dreier
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, University of Bergen, Norway
| | - Natalie C. Momen
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Anders Prior
- Research Unit for General Practice, Aarhus, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Nanna Weye
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Preben Bo Mortensen
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Centre for Integrated Register-based Research at Aarhus University, Aarhus, Denmark
| | - Carsten B. Pedersen
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Centre for Integrated Register-based Research at Aarhus University, Aarhus, Denmark
- Big Data Centre for Environment and Health, Aarhus University, Aarhus, Denmark
| | | | - Maria Klitgaard Christensen
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Thomas Munk Laursen
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Esben Agerbo
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Centre for Integrated Register-based Research at Aarhus University, Aarhus, Denmark
| | - Marianne G. Pedersen
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Centre for Integrated Register-based Research at Aarhus University, Aarhus, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iClimate, Interdisciplinary Centre of Climate Change, Aarhus University, Roskilde, Denmark
| | - Lise Marie Frohn
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | - John J. McGrath
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Queensland, Australia
- Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
20
|
Cheng I, Yang J, Tseng C, Wu J, Conroy SM, Shariff-Marco S, Lin Gomez S, Whittemore AS, Stram DO, Le Marchand L, Wilkens LR, Ritz B, Wu AH. Outdoor ambient air pollution and breast cancer survival among California participants of the Multiethnic Cohort Study. ENVIRONMENT INTERNATIONAL 2022; 161:107088. [PMID: 35063793 PMCID: PMC10908249 DOI: 10.1016/j.envint.2022.107088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Within the Multiethnic Cohort (MEC), we examined the association between air pollution and mortality among African American, European American, Japanese American, and Latina American women diagnosed with breast cancer. METHODS We used a land use regression (LUR) model and kriging interpolation to estimate nitrogen oxides (NOx , NO2) and particulate matter (PM2.5, PM10) exposures for 3,089 breast cancer cases in the MEC, who were diagnosed from 1993 through 2013 and resided largely in Los Angeles County, California. Cox proportional hazards models were used to examine the association of time-varying air pollutants with all-cause, breast cancer, cardiovascular disease (CVD), and non-breast cancer/non-CVD mortality, accounting for key covariates. RESULTS We identified 1,125 deaths from all causes (474 breast cancer, 272 CVD, 379 non-breast cancer/non-CVD deaths) among the 3,089 breast cancer cases with 8.1 years of average follow-up. LUR and kriged NOX (per 50 ppb) and NO2 (per 20 ppb), PM2.5 (per 10 µg/m3), and PM10 (per 10 µg/m3) were positively associated with risks of all-cause (Hazard Ratio (HR) range = 1.13-1.25), breast cancer (HR range = 1.19-1.45), and CVD mortality (HR range = 1.37-1.60). Associations were statistically significant for LUR NOX and CVD mortality (HR = 1.60; 95% CI: 1.08-2.37) and kriged NO2 and breast cancer mortality (HR = 1.45; 95% CI 1.02-2.07). Gaseous and PM pollutants were positively associated with breast cancer mortality across racial/ethnic group. CONCLUSION In this study, air pollutants have a harmful impact on breast cancer survival. Additional studies should evaluate potential confounding by socioeconomic factors. These data support maintaining clean air laws to improve survival for women with breast cancer.
Collapse
Affiliation(s)
- Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA, USA.
| | - Juan Yang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Chiuchen Tseng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jun Wu
- Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA, USA
| | - Shannon M Conroy
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Salma Shariff-Marco
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA, USA
| | - Scarlett Lin Gomez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA, USA
| | | | - Daniel O Stram
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Loïc Le Marchand
- Population Sciences in the Pacific Program, University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - Lynne R Wilkens
- Population Sciences in the Pacific Program, University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - Beate Ritz
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Mai X, Zhou H, Li Y, Huang X, Yang T. Associations between ambient fine particulate (PM 2.5) exposure and cardiovascular disease: findings from the China Health and Retirement Longitudinal Study (CHARLS). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13114-13121. [PMID: 34570321 DOI: 10.1007/s11356-021-16541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The evidence regarding the association between long-term fine particulate (PM2.5) exposure and cardiovascular disease (CVD) in developing countries is limited. This study investigated the association between long-term exposure to PM2.5 and the prevalence of CVD among middle-aged and older adults. A total of 13,484 adults ≥ 45 years of age were surveyed in China, and logistic regression models were used to examine the association between PM2.5 and the prevalence of CVD. Furthermore, stratified analyses were conducted to explore potential effect modifiers. In addition, the burden of CVD attributable to PM2.5 was estimated. The analyses revealed that PM2.5 was associated with CVD, with an adjusted odds ratio (OR) of 1.18 (95% confidence interval [CI]: 1.12, 1.26) for each 10 μg/m3 increment in ambient PM2.5. Stratified analyses found that the elderly may be a vulnerable population. It was further estimated that approximately 20.27% (95% CI: 11.86%, 29.96%) of CVD cases could be attributable to PM2.5. This nationwide study confirmed that long-term exposure to PM2.5 was associated with an increased prevalence of CVD in China.
