1
|
Song JZ, Wang CQ, Yu GS, Sun Z, Wu AH, Chi ZM, Liu GL. Simultaneous production of biosurfactant and extracellular unspecific peroxygenases by Moesziomyces aphidis XM01 enables an efficient strategy for crude oil degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134437. [PMID: 38691934 DOI: 10.1016/j.jhazmat.2024.134437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Crude oil is a hazardous pollutant that poses significant and lasting harm to human health and ecosystems. In this study, Moesziomyces aphidis XM01, a biosurfactant mannosylerythritol lipids (MELs)-producing yeast, was utilized for crude oil degradation. Unlike most microorganisms relying on cytochrome P450, XM01 employed two extracellular unspecific peroxygenases, MaUPO.1 and MaUPO.2, with preference for polycyclic aromatic hydrocarbons (PAHs) and n-alkanes respectively, thus facilitating efficient crude oil degradation. The MELs produced by XM01 exhibited a significant emulsification activity of 65.9% for crude oil and were consequently supplemented in an "exogenous MELs addition" strategy to boost crude oil degradation, resulting in an optimal degradation ratio of 72.3%. Furthermore, a new and simple "pre-MELs production" strategy was implemented, achieving a maximum degradation ratio of 95.9%. During this process, the synergistic up-regulation of MaUPO.1, MaUPO.1 and the key MELs synthesis genes contributed to the efficient degradation of crude oil. Additionally, the phylogenetic and geographic distribution analysis of MaUPO.1 and MaUPO.1 revealed their wide occurrence among fungi in Basidiomycota and Ascomycota, with high transcription levels across global ocean, highlighting their important role in biodegradation of crude oil. In conclusion, M. aphidis XM01 emerges as a novel yeast for efficient and eco-friendly crude oil degradation.
Collapse
Affiliation(s)
- Ji-Zheng Song
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Chu-Qi Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Guan-Shuo Yu
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhe Sun
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ai-Hua Wu
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhen-Ming Chi
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao 266003, China
| | - Guang-Lei Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Lazzem A, Lekired A, Ouzari HI, Landoulsi A, Chatti A, El May A. Isolation and characterization of a newly chrysene-degrading Achromobacter aegrifaciens. Int Microbiol 2024; 27:857-869. [PMID: 37851202 DOI: 10.1007/s10123-023-00435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are considered substances of potential human health hazards because of their resistance to biodegradation and carcinogenic index. Chrysene is a PAH with a high molecular weight (HMW) that poses challenges for its elimination from the environment. However, bacterial degradation is an effective, environmentally friendly, and cost-effective solution. In our study, we isolated a potential chrysene-degrading bacteria from crude oil-contaminated seawater (Bizerte, Tunisia). Based on 16SrRNA analysis, the isolate S5 was identified as Achromobacter aegrifaciens. Furthermore, the results revealed that A. aegrifaciens S5 produced a biofilm on polystyrene at 20 °C and 30 °C, as well as at the air-liquid (A-L) interface. Moreover, this isolate was able to swim and produce biosurfactants with an emulsification activity (E24%) over 53%. Chrysene biodegradation by isolate S5 was clearly assessed by an increase in the total viable count. Confirmation was obtained via gas chromatography-mass spectrometry (GC-MS) analyses. A. aegrifaciens S5 could use chrysene as its sole carbon and energy source, exhibiting an 86% degradation of chrysene on day 7. In addition, the bacterial counts reached their highest level, over 25 × 1020 CFU/mL, under the conditions of pH 7.0, a temperature of 30 °C, and a rotary speed of 120 rpm. Based on our findings, A. aegrifaciens S5 can be a potential candidate for bioremediation in HMW-PAH-contaminated environments.
Collapse
Affiliation(s)
- Assia Lazzem
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia.
| | - Abdelmalek Lekired
- Laboratory of Microorganisms and Actives Biomolecules, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, Tunis, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Actives Biomolecules, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, Tunis, Tunisia
| | - Ahmed Landoulsi
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Alya El May
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| |
Collapse
|
3
|
Patowary K, Bhuyan T, Patowary R, Mohanta YK, Panda BP, Deka S, Islam NF, Joshi SJ, Sarma H. Soil treatment using a biosurfactant producing bacterial consortium in rice fields contaminated with oily sludge- a sustainable approach. ENVIRONMENTAL RESEARCH 2023; 220:115092. [PMID: 36587720 DOI: 10.1016/j.envres.2022.115092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
A consortium of two biosurfactant-producing bacteria (Bacillus pumilus KS2 and Bacillus cereus R2) was developed to remediate petroleum hydrocarbon-contaminated paddy soil. Soil samples from a heavily contaminated rice field near Assam's Lakwa oilfield were collected and placed in earthen pots for treatment. After each month of incubation, 50 g of soil from each earthen pot was collected, and the soil TPH (ppm) in each sample was determined. The extracted TPH samples were analysed by Gas chromatography-mass spectrometry (GC-MS) to confirm microbial degradation. The soil samples were examined for changes in pH, conductivity, total organic content (TOC), water holding capacity, and total nitrogen content in addition to TPH degradation. An increasing trend in TPH degradation was observed with each passing month. After six months of treatment, the sample with the lowest initial TPH concentration (1735 ppm) had the highest degradation (91.24%), while the soil with the highest amount of TPH (5780 ppm) had the lowest degradation (74.35%). A wide range of aliphatic hydrocarbons found in soil samples was degraded by the bacterial consortium. The soil samples contained eight different low- and high-molecular-weight PAHs. Some were fully mineralized, while others were significantly reduced. With the decrease in the TPH level in the polluted soil, a significant improvement in the soil's physicochemical qualities (such as pH, electrical conductivity, total organic content, and water-holding capacity) was observed.
Collapse
Affiliation(s)
- Kaustuvmani Patowary
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi, 793101, Meghalaya, India; Environmental Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science & Technology (IASST), Paschim Boragaon, Guwahati, 781 035, Assam, India
| | - Tamanna Bhuyan
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi, 793101, Meghalaya, India
| | - Rupshikha Patowary
- Environmental Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science & Technology (IASST), Paschim Boragaon, Guwahati, 781 035, Assam, India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi, 793101, Meghalaya, India
| | - Bibhu Prasad Panda
- Salim Ali Center for Ornithology and Natural History, Coimbatore, 641108, India
| | - Suresh Deka
- Environmental Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science & Technology (IASST), Paschim Boragaon, Guwahati, 781 035, Assam, India
| | - Nazim Forid Islam
- Institutional Biotech Hub (IBT Hub), Department of Botany, NN Saikia College, Titabar, 785630, Assam, India
| | - Sanket J Joshi
- Oil & Gas Research Center, Central Analytical and Applied Research Unit, Sultan Qaboos University, Oman
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, 783370, Kokrajhar (BTR), Assam, India.
