1
|
Brown CW, Goldfine CE, Allan-Blitz LT, Erickson TB. Occupational, environmental, and toxicological health risks of mining metals for lithium-ion batteries: a narrative review of the Pubmed database. J Occup Med Toxicol 2024; 19:35. [PMID: 39192280 DOI: 10.1186/s12995-024-00433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND The global market for lithium-ion batteries (LIBs) is growing exponentially, resulting in an increase in mining activities for the metals needed for manufacturing LIBs. Cobalt, lithium, manganese, and nickel are four of the metals most used in the construction of LIBs, and each has known toxicological risks associated with exposure. Mining for these metals poses potential human health risks via occupational and environmental exposures; however, there is a paucity of data surrounding the risks of increasing mining activity. The objective of this review was to characterize these risks. METHODS We conducted a review of the literature via a systematic search of the PubMed database on the health effects of mining for cobalt, lithium, manganese, and nickel. We included articles that (1) reported original research, (2) reported outcomes directly related to human health, (3) assessed exposure to mining for cobalt, lithium, manganese, or nickel, and (4) had an available English translation. We excluded all other articles. Our search identified 183 relevant articles. RESULTS Toxicological hazards were reported in 110 studies. Exposure to cobalt and nickel mining were most associated with respiratory toxicity, while exposure to manganese mining was most associated with neurologic toxicity. Notably, no articles were identified that assessed lithium toxicity associated with mining exposure. Traumatic hazards were reported in six studies. Three articles reported infectious disease hazards, while six studies reported effects on mental health. Several studies reported increased health risks in children compared to adults. CONCLUSIONS The results of this review suggest that occupational and environmental exposure to mining metals used in LIBs presents significant risks to human health that result in both acute and chronic toxicities. Further research is needed to better characterize these risks, particularly regarding lithium mining.
Collapse
Affiliation(s)
- Connor W Brown
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Medical Toxicology, Mass General Brigham, Boston, MA, USA.
| | - Charlotte E Goldfine
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Medical Toxicology, Mass General Brigham, Boston, MA, USA
| | - Lao-Tzu Allan-Blitz
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Timothy B Erickson
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Medical Toxicology, Mass General Brigham, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard Humanitarian Initiative, Boston, MA, USA
| |
Collapse
|
2
|
Panda BP, Mohanta YK, Paul R, Prusty BAK, Parida SP, Pradhan A, Saravanan M, Patowary K, Jiang G, Joshi SJ, Sarma H. Assessment of environmental and carcinogenic health hazards from heavy metal contamination in sediments of wetlands. Sci Rep 2023; 13:16314. [PMID: 37770520 PMCID: PMC10539448 DOI: 10.1038/s41598-023-43349-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023] Open
Abstract
Sediment contamination jeopardizes wetlands by harming aquatic organisms, disrupting food webs, and reducing biodiversity. Carcinogenic substances like heavy metals bioaccumulate in sediments and expose consumers to a greater risk of cancer. This study reports Pb, Cr, Cu, and Zn levels in sediments from eight wetlands in India. The Pb (51.25 ± 4.46 µg/g) and Cr (266 ± 6.95 µg/g) concentrations were highest in Hirakud, Cu (34.27 ± 2.2 µg/g) in Bhadrak, and Zn (55.45 ± 2.93 µg/g) in Koraput. The mean Pb, Cr, and Cu values in sediments exceeded the toxicity reference value. The contamination factor for Cr was the highest of the four metals studied at Hirakud (CF = 7.60) and Talcher (CF = 6.97). Furthermore, high and moderate positive correlations were observed between Cu and Zn (r = 0.77) and Pb and Cr (r = 0.36), respectively, across all sites. Cancer patients were found to be more concentrated in areas with higher concentrations of Pb and Cr, which are more carcinogenic. The link between heavy metals in wetland sediments and human cancer could be used to make policies that limit people's exposure to heavy metals and protect their health.
Collapse
Affiliation(s)
- Bibhu Prasad Panda
- Salim Ali Centre for Ornithology and Natural History, South India Centre of Wildlife Institute of India, Coimbatore, Tamil Nadu, 641108, India
- Environmental Sciences, Department of Chemistry and BBRC, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi, Meghalaya, 793101, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital, and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Rakesh Paul
- Department of Biodiversity and Conservation of Natural Resources, Central University of Odisha, Koraput, Odisha, 764021, India
| | - B Anjan Kumar Prusty
- Department of Environmental Studies, Berhampur University, Berhampur, Odisha, 760007, India
| | - Siba Prasad Parida
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India
| | - Abanti Pradhan
- Environmental Sciences, Department of Chemistry and BBRC, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Muthupandian Saravanan
- AMR and Nanomedicine Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India
| | - Kaustuvmani Patowary
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi, Meghalaya, 793101, India
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Sanket J Joshi
- Oil & Gas Research Centre, Central Analytical and Applied Research Unit, Sultan Qaboos University, Muscat, Oman
| | - Hemen Sarma
- Bioremediation Technology Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| |
Collapse
|
3
|
Han C, Du S, Zhang W, Zhang D, Wen Z, Chai J, Zhao K, Sun S. Exploration of optimal disinfection model based on groundwater risk assessment in disinfection process. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115107. [PMID: 37290298 DOI: 10.1016/j.ecoenv.2023.115107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Under the influence of different types of disinfectants and disinfection environments, the removal level of pathogens and the formation potential of disinfection by-products (DBPs) will have a dual impact on the groundwater environment. The key points for sustainable groundwater safety management are how to balance the positive and negative relationship and formulate a scientific disinfection model in combination with risk assessment. In this study, the effects of sodium hypochlorite (NaClO) and peracetic acid (PAA) concentrations on pathogenic E. coli and DBPs were investigated using static-batch and dynamic-column experiments, as well as the optimal disinfection model for groundwater risk assessment was explored using quantitative microbial risk assessment and disability-adjusted life years (DALYs) models. Compared to static disinfection, deposition and adsorption were the dominant factors causing E. coli migration at lower NaClO levels of 0-0.25 mg/L under dynamic state, while disinfection was its migration factor at higher NaClO levels of 0.5-6.5 mg/L. In contrast, E. coli removed by PAA was the result of the combined action of deposition, adsorption, and disinfection. The disinfection effects of NaClO and PAA on E. coli differed under dynamic and static conditions. At the same NaClO level, the health risk associated with E. coli in groundwater was higher, whereas, under the same PAA conditions, the health risk was lower. Under dynamic conditions, the optimal disinfectant dosage required for NaClO and PAA to reach the same acceptable risk level was 2 and 0.85 times (irrigation) or 0.92 times (drinking) of static disinfection, respectively. The results may help prevent the misuse of disinfectants and provide theoretical support for managing twin health risks posed by pathogens and DBPs in water treatment.
Collapse
Affiliation(s)
- Cuihong Han
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of Construction Engineering, Jilin University, Changchun 130021, China
| | - Shanghai Du
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of Construction Engineering, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Zong Wen
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Juanfen Chai
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Kaichao Zhao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Simiao Sun
- School of Geography, Earth and Environmental Sciences, University of Birmingham, UK
| |
Collapse
|
4
|
Tomei Torres FA, Masten SJ. Endocrine-disrupting substances: I. Relative risks of PFAS in drinking water. JOURNAL OF WATER AND HEALTH 2023; 21:451-462. [PMID: 37119147 DOI: 10.2166/wh.2023.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Concentrations of per and polyfluorinated alkyl substances (PFAS) in drinking water are significantly lower than in vivo levels of the native target hormone. These concentrations are orders of magnitude lower than the hormone in question, particularly when corrected for transactivation. A pregnant woman can excrete about 7,000 μg/day of total estrogens. A low-dose oral contraceptive pill contains 20 μg estradiol. Soy-based baby formula contains phytoestrogens equivalent to a low-dose oral contraceptive pill. A woman on a low-dose oral hormone replacement therapy consumes about 0.5-2 mg/day of one or more estrogens. The levels of endocrine-disrupting substances (EDSs) exposure by oral, respiratory, or dermal routes have the potential to make removing PFAS from drinking water due to its estrogenic activity divert valuable resources. These levels become even less of a threat when their estrogenic potencies are compared with those of the target hormones present as contaminants in water and even more so when compared with levels commonly present in human tissues. The fact that PFAS constitute a tiny fraction compared to exposure to phytoestrogens makes the effort even more insignificant. If PFAS are to be removed from drinking water, it is not due to their estrogenic activity.