Collapse
Affiliation(s)
- Xiaowei Mai
- Department of Emergency, Panyu Central Hospital, No. 8, Fuyu East Road, Panyu District, Guangzhou, 510006, Guangdong Province, China
| | - Houfeng Zhou
- Department of Emergency, Panyu Central Hospital, No. 8, Fuyu East Road, Panyu District, Guangzhou, 510006, Guangdong Province, China
| | - Yangyang Li
- Department of Emergency, Panyu Central Hospital, No. 8, Fuyu East Road, Panyu District, Guangzhou, 510006, Guangdong Province, China
| | - Xin Huang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Tao Yang
- Department of Emergency, Panyu Central Hospital, No. 8, Fuyu East Road, Panyu District, Guangzhou, 510006, Guangdong Province, China.
| |
Collapse
|
22
|
Sørensen M, Hvidtfeldt UA, Poulsen AH, Thygesen LC, Frohn LM, Ketzel M, Christensen JH, Brandt J, Khan J, Raaschou-Nielsen O. The effect of adjustment to register-based and questionnaire-based covariates on the association between air pollution and cardiometabolic disease. ENVIRONMENTAL RESEARCH 2022; 203:111886. [PMID: 34411546 DOI: 10.1016/j.envres.2021.111886] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 05/23/2023]
Abstract
OBJECTIVE Recent studies on air pollution and disease have been based on millions of participants within a region or country, relying entirely on register-based confounder adjustment. We aimed to investigate the effects of increasing adjustment for register- and questionnaire-based covariates on the association between air pollution and cardiometabolic diseases. METHODS In a population-based cohort of 246,766 eligible participants randomly selected across Denmark in 2010 and 2013 and followed up until December 31, 2017, we identified 3,247 myocardial infarction (MI) cases, 4,166 stroke cases and 6,366 type 2 diabetes cases. Based on historical address-information, we calculated 5-year time-weighted exposure to PM2.5 and NO2 modelled using a validated air pollution model. We used Cox proportional hazards models to calculate hazard ratios (HR) with increasing adjustment for a number of individual- and area-level register-based covariates as well as lifestyle covariates assessed through questionnaires. RESULTS We found that a 5 μg/m3 higher PM2.5 was associated with HRs (95% CI) for MI, stroke and diabetes, of respectively, 1.18 (0.91-1.52), 1.11 (0.88-1.40) and 1.24 (1.03-1.50) in the fully adjusted models. For all three diseases, adjustment for either individual-level, area-level or lifestyle covariates, or combinations of these resulted in higher HRs compared to HRs adjusted only for age, sex and calendar-year, most marked for MI and diabetes. Further adjustment for lifestyle in models with full register-based individual- and area-level adjustment resulted in only minor changes in HRs for all three diseases. CONCLUSIONS Our findings suggest that in studies of air pollution and cardiometabolic disease, which use an adjustment strategy with a broad range of register-based socioeconomic variables, there is no effect on risk estimates from subsequent lifestyle adjustment.