| |
Collapse
|
4
|
Chand P, Dutta S, Mukherji S. Slurry phase biodegradation of heavy oily sludge and evidence of asphaltene biotransformation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116315. [PMID: 36183530 DOI: 10.1016/j.jenvman.2022.116315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Oily sludge management is a global environmental concern due to its hazardous nature. Oily sludge obtained from a refinery in India had 19-21% oil content. The oil was highly enriched in the asphaltene fraction. Slurry phase biodegradation of this oily sludge in presence of a 3-membered bacterial consortium was optimized in presence of Triton X-100 to increase the bioavailability of hydrocarbons. Triton X-100 at 4 times the critical micelle concentration (CMC) showed the highest degradation where oil removal of 53.1% was achieved from a 10% sludge slurry over 90 days. GCxGC analysis of n-alkanes present in the oily sludge after the biodegradation study showed an increase in the lower n-alkanes, i.e., dodecane and tridecane over the first 30 days, whereas the higher n-alkanes were removed to a much higher extent. Heptadecane showed the maximum extent of degradation with 94.9% removal in 90 days and an initial degradation rate of 0.079 day-1. The, maximum rate of degradation was observed for pentacosane (0.083 day-1) with 93.7% removal in 90 days. The increase in the lower n-alkanes may be attributed to biotic transformation of the asphaltene fraction which was also confirmed through FTIR and pyrolysis GCxGC analysis. Biodegradation was found to cause changes in the pyrolysis product of asphaltenes where four and three-ring pyrolysis products decreased while the one and two-ring pyrolysis products increased. In presence of the consortium asphaltene removal over 90 days was 12% whereas only 0.4% removal was obtained in the abiotic controls.
Collapse
Affiliation(s)
- Priyankar Chand
- Environmental Science and Engineering Department, IIT Bombay, Powai, Mumbai, India
| | - Suryendu Dutta
- Department of Earth Sciences, IIT Bombay, Powai, Mumbai, India
| | - Suparna Mukherji
- Environmental Science and Engineering Department, IIT Bombay, Powai, Mumbai, India.
| |
Collapse
|
5
|
Hoang SA, Lamb D, Sarkar B, Seshadri B, Lam SS, Vinu A, Bolan NS. Plant-derived saponin enhances biodegradation of petroleum hydrocarbons in the rhizosphere of native wild plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120152. [PMID: 36100120 DOI: 10.1016/j.envpol.2022.120152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Plant-derived saponins are bioactive surfactant compounds that can solubilize organic pollutants in environmental matrices, thereby facilitating pollutant remediation. Externally applied saponin has potential to enhance total petroleum hydrocarbon (TPH) biodegradation in the root zone (rhizosphere) of wild plants, but the associated mechanisms are not well understood. For the first time, this study evaluated a triterpenoid saponin (from red ash leaves, Alphitonia excelsa) in comparison to a synthetic surfactant (Triton X-100) for their effects on plant growth and biodegradation of TPH in the rhizosphere of two native wild species (a grass, Chloris truncata, and a shrub, Hakea prostrata). The addition of Triton X-100 at the highest level (1000 mg/kg) in the polluted soil significantly hindered the plant growth (reduced plant biomass and photosynthesis) and associated rhizosphere microbial activity in both the studied plants. Therefore, TPH removal in the rhizosphere of both plant species treated with the synthetic surfactant was not enhanced (at the lower level, 500 mg/kg soil) and even slightly decreased (at the highest level) compared to that in the surfactant-free (control) treatment. By contrast, TPH removal was significantly increased with saponin application (up to 60% in C. truncata at 1000 mg/kg due to enhanced plant growth and associated rhizosphere microbial activity). No significant difference was observed between the two saponin application levels. Dehydrogenase activity positively correlated with TPH removal (p < 0.001) and thus this parameter could be used as an indicator to predict the rhizoremediation efficiency. This work indicates that saponin-amended rhizoremediation could be an environmentally friendly and effective biological approach to remediate TPH-polluted soils. It was clear that the enhanced plant growth and rhizosphere microbial activity played a crucial role in TPH rhizoremediation efficiency. The saponin-induced molecular processes that promoted plant growth and soil microbial activity in the rhizosphere warrant further studies.
Collapse
Affiliation(s)
- Son A Hoang
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Division of Urban Infrastructural Engineering, Mientrung University of Civil Engineering, Phu Yen 620000, Viet Nam
| | - Dane Lamb
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Balaji Seshadri
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Ajayan Vinu
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia.
| |
Collapse
|
6
|
Abbot V, Paliwal D, Sharma A, Sharma P. A review on the physicochemical and biological applications of biosurfactants in biotechnology and pharmaceuticals. Heliyon 2022; 8:e10149. [PMID: 35991993 PMCID: PMC9389252 DOI: 10.1016/j.heliyon.2022.e10149] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/17/2022] [Accepted: 07/28/2022] [Indexed: 01/22/2023] Open
Abstract
Biosurfactants are the chemical compounds that are obtained from various micro-organisms and possess the ability to decrease the interfacial tension between two similar or different phases. The importance of biosurfactants in cosmetics, pharmaceuticals, biotechnology, agriculture, food and oil industries has made them an interesting choice in various physico-chemical and biological applications. With the aim of representing different properties of biosurfactants, this review article is focused on emphasizing their applications in various industries summarizing their importance in each field. Along with this, the production of recently developed chemically and biologically important biosurfactants has been outlined. The advantages of biosurfactants over the chemical surfactants have also been discussed with emphasis on the latest findings and research performed worldwide. Moreover, the chemical and physical properties of different biosurfactants have been presented and different characterization techniques have been discussed. Overall, the review article covers the latest developments in biosurfactants along with their physico-chemical properties and applications in different fields, especially in pharmaceuticals and biotechnology.
