1
|
González MP, Cecconi I, Salvatierra D, Úbeda-Manzanaro M, Parra G, Ramos-Rodríguez E, Araújo CVM. Multi-generational exposure of Daphnia magna to pharmaceuticals: Effects on colonization, reproduction, and habitat selection behavior. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117633. [PMID: 39755089 DOI: 10.1016/j.ecoenv.2024.117633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
The presence of pharmaceuticals in the aquatic environment is increasing due to their growing use for human health. Although most studies are based on short exposures to these contaminants, the present study has emerged from the need to study pharmaceuticals in aquatic organisms over a long-term exposure to understand any multi-generational chronic effects and alterations regarding habitat selection. Therefore, this study shows: (1) the ability of Daphnia magna to colonize environments contaminated with caffeine, ibuprofen and fluoxetine, and (2) the effect of these pharmaceuticals on reproduction and habitat selection (under two scenarios: with and without food) after a long-term exposure period of three generations. It was observed that caffeine shortened the time between generations and caused an increase in the number of neonates per female. The opposite was observed with ibuprofen: the time to reach the third F3 generation was double when compared to those exposed to caffeine. Fluoxetine did not alter the reproduction, nor was repellent/attractive for daphnids. In the habitat selection tests, organisms cultivated in clean water preferred the compartment with caffeine, highlighting its attractive effect. Caffeine was also attractive for daphnids in the colonization test. Apart from this, no chemical showed any attractive or repulsive effect in the absence of food during the habitat selection tests. Our findings show that the presence of some pharmaceuticals could cause alterations in distribution and habitat selection patterns, and a significant effect on the reproduction of this species. underlining the importance of studying the effects of contamination by long-term exposure.
Collapse
Affiliation(s)
- María Pilar González
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real 11519, Spain.
| | - Ilaria Cecconi
- University of Trieste, Piazzale Europa, 1, Trieste, TS 34127, Italy.
| | - David Salvatierra
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real 11519, Spain.
| | - María Úbeda-Manzanaro
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real 11519, Spain.
| | - Gema Parra
- Animal Biology, Plant Biology and Ecology Department, University of Jaén, Jaén 23071, Spain.
| | | | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real 11519, Spain.
| |
Collapse
|
2
|
Kalugendo E, Nazir A, Agarwal R. Assessment of azithromycin-induced toxicity in Caenorhabditis elegans: Effects on morphology, behavior, and lipid metabolism. Toxicol Rep 2024; 13:101832. [PMID: 39717856 PMCID: PMC11664063 DOI: 10.1016/j.toxrep.2024.101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 12/25/2024] Open
Abstract
Antibiotics are indispensable in modern healthcare, playing a critical role in mitigating bacterial infections. Azithromycin is used to fight upper respiratory tract infections, however has potential toxic effects that remain inadequately understood. In our present study, azithromycin exposure to Caenorhabditis elegans led to significant physiological and behavioral change, with pronounced effects observed at the studied concentration. The study employs an N2 wild-type strain to examine key physiological and behavioral parameters within the worm. C.elegans were exposed to two concentrations of azithromycin (0.0038 and 0.00038 mg/ml) from the embryonic stage to the L4 stage for 48 hours. The study assessed key endpoints including body length, thrashing behavior, brood size, embryonic viability, lipid accumulation via Nile red staining, pharyngeal pumping rate, and response to 1-Nonanol (which assesses neurotransmitter function). Results showed that at 0.0038 mg/ml, azithromycin significantly reduced body length, increased progeny production, altered lipid deposition, delayed response to 1-Nonanol, and decreased feeding rates. Even at the lowest concentration (0.00038 mg/ml), changes in body length and lipid accumulation were observed. These findings suggest that the toxicity of azithromycin in C.elegans is dose-dependent and varies with exposure duration and developmental stage. Further research is needed to elucidate the molecular mechanisms underlying these toxic effects, particularly at environmentally relevant concentrations of azithromycin.