Collapse
Affiliation(s)
- Francisco Alberto Tomei Torres
- Ibero-American Society of Environmental Health (SIBSA), Zabala 3555, Ciudad Autónoma de Buenos Aires (CABA), Rep. Argentina, CP 1427 E-mail:
| | - Susan J Masten
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
5
|
Yakovlev E, Druzhinina A, Druzhinin S, Zykov S, Ivanchenko N. Assessment of physical and chemical properties, health risk of trace metals and quality indices of surface waters of the rivers and lakes of the Kola Peninsula (Murmansk Region, North-West Russia). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2465-2494. [PMID: 34286389 DOI: 10.1007/s10653-021-01027-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The pollution of waterbodies with trace metals is of concern throughout the world due to their high toxicity. One of the main anthropogenic sources of trace metals entering natural waters is the mining and processing of minerals. Intensive development of the mining industry on the Kola Peninsula (the Murmansk region, Russia), exploration and development of new mineral resources have led to a sharp deterioration in the quality of surface waters of rivers and lakes. As a result of anthropogenic impact, accumulation of a wide range of metals (mainly Cu, Ni, Co, Pb, Cd, Mn, Sr, Al and Fe) is observed, as well as significant changes in the physicochemical parameters and radioactive conditions of surface waters. The most polluted waterbodies of the Kola Peninsula are located in the Monchegorsk, Olenegorsk and Apatit regions. Consumption of water from investigated contaminated sources can cause various high risks of human health. The results of this study will provide an informative basis for future risk assessments of the environment and human health, as well as for the development of integrated measures for managing the quality of surface waters of lakes and rivers of the Kola Peninsula.
Collapse
Affiliation(s)
- Evgeny Yakovlev
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Northern Dvina Emb. 23, Arkhangelsk, Russia, 163000.
| | - Anna Druzhinina
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Northern Dvina Emb. 23, Arkhangelsk, Russia, 163000
| | - Sergey Druzhinin
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Northern Dvina Emb. 23, Arkhangelsk, Russia, 163000
| | - Sergey Zykov
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Northern Dvina Emb. 23, Arkhangelsk, Russia, 163000
| | - Nikolay Ivanchenko
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Northern Dvina Emb. 23, Arkhangelsk, Russia, 163000
- Northern (Arctic) Federal University, Northern Dvina Emb. 17, Arkhangelsk, Russia, 163000
| |
Collapse
|
6
|
Islam MS, Idris AM, Islam ARMT, Ali MM, Rakib MRJ. Hydrological distribution of physicochemical parameters and heavy metals in surface water and their ecotoxicological implications in the Bay of Bengal coast of Bangladesh. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68585-68599. [PMID: 34275081 DOI: 10.1007/s11356-021-15353-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 04/16/2023]
Abstract
Accumulation of heavy metals in the coastal ecosystem has become a prodigious problem in any developing countries like Bangladesh. The impact of human activities on some physicochemical parameters and heavy metals was studied in surface water of the Bengal coast, Bangladesh. For ease of description, the fourteen study stations were categorized into four regions of the coastal sites of Bangladesh to determine physicochemical parameters and nine heavy metals like chromium (Cr), nickel (Ni), copper (Cu), arsenic (As), cadmium (Cd), lead (Pb), iron (Fe), manganese (Mn), and zinc (Zn) in water samples. The mean concentrations for water physico-chemistry are temperature (27.7±1.2 °C), pH (7.4±0.27), electrical conductivity (EC) (41.8±6.6 mS/cm), dissolved oxygen (DO) (6.7±0.69 mg/L), turbidity (58.5±12.0 NTU), fluoride (1.4±1.2 mg/L), chloride (126±66.3 mg/L), sulfate (120±90.5 mg/L), nitrate (4.7±2.5 mg/L), and phosphate (4.7±2.5 mg/L). While the mean concentrations of Cr, Ni, Cu, As, Cd, Pb, Fe, Mn, and Zn were 150±58.3, 40.2±10.1, 186±114, 77.3±31.3, 32.7±20.7, 66.7±32.5, 871±268, 178±41.4, and 222±100 μg/L, respectively. As a whole, average concentration of studied metals in surface water followed the decreasing order of Fe > Zn > Cu > Mn > Cr > Pb > As > Ni > Cd. Heavy metals in water samples were much higher than the water quality guidelines for freshwater quality criteria for protection of aquatic life and drinking, indicated that the water of the study areas may create health hazard. The outcomes of the contamination factor (CF), pollution load index (PLI), Nemerow's pollution index (NPI), degree of contamination (Cd), and modified degree of contamination (mCd) varied spatially and most of the water samples were moderately to heavily polluted.
Collapse
Affiliation(s)
- Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | | | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3802, Bangladesh
| |
Collapse
|
7
|
Proshad R, Abdullah Al M, Islam MS, Khadka S, Kormoker T, Uddin M, Modeo L. Investigation of trace metals in riverine waterways of Bangladesh using multivariate analyses: spatial toxicity variation and potential health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31872-31884. [PMID: 33619618 DOI: 10.1007/s11356-021-13077-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Minute quantities of trace metals have delirious effects in the human body causing acute and chronic toxicities. These trace metals have the ability to bind with enzymes and proteins causing an alteration in their activity, and, consequently, their damage. In this study, water samples were collected from five sites in Rupsa River (Bangladesh) during dry and wet seasons aiming to assess the trace metal concentration and the correlated health risk for people living in the area. Six trace metals, namely arsenic (Ar), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and nickel (Ni), were measured for further analyzing their spatial and seasonal variations. The measured trace metal concentrations followed this decreasing order: Cr > Pb > As > Cu > Ni > Cd for the dry season, and Cr > Pb > As > Cu > Ni > Cd for the wet season. Among the trace metals, As, Ni, Cr, and Pb exhibited a statistically significative variation throughout the study period. The PCA analysis accounted for 64.5% and 64.4% total variations of the trace metals in dry and wet seasons, respectively. The Euclidean distance of trace metals in water samples across five sites showed significantly different distribution patterns, which were further confirmed by PERMANOVA. Furthermore, CAP model disclosed that trace metals are source-specific: brickfields and sewage effluents were potential sources for Cd, whereas different industries were potential sources for As, Cr, Cu, Ni, and Pb. Correlation analysis showed that Ni and Cr significantly correlated with pH and electrical conductivity. Correlation among the trace metals unveiled that they depended on each other as for their origin, magnitude, and existence in the riverine waterways. As for the health risk assessment, a non-carcinogenic health hazard due to ingestion during regular activities and dermal contact during fishing activity to all kind of people (adult males, adult females, and children) in the studied area was retrieved based on the hazard index (HI) of trace metals, which was higher than the recommended value (HI > 1). Moreover, also the carcinogenic risks of Ni and As due to regular activities via ingestion and dermal contact pathways were higher than the standard value (CR > 1.0E-04), suggesting the occurrence of cancer risk to humans in the study area.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- Department of Environmental Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mamun Abdullah Al
- Department of Environmental Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Faculty of Marine Sciences and Fisheries, Institute of Marine Sciences, University of Chittagong, Bangladesh, Chittagong, 4331, Bangladesh.
| | - Md Saiful Islam
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sujan Khadka
- Department of Environmental Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tapos Kormoker
- Department of Emergency Management, Patuakhali Science and Technology University, Patuakhali 8602, Dumki, Bangladesh
| | - Minhaz Uddin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Letizia Modeo
- Department of Biology, University of Pisa, Via A. Volta 4/6, 56126 Pisa, Pisa, Italy
| |
Collapse
|
8
|
Wani GA, Khan MA, Dar MA, Shah MA, Reshi ZA. Next Generation High Throughput Sequencing to Assess Microbial Communities: An Application Based on Water Quality. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:727-733. [PMID: 33774727 DOI: 10.1007/s00128-021-03195-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Traditional techniques to identify different contaminants (biological or chemical) in the waters are slow, laborious, and can require specialized expertise. Hence, the rapid determination of water quality using more sensitive and reliable metagenomic based approaches attains special importance. Metagenomics deals with the study of genetic material that is recovered from microbial communities present in environmental samples. In traditional techniques cultivation-based methodologies were used to describe the diversity of microorganisms in environmental samples. It has failed to function as a robust marker because of limited taxonomic and phylogenetic implications. In this backdrop, high-throughput DNA sequencing approaches have proven very powerful in microbial source tracking because of investigating the full variety of genome-based analysis such as microbial genetic diversity and population structure played by them. Next generation sequencing technologies can reveal a greater proportion of microbial communities that have not been reported earlier by traditional techniques. The present review highlights the shift from traditional techniques for the basic study of community composition to next-generation sequencing (NGS) platforms and their potential applications to the biomonitoring of water quality in relation to human health.