Collapse
Affiliation(s)
- Vikrant Abbot
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan (Himachal Pradesh) 173234, India
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Campus-2, Near Baddowal Cantt. Ferozpur Road, Ludhiana (Punjab) 142021, India
| | - Diwakar Paliwal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan (Himachal Pradesh) 173234, India
| | - Anuradha Sharma
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Campus-2, Near Baddowal Cantt. Ferozpur Road, Ludhiana (Punjab) 142021, India
| | - Poonam Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan (Himachal Pradesh) 173234, India
| |
Collapse
|
7
|
Great Abilities of Shinella zoogloeoides Strain from a Landfarming Soil for Crude Oil Degradation and a Synergy Model for Alginate-Bead-Entrapped Consortium Efficiency. Microorganisms 2022; 10:microorganisms10071361. [PMID: 35889080 PMCID: PMC9323222 DOI: 10.3390/microorganisms10071361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Oil contamination is of great concern worldwide and needs to be properly addressed. The present work aimed to contribute to the development of bacterial consortia for oil recovery. We investigated the community structure of a landfarming-treated soil (LF2) by metagenomics to unravel the presence of hydrocarbon degraders. Moreover, we isolated Shinella zoogloeoides LFG9 and Bacillus swezeyi LFS15 from LF2 and combined them with Pseudomonas guguanensis SGPP2 isolated from an auto mechanic workshop soil to form the mixed consortium COG1. Bacterial isolates were tested for biosurfactant production. Additionally, the bioremediation potential of COG1 was studied as free and entrapped consortia by gas chromatography-mass spectrometry, in comparison to the single strains. Results revealed the presence of Actinobacteria (66.11%), Proteobacteria (32.21%), Gammaproteobacteria (5.39%), Actinomycetales (65.15%), Burkholderiales (13.92%), and Mycobacterium (32.22%) taxa, indicating the presence of hydrocarbon degraders in soil LF2. All three isolated strains were biosurfactant producers capable of degrading crude oil components within 14 days. However, Shinella zoogloeoides LFG9 performed best and was retained as candidate for further bioremediation investigation. In addition, COG1 performed better when immobilized, with entrapment effectiveness manifested by increased fatty acids and aromatic compound degradation. Attempt to improve crude oil biodegradation by adding surfactants failed as sodium dodecyl sulfate restrained the immobilized consortium performance.
Collapse
|
8
|
Eras-Muñoz E, Farré A, Sánchez A, Font X, Gea T. Microbial biosurfactants: a review of recent environmental applications. Bioengineered 2022; 13:12365-12391. [PMID: 35674010 PMCID: PMC9275870 DOI: 10.1080/21655979.2022.2074621] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Microbial biosurfactants are low-molecular-weight surface-active compounds of high industrial interest owing to their chemical properties and stability under several environmental conditions. The chemistry of a biosurfactant and its production cost are defined by the selection of the producer microorganism, type of substrate, and purification strategy. Recently, biosurfactants have been applied to solve or contribute to solving some environmental problems, with this being their main field of application. The most referenced studies are based on the bioremediation of contaminated soils with recalcitrant pollutants, such as hydrocarbons or heavy metals. In the case of heavy metals, biosurfactants function as chelating agents owing to their binding capacity. However, the mechanism by which biosurfactants typically act in an environmental field is focused on their ability to reduce the surface tension, thus facilitating the emulsification and solubilization of certain pollutants (in-situ biostimulation and/or bioaugmentation). Moreover, despite the low toxicity of biosurfactants, they can also act as biocidal agents at certain doses, mainly at higher concentrations than their critical micellar concentration. More recently, biosurfactant production using alternative substrates, such as several types of organic waste and solid-state fermentation, has increased its applicability and research interest in a circular economy context. In this review, the most recent research publications on the use of biosurfactants in environmental applications as an alternative to conventional chemical surfactants are summarized and analyzed. Novel strategies using biosurfactants as agricultural and biocidal agents are also presented in this paper.
Collapse
Affiliation(s)
- Estefanía Eras-Muñoz
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Abel Farré
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Antoni Sánchez
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Xavier Font
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Teresa Gea
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
9
|
Application of Multiple Strategies to Improve the Production of the Potential Cancer Drug 4-Acetylantroquinonol B (4-AAQB) by the Rare Fungus Antrodia cinnamomea. Appl Biochem Biotechnol 2022; 194:2720-2730. [PMID: 35257317 DOI: 10.1007/s12010-022-03811-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 11/02/2022]
Abstract
4-Acetylantroquinonol B (4-AAQB) was identified in the rare fungus Antrodia cinnamomea and has been proven to be a potential therapeutic agent for cancer treatment. But the extraction of 4-AAQB from the fruit body led to a low yield and limited its further application in the pharmaceutical field. In this work, 4-AAQB production was enhanced in the submerged fermentation by the combination of exogenous additives, surfactants with the in situ extractive fermentation. 4-Methylbenzoic acid was proven to be an efficient additive for the accumulation of 4-AAQB by Antrodia cinnamomea, while 2% (w/v) Tween-80 added on the first day as surfactant and 30% (w/v) oleic acid added on the sixteenth day as extractant were the most available couples for 4-AAQB production in the in situ extractive fermentation. The combination of these multiple strategies resulted in the yield of 4-AAQB to 17.27 mg/g dry cell weight with a titer of 140 mg/L, which was the highest titer of 4-AAQB reported so far. It showed that the combination of these strategies had a significant promotion on 4-AAQB production by A. cinnamomea, which laid a good foundation for its large-scale production and also provided a viable method for the cultivation of other rare fungi.
Collapse
|
10
|
Cheng Y, Chen J, Bao M, Zhao L, Li Y. The proliferation and colonization of functional bacteria on amorphous polyethylene terephthalate: Key role of ultraviolet irradiation and nonionic surfactant polysorbate 80 addition. CHEMOSPHERE 2022; 291:132940. [PMID: 34798113 DOI: 10.1016/j.chemosphere.2021.132940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Environmental pollution with plastics including polyethylene terephthalate (PET) has become a severe global problem, especially microplastic pollution, which is acknowledged as an emerging global pollutant. Biodegradation as a feasible and promising method has been studied, while colonization as the initiating step of the degradation process has seldom been studied. Here in this paper, we explored for the first time the key role of ultraviolet (UV) irradiation and nonionic surfactant polysorbate 80 (Tween-80, 0.2% V/V) in the proliferation and colonization of three functional bacteria (Pseudomonas putida, Pseudomonas sp. and Paracoccus sp.) on amorphous PET (APET). We found that 25 days of UV irradiation can trigger photolytic degradation process (appear the stretching vibration of associating carboxyl end group and the in-plane bending vibration of -OH) and introduce oxygen-containing functional groups on the surface of APET, even though the hydrophobicity of APET was scarcely changed. With regard to Tween-80, it can be utilized by these bacteria strains as carbon source to promote the proliferation, and it can also improve the cell surface hydrophobicity to stimulate the bacterial colonization during the first ten days of the experiment. When UV-irradiation and Tween-80 were provided together, the former factor can provide the target sites for functional bacteria to colonize, and the later factor can provide more candidates waiting to colonize by stimulating proliferation. As a result, an even better proliferation and colonization result can be achieved through the synergistic effect between the two factors. To some extent, the exposure between potential degrading bacteria and substrates to be degraded can be increased, which will create conditions for degrading. Generally, this research can provide certain theoretical basis and technical guidance for the remediation of plastic-polluted soil and the ocean.