Collapse
Affiliation(s)
- Mette Sørensen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.
| | - Ulla Arthur Hvidtfeldt
- Diet, Genes and Environment, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Aslak Harbo Poulsen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Lau Caspar Thygesen
- National Institute of Public Health, University of Southern Denmark, Studiestræde 6, 1455, Copenhagen, Denmark
| | - Lise M Frohn
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, University of Surrey, Guildford, UK
| | - Jesper H Christensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; IClimate - Interdisciplinary Centre for Climate Change, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Jibran Khan
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Ole Raaschou-Nielsen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| |
Collapse
|
23
|
Wesselink AK, Wang TR, Ketzel M, Mikkelsen EM, Brandt J, Khan J, Hertel O, Laursen ASD, Johannesen BR, Willis MD, Levy JI, Rothman KJ, Sørensen HT, Wise LA, Hatch EE. Air pollution and fecundability: Results from a Danish preconception cohort study. Paediatr Perinat Epidemiol 2022; 36:57-67. [PMID: 34890081 PMCID: PMC8712376 DOI: 10.1111/ppe.12832] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Animal and epidemiologic studies indicate that air pollution may adversely affect fertility. Epidemiologic studies have been restricted largely to couples undergoing fertility treatment or have retrospectively ascertained time-to-pregnancy among pregnant women. OBJECTIVES We examined the association between residential ambient air pollution and fecundability, the per-cycle probability of conception, in a large preconception cohort of Danish pregnancy planners. METHODS During 2007-2018, we used the Internet to recruit and follow women who were trying to conceive without the use of fertility treatment. Participants completed an online baseline questionnaire eliciting socio-demographic characteristics, lifestyle factors, and medical and reproductive histories and follow-up questionnaires every 8 weeks to ascertain pregnancy status. We determined concentrations of ambient nitrogen oxides (NOx ), nitrogen dioxide (NO2 ), carbon monoxide (CO), ozone (O3 ), particulate matter <2.5 µm (PM2.5 ) and <10 µm (PM10 ), and sulphur dioxide (SO2 ) at each participant's residential address. We calculated average exposure during the year before baseline, during each menstrual cycle over follow-up and during the entire pregnancy attempt time. We used proportional probabilities regression models to estimate fecundability ratios (FRs) and 95% confidence intervals (CIs), adjusting for potential confounders and co-pollutants. The analysis was restricted to the 10,183 participants who were trying to conceive for <12 cycles at study entry whose addresses could be geocoded. RESULTS During 12 months of follow-up, 73% of participants conceived. Higher concentrations of PM2.5 and PM10 were associated with small reductions in fecundability. For example, the FRs for a one interquartile range (IQR) increase in PM2.5 (IQR = 3.2 µg/m3 ) and PM10 (IQR = 5.3 µg/m3 ) during each menstrual cycle were 0.93 (95% CI: 0.87, 0.99) and 0.91 (95% CI: 0.84, 0.99), respectively. Other air pollutants were not appreciably associated with fecundability. CONCLUSIONS In this preconception cohort study of Danish women, residential exposures to PM2.5 and PM10 were associated with reduced fecundability.
Collapse
Affiliation(s)
- Amelia K. Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Tanran R. Wang
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, United Kingdom
| | - Ellen M. Mikkelsen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iClimate, interdisciplinary Centre for Climate Change, Aarhus University, Aarhus, Denmark
| | - Jibran Khan
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Roskilde, Denmark
| | - Ole Hertel
- Department of Ecoscience, Aarhus University, Denmark
| | - Anne Sofie D. Laursen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Benjamin R. Johannesen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Mary D. Willis
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Jonathan I. Levy
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Kenneth J. Rothman
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Research Triangle Institute, Durham, NC, USA