Collapse
Affiliation(s)
- Gowher A Wani
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190 006, India.
| | - Mohd Asgar Khan
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190 006, India
| | - Mudasir A Dar
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190 006, India
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190 006, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190 006, India
| |
Collapse
|
9
|
Byrne DM, Hamilton KA, Houser SA, Mubasira M, Katende D, Lohman HAC, Trimmer JT, Banadda N, Zerai A, Guest JS. Navigating Data Uncertainty and Modeling Assumptions in Quantitative Microbial Risk Assessment in an Informal Settlement in Kampala, Uganda. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5463-5474. [PMID: 33750111 DOI: 10.1021/acs.est.0c05693] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Decision-makers in developing communities often lack credible data to inform decisions related to water, sanitation, and hygiene. Quantitative microbial risk assessment (QMRA), which quantifies pathogen-related health risks across exposure routes, can be informative; however, the utility of QMRA for decision-making is often undermined by data gaps. This work integrates QMRA, uncertainty and sensitivity analyses, and household surveys in Bwaise, Kampala (Uganda) to characterize the implications of censored data management, identify sources of uncertainty, and incorporate risk perceptions to improve the suitability of QMRA for informal settlements or similar settings. In Bwaise, drinking water, hand rinse, and soil samples were collected from 45 households and supplemented with data from 844 surveys. Quantified pathogen (adenovirus, Campylobacter jejuni, and Shigella spp./EIEC) concentrations were used with QMRA to model infection risks from exposure through drinking water, hand-to-mouth contact, and soil ingestion. Health risks were most sensitive to pathogen data, hand-to-mouth contact frequency, and dose-response models (particularly C. jejuni). When managing censored data, results from upper limits of detection, half of limits of detection, and uniform distributions returned similar results, which deviated from lower limits of detection and maximum likelihood estimation imputation approaches. Finally, risk perceptions (e.g., it is unsafe to drink directly from a water source) were identified to inform risk management.
Collapse
Affiliation(s)
- Diana M Byrne
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Kerry A Hamilton
- The School with Sustainable Engineering and the Built Environment and The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Stephanie A Houser
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Muwonge Mubasira
- Community Integrated Development Initiatives, P.O. Box 764, Kampala, Uganda
| | - David Katende
- Community Integrated Development Initiatives, P.O. Box 764, Kampala, Uganda
| | - Hannah A C Lohman
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - John T Trimmer
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Noble Banadda
- Department of Agricultural & Biosystems Engineering, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Assata Zerai
- Department of Sociology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Razak MR, Aris AZ, Zakaria NAC, Wee SY, Ismail NAH. Accumulation and risk assessment of heavy metals employing species sensitivity distributions in Linggi River, Negeri Sembilan, Malaysia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111905. [PMID: 33453636 DOI: 10.1016/j.ecoenv.2021.111905] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The constant increase of heavy metals into the aqueous environment has become a contemporary global issue of concern to government authorities and the public. The study assesses the concentration, distribution, and risk assessment of heavy metals in freshwater from the Linggi River, Negeri Sembilan, Malaysia. Species sensitivity distribution (SSD) was utilised to calculate the cumulative probability distribution of toxicity from heavy metals. The aquatic organism's toxicity data obtained from the ECOTOXicology knowledgebase (ECOTOX) was used to estimate the predictive non-effects concentration (PNEC). The decreasing sequence of hazardous concentration (HC5) was manganese > aluminium > copper > lead > arsenic > cadmium > nickel > zinc > selenium, respectively. The highest heavy metal concentration was iron with a mean value of 45.77 μg L-1, followed by manganese (14.41 μg L-1) and aluminium (11.72 μg L-1). The mean heavy metal pollution index (HPI) value in this study is 11.52, implying low-level heavy metal pollutions in Linggi River. The risk quotient (RQ) approaches were applied to assess the potential risk of heavy metals. The RQ shows a medium risk of aluminium (RQm = 0.1125) and zinc (RQm = 0.1262); a low risk of arsenic (RQm = 0.0122) and manganese (RQm = 0.0687); and a negligible risk of cadmium (RQm = 0.0085), copper (RQm = 0.0054), nickel (RQm = 0.0054), lead (RQm = 0.0016) and selenium (RQm = 0.0012). The output of this study produces comprehensive pollution risk, thus provides insights for the legislators regarding exposure management and mitigation.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| | - Nurul Amirah Che Zakaria
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nur Afifah Hanun Ismail
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
11
|
Govender R, Amoah ID, Kumari S, Bux F, Stenström TA. Detection of multidrug resistant environmental isolates of acinetobacter and Stenotrophomonas maltophilia: a possible threat for community acquired infections? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 56:213-225. [PMID: 33378222 DOI: 10.1080/10934529.2020.1865747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Acinetobacter spp. and Stenotrophomonas maltophilia are bacteria commonly associated with infections at the clinical settings. Reports of infections caused by environmental isolates are rare. Therefore, this study focused on determination of the antibiotic resistance patterns, antibiotic resistance genes, efflux pumps and virulence signatures of Acinetobacter spp. and S. maltophilia recovered from river water, plant rhizosphere and river sediment samples. The isolates were identified and confirmed using biochemical tests and PCR. The antimicrobial resistance profiles of the isolates were determined using Kirby Bauer disk diffusion assay and presence of antibiotic resistance and virulence genes were detected using PCR. S. maltophilia was more frequent in plant rhizosphere and sediment samples than the water samples. Acinetobacter spp. were mostly resistant to trimethoprim-sulfamethoxazole (96% of isolates), followed by polymyxin b (86%), cefixime (54%), colistin (42%), ampicillin (35%) and meropenem (19%). The S. maltophilia isolates displayed total resistance (100%) to trimethoprim- sulfamethoxazole, meropenem, imipenem, ampicillin and cefixime, while 80% of the isolates were resistant to ceftazidime. Acinetobacter spp. contained different antibiotic resistance genes such as sul1 (24% of isolates), sul2 (29%), blaOXA 23/51 (21%) and blaTEM (29%), while S. maltophilia harbored sul1 (8%) and blaTEM (20%). Additionally, efflux pump genes were present in all S. maltophilia isolates. The presence of multidrug resistant Acinetobacter spp. and Stenotrophomonas maltophilia in surface water raises concerns for community-acquired infections as this water is directly been used by the community for various purposes. Therefore, there is the need to institute measures aimed at reducing the risks of these infections and the resulting burden this may have on the health care system within the study area.