Collapse
Affiliation(s)
- Yuan Cheng
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jianxia Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Lanmei Zhao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
11
|
Lee MT. Micellization of Rhamnolipid Biosurfactants and Their Applications in Oil Recovery: Insights from Mesoscale Simulations. J Phys Chem B 2021; 125:9895-9909. [PMID: 34423979 DOI: 10.1021/acs.jpcb.1c05802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dissipative particle dynamics (DPD) mesoscopic method is used to investigate the self-assembly of rhamnolipid congeners and their aggregation behaviors with paraffins including nonane and pentadecane. The coarse-grained force field is parameterized by combining molecular dynamics (MD) simulations, COSMOtherm calculations, and available experimental data. This model reproduces the vesicular formation of α-l-rhamnopyranosyl-β-hydroxydecanoyl-β-hydroxydecanoate (Rha-C10-C10) reported by all-atom MD simulations. The vesicle composed of Rha-C10-C10 is found to be most stable at a surfactant concentration of 100-146 mM based on asphericity analysis. The architecture of rhamnolipid congeners affects the morphology of their aggregates. Di-rhamno-di-lipidic dRha-C16-C16 forms vesicles with a thicker unilamellar layer of 3.2 nm. Rha-C16-C16 forms vesicles at a lower concentration of 70 mM, but the enclosed water space collapses when the surfactant concentration increases. dRha-C10-C10 forms wormlike micelles, which agglomerate into a torus and interconnected network at higher concentrations. In the presence of alkane molecules, dRha-C10-C10 maintains its wormlike micellar morphology with alkane molecules wrapped inside the aggregates. For Rha-C10-C10, Rha-C16-C16, and dRha-C16-C16, nonane molecules are distributed in the hydrophobic subdomain formed by rhamnolipid molecules. Spherical vesicles are formed at a surfactant concentration of 50 mM and then develop into ellipsoidal vesicles when the concentration increases to 125 mM. When mixed with pentadecane, the alkane molecules are aggregated and surrounded by surfactants forming a core-shell structure at a low surfactant concentration of 20 mM. At higher alkane and surfactant concentrations, the morphologies develop into disk micelles, wormlike micelles, and vesicles, with pentadecane molecules being distributed and packed with rhamnolipids. The obtained simulation results suggest that these biosurfactants have potential as environmental remediation agents.
Collapse
Affiliation(s)
- Ming-Tsung Lee
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
12
|
Smułek W, Burlaga N, Hricovíni M, Medveďová A, Kaczorek E, Hricovíniová Z. Evaluation of surface active and antimicrobial properties of alkyl D-lyxosides and alkyl L-rhamnosides as green surfactants. CHEMOSPHERE 2021; 271:129818. [PMID: 33736217 DOI: 10.1016/j.chemosphere.2021.129818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The use of carbohydrates, as a part of surface-active compounds, has been studied due to their biodegradability and nontoxic profile. A series of alkyl glycosides containing d-lyxose and l-rhamnose with alkyl chains of 8-12 carbon atoms were investigated. The effects of structural variations on their physico-chemical and biological properties have been evaluated for a detailed understanding of their properties. Alkyl glycosides were tested on their toxicity against bacterial cells of the genus Pseudomonas (MTT assay), microbiological adhesion to hydrocarbons (MATH assay), cell surface hydrophobicity (Congo red assay), cell membrane permeability (crystal violet assay), and bacterial biofilm formation. Furthermore, their antifungal activity against two pathogenic microorganisms Candida albicans and Aspergillus niger was investigated using the disc diffusion method. Toxicological studies revealed that compounds could reduce the metabolic activity of bacterial cells only moderately but they increased the hydrophobicity of cell surface in Pseudomonas strains. In addition, alkyl glycosides changed the permeability of the cell membranes to the level of 30-40% for this strain. The compounds with an even number of carbon atoms in their alkyl chain promoted stronger bacterial biofilm formation on the glass surface. All studied derivatives demonstrated very strong antifungal activity against fungus A. niger but very small effect against C. albicans. Overall, the results showed that long-chain alkyl glycosides could be considered as inexpensive, biocompatible, nontoxic agents, and serve for the surface design to avoid bacterial adhesion as an alternative solution to antibiotic treatment.
Collapse
Affiliation(s)
- Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Ul. Berdychowo 4, 60-965, Poznan, Poland.
| | - Natalia Burlaga
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Ul. Berdychowo 4, 60-965, Poznan, Poland
| | - Michal Hricovíni
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-845 38, Bratislava, Slovak Republic
| | - Alžbeta Medveďová
- Department of Nutrition and Food Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812, Bratislava, Slovakia
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Ul. Berdychowo 4, 60-965, Poznan, Poland
| | - Zuzana Hricovíniová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-845 38, Bratislava, Slovak Republic
| |
Collapse
|
13
|
Zhang J, Gao H, Lai H, Hu S, Xue Q. Biodegradation of heavy oil by fungal extracellular enzymes from
Aspergillus
spp. shows potential to enhance oil recovery. AIChE J 2021. [DOI: 10.1002/aic.17222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Junhui Zhang
- College of Resource and Environment Sciences, Key Laboratory of Oasis Ecology of Education Ministry Xinjiang University Urumqi China
- College of Natural Resources and Environment Northwest A & F University Xianyang China
| | - Hui Gao
- College of Natural Resources and Environment Northwest A & F University Xianyang China
| | - Hangxian Lai
- College of Natural Resources and Environment Northwest A & F University Xianyang China
| | - Shibin Hu
- College of Natural Resources and Environment Northwest A & F University Xianyang China
| | - Quanhong Xue
- College of Natural Resources and Environment Northwest A & F University Xianyang China
| |
Collapse
|
14
|
Khoramfar S, Jones KD, Ghobadi J, Taheri P. Effect of surfactants at natural and acidic pH on microbial activity and biodegradation of mixture of benzene and o-xylene. CHEMOSPHERE 2020; 260:127471. [PMID: 32682129 DOI: 10.1016/j.chemosphere.2020.127471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to explore the effect of lowering pH and application of surfactants (Brij 35, Tween 20 and Saponin) in increasing bioavailability and biodegradability of benzene and o-xylene (BX) as two hydrophobic VOCs in a liquid mixture. All experiments were conducted at neutral and acidic pH to evaluate the effect of population change from bacteria to fungi on the BX biodegradation. The experiments demonstrated that acclimating wastewater inoculum at pH 4 increased the fungal to bacterial ratio. An increase of 11% for benzene and 22% for o-xylene was observed at pH 4 unamended-culture as compared to pH 7. Brij 35 was chosen as the optimum surfactant which was favorable for enhancing the bioavailability of BX at pH 4. Fitting the experimental data to pseudo first-order biodegradation kinetics model showed the BX were biodegraded faster in the presence of optimum surfactant at pH 7 than pH 4.
