1
|
Luutu H, Rose MT, McIntosh S, Van Zwieten L, Rose TJ. Probing the toxicity of hydrothermal carbonised wastes on soil biota: Effect of reaction temperature and feedstock. CHEMOSPHERE 2024; 369:143857. [PMID: 39615848 DOI: 10.1016/j.chemosphere.2024.143857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
Hydrothermal carbonised wastes (hydrochars) can have toxic effects on soil biota, but factors influencing toxin formation in hydrochar, and subsequent toxicity to soil organisms, have not been elucidated. This study investigated the toxicity of hydrochars on soil biota, with a focus on earthworm (Eisenia fetida) avoidance, microbial metabolic quotient (qCO2) and microbial activities. Two reaction temperatures (200 °C and 260 °C) and different feedstocks (biosolids, chicken manure and rice straw) were used. Hydrochars produced at 260 °C were highly toxic to earthworms, causing earthworm avoidance of >84 %. Hydrochar from chicken manure and rice straw produced at 200 °C also caused significant avoidance (76-84 %), although with chicken manure, high salt (Na) concentration was the underlying factor rather than toxic organic compounds. In contrast, biosolids hydrochar produced at 200 °C showed no negative effect on earthworms. Further examination of biosolids hydrochar (260 °C) following extraction with water, methanol, acetone-hexane, or sequentially, indicated that toxins causing earthworm avoidance were both polar and non-polar organic compounds, as well as soluble salts. Despite increased qCO2 suggesting microbial stress, hydrochars generally increased phospholipid fatty acids (bacteria and fungi), soil respiration, enzyme activities and N mineralisation. Findings reveal that while higher temperature hydrochars are highly toxic to earthworms, they do not adversely affect overall soil microbial health.
Collapse
Affiliation(s)
- Henry Luutu
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia; The Cooperative Research Centre for High Performance Soils, Callaghan, NSW, 2308, Australia.
| | - Michael T Rose
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia; The Cooperative Research Centre for High Performance Soils, Callaghan, NSW, 2308, Australia; New South Wales Department of Primary Industries, Wollongbar, NSW, 2477, Australia
| | - Shane McIntosh
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia; The Cooperative Research Centre for High Performance Soils, Callaghan, NSW, 2308, Australia
| | - Lukas Van Zwieten
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia; The Cooperative Research Centre for High Performance Soils, Callaghan, NSW, 2308, Australia; New South Wales Department of Primary Industries, Wollongbar, NSW, 2477, Australia
| | - Terry J Rose
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia; The Cooperative Research Centre for High Performance Soils, Callaghan, NSW, 2308, Australia
| |
Collapse
|
2
|
Long XX, Yu ZN, Liu SW, Gao T, Qiu RL. A systematic review of biochar aging and the potential eco-environmental risk in heavy metal contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134345. [PMID: 38696956 DOI: 10.1016/j.jhazmat.2024.134345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Biochar is widely accepted as a green and effective amendment for remediating heavy metals (HMs) contaminated soil, but its long-term efficiency and safety changes with biochar aging in fields. Currently, some reviews have qualitatively summarized biochar aging methods and mechanisms, aging-induced changes in biochar properties, and often ignored the potential eco-environmental risk during biochar aging process. Therefore, this review systematically summarizes the study methods of biochar aging, quantitatively compares the effects of different biochar aging process on its properties, and discusses the potential eco-environmental risk due to biochar aging in HMs contaminated soil. At present, various artificial aging methods (physical aging, chemical aging and biological aging) rather than natural field aging have been applied to study the changes of biochar's properties. Generally, biochar aging increases specific surface area (SSA), pore volume (PV), surface oxygen-containing functional group (OFGs) and O content, while decreases pH, ash, H, C and N content. Chemical aging method has a greater effect on the properties of biochar than other aging methods. In addition, biochar aging may lead to HMs remobilization and produce new types of pollutants, such as polycyclic aromatic hydrocarbons (PAHs), environmentally persistent free radicals (EPFRs) and colloidal/nano biochar particles, which consequently bring secondary eco-environmental risk. Finally, future research directions are suggested to establish a more accurate assessment method and model on biochar aging behavior and evaluate the environmental safety of aged biochar, in order to promote its wider application for remediating HMs contaminated soil.
Collapse
Affiliation(s)
- Xin-Xian Long
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Ze-Ning Yu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shao-Wen Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ting Gao
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Rong-Liang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Hashemi F, Mogensen L, Smith AM, Larsen SU, Knudsen MT. Greenhouse gas emissions from bio-based growing media: A life-cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167977. [PMID: 37875197 DOI: 10.1016/j.scitotenv.2023.167977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
In this study, using an LCA approach we explored how bio-based peat alternatives (wood fiber, compost, and hydrochar based on willow and degassed fiber from agricultural waste) and their mixtures (75 % peat with 25 % peat alternative) as growing media (GM) for plant production in Denmark may provide benefits for reducing greenhouse gas emissions compared to peat. To perform this, foreground data (collected via personal communication and literature) was used together with background data from Ecoinvent V3.8. The chosen functional unit was 1 m3 of GM and the system boundary was from cradle to use as GM. The global warming potential of all the peat alternatives showed significant reduction, varying between 89 and 109 % compared to peat. When incorporating 25 % of each alternative with peat, the climate footprint was reduced by 16 to 33 % compared to pure peat. Thus, there are large climate prospects in replacing peat with bio-based alternatives, and the results underlines the relevance of being able to increase the proportion of the bio-based components in their mixtures with peat beyond the 25 % and towards 100 % replacement. The effectiveness of peat substitutes in term of reducing the CO2 emissions is affected by choice of the feedstock, their processing method and emissions of their end-use.
Collapse
Affiliation(s)
- Fatemeh Hashemi
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; Aarhus University Interdisciplinary Centre for climate change (iCLIMATE), Department of Agroecology, Blichers Alle 20, 8830 Tjele, Denmark.
| | - Lisbeth Mogensen
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Aidan Mark Smith
- Aarhus University Interdisciplinary Centre for climate change (iCLIMATE), Department of Agroecology, Blichers Alle 20, 8830 Tjele, Denmark; Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus N, Denmark
| | - Søren Ugilt Larsen
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; Danish Technological Institute, Agro Food Park 15, DK-8200 Aarhus N, Denmark
| | - Marie Trydeman Knudsen
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; Aarhus University Interdisciplinary Centre for climate change (iCLIMATE), Department of Agroecology, Blichers Alle 20, 8830 Tjele, Denmark
| |
Collapse
|
4
|
Sun J, Benavente V, Jansson S, Mašek O. Comparative characterisation and phytotoxicity assessment of biochar and hydrochar derived from municipal wastewater microalgae biomass. BIORESOURCE TECHNOLOGY 2023; 386:129567. [PMID: 37506941 DOI: 10.1016/j.biortech.2023.129567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Microalgae, originating from a tertiary treatment of municipal wastewater, is considered a sustainable feedstock for producing biochar and hydrochar, offering great potential for agricultural use due to nutrient content and carbon storage ability. However, there are risks related to contamination and these need to be carefully assessed to ensure safe use of material from wastewater microalgae. Therefore, this study compared the properties and phototoxicity of biochar and hydrochar produced via pyrolysis and hydrothermal carbonisation (HTC) of microalgae under different temperatures and residence times. While biochar promoted germination and seedling growth by up to 11.0% and 70.0%, respectively, raw hydrochar showed strong phytotoxicity, due to the high content of volatile matter. Two post-treatments, dichloromethane (DCM) washing and further pyrolysis, proved to be effective methods for mitigating phytotoxicity of hydrochar. Additionally, biochar had 35.8-38.6% fixed carbon, resulting in higher carbon sequestration potential compared to hydrochar.
Collapse
Affiliation(s)
- Jiacheng Sun
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK.
| | - Veronica Benavente
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden; RISE Processum AB, SE-89122 Örnsköldsvik, Sweden
| | - Stina Jansson
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| |
Collapse
|
5
|
Hameed R, Li G, Son Y, Fang H, Kim T, Zhu C, Feng Y, Zhang L, Abbas A, Zhao X, Wang J, Li J, Dai Z, Du D. Structural characteristics of dissolved black carbon and its interactions with organic and inorganic contaminants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162210. [PMID: 36791863 DOI: 10.1016/j.scitotenv.2023.162210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Biochar (BC) is a sustainable and renewable carbonaceous material, and its soluble component, dissolved black carbon (DBC), is the key to understanding BC's geological and environmental processes. Although the relationship between the changes in DBC structure and its properties, functions, and associated environmental risks has been explored, a gap remains in our understanding of DBC's fate and behavior in the natural environment. Thus, in this review, we have highlighted the molecular and chemical compositions and the structural evolution of DBC during pyrolysis, the influence of DBC's physicochemical properties on its fate and transport, DBC's interaction with soil and its contaminants, and DBC stability in soil and water environments along with potential risks. Based on our in-depth assessment of DBC and its biogeochemical roles, we believe that future studies should focus on the following: (1) using advanced techniques to understand the chemical and molecular structure of DBC deeply and concisely and, thus, determine its fundamental role in the natural environment; (2) investigating the multi-functional properties of DBC and its interaction mechanisms; and (3) evaluating the environmental behaviors of and risks associated with DBC after BC application. In future, it is necessary to gain a deeper insight into the fate and transport of DBC with contaminants and study its associated risks under BC application in the environment.
Collapse
Affiliation(s)
- Rashida Hameed
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Yowhan Son
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Huajun Fang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Taewan Kim
- Institute of Ecological Phytochemistry, Hankyong National University, Anseong 17579, Republic of Korea
| | - Chaodong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Biological Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfang Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lihua Zhang
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Adeel Abbas
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiaqian Wang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhicong Dai
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Bona D, Lucian M, Feretti D, Silvestri S, Zerbini I, Merzari F, Messineo A, Volpe M. Phytotoxicity and genotoxicity of agro-industrial digested sludge hydrochar: The role of heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162138. [PMID: 36773912 DOI: 10.1016/j.scitotenv.2023.162138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Hydrochar is a new carbonaceous product obtained via hydrothermal carbonization of wet biomass, such as sludges or digested sludges, which often have disposal problems, also due to the presence of contaminants such as heavy metals. The properties of the hydrochar led to an interest in using it as an amendment, but the agro-environmental properties must be considered for its safe use. Raw hydrochar produced by agro-industrial digestate and relative three acidic post-treated hydrochars (for heavy metals removal) have been assessed considering their effect on phytotoxicity, soil, plant growth, mutagenicity, and genotoxicity. The chemical characterization showed the effect of post-treatment on heavy metals contents reduction, except for Cu content (hydrochar, 650 mg/kg; post-treated hydrochars, 940 mg/kg, 287 mg/kg, and 420 mg/kg). The acidic post-treatment also reduces the phytotoxicity compared to raw hydrochar (the germination index at 16 % of hydrochar concentration was: hydrochar, 61.48 %; post-treated hydrochars, 82.27 %, 58.28 %, and 82.26 %), but the low pH and the impact on N-cycle probably have caused the detrimental effect on plant growth of post-treated hydrochar. No mutagenic activity was observed in bacteria using Ames test, while all the samples induced chromosomal aberrations in plant cells (Allium cepa test). The approach adopted, which considers phytotoxicity, plant growth-soil effects, and mutagenicity/genotoxicity bioassays has been proven effective for a proper evaluation of organic products derived from waste to promote a sustainable and circular recovery of materials.