Collapse
Affiliation(s)
- Reshme Govender
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Isaac D Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Thor A Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| |
Collapse
|
12
|
Ishaq S, Sadiq R, Farooq S, Chhipi-Shrestha G, Hewage K. Investigating the public health risks of low impact developments at residential, neighbourhood, and municipal levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140778. [PMID: 32717466 PMCID: PMC7336927 DOI: 10.1016/j.scitotenv.2020.140778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 05/04/2023]
Abstract
Low Impact Developments (LIDs) employ a series of vegetative techniques to retain rainfall close to the site of origin. Although LIDs offer sustainable runoff management, these infrastructures can be considered a risk to public health due to the presence of pathogens in the runoff and human exposure to contaminated water held in and transported by LIDs. The objective of this study is to examine the disease burden of Gastrointestinal illness (GI) from exposure to LIDs at the residential, neighbourhood, and municipal levels. The authors conducted a meta-analysis of literature on three water features: (1) harvested rainwater obtained from LIDs, (2) surface water, and (3) floodwater. A set of 32 studies were systematically selected to collect values of risks of infection and expressed as the disease burden, i.e. disability adjusted life years (DALYs). The results showed that the percentage of GI illness exceeding the health guidelines were high for harvested rainwater, i.e. 22% of annual disease burden exceeded the WHO guidelines (0.001 DALYs/1000 persons), and 2% exceeded the US EPA guidelines (5.75 DALYs/1000 bathers). Among the six exposures for harvested rainwater, exposure to spray irrigation, exceeded US EPA guidelines whereas; five exposures, i.e. flushing, hosing, daily shower, spray irrigation, and children playing, surpassed the WHO guidelines. Considering LID treatment, the values of annual disease burden from all the selected barriers were below US EPA guidelines however, these values exceeded the WHO guidelines for three barriers i.e. water plaza, grass swale, and open storage ponds. These findings provide a broader perspective of the disease burden associated with LIDs and emphasise to consider the type of exposures and required treatment barriers for developing LID infrastructures in urban areas.
Collapse
Affiliation(s)
- Sadia Ishaq
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada.
| | - Rehan Sadiq
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada.
| | - Shaukat Farooq
- King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Gyan Chhipi-Shrestha
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada.
| | - Kasun Hewage
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
13
|
Mbanga J, Abia ALK, Amoako DG, Essack SY. Quantitative microbial risk assessment for waterborne pathogens in a wastewater treatment plant and its receiving surface water body. BMC Microbiol 2020; 20:346. [PMID: 33183235 PMCID: PMC7663859 DOI: 10.1186/s12866-020-02036-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/05/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Access to safe water for drinking and domestic activities remains a challenge in emerging economies like South Africa, forcing resource-limited communities to use microbiologically polluted river water for personal and household purposes, posing a public health risk. This study quantified bacterial contamination and the potential health hazards that wastewater treatment plant (WWTP) workers and communities may face after exposure to waterborne pathogenic bacteria in a WWTP and its associated surface water, respectively. RESULTS Escherichia coli (Colilert®-18/ Quanti-Tray® 2000) and enterococci (Enterolert®/ Quanti-Tray® 2000) were quantified and definitively identified by real-time polymerase chain reaction targeting the uidA and tuf genes, respectively. An approximate beta-Poisson dose-response model was used to estimate the probability of infection (Pi) with pathogenic E. coli. Mean E. coli concentration ranged from 2.60E+ 02/100 mL to 4.84E+ 06/100 mL; enterococci ranged from 2.60E+ 02/100 mL to 3.19E+ 06/100 mL across all sampled sites. Of the 580 E. coli isolates obtained from this study, 89.1% were intestinal, and 7.6% were extraintestinal pathogenic E. coli. The 579 enterococci obtained were 50.4% E. faecalis (50.4%), 31.4% E. faecium, 3.5%, E. casseliflavus and 0.7% E. gallinarum. The community health risk stemming from the use of the water for recreational and domestic purposes revealed a greater health risk (Pi) from the ingestion of 1 mL of river water from upstream (range, 55.1-92.9%) than downstream (range, 26.8-65.3%) sites. The occupational risk of infection with pathogenic E. coli for workers resulting from a once-off unintentional consumption of 1 mL of water was 0% (effluent) and 23.8% (raw influent). Multiple weekly exposures of 1 mL over a year could result in a Pi of 1.2 and 100% for the effluent and influent, respectively. CONCLUSION Our findings reveal that there is a potentially high risk of infection for WWTP workers and communities that use river water upstream and downstream of the investigated WWTP.
Collapse
Affiliation(s)
- Joshua Mbanga
- Antimicrobial Research Unit, College of Health Sciences, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa.
- Department of Applied Biology and Biochemistry, National University of Science and Technology, P.O Box AC 939 Ascot, Bulawayo, 00263, Zimbabwe.
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Daniel Gyamfi Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
14
|
Archer E, Wolfaardt GM, van Wyk JH, van Blerk N. Investigating (anti)estrogenic activities within South African wastewater and receiving surface waters: Implication for reliable monitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114424. [PMID: 32247920 DOI: 10.1016/j.envpol.2020.114424] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/02/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Natural and synthetic steroid hormones and many persistent organic pollutants are of concern for their endocrine-disrupting activities observed in receiving surface waters. Apart from the demonstrated presence of estrogen- and estrogen-mimicking compounds in surface waters, antagonistic (anti-estrogenic) responses originating from wastewater effluent have been reported but are less known. Estrogenicity and anti-estrogenicity were assessed using recombinant yeast estrogen receptor binding assays (YES/YAES) at ten South African wastewater treatment works (WWTWs) and receiving rivers in two separate sampling campaigns during the summer- and winter periods in the area. Four WWTWs were then further investigated to show daily variation in estrogenic endocrine-disrupting activities during the treatment process. Although estrogenicity was notably reduced at most of the WWTWs, some treated effluent and river water samples were shown to be above effect-based trigger values posing an endocrine-disrupting risk for aquatic life and potential health risks for humans. Furthermore, estrogenicity recorded in samples collected upstream from some WWTW discharge points also exceeded some calculated risk trigger values, which highlights the impact of alternative pollution sources contributing towards endocrine disrupting contaminants (EDCs) in the environment. The YAES further showed variable anti-estrogenic activities in treated wastewater. The current study highlights a variety of factors that may affect bioassay outcomes and conclusions drawn from the results for risk decision-making. For example, mismatches were found between estrogenic and anti-estrogenic activity, which suggests a potential masking effect in WWTW effluents and highlights the complexity of environmental samples containing chemical mixtures having variable endocrine-disrupting modes of action. Although the recombinant yeast assay is not without its limitations to show endocrine-disrupting modulation in test water systems, it serves as a cost-effective tier-1 scoping assay for further risk characterisation and intervention.
Collapse
Affiliation(s)
- Edward Archer
- Department of Microbiology, University of Stellenbosch, Stellenbosch, 7602, South Africa.
| | - Gideon M Wolfaardt
- Department of Microbiology, University of Stellenbosch, Stellenbosch, 7602, South Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada.
| | - Johannes H van Wyk
- Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, 7602, South Africa.
| | - Nico van Blerk
- Scientific Services, East Rand Water Care Company (ERWAT), Kempton Park, 1631, South Africa
| |
Collapse
|
15
|
Proshad R, Islam S, Tusher TR, Zhang D, Khadka S, Gao J, Kundu S. Appraisal of heavy metal toxicity in surface water with human health risk by a novel approach: a study on an urban river in vicinity to industrial areas of Bangladesh. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1780615] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Saiful Islam
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tanmoy Roy Tusher
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Dan Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Sujan Khadka
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jianing Gao
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Satyajit Kundu
- Department of Biochemistry and Food Analysis, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| |
Collapse
|
16
|
Potgieter N, Karambwe S, Mudau LS, Barnard T, Traore A. Human Enteric Pathogens in Eight Rivers Used as Rural Household Drinking Water Sources in the Northern Region of South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2079. [PMID: 32245071 PMCID: PMC7142607 DOI: 10.3390/ijerph17062079] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022]
Abstract
People living in rural areas still rely on the use of environmental water that is contaminated by human and animal activities. This study assessed the occurrence of human enteric pathogens in rivers that are used by rural communities Vhembe District of South Africa as a source of drinking water covering two seasons (winter and summer) over a one-year period. Water quality was assessed using physico characteristics and indicator organisms (total coliforms, E. coli, Clostridium perfringens). Pathogens tested included bacteria (Pathogenic E. coli, Salmonella-, Shigella- and Vibrio spp.), protozoa (Cryptosporidium- and Giardia spp.), and enteric viruses (Rota-, Noro-, Entero-, and Adenoviruses) while using published molecular protocols. The results showed that the indicator bacteria counts exceeded South African drinking water quality guideline limits and pathogenic E. coli was detected in the samples. No Shigella spp. were isolated, while Vibrio spp. and Salmonella spp. were present; parasites were detected in four rivers and Enteric viruses were predominantly detected in the winter season. The results indicated the poor condition of water and the potential health risks to consumers highlighting the need for implementing river catchment management strategies for continued sustainability in these rivers.