Collapse
Affiliation(s)
| | - Kim D Jones
- Department of Environmental Engineering, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA.
| | | | - Parisa Taheri
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX, 77004, USA
| |
Collapse
|
15
|
Machado TS, Decesaro A, Cappellaro ÂC, Machado BS, van Schaik Reginato K, Reinehr CO, Thomé A, Colla LM. Effects of homemade biosurfactant from Bacillus methylotrophicus on bioremediation efficiency of a clay soil contaminated with diesel oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110798. [PMID: 32526591 DOI: 10.1016/j.ecoenv.2020.110798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Despite constant progress in the understanding of the mechanisms related to the effects of biosurfactants in the bioremediation processes of oily residues, the possibility of antagonist effects on microbial growth and the production in situ of these compounds must be elucidated. The aims of this work were a) to evaluate the effects of the addition of a homemade biosurfactant of Bacillus methylotrophicus on the microbial count in soil in order to determine the possibility of inhibitory effects, and b) to accomplish biostimulation using media prepared with whey and bioaugmentation with B. methylotrophicus, analyzing the effects on the bioremediation of diesel oil and evidencing the in situ production of biosurfactants through effects on surface tension. The homemade bacterial biosurfactant did not present inhibitory effects acting as a biostimulant until 4000 mg biosurfactant/kg of soil. The biostimulation and bioaugmentation presented similar better results (p > 0.05) with the degradation of oil (~60%) than natural attenuation due to the low quantities of biostimulants added. For bioaugmentated and biostimulated soils, a decrease of surface tension between 30 and 60 days was observed, indicating the production of tensoactives in the soil, which was not observed in natural attenuation or a control treatment.
Collapse
Affiliation(s)
- Thaís Strieder Machado
- Graduate Program in Civil and Environmental Engineering, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil.
| | - Andressa Decesaro
- Graduate Program in Civil and Environmental Engineering, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil.
| | - Ângela Carolina Cappellaro
- Undergraduate Program in Environmental Engineering, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil.
| | - Bruna Strieder Machado
- Undergraduate Program in Chemical Engineering, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil.
| | - Kimberly van Schaik Reginato
- Undergraduate Program in Environmental Engineering, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil.
| | - Christian Oliveira Reinehr
- Graduate Program in Food Science and Technology, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil.
| | - Antônio Thomé
- Graduate Program in Civil and Environmental Engineering, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil.
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil.
| |
Collapse
|
16
|
Huang Y, Zhou H, Zheng G, Li Y, Xie Q, You S, Zhang C. Isolation and characterization of biosurfactant-producing Serratia marcescens ZCF25 from oil sludge and application to bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27762-27772. [PMID: 32399884 DOI: 10.1007/s11356-020-09006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
A biosurfactant (BS) is a surface-active metabolite that is secreted by microbial metabolism, and can be used as a substitute for chemically synthesized surfactants. The first and most critical step to the successful application of BSs is to isolate bacterial strains with strong BS-producing capabilities. In this study, a BS-producing Serratia marcescens ZCF25 was isolated from the sludge of an oil tanker. Through polyphasic characterization using Fourier-transform infrared spectroscopy, thin layer chromatography, and gas chromatography-mass spectrometry, the produced BS was classified as a lipopeptide; it can decrease the water surface tension from 72.0 to 29.50 mN m-1 and has a critical micelle concentration of 220 mg/L. The BS showed a high tolerance over a wide range of pH (2-12), temperature (50-100 °C), and salinity (10-100 g/L). Furthermore, the inoculation of S. marcescens ZCF25 with fracturing flowback fluids could significantly (P < 0.05) reduce the chemical oxygen demand, concentration of alkanes, and concentration of polycyclic aromatic hydrocarbons, with removal efficiencies of 48.9%, 65.57%, and 64%, respectively. This is the first study on the application of BS-producing S. marcescens to treat fracturing flowback fluids. S. marcescens ZCF25 is a promising candidate for use in various industrial and bioremediation applications. Graphical abstract.
Collapse
Affiliation(s)
- Yi Huang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Hanghai Zhou
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Gang Zheng
- Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Yanhong Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, 541006, Guangxi, China
| | - Qinglin Xie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, 541006, Guangxi, China
| | - Shaohong You
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, 541006, Guangxi, China
| | - Chunfang Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China.
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China.
| |
Collapse
|
17
|
Vijayan D. Biodegradation of aromatic hydrocarbons using microbial adsorbed bioreactor. 3 Biotech 2020; 10:249. [PMID: 32411573 DOI: 10.1007/s13205-020-02236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022] Open
Abstract
Polyurethane (PU) tubular coil-based bioreactor was constructed and evaluated for the effective biodegradation of benzene, toluene, xylene and phenol (BTXP). Herein, the removal of BTXP was done with a formulated bacterial consortium adsorbed on the inner surface of the PU coil. The formulated consortium consisted of four bacterial strains namely, Alcaligenes sp. d 2 , Enterobacter aerogenes, Raoultella sp. and Bacillus megaterium. The adsorption ability of the bacterial cells onto the coil surface was assessed by spectrophotometric and Scanning Electron Microscopic (SEM) analysis. BTXP degradation performance was evaluated by Ultra-Violet spectroscopy and the degradation was confirmed by Fourier Transform Infrared Spectroscopy (FT/IR). The bioreactor constructed using polyurethane (PU) tubular coil with adsorbed bacterial cells exhibited 70% degradation capacity of 250 µL of 5% benzene, toluene, xylene and phenol (BTXP) at a pH of 6 within 8 h of treatment. FT/IR spectra of the treated sample indicated the production of ketonic, carboxylic acid/esters during biodegradation. The innovative technology proposed in the current study with the formulated bacterial consortium and the novel bioreactor opens up new possibilities for the better removal of BTXP mixture from contaminated sites and industrial effluents.
Collapse
|
18
|
Timmer N, Gore D, Sanders D, Gouin T, Droge STJ. Application of seven different clay types in sorbent-modified biodegradability studies with cationic biocides. CHEMOSPHERE 2020; 245:125643. [PMID: 31877460 DOI: 10.1016/j.chemosphere.2019.125643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
The cationic surfactants cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) can exert inhibitory effects on micro-organisms responsible for their biodegradation. However, under environmentally relevant exposure scenarios the presence of and sorption to organic and inorganic matter can lead to significant reduction of inhibitory effects. In our studies we investigated silica gel and seven clays as inert sorbents to mitigate these inhibitory effects in a 28 day manometric respirometry biodegradation test. CTAB was not inhibitory to the used inoculum, but we did observe that seven out of eight sorbents increased maximum attainable biodegradation, and four out of eight decreased the lag phase. The strongly inhibitory effect of CPC was successfully mitigated by most sorbents, with five out of eight allowing >50% biodegradation within 28 days. Results further indicate that bioaccessibility of the sorbed fractions in the stirred manometric test systems was higher than in calmly shaken headspace test systems. Bioaccessibility might also be limited depending on characteristics of test chemical and sorbent type, with montmorillonite and bentonite apparently providing the lowest level of bioaccessibility with CPC. Clay sorbents can thus be used as environmentally relevant sorbents to mitigate potential inhibitory effects of test chemicals, but factors that impede bioaccessibility should be considered. In addition to apparently increased bioaccessibility due to stirring, the automated manometric respirometry test systems give valuable and highly cost-effective insights into lag phase and biodegradation kinetics; information that is especially relevant for test chemicals of gradual biodegradability.