Collapse
Affiliation(s)
- Elisa Kalugendo
- Laboratory of Forensic Chemistry and Toxicology, School of Forensic Sciences, National Forensic Sciences University, Delhi, India
| | - Aamir Nazir
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Rakhi Agarwal
- Laboratory of Forensic Chemistry and Toxicology, School of Forensic Sciences, National Forensic Sciences University, Delhi, India
| |
Collapse
|
3
|
Du J, Huang W, Pan Y, Xu S, Li H, Liu Q. Fluoroquinolone antibiotics in the aquatic environment: environmental distribution, the research status and eco-toxicity. Drug Chem Toxicol 2024; 47:1325-1340. [PMID: 38938015 DOI: 10.1080/01480545.2024.2362890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
The increasing presence of fluoroquinolone (FQ) antibiotics in aquatic environments is a growing concern due to their widespread use, negatively impacting aquatic organisms. This paper provides an overview of the environmental distribution, sources, fate, and both single and mixed toxicity of FQ antibiotics in aquatic environments. It also examines the accumulation of FQ antibiotics in aquatic organisms and their transfer into the human body through the food chain. The study identifies critical factors such as metabolism characteristics, physiochemical characteristics, light, temperature, dissolved oxygen, and environmental compatibility that influence the presence of FQ antibiotics in aquatic environments. Mixed pollutants of FQ antibiotics pose significant risks to the ecological environment. Additionally, the paper critically discusses advanced treatment technologies designed to remove FQ antibiotics from wastewater, focusing on advanced oxidation processes (AOPs) and electrochemical advanced oxidation processes (EAOPs). The discussion also includes the benefits and limitations of these technologies in degrading FQ antibiotics in wastewater treatment plants. The paper concludes by proposing new approaches for regulating and controlling FQ antibiotics to aid in the development of ecological protection measures.
Collapse
Affiliation(s)
- Jia Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
- Suzhou Fishseeds Bio-Technology Ltd., Suzhou, China
- Suzhou Health-Originated Bio-technology Ltd., Suzhou, China
| | - Wenfei Huang
- Eco-Environmental Science & Research Institute of Zhejiang Province, Hangzhou, China
| | - Ying Pan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Shaodan Xu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Huanxuan Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Qinghua Liu
- Suzhou Fishseeds Bio-Technology Ltd., Suzhou, China
- Suzhou Health-Originated Bio-technology Ltd., Suzhou, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
4
|
Pauletto M, De Liguoro M. A Review on Fluoroquinolones' Toxicity to Freshwater Organisms and a Risk Assessment. J Xenobiot 2024; 14:717-752. [PMID: 38921651 PMCID: PMC11205205 DOI: 10.3390/jox14020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Fluoroquinolones (FQs) have achieved significant success in both human and veterinary medicine. However, regulatory authorities have recommended limiting their use, firstly because they can have disabling side effects; secondly, because of the need to limit the spread of antibiotic resistance. This review addresses another concerning consequence of the excessive use of FQs: the freshwater environments contamination and the impact on non-target organisms. Here, an overview of the highest concentrations found in Europe, Asia, and the USA is provided, the sensitivity of various taxa is presented through a comparison of the lowest EC50s from about a hundred acute toxicity tests, and primary mechanisms of FQ toxicity are described. A risk assessment is conducted based on the estimation of the Predicted No Effect Concentration (PNEC). This is calculated traditionally and, in a more contemporary manner, by constructing a normalized Species Sensitivity Distribution curve. The lowest individual HC5 (6.52 µg L-1) was obtained for levofloxacin, followed by ciprofloxacin (7.51 µg L-1), sarafloxacin and clinafloxacin (12.23 µg L-1), and ofloxacin (17.12 µg L-1). By comparing the calculated PNEC with detected concentrations, it is evident that the risk cannot be denied: the potential impact of FQs on freshwater ecosystems is a further reason to minimize their use.