| | - Henrik T. Sørensen
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Lauren A. Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Elizabeth E. Hatch
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
24
|
Stafoggia M, Oftedal B, Chen J, Rodopoulou S, Renzi M, Atkinson RW, Bauwelinck M, Klompmaker JO, Mehta A, Vienneau D, Andersen ZJ, Bellander T, Brandt J, Cesaroni G, de Hoogh K, Fecht D, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Jöckel KH, Jørgensen JT, Katsouyanni K, Ketzel M, Kristoffersen DT, Lager A, Leander K, Liu S, Ljungman PLS, Nagel G, Pershagen G, Peters A, Raaschou-Nielsen O, Rizzuto D, Schramm S, Schwarze PE, Severi G, Sigsgaard T, Strak M, van der Schouw YT, Verschuren M, Weinmayr G, Wolf K, Zitt E, Samoli E, Forastiere F, Brunekreef B, Hoek G, Janssen NAH. Long-term exposure to low ambient air pollution concentrations and mortality among 28 million people: results from seven large European cohorts within the ELAPSE project. Lancet Planet Health 2022; 6:e9-e18. [PMID: 34998464 DOI: 10.1016/s2542-5196(21)00277-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Long-term exposure to ambient air pollution has been associated with premature mortality, but associations at concentrations lower than current annual limit values are uncertain. We analysed associations between low-level air pollution and mortality within the multicentre study Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE). METHODS In this multicentre longitudinal study, we analysed seven population-based cohorts of adults (age ≥30 years) within ELAPSE, from Belgium, Denmark, England, the Netherlands, Norway, Rome (Italy), and Switzerland (enrolled in 2000-11; follow-up until 2011-17). Mortality registries were used to extract the underlying cause of death for deceased individuals. Annual average concentrations of fine particulate matter (PM2·5), nitrogen dioxide (NO2), black carbon, and tropospheric warm-season ozone (O3) from Europe-wide land use regression models at 100 m spatial resolution were assigned to baseline residential addresses. We applied cohort-specific Cox proportional hazard models with adjustment for area-level and individual-level covariates to evaluate associations with non-accidental mortality, as the main outcome, and with cardiovascular, non-malignant respiratory, and lung cancer mortality. Subset analyses of participants living at low pollutant concentrations (as per predefined values) and natural splines were used to investigate the concentration-response function. Cohort-specific effect estimates were pooled in a random-effects meta-analysis. FINDINGS We analysed 28 153 138 participants contributing 257 859 621 person-years of observation, during which 3 593 741 deaths from non-accidental causes occurred. We found significant positive associations between non-accidental mortality and PM2·5, NO2, and black carbon, with a hazard ratio (HR) of 1·053 (95% CI 1·021-1·085) per 5 μg/m3 increment in PM2·5, 1·044 (1·019-1·069) per 10 μg/m3 NO2, and 1·039 (1·018-1·059) per 0·5 × 10-5/m black carbon. Associations with PM2·5, NO2, and black carbon were slightly weaker for cardiovascular mortality, similar for non-malignant respiratory mortality, and stronger for lung cancer mortality. Warm-season O3 was negatively associated with both non-accidental and cause-specific mortality. Associations were stronger at low concentrations: HRs for non-accidental mortality at concentrations lower than the WHO 2005 air quality guideline values for PM2·5 (10 μg/m3) and NO2 (40 μg/m3) were 1·078 (1·046-1·111) per 5 μg/m3 PM2·5 and 1·049 (1·024-1·075) per 10 μg/m3 NO2. Similarly, the association between black carbon and non-accidental mortality was highest at low concentrations, with a HR of 1·061 (1·032-1·092) for exposure lower than 1·5× 10-5/m, and 1·081 (0·966-1·210) for exposure lower than 1·0× 10-5/m. INTERPRETATION Long-term exposure to concentrations of PM2·5 and NO2 lower than current annual limit values was associated with non-accidental, cardiovascular, non-malignant respiratory, and lung cancer mortality in seven large European cohorts. Continuing research on the effects of low concentrations of air pollutants is expected to further inform the process of setting air quality standards in Europe and other global regions. FUNDING Health Effects Institute.