Collapse
Affiliation(s)
- Niels Timmer
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, 3508 TD, the Netherlands; Department Discovery and Environmental Sciences, Charles River Laboratories Den Bosch BV, 's-Hertogenbosch, 5231 DD, the Netherlands
| | - David Gore
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, MK44 1LQ, Bedfordshire, UK
| | - David Sanders
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, MK44 1LQ, Bedfordshire, UK
| | - Todd Gouin
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, MK44 1LQ, Bedfordshire, UK
| | - Steven T J Droge
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, 3508 TD, the Netherlands; Department Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE, Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Tao W, Lin J, Wang W, Huang H, Li S. Biodegradation of aliphatic and polycyclic aromatic hydrocarbons by the thermophilic bioemulsifier-producing Aeribacillus pallidus strain SL-1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109994. [PMID: 31787385 DOI: 10.1016/j.ecoenv.2019.109994] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 05/26/2023]
Abstract
The utilization of thermophilic hydrocarbon-degrading microorganisms is a suitable strategy for improving biodegradation of petroleum hydrocarbons and PAHs, as well as enhancing oil recovery from high-temperature reservoirs. In this study, the thermophilic strain Aeribacillus pallidus SL-1 was evaluated for the biodegradation of crude oil and PAHs at 60 °C. Strain SL-1 was found to preferentially degrade short-chain n-alkanes (<C17) and aromatic hydrocarbons from crude oil. The highest degradation rate of 84% was obtained with 1000 mg/l naphthalene as sole carbon source. Additionally, the strain was able to degrade 80% of phenanthrene (200 mg/l) and 50% of pyrene (50 mg/l) within 5 days at 60 °C. The SL-bioemulsifier produced by strain SL-1 was identified as a glycoprotein with stable emulsifying activity over a wide range of environmental conditions. Chemical composition studies exhibited that the SL-bioemulsifier consisted of polysaccharides (65.6%) and proteins (13.1%), among them, proteins were the major emulsifying functional substrates. Furthermore, the SL-bioemulsifier was able to enhance the solubility of PAHs. Thus, the bioemulsifier-producing strain SL-1 has great potential for applications in high-temperature bioremediation.
Collapse
Affiliation(s)
- Weiyi Tao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Junzhang Lin
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, China
| | - Weidong Wang
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, PR China
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
20
|
Wang D, Lin J, Lin J, Wang W, Li S. Biodegradation of Petroleum Hydrocarbons by Bacillus subtilis BL-27, a Strain with Weak Hydrophobicity. Molecules 2019; 24:molecules24173021. [PMID: 31438460 PMCID: PMC6749392 DOI: 10.3390/molecules24173021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/17/2022] Open
Abstract
The biodegradation of petroleum hydrocarbons has many potential applications and has attracted much attention recently. The hydrocarbon-degrading bacterium BL-27 was isolated from petroleum-polluted soil and was compounded with surfactants to improve biodegradation. Its 16S rDNA and rpoD gene sequences indicated that it was a strain of Bacillus subtilis. Strain BL-27 had extensive adaptability and degradability within a broad range of temperatures (25–50 °C), pH (4.0–10.0) and salinity (0–50 g/L NaCl). Under optimal conditions (45 °C, pH 7.0, 1% NaCl), the strain was able to degrade 65% of crude oil (0.3%, w/v) within 5 days using GC-MS analysis. Notably, strain BL-27 had weak cell surface hydrophobicity. The adherence rate of BL-27 to n-hexadecane was 29.6% with sucrose as carbon source and slightly increased to 33.5% with diesel oil (0.3%, w/v) as the sole carbon source, indicating that the cell surface of BL-27 is relatively hydrophilic. The strain was tolerant to SDS, Tween 80, surfactin, and rhamnolipids at a concentration of 500 mg/L. The cell surface hydrophobicity reduced more with the addition of surfactants, while the chemical dispersants, SDS (50–100 mg/L) and Tween 80 (200–500 mg/L), significantly increased the strain’s ability to biodegrade, reaching 75–80%. These results indicated that BL-27 has the potential to be used for the bioremediation of hydrocarbon pollutants and could have promising applications in the petrochemical industry.
Collapse
Affiliation(s)
- Dan Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jiahui Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Junzhang Lin
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying 257000, China
| | - Weidong Wang
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying 257000, China
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
21
|
Zdarta A, Smułek W, Pacholak A, Kaczorek E. Environmental Aspects of the Use of Hedera helix Extract in Bioremediation Process. Microorganisms 2019; 7:E43. [PMID: 30764566 PMCID: PMC6406833 DOI: 10.3390/microorganisms7020043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 11/25/2022] Open
Abstract
This paper analyzes the impact of saponins from English ivy leaves on the properties of environmental bacterial strains and hydrocarbon degradation ability. For this purpose, two bacterial strains, Raoultella ornitinolytica M03 and Acinetobacter calcoaceticus M1B, have been used in toluene, 4-chlorotoluene, and α,α,α-trifluorotoluene biodegradation supported by Hedera helix extract. Moreover, theeffects of ivy exposition on cell properties and extract toxicity were investigated. The extract was found to cause minor differences in cell surface hydrophobicity, membrane permeability, and Zeta potential, although it adhered to the cell surface. Acinetobacter calcoaceticus M1B was more affected by the ivy extract; thus, the cells were more metabolically active and degraded saponins at greater amounts. Although the extract influenced positively the cells' viability in the presence of hydrocarbons, it could have been used by the bacteria as a carbon source, thus slowing down hydrocarbon degradation. These results show that the use of ivy saponins for hydrocarbon remediation is environmentally acceptable but should be carefully analyzed to assess the efficiency of the selected saponins-rich extract in combination with selected bacterial strains.
Collapse
Affiliation(s)
- Agata Zdarta
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
22
|
Comparison of Petroleum Hydrocarbons Degradation by Klebsiella pneumoniae and Pseudomonas aeruginosa. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122551] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
: The aim of this work was to develop bacterial communities to effectively degrade petroleum hydrocarbons (PHs). We investigated the biotic and abiotic contributors to differences in PHs degradation efficacy between two bacterial strains, Klebsiella pneumoniae (Kp) and Pseudomonas aeruginosa (Pa), screened out from the activated sludge of a petroleum refinery. We characterized the temporal variations in degradation efficacy for diesel and its five major constituents as a sole carbon source and identified more constituents they degraded. The growth characteristics, surface tension, hydrophobicity and emulsifiability of these two strains were measured. We further estimated the relationships between their degradation efficacy and all the biotic and abiotic factors. Results showed that the Pa strain had higher diesel degradation efficacy (58% on Day 14) and utilized more diesel constituents (86%) compared to Kp. Additionally, the growth of the Pa strain in diesel medium was faster than that of the Kp strain. The Pa strain had a lower surface tension and higher hydrophobicity and emulsifiability than Kp, while the surfactant produced by Pa was identified as rhamnolipids. Degradation of PHs was positively related to bacterial growth, hydrophobicity and emulsification but negatively related to surface tension. Overall, differences in degrading capacity for diesel constituents, relative growth rate, and biosurfactant production contributed to the variation in the PHs degradation efficacy of these two bacterial strains.
