1
|
Raji F, Maghool S, Shayesteh H, Rahbar-Kelishami A. Effective adsorptive removal of Pb 2+ ions from aqueous solution using functionalized agri-waste biosorbent: New green mediation via Seidlitzia rosmarinus extract. CHEMOSPHERE 2024; 363:142759. [PMID: 38969218 DOI: 10.1016/j.chemosphere.2024.142759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Currently, the use of natural adsorbent for the elimination of pollutants, such as heavy metals, from water has been extensively investigated. However, the low adsorption capacity of these natural adsorbents has led researchers towards the use of synthetic surfactants, which themselves can become environmental pollutants. In this research, an investigation was conducted to examine the impact of a surfactant obtained from the Seidlitzia rosmarinus plant on the adsorption properties of Pumpkin seed shell (PSS), a natural adsorbent. As a result, a modified version of PSS, known as functionalized Pumpkin seed shell (FPSS), was developed, and the effect of these two adsorbents on the elimination of Pb2+ has been investigated. FESEM, EDS, FTIR, and BET analyses were conducted to get detailed information of the adsorbent. Additionally, the effects of contact time, dosage of the adsorbent, pH of the solution, and temperature on the adsorbent were studied. The experimental data was fitted using Langmuir, Freundlich, Temkin, and Jovanovic isotherms. The PSS adsorbent was fitted best with the Langmuir isotherm, showing an adsorption capacity of 160.80 mg g-1, while the FPSS adsorbent was fitted with the Jovanovic isotherm, exhibiting an adsorption capacity of 553.57 mg g-1. Furthermore, kinetic modeling results indicated that the data for these adsorbents follow pseudo-second-order kinetic. Finally, the impact of coexisting ions and reusability was examined, with the FPSS adsorbent outperforming PSS. Therefore, the investigation of all these aspects demonstrated that the use of this natural surfactant significantly improves the performance of the adsorbent.
Collapse
Affiliation(s)
- Farshad Raji
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Sina Maghool
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Hadi Shayesteh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran.
| | - Ahmad Rahbar-Kelishami
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran.
| |
Collapse
|
2
|
Chowdhury S, Uddin ME, Noyon MAR, Mondol MMH, Maafa IM, Yousef A. Fabrication and performance analysis of keratin based-graphene oxide nanocomposite to remove dye from tannery wastewater. Heliyon 2024; 10:e23421. [PMID: 38187276 PMCID: PMC10770456 DOI: 10.1016/j.heliyon.2023.e23421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
In recent years, nanomaterials and composites have become increasingly significant as adsorbents in the removal of dyes and phenolic contaminants from wastewater. This study presents the development and application of a keratin-based graphene oxide nanocomposite, distinguished by its enhanced biocompatibility, cost-effectiveness, and strong affinity for organic compounds, making it highly effective in reducing dyes within tannery effluent. The nanocomposite was prepared via solution casting method, with dispersibility, chemical bonding, and morphology analyzed by UV-Vis spectroscopy, FTIR, and SEM, respectively. Furthermore, investigations of the influence of several factors, such as contact time, pH, and adsorbent dosage on the optimization of the process were conducted. An observation indicated a reduction of approximately 98.8 % in dye content within 20 min, achieved through the use of an adsorbent dosage of 1.5 g/L, with the solution pH maintained at 5. Subsequently, adsorption kinetics and isotherm modelling were analyzed. The results revealed that the adsorption process follows the pseudo-second-order kinetics and Freundlich isotherm models. Hence, the adsorption could be explained as chemisorption with a multilayer adsorption mechanism. Notably, a substantial reduction in parameters such as Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) was also achieved up to 62 % and 79 %, respectively. Therefore, the developed adsorbent could be suggested as a viable candidate for eliminating dyes from the wastewater, especially from the tannery effluent.
Collapse
Affiliation(s)
- Shazneen Chowdhury
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Md Elias Uddin
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Md Ashikur Rahaman Noyon
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Md Mahmudul Hassan Mondol
- Department of Chemical Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Ibrahim M. Maafa
- Department of Chemical Engineering, Faculty of Engineering, Jazan University, Jazan 11451, Saudi Arabia
| | - Ayman Yousef
- Department of Chemical Engineering, Faculty of Engineering, Jazan University, Jazan 11451, Saudi Arabia
- Department of Mathematics and Physics Engineering, Faculty of Engineering at Mataria, Helwan University, Cairo 11718, Egypt
| |
Collapse
|
3
|
Jakka V, Goswami A, Nallajarla AK, Roy U, Srikanth K, Sengupta S. Coconut coir-derived nanocellulose as an efficient adsorbent for removal of cationic dye safranin-O: a detailed mechanistic adsorption study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-29075-7. [PMID: 37608172 DOI: 10.1007/s11356-023-29075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023]
Abstract
Coconut (Cocos nucifera) coir is an abundant agricultural waste prevalent worldwide. Utilization of this waste has been carried out in this study by obtaining nanocellulose (NC) fibres for wastewater remediation purposes. Nanocellulose was obtained from coconut coir using bleaching and acid-alkali treatments followed by ultrasonication and lyophilization. The structural, compositional, surface and thermal properties of the synthesized material were identified using transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption/desorption, differential thermal (DT) and derivative thermogravimetric (DTG) analyses. These analyses confirmed the synthesized NC with enhanced thermal stability and porosity which was further used for adsorption process. After synthesis, NC was used for the removal of cationic dye safranin-O from water under ambient conditions through batch adsorption studies. The batch adsorption studies revealed that at 10 ppm of dye concentration, above 99% removal was achieved by 100 mg dosage of NC within 4.5 h at room temperature with qe (maximum adsorption capacity at equilibrium) value of around 83 mg g-1. The corresponding adsorption process fitted well with Langmuir isotherm and pseudo-second order kinetics. The primary mode of adsorption from the thermodynamic studies was found to be chemisorption. The adsorption process was achieved through response surface methodology (RSM) study which revealed that at optimized conditions of temperature 35 °C with a dose of 137.50 mg and contact time of 180 min, above 99% of dye (conc. 0.01 mg mL-1) was removed. In addition, the adsorbent can be recycled up to six cycles without any significant loss of its adsorption capacity. The present comprehensive study revealed that a greener eco-friendly synthesis of NC from waste material coconut coir was an effective nanoadsorbent for dye removal with high efficacy. This surely opens up opportunities to develop sustainable protocols for efficient environmental remediation.