Collapse
Affiliation(s)
- Natasha Potgieter
- Microbiology Department, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.K.); (A.T.)
- Dean, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Simbarashe Karambwe
- Microbiology Department, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.K.); (A.T.)
| | - Lutendo Sylvia Mudau
- Department of Environmental Health, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa;
| | - Tobias Barnard
- Water & Health Research Center, University of Johannesburg, PO Box 524, 2006 Auckland Park, Johannesburg 2094, South Africa;
| | - Afsatou Traore
- Microbiology Department, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.K.); (A.T.)
| |
Collapse
|
17
|
Garrido-Cardenas JA, Esteban-García B, Agüera A, Sánchez-Pérez JA, Manzano-Agugliaro F. Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:E170. [PMID: 31881722 PMCID: PMC6981484 DOI: 10.3390/ijerph17010170] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
Background: Water is a scarce resource and is considered a fundamental pillar of sustainable development. The modern development of society requires more and more drinking water. For this cleaner wastewater, treatments are key factors. Among those that exist, advanced oxidation processes are being researched as one of the sustainable solutions. The main objective of this manuscript is to show the scientific advances in this field. Methods: In this paper, a systematic analysis of all the existing scientific works was carried out to verify the evolution of this line of research. Results: It was observed that the three main countries researching this field are China, Spain, and the USA. Regarding the scientific collaboration between countries, three clusters were detected-one of Spain, one of China and the USA, and one of Italy and France. The publications are grouped around three types of water: industrial, urban, and drinking. Regarding the research, 15 clusters identified from the keywords analyzed the advanced oxidation process (alone or combined with biological oxidation) with the type of wastewater and the target pollutant, removal of which is intended. Finally, the most important scientific communities or clusters detected in terms of the number of published articles were those related to the elimination of pollutants of biological origin, such as bacteria, and of industrial nature, such as pesticides or pharmaceutical products.
Collapse
Affiliation(s)
| | - Belén Esteban-García
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, 04120 Almería, Spain; (B.E.-G.); (A.A.); (J.A.S.-P.)
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain
| | - Ana Agüera
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, 04120 Almería, Spain; (B.E.-G.); (A.A.); (J.A.S.-P.)
| | - José Antonio Sánchez-Pérez
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, 04120 Almería, Spain; (B.E.-G.); (A.A.); (J.A.S.-P.)
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain
| | | |
Collapse
|
18
|
Kormoker T, Proshad R, Islam S, Ahmed S, Chandra K, Uddin M, Rahman M. Toxic metals in agricultural soils near the industrial areas of Bangladesh: ecological and human health risk assessment. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1650777] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tapos Kormoker
- Department of Emergency Management, Patuakhali Science and Technology University, Dumki, Bangladesh
| | - Ram Proshad
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Bangladesh
| | - Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Bangladesh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Saad Ahmed
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Bangladesh
| | - Krishno Chandra
- Faculty of Agricultural Engineering and Technology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Minhaz Uddin
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mahfuzur Rahman
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Bangladesh
| |
Collapse
|
19
|
Siwila S, Brink IC. Comparison of five point-of-use drinking water technologies using a specialized comparison framework. JOURNAL OF WATER AND HEALTH 2019; 17:568-586. [PMID: 31313995 DOI: 10.2166/wh.2019.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three novel and two commercially available low-cost point-of-use (PoU) water treatment technologies were comparatively evaluated using a specialized comparison framework targeted at them. The comparison results and specialized framework have been discussed. The PoU systems were evaluated principally in terms of performance, flow rate and cost per volume of water treated (quantitatively), ease of use, potential acceptability and material availability (qualitatively) with main focus on rural and suburban settings. The three novel systems assessed were developed in an ongoing research project aimed at developing a multibarrier low-cost PoU water treatment system. The comparative evaluation and analysis revealed that the commercially available systems may often produce water free of pathogens (with an apparent 100% removal for Escherichia coli and fecal coliforms) but may not be affordable for application to the poorest groups in much of the developing world. The novel systems, which were principally constructed from local materials, were more affordable, can supply relatively safe water and can be constructed by users with minimal training. Overall, bacterial removal effectiveness, ease of use, flow rate, material availability, cost and acceptability aspects of water were identified as key to potential adoption and sustainability of the evaluated low-cost PoU systems.
Collapse
Affiliation(s)
- Stephen Siwila
- Department of Civil Engineering, Water Engineering Division, Stellenbosch University, Private Bag X1, Matieland 7602, Cape Town, South Africa E-mail:
| | - Isobel C Brink
- Department of Civil Engineering, Water Engineering Division, Stellenbosch University, Private Bag X1, Matieland 7602, Cape Town, South Africa E-mail:
| |
Collapse
|
20
|
The landscape of enteric pathogen exposure of young children in public domains of low-income, urban Kenya: The influence of exposure pathway and spatial range of play on multi-pathogen exposure risks. PLoS Negl Trop Dis 2019; 13:e0007292. [PMID: 30917117 PMCID: PMC6453472 DOI: 10.1371/journal.pntd.0007292] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 04/08/2019] [Accepted: 03/12/2019] [Indexed: 11/19/2022] Open
Abstract
Young children are infected by a diverse variety of enteric pathogens in low-income, high-burden countries. Little is known about which conditions pose the greatest risk for enteric pathogen exposure and infection. Young children frequently play in residential public areas around their household, including areas contaminated by human and animal feces, suggesting these exposures are particularly hazardous. The objective of this study was to examine how the dose of six types of common enteric pathogens, and the probability of exposure to one or multiple enteric pathogens for young children playing at public play areas in Kisumu, Kenya is influenced by the type and frequency of child play behaviors that result in ingestion of soil or surface water. Additionally, we examine how pathogen doses and multi-pathogen exposure are modified by spatial variability in the number of public areas children are exposed to in their neighborhood. A Bayesian framework was employed to obtain the posterior distribution of pathogen doses for a certain number of contacts. First, a multivariate mixed effects tobit model was used to obtain the posterior distribution of pathogen concentrations, and their interdependencies, in soil and surface water, based upon empirical data of enteric pathogen contamination in three neighborhoods of Kisumu. Then, exposure doses were estimated using behavioral contact parameters from previous studies and contrasted under different exposure conditions. Pathogen presence and concentration in soil varied widely across local (< 25 meter radius area) and neighborhood-level scales, but pathogens were correlated among distinct surface water samples collected near to each other. Multi-pathogen exposure of children at public play areas was common. Pathogen doses and the probability of multi-pathogen ingestion increased with: higher frequency of environmental contact, especially for surface water; larger volume of soil or water ingested; and with play at multiple sites in the neighborhood versus single site play. Child contact with surface water and soil at public play areas in their neighborhood is an important cause of exposure to enteric pathogens in Kisumu, and behavioral, environmental, and spatial conditions are determinants of exposure.