Collapse
Affiliation(s)
- Daniela Bona
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010 San Michele a/A, Italy.
| | - Michela Lucian
- Carborem srl, Piazza Manifattura 1, 38060 Rovereto, TN, Italy
| | - Donatella Feretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Silvia Silvestri
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010 San Michele a/A, Italy
| | - Ilaria Zerbini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Fabio Merzari
- Carborem srl, Piazza Manifattura 1, 38060 Rovereto, TN, Italy
| | - Antonio Messineo
- University of Enna Kore, Faculty of Engineering and Architecture, Viale delle Olimpiadi snc, 94100 Enna, Italy
| | - Maurizio Volpe
- Carborem srl, Piazza Manifattura 1, 38060 Rovereto, TN, Italy; University of Enna Kore, Faculty of Engineering and Architecture, Viale delle Olimpiadi snc, 94100 Enna, Italy
| |
Collapse
|
7
|
Cavali M, Libardi Junior N, de Sena JD, Woiciechowski AL, Soccol CR, Belli Filho P, Bayard R, Benbelkacem H, de Castilhos Junior AB. A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159627. [PMID: 36280070 DOI: 10.1016/j.scitotenv.2022.159627] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
It is imperative to search for appropriate processes to convert wastes into energy, chemicals, and materials to establish a circular bio-economy toward sustainable development. Concerning waste biomass valorization, hydrothermal carbonization (HTC) is a promising route given its advantages over other thermochemical processes. From that perspective, this article reviewed the HTC of potential biomass wastes, the characterization and environmental utilization of hydrochar, and the biorefinery potential of this process. Crop and forestry residues and sewage sludge are two categories of biomass wastes (lignocellulosic and non-lignocellulosic, respectively) readily available for HTC or even co-hydrothermal carbonization (Co-HTC). The temperature, reaction time, and solid-to-liquid ratio utilized in HTC/Co-HTC of those biomass wastes were reported to range from 140 to 370 °C, 0.05 to 48 h, and 1/47 to 1/1, respectively, providing hydrochar yields of up to 94 % according to the process conditions. Hydrochar characterization by different techniques to determine its physicochemical properties is crucial to defining the best applications for this material. In the environmental field, hydrochar might be suitable for removing pollutants from aqueous systems, ameliorating soils, adsorbing atmospheric pollutants, working as an energy carrier, and performing carbon sequestration. But this material could also be employed in other areas (e.g., catalysis). Regarding the effluent from HTC/Co-HTC, this byproduct has the potential for serving as feedstock in other processes, such as anaerobic digestion and microalgae cultivation. These opportunities have aroused the industry interest in HTC since 2010, and the number of industrial-scale HTC plants and patent document applications has increased. The hydrochar patents are concentrated in China (77.6 %), the United States (10.6 %), the Republic of Korea (3.5 %), and Germany (3.5 %). Therefore, considering the possibilities of converting their product (hydrochar) and byproduct (effluent) into energy, chemicals, and materials, HTC or Co-HTC could work as the first step of a biorefinery. And this approach would completely agree with circular bioeconomy principles.
Collapse
Affiliation(s)
- Matheus Cavali
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil.
| | - Nelson Libardi Junior
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil
| | - Julia Dutra de Sena
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil
| | - Adenise Lorenci Woiciechowski
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-908 Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-908 Curitiba, Paraná, Brazil
| | - Paulo Belli Filho
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil
| | - Rémy Bayard
- DEEP (Déchets Eaux Environnement Pollutions) Laboratory, National Institute of Applied Sciences of Lyon, 69100 Villeurbanne, France
| | - Hassen Benbelkacem
- DEEP (Déchets Eaux Environnement Pollutions) Laboratory, National Institute of Applied Sciences of Lyon, 69100 Villeurbanne, France
| | - Armando Borges de Castilhos Junior
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
8
|
Dan Y, Wang X, Sang W, Zhou L, Diao Y, Liu F, Wang H. Development of chitosan-magnetic sawdust hydrochar for Pb and Zn immobilization process on various soil conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84675-84689. [PMID: 35781665 DOI: 10.1007/s11356-022-21745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
A series of 60-day soil immobilized incubations were performed to explore the impacts of various factors (incubation time, chitosan modified magnetic sawdust hydrochar (CMSH) dosages, initial pH values, moisture contents, and humic acid (HA)) on CMSH immobilization of Pb and Zn. DTPA and BCR extraction techniques were undertaken to study the distribution of form transformations of Pb and Zn. CMSH showed significant immobilization ability for both DTPA-Pb and DTPA-Zn, and the highest removal rates were shown to be 57.40% and 90.00% for Pb and Zn respectively. After 60 days of incubation, the residual Pb was enhanced by 34-61% and residual Zn increased by 25-41%, which indicated that CMSH was effective in immobilizing Pb and Zn. Meanwhile, the immobilization efficiency improved with increasing incubation time, CMSH dosage, HA dosage, and initial solution pH. In particular, 5% HA application increased the soil TOC and accelerated the metal stabilization processes, with the residual forms of Pb and Zn eventually reaching a maximum of 73% and 71%, respectively. In addition, the alkaline initial solution promoted the ion exchange, surface complexation reaction, and cationic-π interaction, resulting in a better immobilization of Pb and Zn by CMSH. Finally, according to the orthogonal analysis of BCR results, HA dosage was the major factor affecting Pb and Zn immobilization by CMSH compared to soil pH and moisture content in this study.
Collapse
Affiliation(s)
- Yitong Dan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Lei Zhou
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yinzhu Diao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Feihong Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huan Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
9
|
Maletić S, Isakovski MK, Sigmund G, Hofmann T, Hüffer T, Beljin J, Rončević S. Comparing biochar and hydrochar for reducing the risk of organic contaminants in polluted river sediments used for growing energy crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157122. [PMID: 35787901 DOI: 10.1016/j.scitotenv.2022.157122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
In Europe alone, >200 million m3 of river sediments are dredged each year, part of which are contaminated to such an extent that they have to be landfilled. This study compares the use of biochar and hydrochar for the remediation of sediment contaminated with pentachlorobenzene, hexachlorobenzene, lindane, trifluralin, alachlor, simazine, and atrazine with the motivation to make sediments contaminated by such priority substances usable as arable land for growing energy crops. Biochar and hydrochar originating from Miscanthus giganteus and Beta vulgaris shreds were compared for their potential to reduce contaminant associated risk in sediments. Specifically, by investigating the effects of sorbent amendment rate (1, 5, and 10 %) and incubation time (14, 30, and 180 d) on contaminant bioaccessibility, toxicity to the bacteria Vibrio fischeri, as well as toxicity and plant uptake in Zea mays. Biochar reduced contaminant bioaccessibility up to five times more than hydrochar. The bioaccessibility of contaminants decreased up to sevenfold with increasing incubation time, indicating that the performance of carbonaceous sorbents may be underestimated in short-term lab experiments. Biochar reduced contaminants toxicity to Vibrio fischeri, whereas hydrochar was itself toxic to the bacteria. Toxicity to Zea mays was determined by contaminant bioaccessibility but also sorbent feedstock with cellulose rich Beta vulgaris based sorbents exhibiting toxic effects. The plant uptake of all contaminants decreased after sorbent amendment.
Collapse
Affiliation(s)
- Snežana Maletić
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia
| | | | - Gabriel Sigmund
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Thilo Hofmann
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Thorsten Hüffer
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Jelena Beljin
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia
| | - Srđan Rončević
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia
| |
Collapse
|
10
|
Al-Naqeb G, Sidarovich V, Scrinzi D, Mazzeo I, Robbiati S, Pancher M, Fiori L, Adami V. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 3. Toxicological evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115910. [PMID: 35947910 DOI: 10.1016/j.jenvman.2022.115910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Modern societies produce ever-increasing amounts of waste, e.g. organic fraction of municipal solid waste (OFMSW). According to the best available techniques, OFMSW should be treated through anaerobic digestion to recover biogas and subsequently composted. An innovative scheme is under investigation, where anaerobic digestion is combined with hydrothermal carbonization (HTC) and composting. The final product, referred to as hydrochar co-compost (HCO), is under study to be used as an unconventional soil improver/fertilizer. Recent studies showed that HCO is not phytotoxic. However, nothing is known about the toxicity of HCO on cells as part and organisms as a whole. This study aims to investigate in vitro genotoxicity and cytotoxicity of the HCO and its precursors in the production process. In particular, we tested water and methanolic extracts of HCO (WEHCO and MEHCO) from one side and methanolic extracts of hydrochar (MEH) and OFMSW digestate (MED) as well as liquor produced downstream HTC (HTCL) from the other side. Genotoxicity was investigated using cytokinesis-block micronucleus assay in Chinese Hamster Ovarian K1 (CHO-K1) cells. Cytotoxicity was tested in vitro against a panel of human cells line. Zebrafish embryo toxicity upon MEH treatment was also investigated. Results show that incubation of CHO-K1 cells with all the tested samples at different concentrations did not cause any induction of micronucleus formation compared to the vehicle-treated control. Treatment of cells with MEH, MED, HTCL and MEHCO, but not WEHCO, induced some degree of cytotoxicity and MEH showed to be more cytotoxic against tested cells compared to the MEHCO. Toxicity effect at the highest tested concentrations of MEH on zebrafish embryos resulted in coagulation, induction of pericardial edema and death. In conclusion, the hydrochar co-compost cytotoxicity is similar to standard compost cytotoxicity. Hence composting the hydrochar from OFMSW digestate is a good step to eliminate the cytotoxicity of hydrochar.
Collapse
Affiliation(s)
- Ghanya Al-Naqeb
- Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy; Department of Food Sciences and Nutrition, Faculty of Agriculture Food and Environment, University of Sana'a, Sana'a, Yemen.
| | - Viktoryia Sidarovich
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Donato Scrinzi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Ilaria Mazzeo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Sergio Robbiati
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michael Pancher
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Luca Fiori
- Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy; Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Valentina Adami
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
11
|
Karatas O, Khataee A, Kalderis D. Recent progress on the phytotoxic effects of hydrochars and toxicity reduction approaches. CHEMOSPHERE 2022; 298:134357. [PMID: 35313162 DOI: 10.1016/j.chemosphere.2022.134357] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Hydrothermal carbonization of wet biomasses has been known to produce added-value materials for a wide range of applications. From catalyst substrates, to biofuels and soil amendments, hydrochars have distinct advantages to offer compared to conventional materials. With respect to the agricultural application of hydrochars, both positive and negative results have been reported. The presence of N, P and K in certain hydrochars is appealing and may contribute to the reduction of chemical fertilizer application. However, regardless of biomass, hydrothermal carbonization results in the production of phytotoxic organic compounds. Additionally, hydrochars from sewage sludge often contain heavy metal concentrations which exceed the regulatory limits set for agricultural use. This review critically discusses the phytotoxic aspects of hydrochar and provides an account of the substances commonly responsible for these. Furthermore, phytotoxicity reduction approaches are proposed and compared with each other, in view of field-scale applications.