Collapse
Affiliation(s)
| | - Marco De Liguoro
- Department of Comparative Biomedicine & Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy;
| |
Collapse
|
5
|
Zhou H, Ren S, Yang Y, Qin Y, Guo T, Zhou Y, Zhang Y, Ma L. Transgenerational toxicity induced by maternal AFB 1 exposure in Caenorhabditis elegans associated with underlying epigenetic regulations. Food Chem Toxicol 2024; 187:114599. [PMID: 38490352 DOI: 10.1016/j.fct.2024.114599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Aflatoxin B1 (AFB1), usually seriously contaminates in grain and oil foods or feed, displayed significant acute and chronic toxic effects in human and animal populations. However, little is known about the transgenerational toxic effects induced by a maternal AFB1 intake at a lower dose on offspring. In our study, only parental wild-type Caenorhabditis elegans was exposed to AFB1 (0-8 μg/ml) and the following three filial generations were grown on AFB1-free NGM. Results showed that the toxic effects of AFB1 on the growth (body length) and reproduction (brood size, generation time and morphology of gonad arm) can be transmitted through generations. Moreover, the levels of MMP and ATP were irreversibly inhibited in the filial generations. By using RNomics and molecular biology techniques, we found that steroid biosynthesis, phagosome, valine/leucine/isoleucine biosynthesis and oxidative phosphorylation (p < 0.05) were the core signaling pathways to exert the transgenerational toxic effects on nematodes. Also, notably increased histone methylation level at H3K36me3 was observed in the first generation. Taken together, our study demonstrated that AFB1 has notable transgenerational toxic effects, which were resulted from the complex regulatory network of various miRNAs, mRNAs and epigenetic modification in C. elegans.
Collapse
Affiliation(s)
- Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China.
| | - Sirui Ren
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yulian Yang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuxian Qin
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Ying Zhou
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing, 401121, China.
| |
Collapse
|
6
|
Nguyen TD, Itayama T, Tran QV, Dao TS, Iqbal MS, Pham TL. Ecotoxicity of the fluoroquinolone antibiotic delafloxacin to the water flea Simocephalus vetulus and its offspring under the influence of calcium modulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171450. [PMID: 38438028 DOI: 10.1016/j.scitotenv.2024.171450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Delafloxacin (DFX), one of the latest additions to the fluoroquinolone antibiotics, is gaining heightened recognition in human therapy due to its potential antibacterial efficacy in a wide range of applications. Concerns have arisen regarding its presence in the environment and its potential interactions with multivalent metals, such as calcium (Ca). The present study investigated the trans- and multigenerational effects of environmentally projected concentrations of DFX (100-400 μg DFX L-1) on individual- and population-level responses of parental S. vetulus (F0) and its descendants (F1) under normal (26 mg L-1) and high (78 mg L-1) Ca conditions. Exposure of the F0 generation to DFX under the normal Ca condition resulted in reduced juvenile body length (JBL), increased age-specific survival rate (lx), indicating prolonged developmental time, reduced age-specific fecundity rate (mx), and decreased population growth rate (rm). Under the high Ca condition, JBL, mx, and rm were adversely affected. Transgenerational effects of DFX existed, as F1 individuals exhibited persistent suppressions in at least one endpoint under both Ca conditions even after being transferred to a clear medium. Continuous exposure of the F1 generation to DFX had negative impacts on JBL, mx, and rm under the normal Ca condition, and on JBL and rm under the high Ca condition. However, cumulative effects were not observed, suggesting the potential development of tolerance to DFX in the F1 organisms. These findings suggest that DFX is a harmful compound for the non-target model organism S. vetulus and reveal a potential antagonism between DFX and Ca. Nevertheless, the interaction between other (fluoro)quinolones and Ca remains unclear, necessitating further research to establish this phenomenon more comprehensively, including understanding the interaction mechanism in ecotoxicological contexts.