Collapse
|
23
|
Shahebrahimi Y, Fazlali A, Motamedi H, Kord S. Experimental and Modeling Study on Precipitated Asphaltene Biodegradation Process Using Isolated Indigenous Bacteria. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yasaman Shahebrahimi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran 38156879
| | - Alireza Fazlali
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran 38156879
| | - Hossein Motamedi
- Biotechnology and Biological Science Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran 6135743135
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran 6135743135
| | - Shahin Kord
- Ahvaz Faculty of Petroleum, Petroleum University of Technology, Ahvaz, Iran 7118361991
| |
Collapse
|
24
|
Hou N, Zhang N, Jia T, Sun Y, Dai Y, Wang Q, Li D, Luo Z, Li C. Biodegradation of phenanthrene by biodemulsifier-producing strain Achromobacter sp. LH-1 and the study on its metabolisms and fermentation kinetics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:205-214. [PMID: 30055385 DOI: 10.1016/j.ecoenv.2018.07.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/21/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Despite many reports of the use of biodegradation to remove contaminants, the biodegradation of polycyclic aromatic hydrocarbons (PAHs) is challenging because of the hydrophobicities and low aqueous solubilities of most PAHs. In this study, phenanthrene (PHE) was used as a sole carbon and energy source to screen and identify Achromobacter sp. LH-1 for the production of biodemulsifiers that enhance the bioavailability and solubilization of PAHs. LH-1 achieved a 94% degradation rate and a 40% mineralization rate with 100 mg/L PHE. Additionally, LH-1 degraded various PAHs, and the factors that influenced the growth and PAHs degradation activity of LH-1 were not only the toxicities and structures of the substances but also the acclimation of LH-1 to these substances. Three kinetic models were used to describe the fermentation processes of cell growth, product formation and substrate degradation over time. Finally, multiple PHE degradation pathways were proposed to be utilized by strain LH-1.
Collapse
Affiliation(s)
- Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Nannan Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Tingting Jia
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Yang Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Yanfei Dai
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Qiquan Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Zhengkai Luo
- Heilongjiang University of Traditional Chinese Medicine, Harbin 150030, Heilongjiang, PR China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
25
|
Patel S, Homaei A, Patil S, Daverey A. Microbial biosurfactants for oil spill remediation: pitfalls and potentials. Appl Microbiol Biotechnol 2018; 103:27-37. [DOI: 10.1007/s00253-018-9434-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
|
26
|
Wang L, Xu R, Yang B, Wei S, Yin N, Cao C. Nonionic surfactant enhanced biodegradation of m-xylene by mixed bacteria and its application in biotrickling filter. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2018; 68:1065-1076. [PMID: 29672237 DOI: 10.1080/10962247.2018.1466741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED In this study, m-xylene biodegradation was examined in bacteria-water mixed solution and biotrickling filter (BTF) systems amended with the nonionic surfactant Tween 80. The mixed bacteria were obtained from the activated sludge of a coking plant through a multisubstrate acclimatization process. High-throughput sequencing analysis revealed that Rhodanobacter sp. was the dominant species among the mixed bacteria. In the bacteria-water mixed solution, the bacterial density increased with increasing Tween 80 concentration. Hence, Tween 80 could be utilized as substrate by the mixed bacteria. Tween 80, with concentrations of 50-100 mg L-1, could enhance the bioavailability of m-xylene and consequently improve the degradation efficiency of m-xylene. However, further increasing the initial concentration of Tween 80 would decrease the degradation efficiency of m-xylene. At concentrations exceeding 100 mg L-1, Tween 80 was preferentially degraded by the mixed bacteria over m-xylene. In BTF systems, when the m-xylene inlet concentration was 1200 mg m-3 and the empty bed residence time was 20 sec, the removal efficiency and elimination capacity of BTF1 with Tween 80 addition were at most 20% and 24% higher than those of BTF2 without Tween 80 addition. Overall, the integrated application of the mixed bacteria and surfactant was demonstrated to be a highly effective strategy for m-xylene waste gas treatment. IMPLICATIONS The integrated application of mixed bacteria and surfactant was demonstrated to be a promising approach for the highly efficient removal of m-xylene. Surfactant can activate mixed bacteria to degrade m-xylene by increasing its bioavailability. Besides, surfactant can be utilized as carbon source by the mixed bacteria so that the growth of mixed bacteria can be promoted. It is expected that the integrated application of both technologies will become more common in future chemical industry.
Collapse
Affiliation(s)
- Liping Wang
- a School of Environment Science and Spatial Informatics , China University of Mining and Technology , Xuzhou , People's Republic of China
| | - Ruiwei Xu
- a School of Environment Science and Spatial Informatics , China University of Mining and Technology , Xuzhou , People's Republic of China
| | - Bairen Yang
- a School of Environment Science and Spatial Informatics , China University of Mining and Technology , Xuzhou , People's Republic of China
| | - Shaohua Wei
- a School of Environment Science and Spatial Informatics , China University of Mining and Technology , Xuzhou , People's Republic of China
| | - Ningning Yin
- a School of Environment Science and Spatial Informatics , China University of Mining and Technology , Xuzhou , People's Republic of China
| | - Chun Cao
- a School of Environment Science and Spatial Informatics , China University of Mining and Technology , Xuzhou , People's Republic of China
| |
Collapse
|
27
|
Wang C, Liu X, Guo J, Lv Y, Li Y. Biodegradation of marine oil spill residues using aboriginal bacterial consortium based on Penglai 19-3 oil spill accident, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:20-27. [PMID: 29730405 DOI: 10.1016/j.ecoenv.2018.04.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/22/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Bioremediation, mainly by indigenous bacteria, has been regarded as an effective way to deal with the petroleum pollution after an oil spill accident. The biodegradation of crude oil by microorganisms co-incubated from sediments collected from the Penglai 19-3 oil platform, Bohai Sea, China, was examined. The relative susceptibility of the isomers of alkylnaphthalenes, alkylphenanthrenes and alkyldibenzothiophene to biodegradation was also discussed. The results showed that the relative degradation values of total petroleum hydrocarbon (TPH) are 43.56% and 51.29% for sediments with untreated microcosms (S-BR1) and surfactant-treated microcosms (S-BR2), respectively. TPH biodegradation results showed an obvious decrease in saturates (biodegradation rate: 67.85-77.29%) and a slight decrease in aromatics (biodegradation rate: 47.13-57.21%), while no significant difference of resins and asphaltenes was detected. The biodegradation efficiency of alkylnaphthalenes, alkylphenanthrenes and alkyldibenzothiophene for S-BR1 and S-BR2 samples reaches 1.28-84.43% and 42.56-86.67%, respectively. The efficiency of crude oil degradation in sediment with surfactant-treated microcosms cultures added Tween 20, was higher than that in sediment with untreated microcosms. The biodegradation and selective depletion is not only controlled by thermodynamics but also related to the stereochemical structure of individual isomer compounds. Information on the biodegradation of oil spill residues by the bacterial community revealed in this study will be useful in developing strategies for bioremediation of crude oil dispersed in the marine ecosystem.