Collapse
Affiliation(s)
- Okan Karatas
- Department of Environmental Engineering, Gebze Technical University, Gebze, 41400, Turkey; Department of Environmental Engineering, Bursa Technical University, Bursa, 16310, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, Gebze, 41400, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Dimitrios Kalderis
- Department of Electronics Engineering, Hellenic Mediterranean University, Chania, Crete, 73100, Greece.
| |
Collapse
|
12
|
Bona D, Scrinzi D, Tonon G, Ventura M, Nardin T, Zottele F, Andreis D, Andreottola G, Fiori L, Silvestri S. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 2. agro-environmental properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114894. [PMID: 35334400 DOI: 10.1016/j.jenvman.2022.114894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The work concerns the study of the hydrochar from digestate and hydrochar co-compost characterization as amendments. The processes for hydrochar and co-compost production were described in Part 1 of this work (Scrinzi et al., 2022). The amendment properties of hydrochar (produced at 180-200-220 °C for 3 h) and co-composts (25%, 50%, and 75% hydrochar percentage of digestate substitution) were assessed by phytotoxicity, plant growth bioassay, and soil effect. Different seeds species (Lepidium sativum, Cucumis sativus, and Sorghum bicolor sp.) were dosed at increased concentrations using both wet raw amendments and their water extracts. The chemical characterization showed phytotoxic compounds content depending on both the initial feedstock (digestate) and the HTC process; at the same time, the analysis highlighted the reduction of these compounds by composting (organic acid, polyphenols, salt concentration). The dose-response was analyzed by the Cedergreen-Streibig-Ritz model and the half-maximal effective concentration (EC50) was calculated based on this equation. The soil properties and GHG emissions measurements (CH4, CO2, N2O, and NH3) highlighted the effect on N dynamics and on soil respiration induced by substrates. The HC200 soil application determined a significant impact on CO2 and N2O emission and NH3 volatilization (10.82 mol CO2/m2; 51.45 mmol N2O/m2; 112 mol NH3/m2) and a significant reduction of total N and TOC (46% of TKN and 49% of TOC). The co-compost (75%) showed specific effects after soil application compared to other samples an increase of available P (48%), a greater content of nitrogen (1626 mg/kg dry basis), and a reduction of organic carbon (17%). Our results demonstrate the good quality of co-compost and at the same time the validity of this post-treatment for addressing many issues related to hydrochar use in the soil as an amendment, confirming the suitability of HTC process integration for digestate treatment in anaerobic digestion plants.
Collapse
Affiliation(s)
- Daniela Bona
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Donato Scrinzi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Giustino Tonon
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università, 5, 39100, Bozen-Bolzano, Italy
| | - Maurizio Ventura
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università, 5, 39100, Bozen-Bolzano, Italy
| | - Tiziana Nardin
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Fabio Zottele
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Daniele Andreis
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Luca Fiori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy; Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy.
| | - Silvia Silvestri
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| |
Collapse
|
13
|
Scrinzi D, Bona D, Denaro A, Silvestri S, Andreottola G, Fiori L. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 1. production and chemical characterization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114688. [PMID: 35180435 DOI: 10.1016/j.jenvman.2022.114688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The best available technique (BAT) for managing the organic fraction of municipal solid waste (OFMSW) is represented by anaerobic digestion (AD) and subsequent composting. This research explored a new industrial model in the framework of the C2Land international project, with the insertion of hydrothermal carbonization (HTC) as a post-treatment for OFMSW digestate. The reaction was set for 3 h at three different temperatures (180 ÷ 220 °C); the wet solid hydrochar obtained after filtration was then co-composted with greenery waste as a bulking agent and untreated OFMSW digestate in four different proportions in bench-scale bioreactors. The hydrochars and the hydrochar co-composts were suitable for agro-industrial applications, while the HTC liquors were tested in biochemical methane potential (BMP) for internal recirculation to AD. The scenarios proposed can be beneficial for plant enhancement and increased biogas production. This study reports results connected to the production phase. Mass balances confirmed that, during HTC, phosphorus precipitated into the solid products, organic nitrogen partially mineralized into ammonium, and oxidizable organic matter solubilized. The selected hydrochar obtained at 200 °C had mean (dry) solid, liquid, and gaseous yields equal to 77, 20, and 3 %db, respectively. The dynamic respirometric index (DRI) confirmed that the reproduced BAT for the composting process was effective in producing high-quality hydrochar co-composts in terms of biological stability. The BMP tests on HTC liquors showed some inhibitory effects, suggesting the need for future studies with inoculum adaptation and co-digestion, to dilute toxic compounds and enhance biogas production. Part 2 of this study describes the agro-environmental properties of hydrochars and hydrochar co-composts, including the beneficial effect of composting on hydrochars phytotoxicity.
Collapse
Affiliation(s)
- Donato Scrinzi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Daniela Bona
- Fondazione Edmund Mach, Environmental, Energy and Livestock Resources Unit, Trento, Italy
| | - Andrea Denaro
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Silvia Silvestri
- Fondazione Edmund Mach, Environmental, Energy and Livestock Resources Unit, Trento, Italy
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Luca Fiori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy; Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy.
| |
Collapse
|
14
|
Benefits and Limitations of Using Hydrochars from Organic Residues as Replacement for Peat on Growing Media. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
New technologies for the production of peat-substitutes are required to meet the rising demand for growing media in horticulture and the need to preserve natural peatlands. Hydrothermal conversion of organic residues into char materials, hydrochars, with peat-like properties may produce such substitutes, reducing environmental impacts and CO2 emissions from improper management. To assess their potential as a component in growing media, cress seed germination tests are used to assess hydrochars from digestate (D), spent coffee grounds (SCG), and grape marc (GM). Pre- and post-treatments (extraction, washing, and drying) are applied to remove phytotoxic compounds associated with process waters retained on the hydrochars, and a nitrification bioassay with process water is used to predict their toxicity. All hydrochars achieve similar or better germination results compared to their feedstock, showing a potential to replace at least 5% of peat in growing media. SCG and GM hydrochars show inhibition above 5%, while all post-treated D-hydrochar mixtures produce >3 times longer roots than the control. The nitrification test shows a high sensitivity and good agreement with the high inhibition trends found in the germination tests with process water. Such tests can be a good way to optimize process combinations for the hydrothermal production of peat replacements.
Collapse
|
15
|
Wang M, Zhang M, Chen X, Chen A, Xiao R, Chen X. Hydrothermal conversion of Chinese cabbage residue for sustainable agriculture: Influence of process parameters on hydrochar and hydrolysate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152478. [PMID: 34953838 DOI: 10.1016/j.scitotenv.2021.152478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The demands on novel and sustainable techniques for vegetable waste (VW) valorization continues to increase during the past few decades due to the growing waste production under the flourishing vegetable industries. In this study, Chinese cabbage residues were hydrothermal carbonization (HTC) at 180, 200, 220 and 240 °C for 2 to 6 h to explore the impacts of process parameters on the characteristics of hydrochars and hydrolysates and their feasibility in sustainable agriculture. Results indicated that hydrothermal temperature had a greater impact on cabbage residue hydrolysis than the residence time. With the rising reaction severity, hydrochars became more alkaline with higher amount of ash and carbon (C), while the pH and dissolved organic nitrogen (DON) and NH4+-N in the hydrolysate were gradually reduced. The thermogravimetric analysis (TG-DTG) indicated that organic constitutions in the feedstock went through incomplete decomposition. Although the recalcitrance index (R50) steadily increased through HTC (0.37-0.46), hydrochars were unstable and would not applicable for carbon sequestration. Furthermore, hydrochars and hydrolysate would be optimal media for plants seedling and growth for the abundant nutrients and dissolved organic compounds but reduced phytotoxicity. In conclusion, these results showed that HTC is highly applicable for vegetable waste management for sustainable agriculture.
Collapse
Affiliation(s)
- Mengqiao Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Muyuan Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xuhao Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Anle Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Suárez L, Díaz TE, Benavente-Ferraces I, Plaza C, Almeida M, Centeno TA. Hydrothermal treatment as a complementary tool to control the invasive Pampas grass (Cortaderia selloana). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150796. [PMID: 34624279 DOI: 10.1016/j.scitotenv.2021.150796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The rapid spread of invasive Pampas grass (PG) is having not only ecosystems impact, but also significant economic and social effects. The tonnes of bulky waste from the plant disposal require proper treatment to avoid seed dispersal, greenhouse gas emissions and landscape damage. In the pursuit of zero-waste management, hydrothermal treatment (HT) appears as a challenging alternative. The possibility of mobile HT systems offers an alternative to accomplish on-site both the PG waste management and the application of the resulting by-products within a circular framework. As a first step, this research shows that, without a prior drying step, the hydrothermal treatment at 100-230 °C under autogenous water vapor pressure for only 30 min allows safe seeds inertization, while a stable carbon-enriched solid and an aqueous stream are generated. Prolonging the process for 2 h has no profitable effects. As the reaction temperature increases, the PG residue is converted into a material with 49-58 wt% of carbon, 41-32 wt% of oxygen and 3-4 wt% of ash. The pH (~6.3), low electrical conductivity (1.21-0.86 dS/m), high carbon content, open porosity (5-8 m2/g) and improved performance in seed germination and in the early growth test suggest the potential of HT-solids derived at 100-120 °C as amendment to sequester carbon in the soil and improve its physico-biological properties. The phytotoxicity detected in the peat/lignite-like solids obtained at 200-230 °C limits its application in soil, but calorific values of 22-24 MJ/kg indicate their suitability as CO2-neutral fuel. The agrochemical analysis of the liquid by-products indicates poor value on their own, but their use supplemented with compost may be an option.
Collapse
Affiliation(s)
- Loreto Suárez
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011 Oviedo, Spain
| | - Tomás Emilio Díaz
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Catedrático José María Serrano, 10, 33006 Oviedo, Spain
| | | | - César Plaza
- Instituto de Ciencias Agrarias, ICA-CSIC. Serrano 115 bis, 28006 Madrid, Spain
| | - Mónica Almeida
- Instituto Politécnico de Coimbra, Escola Superior Agrária de Coimbra, Centre for Functional Ecology, Bencanta, 3045-601 Coimbra, Portugal
| | - Teresa A Centeno
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011 Oviedo, Spain.
| |
Collapse
|
17
|
Fan G, Tong F, Zhang W, Shi G, Chen W, Liu L, Li J, Zhang Z, Gao Y. The effect of organic solvent washing on the structure of hydrochar-based dissolved organic matters and its potential environmental toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26584-26594. [PMID: 33484455 DOI: 10.1007/s11356-021-12517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
With the increased interest in the practical use of hydrochar, concerns about the possible environmental biotoxicity of hydrochar and its released dissolved organic matters (DOM) have grown. As a common method for removing bio-oil on the surface of hydrochar, the effect of organic solvent washing on the properties of hydrochar released DOM remains unclear. In this study, we made a comprehensive comparison of hydrochar properties and molecule structure as well as biotoxicity of DOM released from HC (raw hydrochar) and THC (hydrochar washed by tetrahydrofuran). The results indicated that the mass loss of hydrochar was obvious after tetrahydrofuran (THF) washing, and a decline of H/C atomic ratio and increase of N/C and O/C atomic ratios was observed based on Van Krevelen (VK) diagram. This result was further confirmed by FTIR, 13C NMR, and XPS results. Meanwhile, the molecule structure of DOM was shifted to lower molecule weight with higher O-contain compounds after THF extraction due to the demethanation process. However, the biotoxicity experiments indicated that both extracted DOM had no significant impact on germination rate of wheat, and HC-treated sample even exhibited growth superiority. Nevertheless, potential toxicity was observed with the increase of the activity of antioxidant enzymes, and THF washing aggravated the potential oxidative damage through increasing the aromaticity of DOM. Such understanding highlights the importance of evaluating hydrochar and its released DOM before applications, so as to reduce the potential environment biotoxicity.