Collapse
Affiliation(s)
- Venkatalakshmi Jakka
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science, Technology and Research (Deemed to Be University), Vadlamudi, Guntur, Andhra Pradesh, India
| | - Anandarup Goswami
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science, Technology and Research (Deemed to Be University), Vadlamudi, Guntur, Andhra Pradesh, India
| | - Anil Kumar Nallajarla
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science, Technology and Research (Deemed to Be University), Vadlamudi, Guntur, Andhra Pradesh, India
| | - Uttariya Roy
- Department of Environmental Studies, Budge Budge College (Affiliated to University of Calcutta), 7, Deshbandhu Chittaranjan Road, Budge Budge 24 Paraganas (South), Kolkata, 700137, India
| | - Koigoora Srikanth
- Department of Biotechnology, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology and Research (Deemed to Be University), Vadlamudi, Guntur, Andhra Pradesh, India
| | - Shubhalakshmi Sengupta
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science, Technology and Research (Deemed to Be University), Vadlamudi, Guntur, Andhra Pradesh, India.
| |
Collapse
|
4
|
Thangaraj B, Mumtaz F, Abbas Y, Anjum DH, Solomon PR, Hassan J. Synthesis of Graphene Oxide from Sugarcane Dry Leaves by Two-Stage Pyrolysis. Molecules 2023; 28:molecules28083329. [PMID: 37110563 PMCID: PMC10140955 DOI: 10.3390/molecules28083329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Natural or synthetic graphite as precursors for the preparation of graphene oxide (GO) have constraints due to their limited availability, high reaction temperature for processing of synthetic graphite and higher generation cost. The use of oxidants, long reaction duration, the generation of toxic gases and residues of inorganic salts, the degree of hazard and low yield are some of the disadvantages of the oxidative-exfoliation methods. Under these circumstances, biomass waste usage as a precursor is a viable alternative. The conversion of biomass into GO by the pyrolysis method is ecofriendly with diverse applications, which partially overcomes the waste disposal problem encountered by the existing methods. In this study, graphene oxide (GO) is prepared from dry leaves of sugarcane plant through a two-step pyrolysis method using ferric (III) citrate as a catalyst, followed by treatment with conc. H2SO4. The synthesized GO is analyzed by UV-Vis., FTIR, XRD, SEM, TEM, EDS and Raman spectroscopy. The synthesized GO has many oxygen-containing functional groups (-OH, C-OH, COOH, C-O). It shows a sheet-like structure with a crystalline size of 10.08 nm. The GO has a graphitic structure due to the Raman shift of G (1339 cm-1) and D (1591 cm-1) bands. The prepared GO has multilayers due to the ratio of 0.92 between ID and IG. The weight ratios between carbon and oxygen are examined by SEM-EDS and TEM-EDS and found to be 3.35 and 38.11. This study reveals that the conversion of sugarcane dry leaves into the high-value-added material GO becomes realistic and feasible and thus reduces the production cost of GO.
Collapse
Affiliation(s)
- Baskar Thangaraj
- Department of Physics, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Fatima Mumtaz
- Emirates Nuclear Technology Center, Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Yawar Abbas
- Department of Physics, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Dalaver H Anjum
- Department of Physics, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Pravin Raj Solomon
- Molecular Epidemiology and Diagnostic Research Facility, Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Jamal Hassan
- Department of Physics, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
5
|
Agarwala R, Mulky L. Adsorption of Dyes from Wastewater: A Comprehensive Review. CHEMBIOENG REVIEWS 2023. [DOI: 10.1002/cben.202200011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Characterization of graphene oxide-ziziphus seeds and its application as a hazardous dye removal adsorbent. Sci Rep 2023; 13:1631. [PMID: 36717602 PMCID: PMC9886902 DOI: 10.1038/s41598-023-28924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The zizphus seeds are considered as a biomaterial residues that has been used for removing of organic industrial waste such as 2-((10-octyl-9,10-dihydroanthracene-2-yl) methylene) malononitrile (PTZS-CN) dye from aqueous solutions utilizing graphene oxide-Ziziphus (GO-Ziziphus). A batch study explored the impacts of various experimental circumstances, including solution pH, initial dye concentration, temperature, and contact time. General order, nonlinear pseudo-first order and pseudo-second order, elvoich model and intraparticiple diffusion were utilized to analyze the kinetic data. The adsorption kinetics of dye onto GO-ziziphus adsorption was best mentioned by nonlinear pseudo-first order. Similarly, the intra-particle diffusion plots revealed one exponential line throughout the adsorption process. The Freundlich, Dubinin-Radushkevich, and Langmuir models were employed to examine isothermal data. It provided the best fit of the dye adsorption isothermal data onto GO-ziziphus Freundlich models. Besides, the calculated free energies showed that the adsorption progression was physical adsorption. Thermodynamic calculations revealed that dye adsorption onto GO-ziziphus was exothermic and spontaneous. The combined results indicated that GO-ziziphus powder might be used to treat dye-rich wastewater effectively.
Collapse
|
7
|
Bhattacharya S, Das P, Bhowal A, Majumder SK. Metal-oxide coated Graphene oxide nano-composite for the treatment of pharmaceutical compound in photocatalytic reactor: Batch, Kinetics and Mathematical Modeling using Response Surface Methodology and Artificial Neural Network. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61938-61953. [PMID: 35066847 DOI: 10.1007/s11356-021-18227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Titanium dioxide (TiO2) photocatalyst has gained constant interest in the treatment of wastewater because of its greater stability, lower cost, low-toxicity, high efficiency, and more reactivity under UV radiation. On the other hand, Graphene oxide (GO) possesses high electron mobility, and therefore when GO is combined with TiO2, the photocatalytic activity of TiO2 is increased. In this study, nano-composite was synthesized in a hydrothermal reactor using two types of TiO2 nanoparticles (TiO2 consisting of a mixture of rutile and anatase phase (Type 1) and bioreduced TiO2 (Type 2)) and the efficiency of both the TiO2-GO nanocomposite to remove the drug Carbamazepine (CBZ) was investigated. The TiO2-GO nanocomposite with the Type 1 TiO2 exhibited greater efficiency hence further studies were conducted with that composite. The efficiency of TiO2-GO nanocomposite for the purpose of removing CBZ were investigated in presence of different types of incident radiation like Solar radiation, white light and three type of Ultraviolet radiation (A, B, C). The removal of the drug by TiO2-GO composite has been optimized using response surface methodology and artificial neural network. From this study, the maximum reduction was observed was 91.2% and whereas in case of the RSM optimization study the maximum removal that was observed was 91.7%. The validation of the RSM model was done using the mathematical analysis of the model equation of RSM. Different kinetics models was also analyzed using the experimental data and it was observed that it followed pseudo-second-order kinetics. The optimization using ANN also showed a close interaction with the experimental results.
Collapse
Affiliation(s)
- Sandipan Bhattacharya
- Department of Chemical Engineering, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Papita Das
- Department of Chemical Engineering, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700032, India.
- School of Advanced Studies in Industrial Pollution Control Engineering, Jadavpur University, Kolkata, India.
| | - Avijit Bhowal
- Department of Chemical Engineering, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700032, India
- School of Advanced Studies in Industrial Pollution Control Engineering, Jadavpur University, Kolkata, India
| | | |
Collapse
|
8
|
de Araujo CMB, Ghislandi MG, Rios AG, da Costa GRB, do Nascimento BF, Ferreira AFP, da Motta Sobrinho MA, Rodrigues AE. Wastewater treatment using recyclable agar-graphene oxide biocomposite hydrogel in batch and fixed-bed adsorption column: Bench experiments and modeling for the selective removal of organics. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
A Review of the Modeling of Adsorption of Organic and Inorganic Pollutants from Water Using Artificial Neural Networks. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/9384871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The application of artificial neural networks on adsorption modeling has significantly increased during the last decades. These artificial intelligence models have been utilized to correlate and predict kinetics, isotherms, and breakthrough curves of a wide spectrum of adsorbents and adsorbates in the context of water purification. Artificial neural networks allow to overcome some drawbacks of traditional adsorption models especially in terms of providing better predictions at different operating conditions. However, these surrogate models have been applied mainly in adsorption systems with only one pollutant thus indicating the importance of extending their application for the prediction and simulation of adsorption systems with several adsorbates (i.e., multicomponent adsorption). This review analyzes and describes the data modeling of adsorption of organic and inorganic pollutants from water with artificial neural networks. The main developments and contributions on this topic have been discussed considering the results of a detailed search and interpretation of more than 250 papers published on Web of Science ® database. Therefore, a general overview of the training methods, input and output data, and numerical performance of artificial neural networks and related models utilized for adsorption data simulation is provided in this document. Some remarks for the reliable application and implementation of artificial neural networks on the adsorption modeling are also discussed. Overall, the studies on adsorption modeling with artificial neural networks have focused mainly on the analysis of batch processes (87%) in comparison to dynamic systems (13%) like packed bed columns. Multicomponent adsorption has not been extensively analyzed with artificial neural network models where this literature review indicated that 87% of references published on this topic covered adsorption systems with only one adsorbate. Results reported in several studies indicated that this artificial intelligence tool has a significant potential to develop reliable models for multicomponent adsorption systems where antagonistic, synergistic, and noninteraction adsorption behaviors can occur simultaneously. The development of reliable artificial neural networks for the modeling of multicomponent adsorption in batch and dynamic systems is fundamental to improve the process engineering in water treatment and purification.