Collapse
Affiliation(s)
- Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service, ASL Roma 1, Rome, Italy; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Bente Oftedal
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Matteo Renzi
- Department of Epidemiology, Lazio Region Health Service, ASL Roma 1, Rome, Italy
| | - Richard W Atkinson
- Population Health Research Institute, St George's, University of London, London, UK
| | - Mariska Bauwelinck
- Interface Demography-Department of Sociology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jochem O Klompmaker
- National Institute for Public Health and the Environment, Bilthoven, Netherlands; Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Amar Mehta
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Zorana J Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; iClimate Aarhus University Interdisciplinary Centre for Climate Change, Aarhus, Denmark
| | - Giulia Cesaroni
- Department of Epidemiology, Lazio Region Health Service, ASL Roma 1, Rome, Italy
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Daniela Fecht
- School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - John Gulliver
- School of Public Health, Faculty of Medicine, Imperial College London, London, UK; Centre for Environmental Health and Sustainability and School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
| | - Ole Hertel
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Jeanette T Jørgensen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Global Centre for Clean Air Research, University of Surrey, Guildford, UK
| | | | - Anton Lager
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shuo Liu
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Petter L S Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany; Ludwig Maximilians Universität München, Munich, Germany
| | - Ole Raaschou-Nielsen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Sara Schramm
- Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, University Hospital Essen, Germany
| | - Per E Schwarze
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gianluca Severi
- Exposome and Heredity Team, University Paris-Saclay, UVSQ, INSERM, Gustave Roussy, Villejuif, France; Department of Statistics, Computer Science and Applications "G Parenti", University of Florence, Italy
| | - Torben Sigsgaard
- Department of Public Health, Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Maciek Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands; National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Monique Verschuren
- National Institute for Public Health and the Environment, Bilthoven, Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine, Bregenz, Austria
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service, ASL Roma 1, Rome, Italy; School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Nicole A H Janssen
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| |
Collapse
|
25
|
Olsson D, Forsberg B, Bråbäck L, Geels C, Brandt J, Christensen JH, Frohn LM, Oudin A. Early childhood exposure to ambient air pollution is associated with increased risk of paediatric asthma: An administrative cohort study from Stockholm, Sweden. ENVIRONMENT INTERNATIONAL 2021; 155:106667. [PMID: 34077855 DOI: 10.1016/j.envint.2021.106667] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Asthma is a complex, heterogeneous disease and one of the most common chronic diseases among children. Exposure to ambient air pollution in early life and childhood may influence asthma aetiology, but it is uncertain which specific components of air pollution and exposure windows are of importance. The role of socio-economic status (SES) is also unclear. The aims of the present study are, therefore, to investigate how various exposure windows of different pollutants affect risk-induced asthma in early life and to explore the possible effect SES has on that relationship. METHODS The study population was constructed using register data on all singleton births in the greater Stockholm area between 2006 and 2013. Exposure to ambient black carbon (BC), fine particulate matter (PM2.5), primary organic carbon (pOC) secondary organic aerosols (SOA), secondary inorganic aerosols, and oxidative potential at the residential address was modelled as mean values for the entire pregnancy period, the first year of life and the first three years of life. Swedish national registers were used to define the outcome: asthma diagnosis assessed at hospital during the first six years of life. Hazard ratios (HRs) and their 95% confidence intervals (CIs) were modelled with Cox proportional hazards model with age as the underlying time-scale, adjusting for relevant potential confounding variables. RESULTS An increased risk for developing childhood asthma was observed in association with exposure to PM2.5, pOC and SOA during the first three years of life. With an interquartile range increase in exposure, the HRs were 1.06 (95% CI: 1.01-1.10), 1.05 (95% CI: 1.02-1.09) and 1.02 (95% CI: 1.00-1.04), for PM2.5, pOC and SOA, respectively, in the fully adjusted models. Exposure during foetal life or the first year of life was not associated with asthma risk, and the other pollutants were not statistically significantly associated with increased risk. Furthermore, the increase in risk associated with PM2.5 and the components BC, pOC and SOA were stronger in areas with lower SES. CONCLUSION Our results suggest that exposure to air pollution during the first three years of life may increase the risk for asthma in early childhood. The findings further imply a possible increased vulnerability to air pollution-attributed asthma among low SES children.
Collapse
Affiliation(s)
- David Olsson
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Sweden
| | - Bertil Forsberg
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Sweden
| | - Lennart Bråbäck
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Sweden
| | - Camilla Geels
- Department of Environmental Science - Atmospheric Modelling, Aarhus University, Denmark
| | - Jørgen Brandt
- Department of Environmental Science - Atmospheric Modelling, Aarhus University, Denmark
| | - Jesper H Christensen
- Department of Environmental Science - Atmospheric Modelling, Aarhus University, Denmark
| | - Lise M Frohn
- Department of Environmental Science - Atmospheric Modelling, Aarhus University, Denmark
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Sweden.