Collapse
Affiliation(s)
- Guangping Fan
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Fei Tong
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Weiguo Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Gaoling Shi
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Wei Chen
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Lizhu Liu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Jiangye Li
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Zhenhua Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China.
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China.
| | - Yan Gao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China.
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China.
| |
Collapse
|
18
|
Ding A, Zhang R, Ngo HH, He X, Ma J, Nan J, Li G. Life cycle assessment of sewage sludge treatment and disposal based on nutrient and energy recovery: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144451. [PMID: 33736265 DOI: 10.1016/j.scitotenv.2020.144451] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
With the acceleration of urbanization, the production of urban sludge is increasing rapidly. To minimize resource input and waste output, it is crucial to execute analyses of environmental impact and assessments of sustainability on different technical strategies involving sludge disposal based on Life Cycle Assessment (LCA), which is a great potential mean of environmental management adopted internationally in the 21st century. This review aims to compare the environmental sustainability of existing sludge management schemes with a purpose of nutrient recovery and energy saving, respectively, and also to include the substitution benefits of alternative sludge products. Simultaneously, LCA research regarding the emerging sludge management technologies and sludge recycling (cement, adsorbent, bricks) is analyzed. Additionally, the key aspects of the LCA process are worth noting in the context of the current limitations reviewed here. It is worth emphasizing that no technical remediation method can reduce all environmental damage simultaneously, and these schemes are typically more applicable to the assumed local conditions. Future LCA research should pay more attention to the toxic effects of different sludge treatment methods, evaluate the technical ways of adding pretreatment technology to the 'front end' of the sludge treatment process, and further explore how to markedly reduce environmental damage in order to maximize energy and nutrient recovery from the LCA perspective.
Collapse
Affiliation(s)
- An Ding
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090 Harbin, PR China.
| | - Rourou Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090 Harbin, PR China
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Xu He
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090 Harbin, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090 Harbin, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090 Harbin, PR China.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090 Harbin, PR China
| |
Collapse
|
19
|
Odinga ES, Gudda FO, Waigi MG, Wang J, Gao Y. Occurrence, formation and environmental fate of polycyclic aromatic hydrocarbons in biochars. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
20
|
Bento LR, Spaccini R, Cangemi S, Mazzei P, de Freitas BB, de Souza AEO, Moreira AB, Ferreira OP, Piccolo A, Bisinoti MC. Hydrochar obtained with by-products from the sugarcane industry: Molecular features and effects of extracts on maize seed germination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111878. [PMID: 33388711 DOI: 10.1016/j.jenvman.2020.111878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Sugarcane bagasse, vinasse and a mixture of sugarcane bagasse and vinasse were hydrothermally carbonized (HTC), with and without the addition of phosphoric acid, in order to propose new applications of sucroenergetic industry by-products on soil. Detailed information on the composition and properties of hydrochars has been obtained through elemental composition, thermogravimetric analysis, nuclear magnetic resonance and, thermochemolysis GC-MS. The soluble acidic fraction from the hydrochar samples were applied to maize seeds to evaluate the agronomic potential as biostimulants and relate the molecular features with maize seed germination. The HTC treatment converted polysaccharide-based biomasses into hydrochars with hydrophobic characteristics (C-Aryl and C-Akyl). Furthermore, the addition of phosphoric acid further increased the overall hydrophobicity and shifted the thermal degradation of the hydrochars to higher temperatures. Biomass influenced the hydrochars that formed, in which the molecular features of sugarcane bagasse determined the formation of more polar hydrochar, due to the preservation of lignin and phenolic components. Meanwhile, the HTC of vinasse resulted in a more hydrophobic product with an enrichment of condensed and recalcitrant organic fractions. The germination assay showed that polar structures of bagasse may play a role in improving the maize seeds germination rate (increase of ~11%), while the hydrophobic domains showed negative effects. The responses obtained in germination seems to be related to the molecular characteristics that organic extracts can present in solution.
Collapse
Affiliation(s)
- Lucas Raimundo Bento
- Laboratório de Estudos Em Ciências Ambientais (LECA), Instituto de Biociências, Letras e Ciências Exatas, UNESP, Universidade Estadual Paulista, Departamento de Química e Ciências Ambientais, São José Do Rio Preto, São Paulo, Brazil; Centro Interdipartimentale di Ricerca Sulla Risonanza Magnetica Nucleare per L'Ambiente, L'Agroalimentare Ed I Nuovi Materiali (CERMANU), Università di Napoli Federico II, Portici, Napoli, Italy
| | - Riccardo Spaccini
- Centro Interdipartimentale di Ricerca Sulla Risonanza Magnetica Nucleare per L'Ambiente, L'Agroalimentare Ed I Nuovi Materiali (CERMANU), Università di Napoli Federico II, Portici, Napoli, Italy
| | - Silvana Cangemi
- Centro Interdipartimentale di Ricerca Sulla Risonanza Magnetica Nucleare per L'Ambiente, L'Agroalimentare Ed I Nuovi Materiali (CERMANU), Università di Napoli Federico II, Portici, Napoli, Italy
| | - Pierluigi Mazzei
- Centro Interdipartimentale di Ricerca Sulla Risonanza Magnetica Nucleare per L'Ambiente, L'Agroalimentare Ed I Nuovi Materiali (CERMANU), Università di Napoli Federico II, Portici, Napoli, Italy; Dipartimento di Farmacia (DIFARMA), Università Degli Studi di Salerno, 84084, Fisciano, SA, Italy
| | - Bianca Borge de Freitas
- Laboratório de Estudos Em Ciências Ambientais (LECA), Instituto de Biociências, Letras e Ciências Exatas, UNESP, Universidade Estadual Paulista, Departamento de Química e Ciências Ambientais, São José Do Rio Preto, São Paulo, Brazil
| | - Andressa Eva Oliveira de Souza
- Laboratório de Estudos Em Ciências Ambientais (LECA), Instituto de Biociências, Letras e Ciências Exatas, UNESP, Universidade Estadual Paulista, Departamento de Química e Ciências Ambientais, São José Do Rio Preto, São Paulo, Brazil
| | - Altair Benedito Moreira
- Laboratório de Estudos Em Ciências Ambientais (LECA), Instituto de Biociências, Letras e Ciências Exatas, UNESP, Universidade Estadual Paulista, Departamento de Química e Ciências Ambientais, São José Do Rio Preto, São Paulo, Brazil
| | - Odair Pastor Ferreira
- Laboratório de Materiais Funcionais Avançados (LaMFA), Departamento de Física, Universidade Federal Do Ceará, Fortaleza, Ceará, Brazil
| | - Alessandro Piccolo
- Centro Interdipartimentale di Ricerca Sulla Risonanza Magnetica Nucleare per L'Ambiente, L'Agroalimentare Ed I Nuovi Materiali (CERMANU), Università di Napoli Federico II, Portici, Napoli, Italy
| | - Márcia Cristina Bisinoti
- Laboratório de Estudos Em Ciências Ambientais (LECA), Instituto de Biociências, Letras e Ciências Exatas, UNESP, Universidade Estadual Paulista, Departamento de Química e Ciências Ambientais, São José Do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
21
|
Insights on Molecular Characteristics of Hydrochars by 13C-NMR and Off-Line TMAH-GC/MS and Assessment of Their Potential Use as Plant Growth Promoters. Molecules 2021; 26:molecules26041026. [PMID: 33672045 PMCID: PMC7919478 DOI: 10.3390/molecules26041026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Hydrochar is a carbon-based material that can be used as soil amendment. Since the physical-chemical properties of hydrochar are mainly assigned to process parameters, we aimed at evaluating the organic fraction of different hydrochars through 13C-NMR and off-line TMAH-GC/MS. Four hydrochars produced with sugarcane bagasse, vinasse and sulfuric or phosphoric acids were analyzed to elucidate the main molecular features. Germination and initial growth of maize seedlings were assessed using hydrochar water-soluble fraction to evaluate their potential use as growth promoters. The hydrochars prepared with phosphoric acid showed larger amounts of bioavailable lignin-derived structures. Although no differences were shown about the percentage of maize seeds germination, the hydrochar produced with phosphoric acid promoted a better seedling growth. For this sample, the greatest relative percentage of benzene derivatives and phenolic compounds were associated to hormone-like effects, responsible for stimulating shoot and root elongation. The reactions parameters proved to be determinant for the organic composition of hydrochar, exerting a strict influence on molecular features and plant growth response.
Collapse
|
22
|
Celletti S, Bergamo A, Benedetti V, Pecchi M, Patuzzi F, Basso D, Baratieri M, Cesco S, Mimmo T. Phytotoxicity of hydrochars obtained by hydrothermal carbonization of manure-based digestate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111635. [PMID: 33187784 DOI: 10.1016/j.jenvman.2020.111635] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 10/25/2020] [Indexed: 05/27/2023]
Abstract
The management of digestate, the main by-product of the anaerobic digestion (AD) process, is one of the most serious environmental issues. Although digestate is used on arable land as a fertilizer, it can have a negative impact on the environment due to nitrate leaching into the groundwater and ammonia volatilization into the atmosphere, with high economic and environmental disposal costs. Therefore, hydrothermal carbonization (HTC), a thermochemical biomass conversion process, could represent a sustainable and efficient alternative for digestate management. Hydrochar, the solid product of the HTC process, has been recently proposed as a plant growing medium in soilless culture systems (SCS). Here, using cow manure digestate as feedstock, we investigated the influence of the HTC process reaction temperature (180, 220 and 250 °C) and residence time (1 and 3 h) on the physical-chemical properties (pH, electrical conductivity, and mineral element concentrations) of the resulting hydrochars. Furthermore, in order to fully valorize hydrochar as a growing medium, their possible phytotoxic effects and those of their water extracts (prepared at two different concentrations and at different pHs) were tested in germination tests with cress seeds (Lepidium sativum L.). Concentrations of nutrients, heavy metals, organic acids, sugars and furan compounds were determined in the water extracts. Characterization analysis of these hydrochars revealed that they can be distinguished from each other by their physical-chemical properties, which were significantly affected by the two process parameters. Specifically, the HTC temperature had a greater effect on the composition of hydrochars than the residence time. Germination tests found hydrochar water extracts to show significantly lower phytotoxicity than the hydrochars themselves. Notably, the phytotoxic effect of the extracts decreased with increasing extraction ratio and decreasing pH. The chromatographic characterization of extracts identified the presence of potential phytotoxins, such as furan compounds (i.e., hydroxymethylfurfural and furfural). However, before using hydrochars as potential and innovative growing media for plants, their phytotoxicity should be limited, for example through their dilution with other substrates. Overall, AD-HTC coupling could represent a valuable eco-sustainable expedient in the field of biomasses, green economy and waste conversion and, therefore, further investigations in this direction are necessary.