Collapse
|
21
|
Proshad R, Kormoker T, Islam S. Distribution, source identification, ecological and health risks of heavy metals in surface sediments of the Rupsa River, Bangladesh. TOXIN REV 2019. [DOI: 10.1080/15569543.2018.1564143] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ram Proshad
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - Tapos Kormoker
- Department of Emergency Management, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| |
Collapse
|
22
|
Nsaka NC, McCrindle RI, Ambushe AA. Levels of potentially toxic metals in water, sediment and peat from Wonderfonteinspruit, North West Province, South Africa. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:907-914. [PMID: 29708823 DOI: 10.1080/10934529.2018.1462894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Environmental monitoring of the levels of potentially toxic metals is of importance because of possible adverse effects on living species. This study was conducted to assess the levels of Cd, Cr, Cu, Hg, Mn, Pb, U and V in water, sediment and peat samples collected from the region of Wonderfonteinspruit. Water samples were simply filtered and acidified with HNO3 prior to analysis. Sediment and peat were oven-dried, ground, sieved and mineralised using a microwave digestion system. Concentrations of the selected elements in all samples were determined by inductively coupled plasma-mass spectrometry. A Zeeman mercury analyser was also used for quantification of Hg in the same sediment and peat samples. The method validation was carried out using SRM 1643e water and BCR 320R sediment certified reference materials. The results showed no significant difference at 95% level of confidence between the certified and measured values after using the Student's t-test. The levels of Cd, Cr, Cu, Pb, V and U found in rivers and dams were lower than the tentative South African water quality range guideline for domestic and irrigation purposes. However, water from dams and certain rivers was unsuitable for irrigation and domestic use.
Collapse
Affiliation(s)
- Ntumba C Nsaka
- a Department of Chemistry , Tshwane University of Technology , Arcadia , Pretoria , South Africa
| | - Robert I McCrindle
- a Department of Chemistry , Tshwane University of Technology , Arcadia , Pretoria , South Africa
| | - Abayneh A Ambushe
- b Department of Chemistry , University of Johannesburg , Auckland Park , South Africa
| |
Collapse
|
23
|
Diarrhoeal Disease in Relation to Possible Household Risk Factors in South African Villages. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081665. [PMID: 30082638 PMCID: PMC6121382 DOI: 10.3390/ijerph15081665] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/27/2018] [Accepted: 08/03/2018] [Indexed: 11/18/2022]
Abstract
Diarrhoeal disease is a significant contributor to child morbidity and mortality, particularly in the developing world. Poor sanitation, a lack of personal hygiene and inadequate water supplies are known risk factors for diarrhoeal disease. Since risk factors may vary by population or setting, we evaluated the prevalence of diarrhoeal disease at the household level using a questionnaire to better understand household-level risk factors for diarrhoea in selected rural areas in South Africa. In a sub-sample of dwellings, we measured the microbial quality of drinking water. One in five households had at least one case of diarrhoea during the previous summer. The most widespread source of drinking water was a stand-pipe (inside yard) (45%) followed by an indoor tap inside the dwelling (29%). Storage of water was common (97%) with around half of households storing water in plastic containers with an opening large enough to fit a hand through. After adjusting for confounders, the occurrence of diarrhoea was statistically significantly associated with sourcing water from an indoor tap (Adjusted Odds Ratio (AOR): 2.73, 95% CI: 2.73, 1.14–6.56) and storing cooked/perishable food in non-refrigerated conditions (AOR: 2.17, 95% CI: 2.17, 1.44–3.26). The highest total coliform counts were found in water samples from kitchen containers followed by stand-pipes. Escherichia coli were most often detected in samples from stand-pipes and kitchen containers. One in four households were at risk of exposure to contaminated drinking water, increasing the susceptibility of the study participants to episodes of diarrhoea. It is imperative that water quality meets guideline values and routine monitoring of quality of drinking water is done to minimise diarrhoea risk in relevant rural communities. The security of water supply in rural areas should be addressed as a matter of public health urgency to avoid the need for water storage.
Collapse
|
24
|
Genthe B, Kapwata T, Le Roux W, Chamier J, Wright CY. The reach of human health risks associated with metals/metalloids in water and vegetables along a contaminated river catchment: South Africa and Mozambique. CHEMOSPHERE 2018; 199:1-9. [PMID: 29425784 DOI: 10.1016/j.chemosphere.2018.01.160] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Anthropogenic pollution was identified as an environmental problem of concern when, in 2008, dozens of crocodiles died in the Olifants River catchment near the border of South Africa and Mozambique. Given the close proximity of households to the river and their making use of river water, we aimed to determine to what extent water pollution has an impact on health of indigent communities in South Africa and Mozambique in the catchment area. METHODS Water and vegetable samples were collected from the study areas. Biota samples were washed with double de-ionized Milli-Q water and freeze-dried. Heavy metal analyses in water and vegetables were done by means of Inductively Coupled Plasma Optical Emission Spectroscopy. Metal concentrations were applied in a human health risk assessment to estimate health risks. RESULTS Mean concentrations of antimony, arsenic, cadmium, chromium, mercury, molybdenum, nickel and selenium in water samples from South Africa exceeded the World Health Organization guidelines for safe levels of intake. Only iron exceeded the recommended guidelines in water samples from Mozambique. Metals/metalloids were found in lower concentrations at Mozambique sites downstream of South African sites. In vegetables, uranium was between 10 and 20 times above safe guidelines in South Africa and between 3 and 6 times in Mozambique. Arsenic in water samples posed the highest cancer risk. CONCLUSIONS Even with a reduction in the metal concentrations in river water from South Africa to Mozambique, the potential to cause adverse human health impacts from direct use of polluted river water is evident in both countries.
Collapse
Affiliation(s)
- Bettina Genthe
- Natural Resources and the Environment, Council for Scientific and Industrial Research, PO Box 320, 7599, Stellenbosch, South Africa
| | - Thandi Kapwata
- Environment and Health Research Unit, South African Medical Research Council, Corner of Sherwell and Beit Streets, Health Clinic Building, University of Johannesburg, Johannesburg, South Africa
| | - Wouter Le Roux
- Natural Resources and the Environment, Council for Scientific and Industrial Research, POX Box 395, 0001, Pretoria, South Africa
| | - Jessica Chamier
- Natural Resources and the Environment, Council for Scientific and Industrial Research, PO Box 320, 7599, Stellenbosch, South Africa
| | - Caradee Y Wright
- Environment and Health Research Unit, South African Medical Research Council, Pretoria, Private Bag x385, 0001, Pretoria, South Africa; Department of Geography, Geoinformatics and Meteorology, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.
| |
Collapse
|
25
|
Van Abel N, Mans J, Taylor MB. Quantitative microbial risk assessment to estimate the health risk from exposure to noroviruses in polluted surface water in South Africa. JOURNAL OF WATER AND HEALTH 2017; 15:908-922. [PMID: 29215355 DOI: 10.2166/wh.2017.305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study assessed the risks posed by noroviruses (NoVs) in surface water used for drinking, domestic, and recreational purposes in South Africa (SA), using a quantitative microbial risk assessment (QMRA) methodology that took a probabilistic approach coupling an exposure assessment with four dose-response models to account for uncertainty. Water samples from three rivers were found to be contaminated with NoV GI (80-1,900 gc/L) and GII (420-9,760 gc/L) leading to risk estimates that were lower for GI than GII. The volume of water consumed and the probabilities of infection were lower for domestic (2.91 × 10-8 to 5.19 × 10-1) than drinking water exposures (1.04 × 10-5 to 7.24 × 10-1). The annual probabilities of illness varied depending on the type of recreational water exposure with boating (3.91 × 10-6 to 5.43 × 10-1) and swimming (6.20 × 10-6 to 6.42 × 10-1) being slightly greater than playing next to/in the river (5.30 × 10-7 to 5.48 × 10-1). The QMRA was sensitive to the choice of dose-response model. The risk of NoV infection or illness from contaminated surface water is extremely high in SA, especially for lower socioeconomic individuals, but is similar to reported risks from limited international studies.