Collapse
|
10
|
Antibiotic Removal from the Aquatic Environment with Activated Carbon Produced from Pumpkin Seeds. Molecules 2022; 27:molecules27041380. [PMID: 35209169 PMCID: PMC8877137 DOI: 10.3390/molecules27041380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Antibiotics are among the most critical environmental pollutant drug groups. Adsorption is one of the methods used to eliminate these pollutants. In this study, activated carbon was produced from pumpkin seed shells and subsequently modified with KOH. The adsorbent obtained through this procedure was used to remove ciprofloxacin from aqueous systems. Fourier Transform-Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), elemental, X-ray Photoelectron Spectroscopy (XPS), Brunauer–Emmett–Teller (BET) and Zeta analyses were used to characterize the adsorbent. The surface area, in particular, was found to be a very remarkable value of 2730 m2/g. The conditions of the adsorption experiments were optimized based on interaction time, adsorbent amount, pH and temperature. Over 99% success was achieved in removal operations carried out under the most optimal conditions, with an absorption capacity of 884.9 mg·g−1. In addition, the Langmuir isotherm was determined to be the most suitable model for the adsorption interaction.
Collapse
|
11
|
Process Parameters Optimization, Characterization, and Application of KOH-Activated Norway Spruce Bark Graphitic Biochars for Efficient Azo Dye Adsorption. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020456. [PMID: 35056771 PMCID: PMC8780614 DOI: 10.3390/molecules27020456] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/23/2022]
Abstract
In this work, Norway spruce bark was used as a precursor to prepare activated biochars (BCs) via chemical activation with potassium hydroxide (KOH) as a chemical activator. A Box–Behnken design (BBD) was conducted to evaluate and identify the optimal conditions to reach high specific surface area and high mass yield of BC samples. The studied BC preparation parameters and their levels were as follows: pyrolysis temperature (700, 800, and 900 °C), holding time (1, 2, and 3 h), and ratio of the biomass: chemical activator of 1: 1, 1.5, and 2. The planned BBD yielded BC with extremely high SSA values, up to 2209 m2·g−1. In addition, the BCs were physiochemically characterized, and the results indicated that the BCs exhibited disordered carbon structures and presented a high quantity of O-bearing functional groups on their surfaces, which might improve their adsorption performance towards organic pollutant removal. The BC with the highest SSA value was then employed as an adsorbent to remove Evans blue dye (EB) and colorful effluents. The kinetic study followed a general-order (GO) model, as the most suitable model to describe the experimental data, while the Redlich–Peterson model fitted the equilibrium data better. The EB adsorption capacity was 396.1 mg·g−1. The employment of the BC in the treatment of synthetic effluents, with several dyes and other organic and inorganic compounds, returned a high percentage of removal degree up to 87.7%. Desorption and cyclability tests showed that the biochar can be efficiently regenerated, maintaining an adsorption capacity of 75% after 4 adsorption–desorption cycles. The results of this work pointed out that Norway spruce bark indeed is a promising precursor for producing biochars with very promising properties.
Collapse
|
12
|
Experimental and Modeling of Dicamba Adsorption in Aqueous Medium Using MIL-101(Cr) Metal-Organic Framework. Processes (Basel) 2021. [DOI: 10.3390/pr9030419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Drift deposition of emerging and carcinogenic contaminant dicamba (3,6-dichloro-2-methoxy benzoic acid) has become a major health and environmental concern. Effective removal of dicamba in aqueous medium becomes imperative. This study investigates the adsorption of a promising adsorbent, MIL-101(Cr) metal-organic framework (MOF), for the removal of dicamba in aqueous solution. The adsorbent was hydrothermally synthesized and characterized using N2 adsorption-desorption isotherms, Brunauer, Emmett and Teller (BET), powdered X-ray diffraction (XRD), Fourier Transformed Infrared (FTIR) and field emission scanning electron microscopy (FESEM). Adsorption models such as kinetics, isotherms and thermodynamics were studied to understand details of the adsorption process. The significance and optimization of the data matrix, as well as the multivariate interaction of the adsorption parameters, were determined using response surface methodology (RSM). RSM and artificial neural network (ANN) were used to predict the adsorption capacity. In each of the experimental adsorption conditions used, the ANN gave a better prediction with minimal error than the RSM model. The MIL-101(Cr) adsorbent was recycled six times to determine the possibility of reuse. The results show that MIL-101(Cr) is a very promising adsorbent, in particular due to the high surface area (1439 m2 g−1), rapid equilibration (~25 min), high adsorption capacity (237.384 mg g−1) and high removal efficiency of 99.432%.
Collapse
|
13
|
Isiyaka HA, Jumbri K, Sambudi NS, Zango ZU, Saad B, Mustapha A. Removal of 4-chloro-2-methylphenoxyacetic acid from water by MIL-101(Cr) metal-organic framework: kinetics, isotherms and statistical models. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201553. [PMID: 33614087 PMCID: PMC7890509 DOI: 10.1098/rsos.201553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/02/2020] [Indexed: 05/10/2023]
Abstract
Effective removal of 4-chloro-2-methylphenoxyacetic acid (MCPA), an emerging agrochemical contaminant in water with carcinogenic and mutagenic health effects has been reported using hydrothermally synthesized MIL-101(Cr) metal-organic framework (MOF). The properties of the MOF were ascertained using powdered X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and surface area and porosimetry (SAP). The BET surface area and pore volume of the MOF were 1439 m2 g-1 and 0.77 cm3 g-1, respectively. Artificial neural network (ANN) model was significantly employed for the accurate prediction of the experimental adsorption capacity (qe ) values with minimal error. A rapid removal of the pollutant (99%) was recorded within short time (approx. 25 min), and the reusability of the MOF (20 mg) was achieved up to six cycles with over 90% removal efficiency. The kinetics, isotherm and thermodynamics of the process were described by the pseudo-second-order, Freundlich and endothermic adsorption, respectively. The adsorption process is spontaneous based on the negative Gibbs free energy values. The significant correlation between the experimental findings and simulation results suggests the great potential of MIL-101(Cr) for the remediation of MCPA from water matrices.