Collapse
Affiliation(s)
- Tan-Duc Nguyen
- Department of Science and Technology, Nagasaki University, Nagasaki City, Japan; Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| | - Tomoaki Itayama
- Department of Science and Technology, Nagasaki University, Nagasaki City, Japan
| | - Quang Vinh Tran
- Asian Centre for Water Research (CARE), Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Viet Nam
| | - Thanh-Son Dao
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | | | - Thanh Luu Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi City, Viet Nam; Institute of Tropical Biology, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Viet Nam
| |
Collapse
|
7
|
Gylytė B, Martinyuk V, Cimmperman R, Karitonas R, Stoliar O, Manusadžianas L. Long-term toxicity of chlorpromazine, diclofenac and two lanthanides on three generations of Ceriodaphnia dubia. PeerJ 2023; 11:e16472. [PMID: 38025671 PMCID: PMC10666609 DOI: 10.7717/peerj.16472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Amultigenerational study on Ceriodaphnia dubia was carried out by exposing three subsequent generations to pharmaceuticals chlorpromazine (CPZ) and diclofenac (DCF), and two lanthanide chlorides, gadolinium as GdCl3 and europium as EuCl3. As the treatments, environmentally relevant concentrations were chosen (0.001, 0.01 and 0.1 mg/L for CPZ; 0.1, 1 and 10 mg/L for DCF; 0.425, 4.25 and 42.5 µg/L for Gd and 0.41, 4.1 and 41 µg/L for Eu). Survival, population growth and reproduction success were evaluated at 21 and 30 days of exposure, and the whole observation period lasted 40 days. The least sensitive to all selected substances was the first daphnid generation (F1). Within 21-day exposure, no significant effects of the psychotropic drug CPZ on C. dubia survival were observed in generations F1-F3. The anti-inflammatory drug DCF did not affect survival in the F1 generation; however, it significantly reduced survival in the F3 generation at 1-10 mg/L. Both lanthanides did not affect survival in the F1 and F2 generations of C. dubia but considerably decreased survival in the F3 at 4-42 µg/L. Both pharmaceuticals stimulated the reproduction of C. dubia in the F1 generation, while inhibition occurred at the highest tested concentrations in generations F2 and F3. The inhibitory effect on the reproductive success of lanthanides in the F2 generation resembled that for CPZ but not for DCF. The dynamics of adverse effects during the 21-30-day period revealed that despite increased mortality in the controls (up to 30%), concentrations used in the study minified, in most instances, the survival and aggravated population growth and reproduction success of C. dubia. Our data suggest that C. dubia as a test organism can be used for 21 days in multigenerational investigations, especially when testing close to environmental concentrations. In this respect, the standard C. dubia chronic toxicity assay seems limited since prolonged observations and several generations of daphnids are required to obtain reliable information for the risk assessment of potentially aggressive chemicals.
Collapse
Affiliation(s)
- Brigita Gylytė
- Nature Research Centre, Institute of Botany, Vilnius, Lithuania
| | - Viktoria Martinyuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Reda Cimmperman
- Nature Research Centre, Institute of Botany, Vilnius, Lithuania
| | | | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | | |
Collapse
|
8
|
Padilla Suarez EG, Pugliese S, Galdiero E, Guida M, Libralato G, Saviano L, Spampinato M, Pappalardo C, Siciliano A. Multigenerational tests on Daphnia spp.: a vision and new perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122629. [PMID: 37775025 DOI: 10.1016/j.envpol.2023.122629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Multigenerational toxicity testing is a valuable tool for understanding the long-term effects of contaminants on aquatic organisms. This review focuses on the use of multigenerational tests with Daphnia, a widely used model organism in aquatic toxicological studies. The review highlights the importance of studying multiple generations to assess Daphnia spp. reproductive, growth, and physiological responses to various contaminants. We discuss the outcomes of multigenerational tests involving different contaminants, including nanoparticles, pesticides, and pharmaceuticals. The results reveal that multigenerational exposure can lead to transgenerational effects, where the impacts of contaminants are observed in subsequent generations even after the initial exposure has ceased. These transgenerational effects often manifest as reproduction, growth, and development alterations. Furthermore, we emphasize the need for standardized protocols in multigenerational testing to ensure comparability and reproducibility of results across studies. We also discuss the implications of multigenerational testing for ecological risk assessment, as it provides a more realistic representation of the long-term effects of contaminants on populations and ecosystems. Overall, this review highlights the significance of multigenerational tests with Daphnia in advancing our understanding of the ecological impacts of contaminants. Such tests provide valuable insights into the potential risks associated with long-term exposure to pollutants and contribute to the development of effective mitigation strategies for aquatic ecosystems.