Collapse
Affiliation(s)
- Silvia Celletti
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39100, Bolzano, Italy.
| | - Alex Bergamo
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39100, Bolzano, Italy
| | - Vittoria Benedetti
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39100, Bolzano, Italy
| | - Matteo Pecchi
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39100, Bolzano, Italy
| | - Francesco Patuzzi
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39100, Bolzano, Italy
| | | | - Marco Baratieri
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39100, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39100, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39100, Bolzano, Italy
| |
Collapse
|
23
|
Composting Hydrochar-OFMSW Digestate Mixtures: Design of Bioreactors and Preliminary Experimental Results. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An increasing number of industrial plants integrate the anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) with a subsequent composting phase. To improve the plant productivity, a fraction of OFMSW digestate can be converted into a carbonaceous material, called hydrocar (HC), through Hydrothermal Carbonization (HTC), and then composted together with the OFMSW digestate itself, to produce “hydrochar co-compost”. The aim of this paper is to present the design and assembly of batch bioreactors, built in-house to investigate the co-composting process of OFMSW digestate and its HC, and to provide some preliminary results. The OFMSW digestate from an industrial plant was carbonized at 200 °C for 3 h in a 2 L HTC reactor, to produce wet HC after filtration. The ratio of OFMSW digestate and green waste (1:1) used as bulking medium was reproduced in four bioreactors with an increasing percentage of HC substituting the OFMSW digestate (0, 25, 50, 75%). The bioreactors managed to effectively compost the solid wet biomasses in a wet environment with temperature and oxygen control, while measuring online the oxygen consumption and thus the dynamic respirometric index (DRI). The DRI24,max measured with AIR-nl solid respirometer (standardized offline measurement) started from values above 800 mg O2 kgVS−1 h−1 before composting and dropped at the end of the process to values in the range 124–340 mg O2 kgVS−1 h−1 for the four mixes, well below the recommended limit of 500 mg O2 kgVS−1 h−1 for high-quality compost stability. These offline DRI values were confirmed by the online DRI measurements. This research is part of the international C2Land Project funded by the European Institute of Innovation and Technology Climate Knowledge and Innovation Community (EIT Climate-KIC), which is greatly acknowledged.
Collapse
|
24
|
Godlewska P, Ok YS, Oleszczuk P. THE DARK SIDE OF BLACK GOLD: Ecotoxicological aspects of biochar and biochar-amended soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123833. [PMID: 33264919 DOI: 10.1016/j.jhazmat.2020.123833] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
Biochar, a product of biomass pyrolysis, is characterized by significant surface area, porosity, high water holding capacity, and environmental persistence. It is perceived as a material that can counteract climate change due to its high carbon stability and is also considered suitable for soil amendment (fertility improvement, soil remediation). However, biochar can have a toxic effect on organisms as harmful substances may be present in it. This paper reviews the literature regarding the current knowledge of harmful substances in biochar and their potential negative impact on organisms from different trophic levels. The effects of biochar on the content and toxicity of harmful substances in biochar-amended soils are also reviewed. Application of biochar into soil does not usually have a toxic effect and very often stimulate plants, bacteria activity and invertebrates. The effect however is strictly determined by type of biochar (especially the feedstock used and pyrolysis temperature) as well as contaminants content. The pH, electrical conductivity, polycyclic aromatic hydrocarbons as well as heavy metals are the main factor usually responsible for biochar toxicity.
Collapse
Affiliation(s)
- Paulina Godlewska
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland.
| |
Collapse
|
25
|
Chen YC, Chen KF, Lin JH, Huang SW, Chen HH, Andrew Lin KY, Lin CH. The impact of pyrolysis temperature on physicochemical properties and pulmonary toxicity of tobacco stem micro-biochar. CHEMOSPHERE 2021; 263:128349. [PMID: 33297274 DOI: 10.1016/j.chemosphere.2020.128349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
Biochars (BCs) are currently widely used, yet their impact on human health is mostly unknown. We generated micro-tobacco stem-pyrolysed BCs (mTBCs) at different pyrolysis temperatures and assessed pulmonary toxicity in normal human lung epithelial BEAS-2B cells. mTBCs generated at 350 °C (mTBC350) and 650 °C (mTBC650) were analysed and compared for physicochemical properties and adverse effects. Pyrolysis temperature had a significant influence on chemical composition, particle size, specific surface area and aromatic carbon structure. mTBC650 displayed a highly ordered aromatic carbon structure with smaller particle size, high surface area (20.09 m2/g) and high polycyclic aromatic hydrocarbon and metal content. This composition could promote reactive oxygen species accumulation accompanied by greater cytotoxicity, genotoxicity and epithelial barrier malfunction in cultured cells. Thus, the risk of pulmonary toxicity owing to micro-BCs (mBCs) is affected by pyrolysis temperature. Long-term exposure to mBCs produced at high temperatures may lead to or exacerbate pulmonary disease.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan; Department of Civil Engineering, National Chi Nan University, Nantou, 54561, Taiwan
| | - Ku-Fan Chen
- Department of Civil Engineering, National Chi Nan University, Nantou, 54561, Taiwan
| | - Jun-Hong Lin
- Department of Natural Biotechnology, Nanhua University, Chiayi, 62249, Taiwan
| | - Shih-Wei Huang
- Department of Electronics, Cheng Shiu University, Kaohsiung, 83347, Taiwan; Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 83347, Taiwan; Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung, 83347, Taiwan
| | - Hung-Hsiang Chen
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan; Department of Civil Engineering, National Chi Nan University, Nantou, 54561, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan.
| |
Collapse
|
26
|
Thomas SC. Post-processing of biochars to enhance plant growth responses: a review and meta-analysis. BIOCHAR 2021; 3:437-455. [PMID: 34723131 PMCID: PMC8547209 DOI: 10.1007/s42773-021-00115-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/14/2021] [Indexed: 05/15/2023]
Abstract
UNLABELLED A number of processes for post-production treatment of "raw" biochars, including leaching, aeration, grinding or sieving to reduce particle size, and chemical or steam activation, have been suggested as means to enhance biochar effectiveness in agriculture, forestry, and environmental restoration. Here, I review studies on post-production processing methods and their effects on biochar physio-chemical properties and present a meta-analysis of plant growth and yield responses to post-processed vs. "raw" biochars. Data from 23 studies provide a total of 112 comparisons of responses to processed vs. unprocessed biochars, and 103 comparisons allowing assessment of effects relative to biochar particle size; additional 8 published studies involving 32 comparisons provide data on effects of biochar leachates. Overall, post-processed biochars resulted in significantly increased average plant growth responses 14% above those observed with unprocessed biochar. This overall effect was driven by plant growth responses to reduced biochar particle size, and heating/aeration treatments. The assessment of biochar effects by particle size indicates a peak at a particle size of 0.5-1.0 mm. Biochar leachate treatments showed very high heterogeneity among studies and no average growth benefit. I conclude that physiochemical post-processing of biochar offers substantial additional agronomic benefits compared to the use of unprocessed biochar. Further research on post-production treatments effects will be important for biochar utilization to maximize benefits to carbon sequestration and system productivity in agriculture, forestry, and environmental restoration. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42773-021-00115-0.
Collapse
Affiliation(s)
- Sean C. Thomas
- Institute of Forestry and Conservation, University of Toronto, 33 Willcocks St., Toronto, ON M5S 3B3 Canada
| |
Collapse
|
27
|
Celletti S, Lanz M, Bergamo A, Benedetti V, Basso D, Baratieri M, Cesco S, Mimmo T. Evaluating the Aqueous Phase From Hydrothermal Carbonization of Cow Manure Digestate as Possible Fertilizer Solution for Plant Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:687434. [PMID: 34276737 PMCID: PMC8278309 DOI: 10.3389/fpls.2021.687434] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/07/2021] [Indexed: 05/14/2023]
Abstract
Improving the agronomic use of recycled nutrients derived from organic waste is one of the priorities within the measures adopted by the European community to reduce environmental issues but remains an unexplored area of research. This study focused on investigating the possibility of using innovative fertilizer solutions in hydroponic systems for the growth of agricultural plants. To this purpose, a liquid fraction [aqueous hydrothermal carbonization (HTC) liquid (AHL)] derived from HTC of cow manure digestate was chemically characterized (pH, electrical conductivity, mineral elements, and organic compounds such as phytotoxins), diluted with distilled water (1:30, 1:60, and 1:90, v/v) to reduce its potential phytotoxicity, and used to grow hydroponic maize (Zea mays L.) plants instead of the classical full-strength nutrient solution. The results indicated that the dilution ratio 1:30 of the AHL solution maintained a high level of toxicity for the plants (phytotoxic substances, especially Na and alkalinity), inducing the arrest of their growth. Differently, the two other dilution ratios (i.e., 1:60 and 1:90) seemed to considerably limit the levels of toxicity, since they allowed the plants to develop. However, these dilution ratios were poor in nutrient elements, inducing alteration in photosynthesis and an onset of deficiency symptoms such as pronounced leaf chlorosis. In view of an eco-friendly approach, future studies are, therefore, needed to identify the correct species-specific dilution ratio to supply both low levels of phytotoxins and adequate content of essential nutrients for appropriate plant growth and development. Furthermore, in order to lower specific Na phytotoxicity, treatments are of utmost importance before using AHL as a fertilizer solution.
Collapse
Affiliation(s)
- Silvia Celletti
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
- *Correspondence: Silvia Celletti,
| | - Maximilian Lanz
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Alex Bergamo
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Vittoria Benedetti
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | | | - Marco Baratieri
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bolzano-Bozen, Bolzano, Italy
- Tanja Mimmo,
| |
Collapse
|
28
|
Hou P, Feng Y, Wang N, Petropoulos E, Li D, Yu S, Xue L, Yang L. Win-win: Application of sawdust-derived hydrochar in low fertility soil improves rice yield and reduces greenhouse gas emissions from agricultural ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142457. [PMID: 33113706 DOI: 10.1016/j.scitotenv.2020.142457] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
As a good soil synergist, biochar has a wide prospect in improving soil fertility and crop production. Although hydrochar, produced by hydrothermal carbonization process has attracted attention due to production advantages, hydrochar application in low fertility soils as well as its impact to the associated greenhouse gas (GHG) emissions in farmlands is rarely reported. To advance our understanding on the effect of hydrochar addition on grain yield from low fertility soils and the corresponding CH4 and N2O emissions, a soil-column experiment, with two hydrochar types (sawdust-derived hydrochar (SDH), microbial-aged hydrochar (A-SDH)) at two application rates (5‰, 15‰; (w/w)), was conducted. The results showed that hydrochar addition evidently increased rice yield. The N2O emissions were mainly related to the substrate supply of the hydrochar itself and less affected by the denitrifiers (functional genes) present. Hydrochar amendment at low application rate (5‰; SDH05, A-SDH05) significantly decreased the cumulative N2O emissions by 26.32% ~ 36.84%. Additionally, hydrochar amendment could not increase the CH4 emissions due to the substrate limitation; the cumulative emissions were similar with those from the control, ranging between 11.1-12.8 g m-2. Regarding grain yield and global warming potential, greenhouse gas intensity from the soils subjected to hydrochar (SDH05, A-SDH05, A-SDH15) were significantly lower than that of the control, observation attributed to the high yield and low N2O emissions. Overall, hydrochar addition is an effective strategy to ensure grain yield in low fertility soils with relatively low/controlled GHG emissions, especially when the amendment is applied at low application rate.