Collapse
Affiliation(s)
- Hamza Ahmad Isiyaka
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Khairulazhar Jumbri
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Nonni Soraya Sambudi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Zakariyya Uba Zango
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Bahruddin Saad
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Adamu Mustapha
- Department of Geography, Faculty of Earth and Environmental Science, Kano University of Science and Technology, Wudil, 3244 Kano Postal, Nigeria
| |
Collapse
|
14
|
Facile one-pot in-situ synthesis of novel graphene oxide-cellulose nanocomposite for enhanced azo dye adsorption at optimized conditions. Carbohydr Polym 2020; 246:116661. [DOI: 10.1016/j.carbpol.2020.116661] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/29/2020] [Accepted: 06/14/2020] [Indexed: 01/18/2023]
|
15
|
Dória AR, Pupo M, Santos GDOS, Vilar DDS, Torres NH, Romanholo Ferreira LF, Cavalcanti EB, Eguiluz KIB, Salazar-Banda GR. Electrochemical oxidation of indanthrene blue dye in a filter-press flow reactor and toxicity analyses with Raphidocelis subcapitata and Lactuca sativa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110659. [PMID: 32330790 DOI: 10.1016/j.ecoenv.2020.110659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/12/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Alternative routes to degrade dyes are of crucial importance for the environment. Hence, we report the electrochemical removal of indanthrene blue by using a boron-doped diamond anode, focusing on the toxicity of the treated solutions. Different operational conditions were studied, such as current density (5, 10, and 20 mA cm-2) and electrolyte composition (Na2SO4, Na2CO3, and NaNO3). Besides, the pH was monitored throughout the experiment to consider its direct influence on the ecotoxicity effects. The highest electrochemical oxidation efficiency, measured as color removal, was seen in the 180 min condition of electrolysis in 0.033 M Na2SO4, applying 20 mA cm-2, resulting in a color removal of nearly 91% and 40.51 kWh m-3 of energy consumption. The toxicity towards Lactuca sativa depends solely on pH variations being indifferent to color removal. While the inhibition concentration (IC50) for Raphidocelis subcapitata increases 20% after treatment (in optimized conditions), suggesting that the byproducts are more toxic for this specific organism. Our data highlight the importance of analyzing the toxicity towards various organisms to understand the toxic effect of the treatment applied.
Collapse
Affiliation(s)
- Aline Resende Dória
- Programa de Pós-graduação em Engenharia de Processos, Universidade Tiradentes - UNIT, 49.032-490, Aracaju, Sergipe, Brazil; Laboratório de Eletroquímica e Nanotecnologia - LEN, Instituto de Tecnologia e Pesquisa - ITP, 49.032-490, Aracaju, Sergipe, Brazil
| | - Marilia Pupo
- Programa de Pós-graduação em Engenharia de Processos, Universidade Tiradentes - UNIT, 49.032-490, Aracaju, Sergipe, Brazil; Laboratório de Eletroquímica e Nanotecnologia - LEN, Instituto de Tecnologia e Pesquisa - ITP, 49.032-490, Aracaju, Sergipe, Brazil
| | - Géssica de Oliveira Santiago Santos
- Programa de Pós-graduação em Engenharia de Processos, Universidade Tiradentes - UNIT, 49.032-490, Aracaju, Sergipe, Brazil; Laboratório de Eletroquímica e Nanotecnologia - LEN, Instituto de Tecnologia e Pesquisa - ITP, 49.032-490, Aracaju, Sergipe, Brazil
| | - Débora da Silva Vilar
- Programa de Pós-graduação em Engenharia de Processos, Universidade Tiradentes - UNIT, 49.032-490, Aracaju, Sergipe, Brazil; Laboratório de Eletroquímica e Nanotecnologia - LEN, Instituto de Tecnologia e Pesquisa - ITP, 49.032-490, Aracaju, Sergipe, Brazil
| | - Nádia Hortense Torres
- Programa de Pós-graduação em Engenharia de Processos, Universidade Tiradentes - UNIT, 49.032-490, Aracaju, Sergipe, Brazil; Laboratório de Eletroquímica e Nanotecnologia - LEN, Instituto de Tecnologia e Pesquisa - ITP, 49.032-490, Aracaju, Sergipe, Brazil.
| | - Luiz Fernando Romanholo Ferreira
- Programa de Pós-graduação em Engenharia de Processos, Universidade Tiradentes - UNIT, 49.032-490, Aracaju, Sergipe, Brazil; Laboratório de Tratamento de Resíduos e Efluentes - LTRE, Instituto de Tecnologia e Pesquisa - ITP, 49.032-490, Aracaju, Sergipe, Brazil
| | - Eliane Bezerra Cavalcanti
- Programa de Pós-graduação em Engenharia de Processos, Universidade Tiradentes - UNIT, 49.032-490, Aracaju, Sergipe, Brazil; Laboratório de Tratamento de Resíduos e Efluentes - LTRE, Instituto de Tecnologia e Pesquisa - ITP, 49.032-490, Aracaju, Sergipe, Brazil
| | - Katlin Ivon Barrios Eguiluz
- Programa de Pós-graduação em Engenharia de Processos, Universidade Tiradentes - UNIT, 49.032-490, Aracaju, Sergipe, Brazil; Laboratório de Eletroquímica e Nanotecnologia - LEN, Instituto de Tecnologia e Pesquisa - ITP, 49.032-490, Aracaju, Sergipe, Brazil
| | - Giancarlo Richard Salazar-Banda
- Programa de Pós-graduação em Engenharia de Processos, Universidade Tiradentes - UNIT, 49.032-490, Aracaju, Sergipe, Brazil; Laboratório de Eletroquímica e Nanotecnologia - LEN, Instituto de Tecnologia e Pesquisa - ITP, 49.032-490, Aracaju, Sergipe, Brazil
| |
Collapse
|
16
|
de Assis LK, Damasceno BS, Carvalho MN, Oliveira EHC, Ghislandi MG. Adsorption capacity comparison between graphene oxide and graphene nanoplatelets for the removal of coloured textile dyes from wastewater. ENVIRONMENTAL TECHNOLOGY 2020; 41:2360-2371. [PMID: 30623733 DOI: 10.1080/09593330.2019.1567603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
The synthesis of graphene oxide (GO) nanosheets, to be used as an adsorbent for the removal of textile dyes from wastewater, was optimized by the modified Hummers method. The GO nanosheets produced were compared with commercial graphene and characterized by X-ray diffractometry (XRD), Raman spectroscopy, specific surface area analysis, and zero-charge point (pHpcz). Both GO and graphene nanomaterials were originally used to adsorb two coloured dyes (direct red 81 and Indosol SFGL direct blue), which are commonly disposed in textile industrial effluents. Adsorptive assays were performed to determine and compare the variables that most influence the process, such as pH and dye concentration. The mechanisms of adsorption are proposed based on the strong interactions between the graphene oxide (due to its high functionalization with hydroxyl and carboxylic groups) and the active functional groups of the dyes (according to its colour) that, in general, overcome the weaker electrostatic forces between water/commercial graphene/dye systems.