Collapse
Affiliation(s)
| | - S Pugliese
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - E Galdiero
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - M Guida
- Department of Biology, University of Naples Federico II, Naples, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - G Libralato
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - L Saviano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - M Spampinato
- Department of Biology, University of Naples Federico II, Naples, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - C Pappalardo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - A Siciliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Pietropoli E, Pauletto M, Tolosi R, Iori S, Lopparelli RM, Montanucci L, Giantin M, Dacasto M, De Liguoro M. An In Vivo Whole-Transcriptomic Approach to Assess Developmental and Reproductive Impairments Caused by Flumequine in Daphnia magna. Int J Mol Sci 2023; 24:9396. [PMID: 37298348 PMCID: PMC10253896 DOI: 10.3390/ijms24119396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Among veterinary antibiotics, flumequine (FLU) is still widely used in aquaculture due to its efficacy and cost-effectiveness. Although it was synthesized more than 50 years ago, a complete toxicological framework of possible side effects on non-target species is still far from being achieved. The aim of this research was to investigate the FLU molecular mechanisms in Daphnia magna, a planktonic crustacean recognized as a model species for ecotoxicological studies. Two different FLU concentrations (2.0 mg L-1 and 0.2 mg L-1) were assayed in general accordance with OECD Guideline 211, with some proper adaptations. Exposure to FLU (2.0 mg L-1) caused alteration of phenotypic traits, with a significant reduction in survival rate, body growth, and reproduction. The lower concentration (0.2 mg L-1) did not affect phenotypic traits but modulated gene expression, an effect which was even more evident under the higher exposure level. Indeed, in daphnids exposed to 2.0 mg L-1 FLU, several genes related with growth, development, structural components, and antioxidant response were significantly modulated. To the best of our knowledge, this is the first work showing the impact of FLU on the transcriptome of D. magna.
Collapse
Affiliation(s)
- Edoardo Pietropoli
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Marianna Pauletto
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Roberta Tolosi
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Silvia Iori
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Rosa Maria Lopparelli
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Ludovica Montanucci
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Mery Giantin
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Mauro Dacasto
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Marco De Liguoro
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| |
Collapse
|
10
|
Pinos-Vélez V, Araujo GS, Moulatlet GM, Pérez-González A, Cipriani-Ávila I, Tripaldi P, Capparelli MV. Acute Toxicity of Daphnia magna Neonates Exposed to Single and Composite Mixtures of Four Emerging Contaminants. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 110:14. [PMID: 36520226 DOI: 10.1007/s00128-022-03663-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The effects of emerging contaminants on environmental health are of high concern, especially those potentially induced by mixtures. We assessed single and composite mixtures of triclosan (T), 17β-estradiol (E2), sulfamethoxazole (SMX), and nicotine (N) at various concentrations, on neonates of Daphnia magna. When used in single exposure, T and N induced high toxicity (100% immobility, each one), compared to SMX and E2 (2.5% and 10% immobility, respectively). When T, E2, SMX and N were in mixture, T had the highest contribution to the overall toxicity in mixture exposures. The N toxicity lowered when in a fourfold exposure (85% immobility in fourfold exposure). Due to the high toxicity of T and N, both alone and in the mixtures, our results can serve as a warning about the use of these substances and their release in the aquatic ecosystem.
Collapse
Affiliation(s)
- Verónica Pinos-Vélez
- Departamento de Biociencias, Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca, Ecuador.
- Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca, Ecuador.
| | - Giuliana S Araujo
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
- NEPEA, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Praça Infante Dom Henrique, S/N, São Vicente, SP, 11330-900, Brazil
| | - Gabriel M Moulatlet
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| | - Andrés Pérez-González
- Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología, Universidad del Azuay, Cuenca, Ecuador
| | - Isabel Cipriani-Ávila
- Escuela de Química, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Piercosimo Tripaldi
- Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología, Universidad del Azuay, Cuenca, Ecuador
| | - Mariana V Capparelli
- Estación el Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real Km 9.5, C. P 24157, Ciudad del Carmen, Campeche, Mexico
| |
Collapse
|
11
|
Wang R, Lin X, Zha G, Wang J, Huang W, Wang J, Hou Y, Mou H, Zhang T, Zhu H, Wang J. Mechanism of enrofloxacin-induced multidrug resistance in the pathogenic Vibrio harveyi from diseased abalones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154738. [PMID: 35331762 DOI: 10.1016/j.scitotenv.2022.154738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Vibrio harveyi infection had caused severe economic losses in aquaculture. A pathogenic V. harveyi strain had been successfully induced to be a multiple-resistant strain by enrofloxacin (EFX), then the mechanism of multidrug resistance was analyzed. It suggested that the minimum inhibitory concentration of EFX increased by 32-folds. Results of the Kirby-Bauer test showed that the inhibitory zone diameter was 25.3 mm for the sensitive strain (labeled as HL-S) and 8.5 mm for the resistant strain (labeled as HL-R). After 20 serial passages, even when the stress of EFX was removed, the resistance persisted. After induction of EFX, HL-R resisted to other fluoroquinolones, it even resisted to furazolidone and streptomycin, although it was sensitive to these antibiotics initially. Its sensitivity to rifampicin and doxycycline also decreased obviously. Results showed that 3522 differentially expressed genes were identified. Expression of the multidrugs efflux resistance-nodulation-cell division was significantly upregulated (164.61-folds) in HL-R. Other key genes connected with drug efflux were also upregulated significantly (p<0.05). Notably, recA encoded for recombination protein was upregulated significantly, lexA was downregulated significantly in HL-R. Research results showed that the efflux system and the save our souls system have played crucial roles during the development of multidrug resistance of V. harveyi.