Collapse
Affiliation(s)
- Pengfu Hou
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| | - Yanfang Feng
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| | - Ning Wang
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| | | | - Detian Li
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing 210014, China
| | - Shan Yu
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing 210014, China
| | - Lihong Xue
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China.
| | - Linzhang Yang
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing 210014, China
| |
Collapse
|
29
|
Cárdenas-Aguiar E, Suárez G, Paz-Ferreiro J, Askeland MPJ, Méndez A, Gascó G. Remediation of mining soils by combining Brassica napus growth and amendment with chars from manure waste. CHEMOSPHERE 2020; 261:127798. [PMID: 32750617 DOI: 10.1016/j.chemosphere.2020.127798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/21/2020] [Accepted: 07/21/2020] [Indexed: 05/24/2023]
Abstract
Mining activities lead to important physical, chemical and biological effects on soil properties, generating severe impacts in the establishment and maintenance of vegetation. Assisted phytoremediation can be considered an environmentally friendly approach for soil remediation. In this study, two mining soils (PORT and GAM) were treated with 10%, by mass, of the following amendments: manure biochars prepared at 450 °C (BMW450) and 600 °C (BMW600), hydrochars prepared by hydrothermal carbonization (HTC) of manure at 190 °C (HWM190) and 240 °C (HMW240) and manure waste (MW). Brassica napus was used as a phytoextraction species. After 45 days of plant growth, soil samples were widely characterized, including microbial biomass carbon, enzymatic activity and metal content. In addition, plant biomass production, bioconcentration factor, translocation factor and metal uptake were determined. Experimental results showed that addition of biochars improved the As uptake by Brassica napus in both soils but just in the roots increasing bioconcentration factor between 22.1 and 39.5% for GAM soil and between 28.6 and 53.4% for PORT soil. Brassica napus cannot be considered as Zn accumulator in GAM soil samples and in the case of PORT samples, only the addition of BMW600 and HMW240 enhanced the phytoextraction process of Zn on the roots. Soil enzyme activity improved in hydrochar amended soils.
Collapse
Affiliation(s)
| | - G Suárez
- Department of Geological and Mining Engineering, Technical University of Madrid, 28040, Madrid, Spain
| | - J Paz-Ferreiro
- School of Engineering, RMIT University, GPO Box 2476, 3001, Melbourne, VIC, Melbourne, Australia
| | | | - A Méndez
- Department of Geological and Mining Engineering, Technical University of Madrid, 28040, Madrid, Spain
| | - G Gascó
- Department of Agricultural Production, Technical University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
30
|
Silva MP, Nieva Lobos ML, Piloni RV, Dusso D, González Quijón ME, Scopel AL, Moyano EL. Pyrolytic biochars from sunflower seed shells, peanut shells and Spirulina algae: their potential as soil amendment and natural growth regulators. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03730-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
31
|
Mau V, Arye G, Gross A. Poultry litter hydrochar as an amendment for sandy soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110959. [PMID: 32579520 DOI: 10.1016/j.jenvman.2020.110959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The conversion of poultry litter to hydrochar has been proposed for stabilization of the soils and to eliminate pathogens. Still, research on the hydrochar's effect on soil properties as a function of production temperature, and its direct use with plants is limited in general and even less so on poultry litter. We characterized poultry litter hydrochar as an amendment for sandy soils in terms of changes to the soil's bulk density, porosity, water-retention capacity, and fertility. Soil bulk density, porosity and water-retention capacity were determined in a pneumatic tension plate system for sand with hydrochar-amendment rates of 0.5, 1 and 2%, and hydrochar-production temperature of 180, 220, and 250 °C. Soil fertility was assessed by growing lettuce seedlings in a randomized block design planter experiment, consisting of 16 blocks that were sampled every 10 days. The addition of poultry litter hydrochar resulted in decreased soil bulk density. Soil porosity increased with hydrochar generated at a temperature of up to 220 °C, and decreased with hydrochar generated at 250 °C. Soil water content increased as compared to unamended sand, but decreased with increasing hydrochar-production temperature, probably due to increasing hydrophobicity of the poultry litter hydrochar. The addition of hydrochar at concentrations of 0.5 and 1% resulted in improved plant growth despite an initial delay. While increased soil moisture due to increased soil water-retention capacity was confirmed, it did not seem to be responsible for the improved plant growth. It was also demonstrated for the first time that hydrochar decreases nitrate leaching from soils. Therefore, poultry litter-derived hydrochar seems to be an adequate amendment for sandy soils.
Collapse
Affiliation(s)
- Vivian Mau
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Gilboa Arye
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Amit Gross
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel.
| |
Collapse
|
32
|
Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review. ENERGIES 2020. [DOI: 10.3390/en13164098] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrothermal carbonization (HTC) represents an efficient and valuable pre-treatment technology to convert waste biomass into highly dense carbonaceous materials that could be used in a wide range of applications between energy, environment, soil improvement and nutrients recovery fields. HTC converts residual organic materials into a solid high energy dense material (hydrochar) and a liquid residue where the most volatile and oxygenated compounds (mainly furans and organic acids) concentrate during reaction. Pristine hydrochar is mainly used for direct combustion, to generate heat or electricity, but highly porous carbonaceous media for energy storage or for adsorption of pollutants applications can be also obtained through a further activation stage. HTC process can be used to enhance recovery of nutrients as nitrogen and phosphorous in particular and can be used as soil conditioner, to favor plant growth and mitigate desertification of soils. The present review proposes an outlook of the several possible applications of hydrochar produced from any sort of waste biomass sources. For each of the applications proposed, the main operative parameters that mostly affect the hydrochar properties and characteristics are highlighted, in order to match the needs for the specific application.
Collapse
|
33
|
Potential Use of Waste Activated Sludge Hydrothermally Treated as a Renewable Fuel or Activated Carbon Precursor. Molecules 2020; 25:molecules25153534. [PMID: 32748842 PMCID: PMC7435997 DOI: 10.3390/molecules25153534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 11/17/2022] Open
Abstract
In this work, dewatered waste activated sludge (DWAS) was subjected to hydrothermal carbonization to obtain hydrochars that can be used as renewable solid fuels or activated carbon precursors. A central composite rotatable design was used to analyze the effect of temperature (140–220 °C) and reaction time (0.5–4 h) on the physicochemical properties of the products. The hydrochars exhibited increased heating values (up to 22.3 MJ/kg) and their air-activation provided carbons with a low BET area (100 m2/g). By contrast, chemical activation with K2CO3, KOH, FeCl3 and ZnCl2 gave carbons with a well-developed porous network (BET areas of 410–1030 m2/g) and substantial contents in mesopores (0.079–0.271 cm3/g) and micropores (0.136–0.398 cm3/g). The chemically activated carbons had a fairly good potential to adsorb emerging pollutants such as sulfamethoxazole, antipyrine and desipramine from the liquid phase. This was especially the case with KOH-activated hydrochars, which exhibited a maximum adsorption capacity of 412, 198 and 146 mg/g, respectively, for the previous pollutants.
Collapse
|
34
|
Suárez L, Benavente-Ferraces I, Plaza C, de Pascual-Teresa S, Suárez-Ruiz I, Centeno TA. Hydrothermal carbonization as a sustainable strategy for integral valorisation of apple waste. BIORESOURCE TECHNOLOGY 2020; 309:123395. [PMID: 32325381 DOI: 10.1016/j.biortech.2020.123395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Hydrothermal carbonization makes feasible the integral and profitable recovery of industrial apple waste within a zero-residue bio-economy. 82-96% of the energy and 80-93% of the C in the apple bagasse are retained in the solids generated by hydrothermal treatment at 180 and 230 °C for 2 and 4 h. Such processes stabilize the apple waste and lead to CO2 neutral solid fuels with calorific value close to 30 MJ/kg. The agrochemical properties of the solid by-products suggest their potential to improve soil quality. Aqueous streams containing valuable phenolic compounds and saturated fatty acids are generated simultaneously, which provide additional cost-effectiveness. The by-products characteristics can be suited to the final application by selecting the reaction temperature, whereas the process duration has less impact. Optical microscopy and reflectance measurements are presented, for the first time, as powerful tools for assessing the biomass transformation when subjected to hydrothermal treatment under different conditions.
Collapse
Affiliation(s)
- Loreto Suárez
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011 Oviedo, Spain
| | | | - César Plaza
- Instituto de Ciencias Agrarias, ICA-CSIC, Serrano 115 bis, 28006 Madrid, Spain
| | - Sonia de Pascual-Teresa
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, José Antonio Novais 10, 28040 Madrid, Spain
| | - Isabel Suárez-Ruiz
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011 Oviedo, Spain
| | - Teresa A Centeno
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011 Oviedo, Spain.
| |
Collapse
|
35
|
Bahcivanji L, Gascó G, Paz-Ferreiro J, Méndez A. The effect of post-pyrolysis treatment on waste biomass derived hydrochar. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 106:55-61. [PMID: 32182562 DOI: 10.1016/j.wasman.2020.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Hydrochars are materials with a promising future, as their high carbon content and porosity renders them suitable for uses including peat substitutes, soil remediation and carbon adsorbent precursors. Combining hydrothermal carbonization and pyrolysis offers the prospect to provide advanced materials with a higher porosity and carbon content. This approach would mitigate drawbacks associated to hydrochars, including phytotoxicity. This research studied the influence of pyrolysis temperature and heating time on the resulting properties of chars made from hydrothermal carbonization of biomass wastes at 200 °C for 4 h and compared them to biochars that had not received any prior hydrothermal carbonization. Interestingly, hydrochar followed by pyrolysis was able to result in phytostimulation, while, when only pyrolysis was carried out, phytotoxicity was eliminated, but no phytostimulant effect was observed. In addition, the results indicated that the higher and longer the pyrolysis temperature (from 350 to 550 °C) and duration time (from 1 to 5 h), respectively, the more microporosity was generated, while phytotoxicity was reduced. In addition, aromaticity and thermal stability significantly increased with pyrolysis treatment. Consequently, hydrochars improve their properties and offer more potential for environmental applications after a pyrolysis post-treatment.
Collapse
Affiliation(s)
- L Bahcivanji
- Department of Geological and Mining Engineering, Technical University of Madrid, 28040 Madrid, Spain
| | - G Gascó
- Department of Agricultural Production, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - J Paz-Ferreiro
- School of Engineering, RMIT University, GPO Box 2476, 3001 Melbourne, VIC, Australia.
| | - A Méndez
- Department of Geological and Mining Engineering, Technical University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
36
|
Lang Q, Zhang B, Li Y, Liu Z, Jiao W. Formation and toxicity of polycyclic aromatic hydrocarbons during CaO assisted hydrothermal carbonization of swine manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 100:84-90. [PMID: 31525676 DOI: 10.1016/j.wasman.2019.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/20/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
The effects of temperature and CaO introduction on polycyclic aromatic hydrocarbons (PAHs) contents, distribution patterns and toxicity of the products from hydrothermal carbonization (HTC) of swine manure (SM) were investigated in this study for the first time. The results indicated that increasing temperature decreased total PAHs content of the hydrochar, while the PAHs toxicity firstly decreased and then increased during HTC of SM. For the aqueous product, the total PAHs content and toxicity gradually decreased with increasing temperature. CaO introduction during HTC of SM significantly suppressed the PAHs formation and promoted the transformation from higher molecular weight PAHs into lower molecular weight PAHs in HTC products, resulting in the remarkably decreased content and toxicity of PAHs. The lowest total PAHs content (1428.57 μg/kg) and TEQ value (21.33 μg/kg) of the hydrochar were obtained by 15% CaO introduction at 200 °C and 180 °C, respectively, and compared to SM, they were decreased by 73.73% and 79.51%, respectively. Moreover, 3-ring PAHs were the predominant PAHs in HTC products regardless of CaO introduction. The present study demonstrated that CaO assisted HTC at temperature lower than 220 °C was effective to reduce the total content and toxicity of PAHs in SM, and the prepared hydrochar was a promising soil amendment in view of the elimination of PAHs toxicity.