| |
Collapse
|
26
|
Jung J, Park JY, Kim YC, Lee H, Kim E, Kim YS, Lee JP, Kim H. Effects of air pollution on mortality of patients with chronic kidney disease: A large observational cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147471. [PMID: 33971609 DOI: 10.1016/j.scitotenv.2021.147471] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 05/24/2023]
Abstract
Due to industrialization, the burden of diseases associated with air pollution is increasing. Although the risk associated with air pollution in the general population has been actively investigated, few studies have been conducted on the effects of exposure to air pollution in patients with chronic kidney disease (CKD) in East Asia. A total of 29,602 patients with CKD in Seoul participated in a retrospective cohort at three medical centers. We assessed the association of individualized exposure to five types of air pollutants (PM2.5, PM10, NO2, SO2, and CO) using inverse distance weighting (IDW) on mortality in CKD patients in the Cox proportional hazard model that was adjusted for sex, age, eGFR, hemoglobin, hypertension, diabetes, and area-level characteristics. During the 6.14 ± 3.96 years, 3863 deaths (13%) were observed. We confirmed the significant effects of PM2.5 (hazard ratio [HR] 1.17, 95% confidence interval [CI] 1.07-0.29) and CO (HR 1.17, 95% CI 1.00-1.38) on mortality in CKD patients. Different associations were found when stratified by age, body mass index, smoking, and drinking status. Long-term exposure to air pollutants had negative effects on mortality in patients with CKD. These effects were prominent in patients aged over 65 years, patients with a lean body, and those who did not drink alcohol.
Collapse
Affiliation(s)
- Jiyun Jung
- Data Management and Statistics Institute, Dongguk University Ilsan Hospital, South Korea
| | - Jae Yoon Park
- Department of Internal Medicine, Dongguk University Ilsan Hospital, South Korea; Department of Internal Medicine, Dongguk University College of Medicine, South Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University College of Medicine, South Korea
| | - Hyewon Lee
- Department of Health Administration and Management, College of Medical Sciences, Soonchunhyang University, South Korea; Department of Software Convergence, Soonchunhyang University Graduate School, Asan, South Korea
| | - Ejin Kim
- Institute of Health and Environment, Seoul National University, South Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University College of Medicine, South Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University College of Medicine, South Korea; Department of Internal Medicine, Seoul National University Boramae Medical Center, South Korea.
| | - Ho Kim
- Institute of Health and Environment, Seoul National University, South Korea; Department of Public Health Science, School of Public Health, Seoul National University, South Korea.
| |
Collapse
|
27
|
Liu Q, Li H, Guo L, Chen Q, Gao X, Li PH, Tang N, Guo X, Deng F, Wu S. Effects of short-term personal exposure to air pollution on platelet mitochondrial DNA methylation levels and the potential mitigation by L-arginine supplementation. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125963. [PMID: 33984786 DOI: 10.1016/j.jhazmat.2021.125963] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The potential effect of short-term exposure to air pollution on mitochondrial DNA (mtDNA) methylation remains to be explored. This study adopted an experimental exposure protocol nested with an intervention study on L-arginine (L-Arg) supplementation among 118 participants. Participants walked along a traffic road for 2 hours in the last day of a 14-day intervention to investigate the effects of short-term personal exposure to air pollution on platelet mtDNA methylation and the possible modifying effects of L-Arg supplementation. Results showed that short-term personal exposure to air pollutants was associated with hypomethylation in platelet mtDNA in 110 participants who completed the study protocol. Specifically, 2-h fine particulate matter (PM2.5) exposure during the outdoor walk was significantly associated with hypomethylation in mt12sRNA; 24-h PM2.5 and black carbon (BC) exposures from the start of the walk till next morning were both significantly associated with hypomethylation in the D-loop region; 24-h BC exposure was also significantly associated with hypomethylation in ATP8_P1. Supplementation with L-Arg could mitigate the air pollution effects on platelet mtDNA methylation, especially the D-loop region. These findings suggest that platelet mtDNA methylation may be sensitive effect biomarker for short-term exposure to air pollution and may help deepen the understanding of the epigenetic mechanisms of adverse cardiovascular effects of air pollution.