Collapse
Affiliation(s)
- Nicole Van Abel
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, 0007 Arcadia, Pretoria, South Africa E-mail:
| | - Janet Mans
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, 0007 Arcadia, Pretoria, South Africa E-mail:
| | - Maureen B Taylor
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, 0007 Arcadia, Pretoria, South Africa E-mail:
| |
Collapse
|
26
|
Wee SY, Aris AZ. Endocrine disrupting compounds in drinking water supply system and human health risk implication. ENVIRONMENT INTERNATIONAL 2017; 106:207-233. [PMID: 28552550 DOI: 10.1016/j.envint.2017.05.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/08/2017] [Accepted: 05/04/2017] [Indexed: 05/17/2023]
Abstract
To date, experimental and epidemiological evidence of endocrine disrupting compounds (EDCs) adversely affecting human and animal populations has been widely debated. Notably, human health risk assessment is required for risk mitigation. The lack of human health risk assessment and management may thus unreliably regulate the quality of water resources and efficiency of treatment processes. Therefore, drinking water supply systems (DWSSs) may be still unwarranted in assuring safe access to potable drinking water. Drinking water supply, such as tap water, is an additional and crucial route of human exposure to the health risks associated with EDCs. A holistic system, incorporating continuous research in DWSS monitoring and management using multi-barrier approach, is proposed as a preventive measure to reduce human exposure to the risks associated with EDCs through drinking water consumption. The occurrence of EDCs in DWSSs and corresponding human health risk implications are analyzed using the Needs, Approaches, Benefits, and Challenges (NABC) method. Therefore, this review may act as a supportive tool in protecting human health and environmental quality from EDCs, which is essential for decision-making regarding environmental monitoring and management purposes. Subsequently, the public could have sustainable access to safer and more reliable drinking water.
Collapse
Affiliation(s)
- Sze Yee Wee
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
27
|
Ford L, Bharadwaj L, McLeod L, Waldner C. Human Health Risk Assessment Applied to Rural Populations Dependent on Unregulated Drinking Water Sources: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14080846. [PMID: 28788087 PMCID: PMC5580550 DOI: 10.3390/ijerph14080846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/15/2017] [Accepted: 07/25/2017] [Indexed: 01/28/2023]
Abstract
Safe drinking water is a global challenge for rural populations dependent on unregulated water. A scoping review of research on human health risk assessments (HHRA) applied to this vulnerable population may be used to improve assessments applied by government and researchers. This review aims to summarize and describe the characteristics of HHRA methods, publications, and current literature gaps of HHRA studies on rural populations dependent on unregulated or unspecified drinking water. Peer-reviewed literature was systematically searched (January 2000 to May 2014) and identified at least one drinking water source as unregulated (21%) or unspecified (79%) in 100 studies. Only 7% of reviewed studies identified a rural community dependent on unregulated drinking water. Source water and hazards most frequently cited included groundwater (67%) and chemical water hazards (82%). Most HHRAs (86%) applied deterministic methods with 14% reporting probabilistic and stochastic methods. Publications increased over time with 57% set in Asia, and 47% of studies identified at least one literature gap in the areas of research, risk management, and community exposure. HHRAs applied to rural populations dependent on unregulated water are poorly represented in the literature even though almost half of the global population is rural.
Collapse
Affiliation(s)
- Lorelei Ford
- School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon SK S7N 5C8, Canada.
| | - Lalita Bharadwaj
- School of Public Health, University of Saskatchewan, 107 Wiggins Road, Saskatoon SK S7N 2Z4, Canada.
| | - Lianne McLeod
- Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon SK S7N 5B4, Canada.
| | - Cheryl Waldner
- Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon SK S7N 5B4, Canada.
| |
Collapse
|
28
|
Wooding M, Rohwer ER, Naudé Y. Determination of endocrine disrupting chemicals and antiretroviral compounds in surface water: A disposable sorptive sampler with comprehensive gas chromatography - Time-of-flight mass spectrometry and large volume injection with ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2017; 1496:122-132. [PMID: 28365075 DOI: 10.1016/j.chroma.2017.03.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/03/2017] [Accepted: 03/19/2017] [Indexed: 10/19/2022]
Abstract
Many rural dwellers and inhabitants of informal settlements in South Africa are without access to treated water and collect untreated water from rivers and dams for personal use. Endocrine disrupting chemicals (EDCs) have been detected in surface water and wildlife of South Africa. EDCs are often present in complex environmental matrices at ultra-trace levels complicating detection thereof. We report a simplified multi-residue approach for the detection and quantification of EDCs, emerging EDCs, and antiretroviral drugs in surface water. A low cost (less than one US dollar), disposable, sorptive extraction sampler was prepared in-house. The disposable samplers consisted of polydimethylsiloxane (PDMS) tubing fashioned into a loop which was then placed in water samples to concentrate EDCs and emerging pollutants. The PDMS samplers were thermally desorbed directly in the inlet of a GC, thereby eliminating the need for expensive consumable cryogenics. Comprehensive gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) was used for compound separation and identification. Linear retention indices of EDCs and emerging pollutants were determined on a proprietary Crossbond® phase Rtx®-CLPesticides II GC capillary column. In addition, large volume injection of surface water into an ultra-performance liquid chromatograph tandem mass spectrometer (UPLC-MS/MS) was used as complementary methodology for the detection of less volatile compounds. Large volume injection reduced tedious and costly sample preparation steps. Limits of detection for the GC method ranged from 1 to 98pg/l and for the LC method from 2 to 135ng/l. Known and emerging EDCs such as pharmaceuticals, personal care products and pesticides, as well as the antiretroviral compounds, efavirenz and nevirapine, were detected in surface water from South Africa at concentration levels ranging from 0.16ng/l to 227ng/l.
Collapse
Affiliation(s)
- Madelien Wooding
- Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - Egmont R Rohwer
- Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - Yvette Naudé
- Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa.
| |
Collapse
|
29
|
Simonelli A, Guadagni R, De Franciscis P, Colacurci N, Pieri M, Basilicata P, Pedata P, Lamberti M, Sannolo N, Miraglia N. Environmental and occupational exposure to bisphenol A and endometriosis: urinary and peritoneal fluid concentration levels. Int Arch Occup Environ Health 2016; 90:49-61. [PMID: 27718009 DOI: 10.1007/s00420-016-1171-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/02/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The study aimed to give a first data set of bisphenol A (BPA) levels in the peritoneal fluid of patients suffering from endometriosis and to investigate the relationship between BPA exposure and endometriosis. METHODS A questionnaire investigating the occupational context, life environment, and habits was administered to 68 patients suffering from endometriosis and 60 endometriosis-free subjects (control group). Urine and peritoneal fluids samples were collected and analysed by GC/MSMS for BPA dosage. RESULTS Some of the investigated environmental/lifestyle risk factors (closeness to industries/activities at risk) were associated with an increase in endometriosis; smoking resulted as protective factor; others (use of food plastic boxes) did not seem to influence the onset of pathology. The association between the occupational exposure summarising all examined risk factors (working activity, personal protective equipment, seniority) and endometriosis was statistically significant (χ 2 = 5.252, p = 0.02). Contrasting results were obtained when specific activities were examined. Detectable urinary BPA levels were found in all analysed samples (patients: 1.17-12.68 pg/µl; mean ± SD, 5.31 ± 3.36 pg/µl; control group: 1.28-2.35 pg/µl; mean ± SD, 1.64 ± 0.49 pg/µl; median; 1.46 pg/µl), with a statistically significant difference between patients and controls, showing an association between BPA exposure and endometriosis. Only a few subjects from the control group supplied peritoneal fluid; hence, no comparison test with patients (range 0.39-1.46 pg/µl; mean ± SD, 0.67 ± 0.30 pg/µl; median, 0.58 pg/µl) was carried out. CONCLUSIONS Results highlight the potential association between BPA exposure and endometriosis, as well as the current lack of knowledge regarding occupational exposure to BPA and the need of epidemiological studies focused on single activities/occupations, such as housewives, cleaners, students.