Collapse
Affiliation(s)
- Lilian K de Assis
- Unidade Acadêmica do Cabo de Santo Agostinho (UACSA), Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho, Brazil
| | - Bárbara S Damasceno
- Unidade Acadêmica do Cabo de Santo Agostinho (UACSA), Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho, Brazil
| | - Marilda N Carvalho
- Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - Eveline H C Oliveira
- Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - Marcos G Ghislandi
- Unidade Acadêmica do Cabo de Santo Agostinho (UACSA), Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho, Brazil
| |
Collapse
|
17
|
Pathak U, Jhunjhunwala A, Roy A, Das P, Kumar T, Mandal T. Efficacy of spent tea waste as chemically impregnated adsorbent involving ortho-phosphoric and sulphuric acid for abatement of aqueous phenol-isotherm, kinetics and artificial neural network modelling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20629-20647. [PMID: 31385251 DOI: 10.1007/s11356-019-06014-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
The current study emphasises on sorptive expulsion of phenol from aqueous solution using ortho-phosphoric acid (STAC-O) and sulphuric acid (STAC-H)-activated biochar derived from spent tea waste. STAC-O and STAC-H were instrumentally anatomised using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), BET surface area and thermal gravimetric analyser. Equilibrium and kinetic data were implemented for the investigative parametric batch study to prospect the influence of adsorbent dosage, contact time, initial concentration and pH for eradication of phenol from aqueous solution. The maximum phenolic removals by STAC-O and STAC-H are 93.59% and 91.024% respectively at the parametric conditions of adsorbent dosage 3 g/l time 2 h, initial phenol concentration 100 mg/l and pH 8. Non-linear regression of adsorption isotherms and kinetics was accomplished using the equilibrium data. Both the specimens were compared, and it delineated that Temkin isotherm model is contented. The maximum adsorption intakes for STAC-H and STAC-O were 185.002 mg/g and 154.39 mg/g respectively. Pseudo-second-order kinetic model was best fitted for portraying the chemisorption phenomena. Boyd kinetic and intra-particle diffusion model were investigated to elucidate the diffusion mechanism involved in the process. Desorption study was employed for determining the regeneration proficiency of the adsorbents using water, ethanol and NaOH with maximum 93% and 51.16% extrusion for STAC-O and STAC-H respectively. The process parameters involved in this study were further analysed using artificial neural network perusal to determine the input-output relationships and data pattern. The overall adsorption study along with cost estimation exhibited that bidirectional activation of spent tea biochar was prospective in abatement of phenol from aqueous media.
Collapse
Affiliation(s)
- Uttarini Pathak
- Centre for Technological Excellence in Water Purification, Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, India
| | - Aastha Jhunjhunwala
- Centre for Technological Excellence in Water Purification, Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, India
| | - Ananya Roy
- Centre for Technological Excellence in Water Purification, Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, India
| | - Papita Das
- Department of Chemical Engineering, Jadavpur University, Kolkata, India
| | - Tarkeshwar Kumar
- Department of Petroleum Engineering, ISM Dhanbad, Dhanbad, Jharkhand, India
| | - Tamal Mandal
- Centre for Technological Excellence in Water Purification, Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, India.
| |
Collapse
|
18
|
Fraga TJM, Ghislandi MG, Carvalho MN, da Motta Sobrinho MA. One step forward: How can functionalization enhance the adsorptive properties of graphene towards metallic ions and dyes? ENVIRONMENTAL RESEARCH 2020; 184:109362. [PMID: 32199322 DOI: 10.1016/j.envres.2020.109362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/23/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Functionalized graphene and its derivatives have been subject of many recent studies investigating their use as scavenger of various industrial pollutants. Adsorption is a feasible treatment, which can employ a wide variety of materials as adsorbents. Additionally, graphene has been distinguished for its remarkable properties, such as mechanical resistance, flexibility and electric conductivity. A relevant aspect of functionalized graphene is related to its selectivity, resulting in increased removal rates of specific pollutants. Hence, the functionalization process of graphene nanosheets is the cutting edge of the materials and environmental sciences, promoting the development of innovative and highly capable sorbents. The purpose of this review is to assemble the available information about functionalized graphene nanomaterials used for the removal of water pollutants and to explore its wide potential. In addition, various optimal experimental conditions (solution pH, equilibrium time, adsorbent dosage) are discussed. In each topic, aspects of environmental protection of adsorption process were evaluated, as well as the most recent works, available from high impact journals in the field, have been explored. Additionally, the employment of natural compounds to functionalize, reduce and support graphene, was evaluated as green alternatives to chemicals.
Collapse
Affiliation(s)
- Tiago José Marques Fraga
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, 50670-901, Recife, PE, Brazil.
| | - Marcos Gomes Ghislandi
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, 50670-901, Recife, PE, Brazil; Engineering Campus - UACSA, Federal Rural University of Pernambuco (UFRPE), 300 Cento e sessenta e Três Av., Cabo de Santo Agostinho, PE, Brazil.
| | - Marilda Nascimento Carvalho
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, 50670-901, Recife, PE, Brazil.
| | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, 50670-901, Recife, PE, Brazil.
| |
Collapse
|
19
|
Green Synthesis of S- and N-Codoped Carbon Nanospheres and Application as Adsorbent of Pb (II) from Aqueous Solution. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1155/2020/9068358] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this paper, green and facile synthesis of sulfur- and nitrogen-codoped carbon nanospheres (CNs) was prepared from the extract of Hibiscus sabdariffa L by a direct hydrothermal method. Finally, sulfur-carbon nanospheres (CNs) were used as the adsorbent to remove Pb+2 ions from aqueous solutions because of the high surface area of S-CNs from CNs and N-CNs. The synthesized nanospheres were examined by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy, transmission electron microscopy (TEM), and nitrogen adsorption-desorption isotherms. The results show spherical shapes have a particle size of up to 65 nm with a high surface area capable of absorbing lead ions efficiently. Additionally, the factors affecting the process of adsorption that include equilibrium time, temperature, pH solution, ionic intensity, and adsorbent dose were studied. The equilibrium removal efficiency was studied employing Langmuir, Freundlich, and Temkin isotherm forms. The kinetic data were analyzed with two different kinetic models, and both apply to the adsorption process depending on the values of correlation coefficients. The thermodynamic parameters including Gibbs free energy (ΔG°), standard enthalpy change (ΔH°), and standard entropy change (ΔS°) were calculated for the adsorption process.
Collapse
|
20
|
Araújo CMB, Oliveira do Nascimento GF, Bezerra da Costa GR, Baptisttella AMS, Fraga TJM, Assis Filho RB, Ghislandi MG, Motta Sobrinho MA. Real textile wastewater treatment using nano graphene‐based materials: Optimum pH, dosage, and kinetics for colour and turbidity removal. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23712] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Caroline M. B. Araújo
- Chemical Engineering DepartmentUniversidade Federal de Pernambuco (UFPE) Recife Brazil
| | | | | | | | - Tiago J. M. Fraga
- Chemical Engineering DepartmentUniversidade Federal de Pernambuco (UFPE) Recife Brazil
| | - Romero B. Assis Filho
- Chemical Engineering DepartmentUniversidade Federal de Pernambuco (UFPE) Recife Brazil
- Department of ChemistryInstituto Federal de Pernambuco (IFPE) Recife Brazil
| | - Marcos G. Ghislandi
- Engineering Campus (UACSA)Universidade Federal Rural de Pernambuco (UFRPE) Recife Brazil
| | | |
Collapse
|
21
|
Mahanty S, Bakshi M, Ghosh S, Gaine T, Chatterjee S, Bhattacharyya S, Das S, Das P, Chaudhuri P. Mycosynthesis of iron oxide nanoparticles using manglicolous fungi isolated from Indian sundarbans and its application for the treatment of chromium containing solution: Synthesis, adsorption isotherm, kinetics and thermodynamics study. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.enmm.2019.100276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Fideles RA, Teodoro FS, Xavier ALP, Adarme OFH, Gil LF, Gurgel LVA. Trimellitated sugarcane bagasse: A versatile adsorbent for removal of cationic dyes from aqueous solution. Part II: Batch and continuous adsorption in a bicomponent system. J Colloid Interface Sci 2019; 552:752-763. [DOI: 10.1016/j.jcis.2019.05.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/16/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
|
23
|
Dong R, Chen D, Li N, Xu Q, Li H, He J, Lu J. Enhancement of organic pollutants bio-decontamination from aqueous solution using newly-designed Pseudomonas putida-GA/MIL-100(Fe) bio-nanocomposites. ENVIRONMENTAL RESEARCH 2019; 173:237-245. [PMID: 30928854 DOI: 10.1016/j.envres.2019.03.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/09/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
As a natural adsorption material, graphene has become a hot research topic in water treatment due to its unique framework, large surface area, low cost, and simple preparation. Here, a series of composite material aerogels (GA/MIL-100(Fe)) consisting of Fe metal-organic frameworks (MIL-100 (Fe)) and graphene-based aerogel (GA) were prepared through a hydrothermal and step-by-step strategy and used for the adsorption of an azo dye in wastewater, scilicet acid orange 10 (AO10). The adsorption equilibrium of AO10 solutions with concentrations of 50 and 100 mg/L was reached within 45 min but the dye could not be fully removed. Besides, the synthesized composite material (GA/MIL-100(Fe)) was a good carrier for immobilized Pseudomonas putida cells due to its good biocompatibility and non-toxicity. A new, environmentally friendly adsorption and biodegradation process has been exploited here, which was to immobilize bacterial cells to the surface of GA/MIL-100(Fe) by a covalent bonding method to form a novel biocomposite material. The material could be used to completely remove AO10 dyes in 14 and 26 h from solutions with initial AO10 concentrations of 50 and 100 mg/L, respectively. This way of combining biological and physical adsorption has a higher processing efficiency and shows huge potential for the treatment of industrial wastewater.