Collapse
Affiliation(s)
- Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Hongyu Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Liqiong Guo
- Institute of Disaster Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Qiao Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Peng-Hui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| |
Collapse
|
28
|
Strak M, Weinmayr G, Rodopoulou S, Chen J, de Hoogh K, Andersen ZJ, Atkinson R, Bauwelinck M, Bekkevold T, Bellander T, Boutron-Ruault MC, Brandt J, Cesaroni G, Concin H, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Janssen NAH, Jöckel KH, Jørgensen JT, Ketzel M, Klompmaker JO, Lager A, Leander K, Liu S, Ljungman P, Magnusson PKE, Mehta AJ, Nagel G, Oftedal B, Pershagen G, Peters A, Raaschou-Nielsen O, Renzi M, Rizzuto D, van der Schouw YT, Schramm S, Severi G, Sigsgaard T, Sørensen M, Stafoggia M, Tjønneland A, Verschuren WMM, Vienneau D, Wolf K, Katsouyanni K, Brunekreef B, Hoek G, Samoli E. Long term exposure to low level air pollution and mortality in eight European cohorts within the ELAPSE project: pooled analysis. BMJ 2021; 374:n1904. [PMID: 34470785 PMCID: PMC8409282 DOI: 10.1136/bmj.n1904] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate the associations between air pollution and mortality, focusing on associations below current European Union, United States, and World Health Organization standards and guidelines. DESIGN Pooled analysis of eight cohorts. SETTING Multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE) in six European countries. PARTICIPANTS 325 367 adults from the general population recruited mostly in the 1990s or 2000s with detailed lifestyle data. Stratified Cox proportional hazard models were used to analyse the associations between air pollution and mortality. Western Europe-wide land use regression models were used to characterise residential air pollution concentrations of ambient fine particulate matter (PM2.5), nitrogen dioxide, ozone, and black carbon. MAIN OUTCOME MEASURES Deaths due to natural causes and cause specific mortality. RESULTS Of 325 367 adults followed-up for an average of 19.5 years, 47 131 deaths were observed. Higher exposure to PM2.5, nitrogen dioxide, and black carbon was associated with significantly increased risk of almost all outcomes. An increase of 5 µg/m3 in PM2.5 was associated with 13% (95% confidence interval 10.6% to 15.5%) increase in natural deaths; the corresponding figure for a 10 µg/m3 increase in nitrogen dioxide was 8.6% (7% to 10.2%). Associations with PM2.5, nitrogen dioxide, and black carbon remained significant at low concentrations. For participants with exposures below the US standard of 12 µg/m3 an increase of 5 µg/m3 in PM2.5 was associated with 29.6% (14% to 47.4%) increase in natural deaths. CONCLUSIONS Our study contributes to the evidence that outdoor air pollution is associated with mortality even at low pollution levels below the current European and North American standards and WHO guideline values. These findings are therefore an important contribution to the debate about revision of air quality limits, guidelines, and standards, and future assessments by the Global Burden of Disease.
Collapse
Affiliation(s)
- Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology, and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Zorana J Andersen
- Department of Public Health, Section of Environment and Health, University of Copenhagen, Copenhagen, Denmark
| | - Richard Atkinson
- Population Health Research Institute, St George's, University of London, London, UK
| | - Mariska Bauwelinck
- Interface Demography - Department of Sociology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Terese Bekkevold
- Department of Method Development and Analytics, Norwegian Institute of Public Health, Oslo, Norway
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | | | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Giulia Cesaroni
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Hans Concin
- Agency for Preventive and Social Medicine (AKS), Bregenz, Austria
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
- Science Policy and Epidemiology Environmental Research Group King's College London, London, UK
| | - John Gulliver
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Centre for Environmental Health and Sustainability and School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
| | - Ole Hertel
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social, and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Nicole A H Janssen
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry, and Epidemiology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Jeanette T Jørgensen
- Department of Public Health, Section of Environment and Health, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, UK
| | - Jochem O Klompmaker
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Anton Lager
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shuo Liu
- Department of Public Health, Section of Environment and Health, University of Copenhagen, Copenhagen, Denmark
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Amar J Mehta
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Bente Oftedal
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Ludwig Maximilians Universität München, Munich, Germany