Collapse
Affiliation(s)
- Ruixuan Wang
- Hanshan Normal University, Chaozhou 521041, China
| | - Xiaozhi Lin
- Hanshan Normal University, Chaozhou 521041, China
| | - Guangcai Zha
- Hanshan Normal University, Chaozhou 521041, China
| | - Juan Wang
- Hanshan Normal University, Chaozhou 521041, China
| | - Wei Huang
- Hanshan Normal University, Chaozhou 521041, China
| | | | - Yuee Hou
- Zhuhai Kerric Testing Co., Ltd., Zhuhai 519000, China
| | - Hongli Mou
- South China Sea Fisheries Research Institute, Guangzhou 510300, China
| | - Ting Zhang
- Hanshan Normal University, Chaozhou 521041, China
| | - Hui Zhu
- Hanshan Normal University, Chaozhou 521041, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Enrofloxacin—The Ruthless Killer of Eukaryotic Cells or the Last Hope in the Fight against Bacterial Infections? Int J Mol Sci 2022; 23:ijms23073648. [PMID: 35409007 PMCID: PMC8998546 DOI: 10.3390/ijms23073648] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Enrofloxacin is a compound that originates from a group of fluoroquinolones that is widely used in veterinary medicine as an antibacterial agent (this antibiotic is not approved for use as a drug in humans). It reveals strong antibiotic activity against both Gram-positive and Gram-negative bacteria, mainly due to the inhibition of bacterial gyrase and topoisomerase IV enzymatic actions. The high efficacy of this molecule has been demonstrated in the treatment of various animals on farms and other locations. However, the use of enrofloxacin causes severe adverse effects, including skeletal, reproductive, immune, and digestive disorders. In this review article, we present in detail and discuss the advantageous and disadvantageous properties of enrofloxacin, showing the benefits and risks of the use of this compound in veterinary medicine. Animal health and the environmental effects of this stable antibiotic (with half-life as long as 3–9 years in various natural environments) are analyzed, as are the interesting properties of this molecule that are expressed when present in complexes with metals. Recommendations for further research on enrofloxacin are also proposed.
Collapse
|
13
|
Medkova D, Lakdawala P, Hodkovicova N, Blahova J, Faldyna M, Mares J, Vaclavik J, Doubkova V, Hollerova A, Svobodova Z. Effects of different pharmaceutical residues on embryos of fish species native to Central Europe. CHEMOSPHERE 2022; 291:132915. [PMID: 34788676 DOI: 10.1016/j.chemosphere.2021.132915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Environmental concentrations of pharmacologically active substances are increasing dramatically throughout the world, to the point where they are now considered a serious threat to the aquatic environment. This high occurrence of pharmaceutical residues in the aquatic environment is due to an increase in i) the prescription and consumption of drugs, and ii) their subsequent discharge into wastewater and its imperfect purification in wastewater treatment plants. Recent surveys have clearly shown that such substances can have serious negative effects on non-target organisms. In the present study, we tested the effects of several commonly used pharmaceuticals, such as antidepressants, analgesics and antibiotics, on the embryonic stages of different fishes. Specifically, we applied concentration ranges of tramadol, enrofloxacin and nortriptylined on a common toxicological model organism, the zebrafish (Danio rerio), and other species native to Central European freshwaters, i.e. common carp (Cyprinus carpio), catfish (Silurus glanis) and tench (Tinca tinca). Our results show that, though malformation and negative impacts on hatching and mortality were only observed at the highest test concentrations, gene expression indicated that even low environmentally relevant concentrations (0.1 μg/L) can cause significant changes in early development of embryo.