Collapse
Affiliation(s)
- Ruifang Dong
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Dongyun Chen
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China.
| | - Najun Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Qingfeng Xu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Hua Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Jinghui He
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Jianmei Lu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China.
| |
Collapse
|
24
|
Deng S, Fu A, Junaid M, Wang Y, Yin Q, Fu C, Liu L, Su DS, Bian WP, Pei DS. Nitrogen-doped graphene quantum dots (N-GQDs) perturb redox-sensitive system via the selective inhibition of antioxidant enzyme activities in zebrafish. Biomaterials 2019; 206:61-72. [PMID: 30925289 DOI: 10.1016/j.biomaterials.2019.03.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 03/03/2019] [Accepted: 03/19/2019] [Indexed: 01/02/2023]
Abstract
Graphene quantum dots (GQDs) are well-known for its potential applications for bioimaging, biosensor, and drug carrier in biomedicine. GQDs are well characteristic of intrinsic peroxidase-like catalytic activity, which is proven effective in scavenging the free radicals, such assuperoxide anion, hydrogen peroxide, and hydroxyl radical. GQDs are also well praised for its low in vivo and in vitro toxicity. Here, we found that nitrogen-doped GQDs (N-GQDs) can strongly disturb redox-sensitive system via the selective inhibition of endogenous antioxidant enzyme activities in zebrafish. The enzyme activities or transcription levels of a battery of hemoproteins including catalase (CAT), superoxide dismutase (SOD), respiratory chain complex I, complex Ⅲ, hemoglobin (Hb), and myeloperoxidase (MPO), were significantly suppressed by N-GQDs. We also found that N-GQDs activated the cytochrome P450 monooxygenase (e.g. cyp1a) and the associated aryl-hydrocarbon receptor repressors (ahrr1 and ahrr2) in zebrafish embryos. Compared to the ultrasmall graphene oxide (USGO), N-GQDs exhibited stronger fluorescent permeability and tissue-specific bio-accumulative effects. Taken together, our findings highlighted that exposure to N-GQDs can disrupt endogenous antioxidant enzyme activities, possibly via the competitive inhibition of electron transfer process. Our results in this study provided solid data for biosafety evaluations of various types of GQDs, and created an alert for the future biomedical applications of N-GQDs.
Collapse
Affiliation(s)
- Shun Deng
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Muhammad Junaid
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Yin
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Chen Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Li Liu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Sheng Su
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Wan-Ping Bian
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Sheng Pei
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Bees metaheuristic algorithm with the aid of artificial neural networks for optimization of acid red 27 dye adsorption onto novel polypyrrole/SrFe12O19/graphene oxide nanocomposite. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02700-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
Qiu T, Yang JG, Bai XJ, Wang YL. The preparation of synthetic graphite materials with hierarchical pores from lignite by one-step impregnation and their characterization as dye absorbents. RSC Adv 2019; 9:12737-12746. [PMID: 35515865 PMCID: PMC9063670 DOI: 10.1039/c9ra00343f] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
Herein, synthetic graphite materials with hierarchical pores and large specific surface area were successfully prepared by one-step impregnation with lignite as the carbon source, sulfuric acid (H2SO4) as the oxidant, and phosphoric acid (H3PO4) as the activator. The microstructural characteristics of synthetic graphite were investigated via X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Moreover, the pore parameters were studied by nitrogen adsorption–desorption. The results showed that synthetic graphite had a perfect orderly layered structure with high graphitization degree and a well-developed multistage pore structure with pore sizes ranging from nanometer to micrometer. The specific surface area and pore volume were 415.29 m2 g−1 and 0.67 cm3 g−1, respectively. The results of Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) showed that the impregnation pretreatment provided polar groups containing oxygen to the surfaces. These unique characteristics make synthetic graphite possess good adsorption capacity for dye pollutants (the adsorption rate of the methyl orange solution was 99.9% within 60 min at 50 °C, and the pH value of the solution was 3). The effects of temperature and pH value on the adsorption capacity were studied. The repeatability of the adsorption performance was also tested, and the adsorption rate was 84.6% of the initial adsorption rate after five cycles. Herein, synthetic graphite materials with hierarchical pores and large specific surface area were prepared by one-step impregnation with lignite as the carbon source, H2SO4 as the oxidant, and H3PO4 as the activator.![]()
Collapse
Affiliation(s)
- Tian Qiu
- National Engineering Research Center of Coal Preparation and Purification
- China University of Mining and Technology
- Xuzhou
- China
- School of Chemical Engineering and Technology
| | - Jian-Guo Yang
- National Engineering Research Center of Coal Preparation and Purification
- China University of Mining and Technology
- Xuzhou
- China
- School of Chemical Engineering and Technology
| | - Xue-Jie Bai
- School of Chemical Engineering and Technology
- China University of Mining and Technology
- Xuzhou
- China
| | - Yu-Ling Wang
- School of Chemical Engineering and Technology
- China University of Mining and Technology
- Xuzhou
- China
| |
Collapse
|
27
|
Integrated adsorption and catalytic degradation of safranine T by a porous covalent triazine-based framework. J Colloid Interface Sci 2018; 532:1-11. [DOI: 10.1016/j.jcis.2018.07.113] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 11/19/2022]
|
28
|
Urban wood waste as precursor of activated carbon and its subsequent application for adsorption of polyaromatic hydrocarbons. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42108-018-0001-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Roy U, Sengupta S, Banerjee P, Das P, Bhowal A, Datta S. Assessment on the decolourization of textile dye (Reactive Yellow) using Pseudomonas sp. immobilized on fly ash: Response surface methodology optimization and toxicity evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:185-195. [PMID: 29929074 DOI: 10.1016/j.jenvman.2018.06.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 05/27/2023]
Abstract
This study focuses on the investigation of removal of textile dye (Reactive Yellow) by a combined approach of sorption integrated with biodegradation using low cost adsorbent fly ash immobilized with Pseudomonas sp. To ensure immobilization of bacterial species on treated fly ash, fly ash with immobilized bacterial cells was characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and fluorescence microscopy. Comparative batch studies were carried out using Pseudomonas sp, fly ash and immobilized Pseudomonas sp on flyash and were observed that immobilized Pseudomonas sp on flyash acted as better decolourizing agent. The optimized pH, temperature, and immobilized adsorbent dosage for highest percentage of dye removal were observed to be pH 6, 303 K, 1.2 g/L in all the cases. At optimum condition, the highest percentage of dye removal was found to be 88.51%, 92.62% and 98.72% for sorption (flyash), biodegradation (Pseudomonas sp) and integral approach (Pseudomonas sp on flyash) respectively. Optimization of operating parameters of textile dye decolourization was done by response surface methodology (RSM) using Design Expert 7 software. Phytotoxicity evaluation with Cicer arietinum revealed that seeds exposed to untreated dye effluents showed considerably lower growth, inhibited biochemical, and enzyme parameters with compared to those exposed to treated textile effluents. Thus this immobilized inexpensive technique could be used for removal of synthetic dyes present in textile wastewater.