| | | | - Matteo Renzi
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sara Schramm
- Institute for Medical Informatics, Biometry, and Epidemiology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Gianluca Severi
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, Paris, France
- Department of Statistics, Computer Science and Applications "G Parenti" (DISIA), University of Florence, Italy
| | - Torben Sigsgaard
- Department of Public Health, Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Mette Sørensen
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | | | - W M Monique Verschuren
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology, and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Science Policy and Epidemiology Environmental Research Group King's College London, London, UK
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology, and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
29
|
Sommar JN, Hvidtfeldt UA, Geels C, Frohn LM, Brandt J, Christensen JH, Raaschou-Nielsen O, Forsberg B. Long-Term Residential Exposure to Particulate Matter and Its Components, Nitrogen Dioxide and Ozone-A Northern Sweden Cohort Study on Mortality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168476. [PMID: 34444225 PMCID: PMC8393394 DOI: 10.3390/ijerph18168476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/22/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022]
Abstract
This study aims to estimate the mortality risk associated with air pollution in a Swedish cohort with relatively low exposure. Air pollution models were used to estimate annual mean concentrations of particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5), primary emitted carbonaceous particles (BC/pOC), sea salt, chemically formed particles grouped as secondary inorganic and organic aerosols (SIA and SOA) as well as ozone (O3) and nitrogen dioxide (NO2). The exposure, as a moving average was calculated based on home address for the time windows 1 year (lag 1), 1-5 years (lag 1-5) and 1-10 years (lag 1-10) preceding the death. During the study period, 1151 cases of natural mortality, 253 cases of cardiovascular disease (CVD) mortality and 113 cases of respiratory and lung cancer mortality were observed during 369,394 person-years of follow-up. Increased natural mortality was observed in association with NO2 (3% [95% CI -8-14%] per IQR) and PM2.5 (2% [95% CI -5-9%] for an IQR increase) and its components, except for SOA where a decreased risk was observed. Higher risk increases were observed for CVD mortality (e.g., 18% [95% CI 1-39%] per IQR for NO2). These findings at low exposure levels are relevant for future decisions concerning air quality policies.
Collapse
Affiliation(s)
- Johan N. Sommar
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden;
- Correspondence: ; Tel.: +46-9-0785-3453
| | - Ulla A. Hvidtfeldt
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark; (U.A.H.); (O.R.-N.)
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (C.G.); (L.M.F.); (J.B.); (J.H.C.)
| | - Lise M. Frohn
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (C.G.); (L.M.F.); (J.B.); (J.H.C.)
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (C.G.); (L.M.F.); (J.B.); (J.H.C.)
| | - Jesper H. Christensen
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (C.G.); (L.M.F.); (J.B.); (J.H.C.)
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark; (U.A.H.); (O.R.-N.)
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (C.G.); (L.M.F.); (J.B.); (J.H.C.)
| | - Bertil Forsberg
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden;
| |
Collapse
|
30
|
Long-term residential exposure to air pollution and Hodgkin lymphoma risk among adults in Denmark: a population-based case-control study. Cancer Causes Control 2021; 32:935-942. [PMID: 34050843 DOI: 10.1007/s10552-021-01446-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/06/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE The etiology of Hodgkin lymphoma (HL) is obscure. Research on air pollution and risk of HL provides inconsistent results. We aimed to investigate the association between long-term residential exposure to air pollution and risk of adult Hodgkin lymphoma in Denmark. METHODS We performed a nationwide register-based case-control study, including all (n = 2,681) Hodgkin lymphoma cases registered in the nationwide Danish Cancer Registry between 1989 and 2014. We randomly selected 8,853 age- and sex-matched controls from the entire Danish population using the Civil Registration System, and identified 20-year residential address history for all cases and controls. We modeled outdoor air pollution concentrations at all these addresses using the high-resolution multiscale air pollution model system DEHM/UBM/AirGIS. We used conditional logistic regression to estimate odds ratios adjusted for individual and neighborhood level sociodemographic variables. RESULTS There was no association between 1, 5, 10, and 20 years' time-weighted average exposure to fine particles (PM2.5), O3, SO2, NO2, or the PM2.5 constituents OC, NH4, NO3, and SO4 and risk of Hodgkin lymphoma. CONCLUSION Residential exposure to ambient air pollution does not seem to increase the risk of developing Hodgkin lymphoma.
Collapse
|