Collapse
Affiliation(s)
- Angela Simonelli
- Occupational Medicine Area-Hygiene, Occupational and Forensic Section, Department of Experimental Medicine, School of Medicine, Second University of Naples, Caserta, Italy.,Department of Advanced Biomedical Science-Legal Medicine Section, University of Naples "Federico II", Via S. Pansini 5, II Policlinico, Ed. 20, 80131, Naples, Italy
| | - Rossella Guadagni
- Occupational Medicine Area-Hygiene, Occupational and Forensic Section, Department of Experimental Medicine, School of Medicine, Second University of Naples, Caserta, Italy.,Department of Advanced Biomedical Science-Legal Medicine Section, University of Naples "Federico II", Via S. Pansini 5, II Policlinico, Ed. 20, 80131, Naples, Italy
| | - Pasquale De Franciscis
- Department of Women and Children and General and Specialized Surgery, Second University of Naples, Caserta, Italy
| | - Nicola Colacurci
- Department of Women and Children and General and Specialized Surgery, Second University of Naples, Caserta, Italy
| | - Maria Pieri
- Department of Advanced Biomedical Science-Legal Medicine Section, University of Naples "Federico II", Via S. Pansini 5, II Policlinico, Ed. 20, 80131, Naples, Italy.
| | - Pascale Basilicata
- Department of Advanced Biomedical Science-Legal Medicine Section, University of Naples "Federico II", Via S. Pansini 5, II Policlinico, Ed. 20, 80131, Naples, Italy
| | - Paola Pedata
- Occupational Medicine Area-Hygiene, Occupational and Forensic Section, Department of Experimental Medicine, School of Medicine, Second University of Naples, Caserta, Italy
| | - Monica Lamberti
- Occupational Medicine Area-Hygiene, Occupational and Forensic Section, Department of Experimental Medicine, School of Medicine, Second University of Naples, Caserta, Italy
| | - Nicola Sannolo
- Occupational Medicine Area-Hygiene, Occupational and Forensic Section, Department of Experimental Medicine, School of Medicine, Second University of Naples, Caserta, Italy
| | - Nadia Miraglia
- Occupational Medicine Area-Hygiene, Occupational and Forensic Section, Department of Experimental Medicine, School of Medicine, Second University of Naples, Caserta, Italy
| |
Collapse
|
30
|
Abia ALK, Ubomba-Jaswa E, Genthe B, Momba MNB. Quantitative microbial risk assessment (QMRA) shows increased public health risk associated with exposure to river water under conditions of riverbed sediment resuspension. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1143-1151. [PMID: 27297265 DOI: 10.1016/j.scitotenv.2016.05.155] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
Although higher microbial concentrations have been reported in sediments than in the overlying water column, most quantitative microbial risk assessment (QMRA) studies have not clearly indicated the contribution of sediment-borne pathogens to estimated risks. Thus, the present study aimed at determining the public health risk associated with exposure to pathogenic bacteria in polluted river water under undisturbed conditions and conditions of sediment resuspension in the Apies River, Gauteng, South Africa. Microbial pathogens were isolated and identified using culture and molecular methods. The beta-Poisson dose-response model was used to estimate the probability of infection (Pi) with the various pathogens, following accidental/intentional ingestion of 1mL or 100mL (or 50mL) of untreated river water. Mean wet season Escherichia coli counts ranged between 5.8E+01 and 8.8E+04MPN/100mL (water column) and between 2.40E+03 and 1.28E+05MPN/100mL (sediments). Mean dry season E. coli counts ranged between 5.11E+00 and 3.40E+03MPN/100mL (water column) and between 5.09E+00 and 6.30E+03MPN/100mL (sediments). Overall (water and sediments) Vibrio cholerae was the most detected pathogen (58.8%) followed by Salmonella spp. (23.9%) and Shigella (10.1%). Ingestion of 1mL of river water could lead to 0%-4% and 1%-74% Pi with E. coli during the dry and wet season, respectively. During the dry season, the Pi with V. cholerae, Salmonella spp. and Shigella spp. were 0%-1.39%, 0%-4.11% and 0%-0.16% respectively, depending on volume of water ingested. The risks of infections with all microorganisms increased during the wet season. A 2-log increase in water E. coli count following sediments disturbance led to approximately 10 times higher Pi with E. coli than when sediments were undisturbed. Therefore, the use of the untreated water from the Apies River for drinking, household purposes or recreational activities poses a potential health risk to the users of the river.
Collapse
Affiliation(s)
- Akebe Luther King Abia
- Department of Environmental, Water and Earth Science, Tshwane University of Technology, Arcadia Campus, 175 Nelson Mandela Drive, Pretoria 0001, South Africa.
| | - Eunice Ubomba-Jaswa
- Natural Resources and the Environment, CSIR, PO Box 395, Pretoria 0001, South Africa.
| | - Bettina Genthe
- Natural Resources and the Environment, CSIR, Stellenbosch, South Africa.
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Science, Tshwane University of Technology, Arcadia Campus, 175 Nelson Mandela Drive, Pretoria 0001, South Africa.
| |
Collapse
|
31
|
Sibanda T, Selvarajan R, Tekere M. Urban effluent discharges as causes of public and environmental health concerns in South Africa's aquatic milieu. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:18301-17. [PMID: 26408112 DOI: 10.1007/s11356-015-5416-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/14/2015] [Indexed: 05/18/2023]
Abstract
The water quality in South Africa's river systems is rapidly deteriorating as a consequence of increased discharge of wastewater effluents. The natural ability of rivers and reservoirs to trap toxic chemicals and nutrients in their sediments enables these systems to accumulate contaminants, altering the natural balance in environmental water quality, thereby raising a plethora of public and environmental health concerns. Impaired water quality has been linked to an array of problems in South Africa including massive fish mortalities, altered habitat template leading to the thinning of riverine macroinvertebrate diversity, shifts in microbial community structures with drastic ecological consequences and evolvement of antibiotic resistance genes that, under natural conditions, can be transferred to waterborne pathogens. Urban wastewater discharge has also been implicated in increased bioaccumulation of metals in edible plant parts, elevated concentrations of endocrine-disrupting compounds (EDCs), which are blamed for reduced fertility and increased cancer risk, excessive growth of toxic cyanobacteria and an increase in concentrations of pathogenic microorganisms which constitute a potential health threat to humans. However, despite the ecotoxicological hazards posed by wastewater effluents, ecotoxicological studies are currently underutilised in South African aquatic ecosystem assessments, and where they have been done, the observation is that ecotoxicological studies are mostly experimental and restricted to small study areas. More research is still needed to fully assess especially the ecotoxicological consequences of surface water pollution by urban wastewater effluents in South Africa. A review of the effects of urban effluent discharges that include domestic effluent mixed with industrial effluent and/or urban stormwater run-off is hereby presented.
Collapse
Affiliation(s)
- Timothy Sibanda
- Department of Environmental Sciences, UNISA Florida Campus, PO Box 1710, Florida, South Africa.
| | - Ramganesh Selvarajan
- Department of Environmental Sciences, UNISA Florida Campus, PO Box 1710, Florida, South Africa
| | - Memory Tekere
- Department of Environmental Sciences, UNISA Florida Campus, PO Box 1710, Florida, South Africa
| |
Collapse
|
32
|
Gao T, Wang XC, Chen R, Ngo HH, Guo W. Disability adjusted life year (DALY): a useful tool for quantitative assessment of environmental pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 511:268-287. [PMID: 25549348 DOI: 10.1016/j.scitotenv.2014.11.048] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
Disability adjusted life year (DALY) has been widely used since 1990s for evaluating global and/or regional burden of diseases. As many environmental pollutants are hazardous to human health, DALY is also recognized as an indicator to quantify the health impact of environmental pollution related to disease burden. Based on literature reviews, this article aims to give an overview of the applicable methodologies and research directions for using DALY as a tool for quantitative assessment of environmental pollution. With an introduction of the methodological framework of DALY, the requirements on data collection and manipulation for quantifying disease burdens are summarized. Regarding environmental pollutants hazardous to human beings, health effect/risk evaluation is indispensable for transforming pollution data into disease data through exposure and dose-response analyses which need careful selection of models and determination of parameters. Following the methodological discussions, real cases are analyzed with attention paid to chemical pollutants and pathogens usually encountered in environmental pollution. It can be seen from existing studies that DALY is advantageous over conventional environmental impact assessment for quantification and comparison of the risks resulted from environmental pollution. However, further studies are still required to standardize the methods of health effect evaluation regarding varied pollutants under varied circumstances before DALY calculation.
Collapse
Affiliation(s)
- Tingting Gao
- Key Lab of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Rong Chen
- Key Lab of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW 2007, Australia.
| | - Wenshan Guo
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW 2007, Australia
| |
Collapse
|
33
|
|