Collapse
Affiliation(s)
- Chuanyuan Wang
- Key Laboratory of Coastal Zone Environment Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Xing Liu
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Jie Guo
- Key Laboratory of Coastal Zone Environment Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Yingchun Lv
- Key Laboratory of Coastal Zone Environment Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yuanwei Li
- Key Laboratory of Coastal Zone Environment Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
28
|
The Impact of Biosurfactants on Microbial Cell Properties Leading to Hydrocarbon Bioavailability Increase. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2030035] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The environment pollution with hydrophobic hydrocarbons is a serious problem that requires development of efficient strategies that would lead to bioremediation of contaminated areas. One of the common methods used for enhancement of biodegradation of pollutants is the addition of biosurfactants. Several mechanisms have been postulated as responsible for hydrocarbons bioavailability enhancement with biosurfactants. They include solubilization and desorption of pollutants as well as modification of bacteria cell surface properties. The presented review contains a wide discussion of these mechanisms in the context of alteration of bioremediation efficiency with biosurfactants. It brings new light to such a complex and important issue.
Collapse
|
29
|
Smułek W, Zdarta A, Kwiczak J, Zgoła-Grześkowiak A, Cybulski Z, Kaczorek E. Environmental biodegradation of halophenols by activated sludge from two different sewage treatment plants. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:1240-1246. [PMID: 28910566 DOI: 10.1080/10934529.2017.1356197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Halophenols make a group of aromatic compounds that are resistible to biodegradation by environmental microorganisms. In this study, the biodegradation of 4-bromo-, 4-chloro- and 4-fluorophenols was studied with two types of activated sludges (from a small rural plant and from a bigger municipal plant) as an inoculum. Because of their wide use, surfactants are present in the wastewater and inhibitors enhance the biodegradation of different pollutants; the influence of natural surfactants on halophenols' biodegradation was also tested. Both types of activated sludge contained bacterial strains which were active in the halophenols' biodegradation process. The coexistence of surfactants and halophenols in the wastewater does not prevent microorganisms from effective halophenols' biodegradation. Moreover, surfactants can enhance the effectiveness of halophenols' removal from the environment. Different cell surface modifications of two isolated bacterial strains were observed in the same system of halophenols with or without surfactants. Halophenols and surfactants may also induce changes in bacteria cell surface properties.
Collapse
Affiliation(s)
- Wojciech Smułek
- a Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| | - Agata Zdarta
- a Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| | - Joanna Kwiczak
- a Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| | | | - Zefiryn Cybulski
- c Department of Microbiology , Greater Poland Cancer Centre , Poznan , Poland
| | - Ewa Kaczorek
- a Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| |
Collapse
|
30
|
Zdarta A, Dudzińska-Bajorek B, Nowak A, Guzik U, Kaczorek E. Impact of potent bioremediation enhancing plant extracts on Raoultella ornithinolytica properties. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:274-282. [PMID: 28755644 DOI: 10.1016/j.ecoenv.2017.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Long-term contact of microorganisms with different compounds in the environment can cause significant changes in cell metabolism. Surfactants adsorption on cell surface or incorporation in the cell membrane, lead to their modification, which helps microorganisms adopt to the conditions of metabolic stress. The main objective of this study was to investigate the effects of three saponin-reach plant extracts from Hedera helix, Saponaria officinalis and Sapindus mucorossi on growth and adaptation of Raoultella ornithinolytica to high concentrations of these substances. For this purpose we investigated cell surface properties, membrane fatty acids and genetic changes of the microorganisms. The results revealed that prolonged exposure of the microorganisms to high concentrations of these surfactants can induce genetic changes of their genes. Moreover, the adaptation to contact with high concentrations of saponins was also associated with changes in composition of fatty acids responsible for the stabilisation of membrane structure and the increase in membrane permeability. The changes affected also the outer layer of cells. A significant increase (p < 0.05) in the cell surface hydrophobicity of tested strain was also observed. The cells after long-term contact with S. officinalis and S. mucorossi acquire properties that may be favourable in hydrophobic substances bioremediation.
Collapse
Affiliation(s)
- A Zdarta
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | | | - A Nowak
- University of Silesia in Katowice, Faculty of Biology and Environmental Protection, Department of Biochemistry, Jagiellonska 28, 40-032 Katowice, Poland
| | - U Guzik
- University of Silesia in Katowice, Faculty of Biology and Environmental Protection, Department of Biochemistry, Jagiellonska 28, 40-032 Katowice, Poland
| | - E Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
31
|
Smułek W, Kaczorek E, Hricovíniová Z. Alkyl Xylosides: Physico-Chemical Properties and Influence on Environmental Bacteria Cells. J SURFACTANTS DETERG 2017; 20:1269-1279. [PMID: 29200811 PMCID: PMC5686273 DOI: 10.1007/s11743-017-2012-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 08/18/2017] [Indexed: 12/03/2022]
Abstract
A group of four selected non-ionic surfactants based on carbohydrates, namely octyl d-xyloside (C8X), nonyl d-xyloside (C9X), decyl d-xyloside (C10X) and dodecyl d-xyloside (C12X), have been investigated to accomplish a better understanding of their physico-chemical properties as well as biological activities. The surface-active properties, such as critical micelle concentration (CMC), emulsion and foam stability, the impact of the compounds on cell surface hydrophobicity and cell membrane permeability together with their toxicity on the selected bacterial strains have been determined as well. The studied group of surfactants showed high surface-active properties allowing a decrease in the surface tension to values below 25 mN m-1 for dodecyl d-xyloside at the CMC. The investigated compounds did not have any toxic influence on two Pseudomonas bacterial strains at concentrations below 25 mg L-1. The studied long-chain alkyl xylosides influenced both the cell inner membrane permeability and the cell surface hydrophobicity. Furthermore, the alkyl chain length, as well as the surfactant concentration, had a significant impact on the modifications of the cell surface properties. The tested non-ionic surfactants exhibited strong surface-active properties accompanied by the significant influence on growth and properties of Pseudomonas bacteria cells.
Collapse
Affiliation(s)
- Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Zuzana Hricovíniová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| |
Collapse
|
32
|
Ultrasonic-assisted biodegradation of endocrine disrupting compounds by Pseudomonas putida the importance of rhamnolipid for intermediate product degradation. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-6281-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|