Collapse
Affiliation(s)
- Qianqian Lang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhang
- Shandong Province Environmental Technology Service Center, Jinan 250102, China
| | - Yi Li
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Zhengang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Jaskulak M, Grobelak A, Grosser A, Vandenbulcke F. Gene expression, DNA damage and other stress markers in Sinapis alba L. exposed to heavy metals with special reference to sewage sludge application on contaminated sites. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:508-517. [PMID: 31234065 DOI: 10.1016/j.ecoenv.2019.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Bioindicators are promising tools used to detect the long-term effects of selected biosolids on plants development and should be implemented before large-scale supplementation of sewage sludge into the soil. The presented study shows the impact of sewage sludge application on metal-sensitive toxicity biological parameters (biomarkers) in Sinapis alba including: germination, root length, the activity of guaiacol peroxidase, the chlorophyll content, the level of DNA damage and the expression level of Ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) and metallothionein (mt). We evaluated data from selected biomarkers in order to broaden our understanding of plants defense mechanisms against heavy metal contamination and the application of sewage sludge into soils. Overall, in contaminated soil after supplementation with both municipal sewage sludges, an increase in toxicity was noticed in DNA damage, mt and rbcl expression and total chlorophyll content. The supplementation of both soils with municipal sewage sludge caused a two-time induction in the mt expression. Moreover, clean soil supplemented with sewage sludge caused an increase in DNA damage shown as the tail moment from approximately 12 μm on control to 40 μm after supplementation. Even if those biosolids increased the initial germination, roots length, and biomass in comparison to the unamended soil, the toxicity was evidenced with other stress markers. Results showed, that in order to accurately assess the influence of sewage sludge application on plants the use of several specific biomarkers is required for safe land restoration. The conducted study also confirmed, both under biochemical and genotoxic tests, that iron enrichment for biosolids or contaminated soil can significantly reduce the bioavailability and toxicity of other metals.
Collapse
Affiliation(s)
- Marta Jaskulak
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Czestochowa, Poland; University of Lille, Laboratory of Civil Engineering and Environment (LGCgE), Environmental Axis, F-59650 Villeneuve d'Ascq, France.
| | - Anna Grobelak
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Czestochowa, Poland
| | - Anna Grosser
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Czestochowa, Poland
| | - Franck Vandenbulcke
- University of Lille, Laboratory of Civil Engineering and Environment (LGCgE), Environmental Axis, F-59650 Villeneuve d'Ascq, France
| |
Collapse
|
38
|
Melo TM, Bottlinger M, Schulz E, Leandro WM, Botelho de Oliveira S, Menezes de Aguiar Filho A, El-Naggar A, Bolan N, Wang H, Ok YS, Rinklebe J. Management of biosolids-derived hydrochar (Sewchar): Effect on plant germination, and farmers' acceptance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:200-214. [PMID: 30798039 DOI: 10.1016/j.jenvman.2019.02.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/15/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Hydrothermal carbonization is a promising approach of biosolids management and its utilization as a soil amendment. This study evaluated the physical and chemical properties of hydrothermally converted biosolids (Sewchar) and its effect as a potential soil amendment on the growth of rice, beans, and radish. The germination experiment was conducted in a greenhouse in a randomized design using five Sewchar doses (0, 10, 20, 40 and 60 Mg ha-1). The results showed that hydrothermal carbonization influences the physicochemical properties of the biosolids, such as promoting pore structure and trace elements below the threshold values for use in agriculture. The spectroscopic techniques demonstrated higher presence of oxygen-containing functional groups (e.g., CO/OH) on surfaces of Sewchar than that of biosolids. The Sewchar doses of 10 Mg ha-1 and 60 Mg ha-1 yielded the highest dry biomass for beans and rice respectively. Increasing Sewchar doses negatively correlated with radish dry biomass, as indicated by linear regression equation fitting (p < 0.05). Thus, biomass responses to Sewchar application into the soil varied with Sewchar dose and type of plant. For a proper environmental management, a survey was conducted to assess farmers' perception and acceptance of Sewchar as a soil amendment. The survey revealed that younger farmers who had higher education qualifications were more prone to use Sewchar as soil amendment. Additionally, farmers who would not use Sewchar as soil amendment attributed the highest level of importance to economic criteria, such as fertilizer and freight prices. In the future, studies on a longer term under field conditions should be performed to elucidate the interactions between Sewchar and soil properties on plant growth and to ensure the safe use of Sewchar as a soil amendment.
Collapse
Affiliation(s)
- Tatiane Medeiros Melo
- University of Wuppertal, Institute of Foundation Engineering, Water- and Waste-Management, School of Architecture and Civil Engineering, Soil and Groundwater Management, Pauluskichstraße 7, 42285 Wuppertal, Germany.
| | - Michael Bottlinger
- Trier University of Applied Sciences, Environmental Campus Birkenfeld, Department of Hydrothermal Carbonization, 55761 Birkenfeld, Germany.
| | - Elke Schulz
- Helmholtz Centre for Environmental Research (UFZ), Department of Soil Ecology, D-06120, Halle, Germany.
| | - Wilson Mozena Leandro
- Federal University of Goiás (UFG), Department of Agronomy, 74690-900, Goiânia, Brazil.
| | | | | | - Ali El-Naggar
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt.
| | - Nanthi Bolan
- Global Centre for Environmental Remediation (GCER), ATC Building, Level 1, Faculty of Science and Information Technology, The University of Newcastle, University Drive, Callaghan NSW 2308, Australia.
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Jörg Rinklebe
- University of Wuppertal, Institute of Foundation Engineering, Water- and Waste-Management, School of Architecture and Civil Engineering, Soil and Groundwater Management, Pauluskichstraße 7, 42285 Wuppertal, Germany; Sejong University, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Integration of Hydrothermal Carbonisation with Anaerobic Digestion; Opportunities for Valorisation of Digestate. ENERGIES 2019. [DOI: 10.3390/en12091586] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrothermal carbonisation (HTC) has been identified as a potential route for digestate enhancement producing a solid hydrochar and a process water rich in organic carbon. This study compares the treatment of four dissimilar digestates from anaerobic digestion (AD) of agricultural residue (AGR); sewage sludge (SS); residual municipal solid waste (MSW), and vegetable, garden, and fruit waste (VGF). HTC experiments were performed at 150, 200 and 250 °C for 1 h using 10%, 20%, and 30% solid loadings of a fixed water mass. The effect of temperature and solid loading to the properties of biocoal and biochemical methane potential (BMP) of process waters are investigated. Results show that the behaviour of digestate during HTC is feedstock dependent and the hydrochar produced is a poor-quality solid fuel. The AGR digestate produced the greatest higher heating value (HHV) of 24 MJ/kg, however its biocoal properties are poor due to slagging and fouling propensities. The SS digestate process water produced the highest amount of biogas at 200 °C and 30% solid loading. This study concludes that solely treating digestate via HTC enhances biogas production and that hydrochar be investigated for its use as a soil amender.
Collapse
|
40
|
Wang N, Wu Y, Zhao X, Lai B, Sun N, Tan M. Food-borne nanocarriers from roast beef patties for iron delivery. Food Funct 2019; 10:6711-6719. [DOI: 10.1039/c9fo01795j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent nanoparticles (FNs) from roast beef patties were characterized and used as nanocarriers for ferrous ions.
Collapse
Affiliation(s)
- Nanying Wang
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Yanyang Wu
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Xue Zhao
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Bin Lai
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Na Sun
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Mingqian Tan
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| |
Collapse
|
41
|
Li D, Na X, Zhou W, Wang C, Li Y, Zhu BW, Tan M. Adverse effects of fluorescent carbon dots from canned yellow croaker on cellular respiration and glycolysis. Food Funct 2019; 10:1123-1131. [DOI: 10.1039/c8fo02602e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adverse effects on cellular respiration and glycolysis were investigated for the fluorescent carbon dots from canned yellow croaker.
Collapse
Affiliation(s)
- Dongmei Li
- School of Food Science and Technology Polytechnic University
- Dalian 116034
- People's Republic of China
- National Engineering Research Center of Seafood
- Dalian 116034
| | - Xiaokang Na
- School of Food Science and Technology Polytechnic University
- Dalian 116034
- People's Republic of China
- National Engineering Research Center of Seafood
- Dalian 116034
| | - Wanru Zhou
- School of Food Science and Technology Polytechnic University
- Dalian 116034
- People's Republic of China
- National Engineering Research Center of Seafood
- Dalian 116034
| | - Congcong Wang
- School of Food Science and Technology Polytechnic University
- Dalian 116034
- People's Republic of China
- National Engineering Research Center of Seafood
- Dalian 116034
| | - Yuliang Li
- School of Food Science and Technology Polytechnic University
- Dalian 116034
- People's Republic of China
- National Engineering Research Center of Seafood
- Dalian 116034
| | - Bei-Wei Zhu
- School of Food Science and Technology Polytechnic University
- Dalian 116034
- People's Republic of China
- National Engineering Research Center of Seafood
- Dalian 116034
| | - Mingqian Tan
- School of Food Science and Technology Polytechnic University
- Dalian 116034
- People's Republic of China
- National Engineering Research Center of Seafood
- Dalian 116034
| |
Collapse
|
42
|
Yan Y, Ma X, Cao W, Zhang X, Zhou J, Liu Q, Qian G. Identifying the reducing capacity of biomass derived hydrochar with different post-treatment methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:486-495. [PMID: 29945084 DOI: 10.1016/j.scitotenv.2018.06.232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/03/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
In this study, hydrochar was prepared from wheat straw (WS) and Spartina alterniflora (SA) biomass by hydrothermal carbonization, and further treated with HCl and NaOH washing, HNO3 oxidization and low temperature thermal heating. The reducing capacity (RC) of sample was quantified by I2 titration to explore how these modification methods affected the redox properties of hydrochar. The results indicated HNO3 and thermal oxidization increased the RC of hydrochar by 2-5 folds while NaOH washing had the negative effect on samples' RC. By analyzing the excitation-emission matrix (EEM) fluorescence of alkaline extraction solution of sample, humic acid like substances generated from various methods were identified as one of the major sources for electron donating. HNO3 oxidization could significantly increase the RC in hydrochar, which was likely resulting from the generation of alkali-soluble small molecule organic compounds. However, excessive oxidation by nitric acid with prolonged duration led to the gradual decrease in hydrochar's RC. Heating treatment caused a significant increase in the content of redox-active oxygen-containing functional groups and persistent free radicals (PFRs) in hydrochar. Even though both could donate electrons in the redox reaction with I2, the former was considered a greater contributor for the RC of hydrochar. From this study, the origin of RC of hydrochar can be identified as: oxygen-containing functionality, humic-like matter and PFRs. By employing different modification methods, the RC of hydrochar could be tuned by regulating the above sources. This study provided fundamental knowledges and simple routes to manipulate the redox properties of hydrochar for different environmental applications.
Collapse
Affiliation(s)
- Yan Yan
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Xianlong Ma
- Electric Power Research Institute of Yunnan Power Grid Co., Ltd, Kunming, Yunnan 650217, China
| | - Weimin Cao
- College of Sciences, Shanghai University, No. 99 Shangda Rd., Shanghai 200444, China.
| | - Xiaolei Zhang
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu 41566, Republic of Korea
| | - Jizhi Zhou
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China.