Collapse
Affiliation(s)
- Uttariya Roy
- Department of Chemical Engineering, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700 032, West Bengal, India
| | - Shubhalakshmi Sengupta
- Department of Chemical Engineering, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700 032, West Bengal, India
| | - Priya Banerjee
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, West Bengal, India
| | - Papita Das
- Department of Chemical Engineering, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700 032, West Bengal, India.
| | - Avijit Bhowal
- Department of Chemical Engineering, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700 032, West Bengal, India
| | - Siddhartha Datta
- Department of Chemical Engineering, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700 032, West Bengal, India
| |
Collapse
|
30
|
Haddad M, Abid S, Hamdi M, Bouallagui H. Reduction of adsorbed dyes content in the discharged sludge coming from an industrial textile wastewater treatment plant using aerobic activated sludge process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:936-946. [PMID: 30007889 DOI: 10.1016/j.jenvman.2018.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Dye mass balance study at full-scale industrial textile wastewater (ITW) treatment plant showed that 1.5 ton of excess waste sludge, containing 304.5 Kg of dyes, are daily produced and discharged in landfills. Therefore, this by-product of activated sludge process (ASP) presents a serious environmental problem. In this work, a laboratory and pilot scale investigations were carried out to optimize aerobic biodegradation efficiency to reduce the amount of residual adsorbed dye that will be found in the waste sludge. The resistance of acclimated biomass to the toxicity of ITW was studied in 2.5 L batch reactors using different dye to biomass (D/B) ratios of 0.102, 0.25 and 0.72 g CODS/g VSS. Results of respirometric analyses showed that acclimated activated sludge (AS) biomass is able to treat ITW at high D/B ratio of 0.72 g CODS/g VSS. Moreover, biodegradation kinetic study using Monod law showed that COD and color removal were better for the highest D/B ratio. The half saturation coefficient of heterotrophs for indigo dye (KSind) of 20.01 g/m3 showed high affinity between biomass and dye molecules. Optimization of the process at pilot-scale with different hydraulic retention time (HRT) of 2-5 days, and different sludge recycling rates (SRR) of 220-680 m3/d, showed that high HRT of 5 days and a SRR of 0.22 allowed the best dye biodegradation efficiency (95%). Application of the best conditions at full-scale reduced significantly (89%) the amount of the discharged dyes from 304.5 Kg/d to 33 Kg/d. Results were numerically validated using a mathematical model based on the activated sludge model 1 (ASM1).
Collapse
Affiliation(s)
- Maroua Haddad
- Université de Carthage, LabEco Tech Micro, INSAT, Tunis, Tunisia
| | - Sami Abid
- Université de Carthage, LabEco Tech Micro, INSAT, Tunis, Tunisia
| | - Moktar Hamdi
- Université de Carthage, LabEco Tech Micro, INSAT, Tunis, Tunisia
| | | |
Collapse
|
31
|
Asfaram A, Ghaedi M, Abidi H, Javadian H, Zoladl M, Sadeghfar F. Synthesis of Fe 3O 4@CuS@Ni 2P-CNTs magnetic nanocomposite for sonochemical-assisted sorption and pre-concentration of trace Allura Red from aqueous samples prior to HPLC-UV detection: CCD-RSM design. ULTRASONICS SONOCHEMISTRY 2018; 44:240-250. [PMID: 29680609 DOI: 10.1016/j.ultsonch.2018.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/08/2018] [Accepted: 02/06/2018] [Indexed: 05/09/2023]
Abstract
A simple procedure based on ultrasound-assisted (UA) dispersive micro solid phase extraction (D-μ-SPE) was applied for sorption of trace amount Allura Red (AR) in fruit juice and water samples. After loading process by UA-D-μ-SPE, the concentrated AR was eluted and monitored using high-performance liquid chromatography-ultraviolet -visible detector (HPLC-UV). The best operational conditions were obtained as follows: pH = 3.0, 8 mg of the sorbent, sonication time of 4.5 min and 0.16 mL of THF as elution solvent. Under the optimum operational conditions, the present method was acceptable for AR quantification in the range of 1.0-5000 ng mL-1. The repeatability based on RSD with the amount of 1.67-3.18%, low LOD (0.198 ng mL-1) and LOQ (0.659 ng mL-1) were obtained. The UA-D-μ-SPE-HPLC-UV method was successfully applied for trace quantification of AR from water and commercial fruit juice samples supplied from local supermarkets, and acceptable relative recoveries over the range of 97.7-105.4% with RSDs ≤5.50% were obtained.
Collapse
Affiliation(s)
- Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Hassan Abidi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamedreza Javadian
- Universitat Politècnica de Catalunya, Department of Chemical Engineering, ETSEIB, Diagonal 647, 08028 Barcelona, Spain
| | - Mohammad Zoladl
- Social Determinants of Health Research Centre, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Fardin Sadeghfar
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| |
Collapse
|
32
|
Ali I, Alharbi OML, Tkachev A, Galunin E, Burakov A, Grachev VA. Water treatment by new-generation graphene materials: hope for bright future. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7315-7329. [PMID: 29359248 DOI: 10.1007/s11356-018-1315-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Water is the most important and essential component of earth's ecosystem playing a vital role in the proper functioning of flora and fauna. But, our water resources are contaminating continuously. The whole world may be in great water scarcity after few decades. Graphene, a single-atom thick carbon nanosheet, and graphene nanomaterials have bright future in water treatment technologies due to their extraordinary properties. Only few papers describe the use of these materials in water treatment by adsorption, filtration, and photodegradation methods. This article presents a critical evaluation of the contribution of graphene nanomaterials in water treatment. Attempts have been made to discuss the future perspectives of these materials in water treatment. Besides, the efforts are made to discuss the nanotoxicity and hazards of graphene-based materials. The suggestions are given to explore the full potential of these materials along with precautions of nanotoxicity and its hazards. It was concluded that the future of graphene-based materials is quite bright.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Faculty of Sciences, Taibah University, Medina Al-Munawara, 41477, Saudi Arabia.
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Omar M L Alharbi
- Biology Department, Faculty of Sciences, Taibah University, Medina Al-Munawara, 41477, Saudi Arabia
| | - Alexey Tkachev
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106, Sovetskaya Str., Tambov, 392000, Russian Federation
| | - Evgeny Galunin
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106, Sovetskaya Str., Tambov, 392000, Russian Federation
| | - Alexander Burakov
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106, Sovetskaya Str., Tambov, 392000, Russian Federation
| | - Vladimir A Grachev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (RAS), Leninsky Ave., 31, Moscow, 119071, Russian Federation
| |
Collapse
|
33
|
Abstract
Convolutional neural networks (CNNs) have better performance in feature extraction and classification. Most of the applications are based on a traditional structure of CNNs. However, due to the fixed structure, it may not be effective for large dataset which will spend much time for training. So, we use a new algorithm to optimize CNNs, called directly connected convolutional neural networks (DCCNNs). In DCCNNs, the down-sampling layer can directly connect the output layer with three-dimensional matrix operation, without full connection (i.e., matrix vectorization). Thus, DCCNNs have less weights and neurons than CNNs. We conduct the comparison experiments on five image databases: MNIST, COIL-20, AR, Extended Yale B, and ORL. The experiments show that the model has better recognition accuracy and faster convergence than CNNs. Furthermore, two applications (i.e., water quality evaluation and image classification) following the proposed concepts further confirm the generality and capability of DCCNNs.
Collapse
Affiliation(s)
- Qingxiu Wu
- Hainan College of Software Technology, Hainan 571400, P. R. China
| | - Zhanji Gui
- Hainan College of Software Technology, Hainan 571400, P. R. China
| | - Shuqing Li
- Hainan College of Software Technology, Hainan 571400, P. R. China
| | - Jun Ou
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
34
|
Bazrafshan AA, Ghaedi M, Hajati S, Naghiha R, Asfaram A. Synthesis of ZnO-nanorod-based materials for antibacterial, antifungal activities, DNA cleavage and efficient ultrasound-assisted dyes adsorption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:330-337. [PMID: 28437724 DOI: 10.1016/j.ecoenv.2017.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 05/09/2023]
Abstract
Undoped and Au-doped ZnO-nanorods were synthesized in the presence of ultrasound and loaded on activated carbon following characterization by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmittance electron microscopy (TEM), UV-vis spectrophotometry and Fourier transform infrared spectroscopy (FTIR). The Au-doped ZnO-nanorod-loaded activated carbon (Au-ZnO-NRs-AC) was used for the simultaneous removal of methylene blue (MB) and auramine O (AO) from aqueous solutions. Central composite design (CCD) under response surface methodology (RSM) was applied to model and optimize the dyes removal versus adsorbent mass, pH, and initial dyes concentration and sonication time as well as to investigate the possible interaction between these variables. The optimum values of the initial MB and AO dyes concentration, adsorbent mass, pH and sonication time were found to be 12 and 10mgL-1, 0.0124g, 6.4, and 4min respectively. The rapid adsorption process at neutral pH using very small amount of the adsorbent makes it promising for the wastewater treatment applications. More than 99.5% of both dyes was removed with maximum adsorption capacities in binary-component system (107.5 and 95.7mgg-1 for MB and AO, respectively). The kinetics and isotherm studies showed that the second-order and Langmuir models apply for the kinetics and isotherm of the adsorption of MB and AO on the adsorbent used here. Moreover, the wastewater treatment by using an antibacterial/antifungal adsorbent makes the process much more valuable. Therefore, additional studies were performed which showed efficient antibacterial/antifungal activities and DNA cleavage of undoped and Au-doped ZnO nanorods as constituent of the adsorbent applied here.
Collapse
Affiliation(s)
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Shaaker Hajati
- Department of Physics, Yasouj University, Yasouj 75918-74831, Iran; Department of Semiconductors, Materials and Energy Research Center, Karaj 3177983634, Iran.
| | - Reza Naghiha
- Department of Animal science, Yasouj University, Yasouj 75918-74831, Iran
| | - Arash Asfaram
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| |
Collapse
|
35
|
Zhong C, Feng J, Lin X, Bao Q. Continuous release of bone morphogenetic protein-2 through nano-graphene oxide-based delivery influences the activation of the NF-κB signal transduction pathway. Int J Nanomedicine 2017; 12:1215-1226. [PMID: 28243085 PMCID: PMC5315217 DOI: 10.2147/ijn.s124040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Graphene oxide (GO) has been used as a delivery vehicle for small molecule drugs and nucleotides. To further investigate GO as a smart biomaterial for the controlled release of cargo molecules, we hypothesized that GO may be an appropriate delivery vehicle because it releases bone morphogenetic protein 2 (BMP2). GO characterization indicated that the size distribution of the GO flakes ranged from 81.1 nm to 45,749.7 nm, with an approximate thickness of 2 nm. After BMP2 adsorption onto GO, Fourier-transformed infrared spectroscopy (FTIR) and thermal gravimetric analysis were performed. Compared to GO, BMP2-GO did not induce significant changes in the characteristics of the materials. GO continuously released BMP2 for at least 40 days. Bone marrow stem cells (BMSCs) and chondrocytes were treated with BMP2-GO in interleukin-1 media and assessed in terms of cell viability, flow cytometric characterization, and expression of particular mRNA. Compared to GO, BMP2-GO did not induce any significant changes in biocompatibility. We treated osteoarthritic rats with BMP2 and BMP2-GO, which showed significant differences in Osteoarthritis Research Society International (OARSI) scores (P<0.05). Quantitative assessment revealed significant differences compared to that using BMP2 and BMP2-GO (P<0.05). These findings indicate that GO may be potentially used to control the release of carrier materials. The combination of BMP2 and GO slowed the progression of NF-κB-activated degenerative changes in osteoarthritis. Therefore, we infer that our BMP2-GO strategy could alleviate the NF-κB pathway by inducing continuous BMP2 release.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Orthopaedic, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jun Feng
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA
| | - Xiangjin Lin
- Department of Orthopaedic, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qi Bao
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital, School of Medicine; Institute of Gastroenterology, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
36
|
Banerjee P, Barman SR, Mukhopadhayay A, Das P. Ultrasound assisted mixed azo dye adsorption by chitosan–graphene oxide nanocomposite. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2016.10.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Synthesis of graphene oxide/magnesium oxide nanocomposites with high-rate adsorption of methylene blue. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.09.049] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Dil EA, Ghaedi M, Asfaram A, Mehrabi F, Bazrafshan AA, Ghaedi AM. Trace determination of safranin O dye using ultrasound assisted dispersive solid-phase micro extraction: Artificial neural network-genetic algorithm and response surface methodology. ULTRASONICS SONOCHEMISTRY 2016; 33:129-140. [PMID: 27245964 DOI: 10.1016/j.ultsonch.2016.04.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
In this study, ultrasound assisted dispersive solid-phase micro extraction combined with spectrophotometry (USA-DSPME-UV) method based on activated carbon modified with Fe2O3 nanoparticles (Fe2O3-NPs-AC) was developed for pre-concentration and determination of safranin O (SO). It is known that the efficiency of USA-DSPME-UV method may be affected by pH, amount of adsorbent, ultrasound time and eluent volume and the extent and magnitude of their contribution on response (in term of main and interaction part) was studied by using central composite design (CCD) and artificial neural network-genetic algorithms (ANN-GA). Accordingly by adjustment of experimental conditions suggested by ANN-GA at pH 6.5, 1.1mg of adsorbent, 10min ultrasound and 150μL of eluent volume led to achievement of best operation performance like low LOD (6.3ngmL(-1)) and LOQ (17.5ngmL(-1)) in the range of 25-3500ngmL(-1). In following stage, the SO content in real water and wastewater samples with recoveries between 93.27-99.41% with RSD lower than 3% was successfully determined.
Collapse
Affiliation(s)
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Arash Asfaram
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Fatemeh Mehrabi
- Chemistry Department, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| | | | | |
Collapse
|
39
|
Enhanced efficiency of ANN using non-linear regression for modeling adsorptive removal of fluoride by calcined Ca-Al-(NO3)-LDH. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.07.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|