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
43
|
Melo TM, Bottlinger M, Schulz E, Leandro WM, Menezes de Aguiar Filho A, Wang H, Ok YS, Rinklebe J. Plant and soil responses to hydrothermally converted sewage sludge (sewchar). CHEMOSPHERE 2018; 206:338-348. [PMID: 29754058 DOI: 10.1016/j.chemosphere.2018.04.178] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/21/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
This study compared the effects of sewchar and mineral fertilizer on plant responses in beans (Phaseolus vulgaris, var. "Jalo precoce") and soil properties in a pot experiment in a completely randomized design with two harvests. The initial treatments consisted of a control, sewchar doses of 4, 8, 16 and 32 Mg ha-1 and mineral fertilizer (30 mg N, 90 mg P2O5 and 60 mg K2O kg-1). The treatments (4 replications each) were fertilized with 135 mg P2O5 kg-1 at the second harvest. The sewchar application rates correlated positively with the CEC, the water holding capacity, the availability of Zn, Ca, Fe, Cu, and P, and the concentrations of nitrate, ammonium, total N, total organic carbon and hot water extractable carbon. They correlated negatively with the Mg availability and the soil C: N ratio. Additionally, they correlated positively with the P, Zn and Ca uptake from the soil. For both harvests, the 16 Mg ha-1 sewchar treatment had a total dry matter equivalent to that of the mineral fertilizer. After the second harvest, the 16 Mg ha-1 sewchar treatment revealed 96% higher plant biomass than the control and 79% higher biomass than it did during the first period. The positive effect of sewchar in addition to phosphorous on the plant response and soil properties suggests that the residual effect of sewchar could be a promising alternative as a soil amendment for partly replacing mineral fertilizers. In future, further studies are necessary to evaluate long-term residual effects of sewchar in soil.
Collapse
Affiliation(s)
- Tatiane Medeiros Melo
- University of Wuppertal, Soil- and Groundwater-Management, Pauluskichstraße 7, 42285 Wuppertal, Germany.
| | - Michael Bottlinger
- Trier University of Applied Sciences, Environmental Campus Birkenfeld, Department of Hydrothermal Carbonization, 55761 Birkenfeld, Germany.
| | - Elke Schulz
- Helmholtz Centre for Environmental Research (UFZ), Department of Soil Ecology, D-06120, Halle, Germany.
| | - Wilson Mozena Leandro
- Federal University of Goiás (UFG), Department of Agronomy, 74690-900, Goiânia, Brazil.
| | | | - Hailong Wang
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Jörg Rinklebe
- University of Wuppertal, Soil- and Groundwater-Management, Pauluskichstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Mumme J, Getz J, Prasad M, Lüder U, Kern J, Mašek O, Buss W. Toxicity screening of biochar-mineral composites using germination tests. CHEMOSPHERE 2018; 207:91-100. [PMID: 29778049 DOI: 10.1016/j.chemosphere.2018.05.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
This study assessed the properties and toxicity (water cress germination trials) of 38 waste-derived, novel biochar-mineral composites (BMCs) produced via slow pyrolysis and hydrothermal carbonization (hydrochars). The biochars were produced from sewage sludge and compost-like output (CLO) by varying the type of mineral additive (zeolite, wood ash and lignite fly ash), the mineral-to-feedstock ratio and the carbonization process. While pure hydrochars completely inhibited germination of water cress, this effect was ameliorated by mineral additives. Seedlings grew best in pyrolysis chars and while wood ash addition decreased plant growth in many cases, 1:10 addition to CLO doubled germination rate. The factors responsible for the phytotoxicity can be attributed to pH, salinity and organic contaminants. Importantly, while pure minerals inhibited germination, conversion of minerals into BMCs reduced their inhibitory effects due to buffered release of minerals. Overall, mineral wastes (e.g., combustion ashes) and waste biomass can be used safely as sources of nutrients and stable organic carbon (for soil carbon sequestration) when converted into specific biochar-mineral composites, exploiting synergies between the constituents to deliver superior performance.
Collapse
Affiliation(s)
- Jan Mumme
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, King's Building, Edinburgh, EH9 3JN, UK
| | - Josephine Getz
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, King's Building, Edinburgh, EH9 3JN, UK; Environmental Sustainability and Health Institute, Dublin Institute of Technology, Greenway Hub, Grangegorman, Dublin 7, D07 H6K8, Ireland
| | | | - Ulf Lüder
- SunCoal Industries GmbH, Rudolf-Diesel-Straße 15, 14974, Ludwigsfelde, Germany
| | - Jürgen Kern
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, King's Building, Edinburgh, EH9 3JN, UK
| | - Wolfram Buss
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, King's Building, Edinburgh, EH9 3JN, UK.
| |
Collapse
|
45
|
Zhou B, Feng Y, Wang Y, Yang L, Xue L, Xing B. Impact of hydrochar on rice paddy CH 4 and N 2O emissions: A comparative study with pyrochar. CHEMOSPHERE 2018; 204:474-482. [PMID: 29679868 DOI: 10.1016/j.chemosphere.2018.04.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/22/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Hydrothermal carbonization (HTC) thermally converts wet biomasses to carbon materials, dramatically reducing energy use for drying and improving solid product yield compared to pyrolysis process. However, researches regarding agricultural usage of hydrochar (HC) are limited. In the present study, the influence of HC amendment on CH4 and N2O emissions, as well as global warming potential (GWP) and greenhouse gas intensity (GHGI) were investigated. Additionally, pyrochar (PC) treatments as well as two char-free control treatments with (CKU) or without (CK) N fertilizer were also included for comparison. Chars were produced from wheat straw (WC) and saw dust (SC) and applied at different rates (0.5% and 3%, w/w). Both hydrochar and pyrochar decreased paddy CH4 emissions when amended at a lower rate (0.5%) compared to CKU treatment, which was more obvious for pyrochar when applied at the rate of 3%. Contrarily, 3%-HC significantly stimulated CH4 emissions, which were around 5 and 3 times higher than that of CKU for WC and SC, respectively. Furthermore, hydrochar showed the potential to decrease paddy N2O emissions (6.06-32.32%) at both application rates. However, N2O emissions with PC treatments varied depending on application rate (20.20-75.76%). GWP and GHGI values of 0.5%-HC and PC treatments were similar, 6.67-25.00% and 3.85-25.00% lower than those of CKU treatment, respectively. However, 3%-HC amendments led to significantly increased GWP and GHGI. This study suggested that application rate of hydrochar used in rice fields should be taken into serious consideration to fulfill its potential in GHGs mitigation and minimize environmental side effects.
Collapse
Affiliation(s)
- Beibei Zhou
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Yueman Wang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng 224002, China
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng 224002, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
46
|
Al-Wabel MI, Rafique MI, Ahmad M, Ahmad M, Hussain A, Usman ARA. Pyrolytic and hydrothermal carbonization of date palm leaflets: Characteristics and ecotoxicological effects on seed germination of lettuce. Saudi J Biol Sci 2018; 26:665-672. [PMID: 31048990 PMCID: PMC6486509 DOI: 10.1016/j.sjbs.2018.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 11/24/2022] Open
Abstract
Biochar has vital importance as soil additives due to its characteristics, which are responsible for alleviating environmental problems and climate change. These additives should be evaluated to understand their physico-chemical properties and their ecotoxicological effects on plant growth. Therefore, this study aimed to (i) distinguish the properties of biochar produced from date palm and its derivative hydrochar, and (ii) investigate their ecotoxicological effects. Specifically, the biochar and hydrochar were produced from date palm leaflets by pyrolysis and hydrothermal carbonization, respectively. The produced chars were evaluated for their characteristics before and after water washing, and for their ecotoxicological effects on seed germination of lettuce (Lactuca sativa L). The results show that water washing lowered biochar’s pH and increased hydrochar’s pH. Moreover, water washing of hydrochar caused a significant reduction in the total content of essential elements such as Ca, Mg, Mn, and Zn. Lettuce germination was significantly inhibited to 20% by hydrochar, whereas biochar enhanced lettuce growth by increasing shoot length (by 51%) and dry biomass (by 114%). Hydrochar toxicity was correlated (R > 0.95 at p = 0.05) with high contents of total polyaromatic hydrocarbons (98.8 mg kg−1). Pre-treatment and assessment of hydrochar should be taken into account prior to application as a soil amendment.
Collapse
Affiliation(s)
- Mohammad I Al-Wabel
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Muhammad Imran Rafique
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mahtab Ahmad
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.,Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Munir Ahmad
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abid Hussain
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Adel R A Usman
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.,Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
47
|
|
48
|
Bi J, Li Y, Wang H, Song Y, Cong S, Yu C, Zhu BW, Tan M. Presence and Formation Mechanism of Foodborne Carbonaceous Nanostructures from Roasted Pike Eel ( Muraenesox cinereus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2862-2869. [PMID: 28613868 DOI: 10.1021/acs.jafc.7b02303] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Foodborne nanostructures have gained more and more attention in recent years. In this paper, the presence and physicochemical properties of carbonaceous nanostructures (CNSs) from roasted pike eel ( Muraenesox cinereus) were reported. The monodispersed CNSs are strongly photoluminescent under the illustration of ultraviolet (UV) light, with a fluorescent quantum yield of 80.16%, and display excitation-dependent emission behavior. The formation of CNSs is believed to go through a process of morphology evolution, including polymerization, pyrolysis, nucleation, growth, emergence, and blossom. The optical properties of the CNSs were shown to be affected by the roasting temperature. Furthermore, cellular uptake of the CNSs was investigated, and it is shown that the CNSs were clearly absorbed into live cells and were mainly distributed within the cell cytoplasm and not in the cell nucleus. This work is among the very first reports on CNSs present in roasted fish, providing valuable insights into the formation mechanism of such nanostructures and showcasing the biodistribution of these food-originated CNSs in live cells.
Collapse
Affiliation(s)
- Jingran Bi
- School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian , Liaoning 116034 , People's Republic of China
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang , Jiangsu 212013 , People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian , Liaoning 116034 , People's Republic of China
| | - Yao Li
- School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian , Liaoning 116034 , People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian , Liaoning 116034 , People's Republic of China
| | - Haitao Wang
- School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian , Liaoning 116034 , People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian , Liaoning 116034 , People's Republic of China
| | - Yukun Song
- School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian , Liaoning 116034 , People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian , Liaoning 116034 , People's Republic of China
| | - Shuang Cong
- School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian , Liaoning 116034 , People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian , Liaoning 116034 , People's Republic of China
| | - Chenxu Yu
- School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian , Liaoning 116034 , People's Republic of China
- Department of Agricultural and Biosystems Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Bei-Wei Zhu
- School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian , Liaoning 116034 , People's Republic of China
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang , Jiangsu 212013 , People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian , Liaoning 116034 , People's Republic of China
| | - Mingqian Tan
- School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian , Liaoning 116034 , People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian , Liaoning 116034 , People's Republic of China
| |
Collapse
|
49
|
Hydrothermal Carbonization of Municipal Woody and Herbaceous Prunings: Hydrochar Valorisation as Soil Amendment and Growth Medium for Horticulture. SUSTAINABILITY 2018. [DOI: 10.3390/su10030846] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Towards Biochar and Hydrochar Engineering—Influence of Process Conditions on Surface Physical and Chemical Properties, Thermal Stability, Nutrient Availability, Toxicity and Wettability. ENERGIES 2018. [DOI: 10.3390/en11030496] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|