Collapse
Affiliation(s)
- Denisa Medkova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic; Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agrisciences, Mendel University in Brno, Brno, Czech Republic.
| | - Pavla Lakdawala
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Jan Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agrisciences, Mendel University in Brno, Brno, Czech Republic
| | - Josef Vaclavik
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Veronika Doubkova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Aneta Hollerova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic; Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
14
|
Liu Y, Chen M, Ma Y, Guo R, Yan Z, Chen J. Reproductive stimulation and energy allocation variation of BDE-47 and its derivatives on Daphnia magna. CHEMOSPHERE 2022; 288:132492. [PMID: 34626654 DOI: 10.1016/j.chemosphere.2021.132492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
As endocrine disrupting chemical, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is widely distributed in water environment with a high detection rate. 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE-47) and 6-methoxy-2,2',4,4'-tetrabromodiphenyl ether (6-MeO-BDE-47) are two main derivatives of BDE-47. To explore the aquatic risk of BDE-47 and its derivatives, the effects of them and their ternary mixture on the reproduction, growth, energy allocation, and neurological and antioxidant responses of Daphnia magna were monitoring during different exposure periods, i.e., daphnids exposed to compounds for 21 days or pre-exposed to compounds for 14 days and then recovered 7 days in clean water. In general, in 21-day test, reproductive parameters of exposed daphnids were significantly stimulated, and the growth and enzymatic activities of super oxidase dimutase (SOD), glutathione peroxidase (GPx) and acetylcholinesterase (AChE) were significantly depressed by the single- or mixture compounds. In (14 + 7)-day test, the levels of body length, number of living offspring per female and the enzyme activities recovered to some degree. However, after 7 days of recovery in pollution free medium, the reproductive parameters and enzymatic activities of D. magna were unable to restore control values. These results showed that D. magna has a tendency that the energy allocated to reproduction was greater than that to grow after exposure. The energy distribution of D. magna occurred autonomously after being exposed, which can make it better adapt to environmental changes. Moreover, based on the behavioral and enzymology indicators of D. magna, the spider chart's application in the characteristic analysis of function indicators of D. magna implied that SOD, GPx and AChE could become sensitive biomarkers for different exposure periods. Those findings enable us to better understand BDE-47 and metabolites, and are conducive to better take measures to solve the pressure it brings.
Collapse
Affiliation(s)
- Yanhua Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Meilin Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yunfeng Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Ruixin Guo
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengyu Yan
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jianqiu Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Zheng Y, Yu Z, Zhang J. Multi-generational effects of enrofloxacin on lifespan and reproduction of Caenorhabditis elegans with SKN-1-mediated antioxidant responses and lipid metabolism disturbances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150250. [PMID: 34798755 DOI: 10.1016/j.scitotenv.2021.150250] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics are ubiquitous environmental pollutants and they can provoke multi-generational impacts due to their pseudo-persistence. However, their multi-generational effects and potential mechanisms remained poorly studied. Presently, effects of enrofloxacin (ENR) were studied on Caenorhabditis elegans with a continuous exposure over 9 generations (from F1 to F9) at an environmentally realistic level. Regarding reproduction, ENR showed stimulation in F1 (1.18-fold of the control) and F2 (1.08), inhibition in F3 (0.70), stimulation in F4 (1.86), F5 (3.18) and F6 (1.53), inhibition in F7 (0.73) and F8 (0.69) and stimulation again in F9 (1.89). That is to say, ENR provoked multi-generational oscillatory effects on the reproduction. Such oscillation was also observed in effects on lifespan with much less magnitudes than those on reproduction. Biochemical assays were performed in F1, F3, F4 and F9 which represented the oscillation over generations. Results showed more antioxidants (e.g., superoxide dismutase and glutathione), mild oxidative stress (e.g., reactive oxygen species) and less oxidative damage (i.e., protein carbonyl) underlying the generation-dependent stimulation. Moreover, ENR provoked multi-generational oscillation on the enzymes that regulate the lipogenesis (e.g., fatty acid synthase and acetyl-CoA carboxylase) and lipolysis (e.g., acyl-CoA synthetase), with similarities to the effects on the oxidative stress and damage. Further analysis on SKN-1 and its activating PMK-1 and GSK-3 demonstrated their involvement in regulating both antioxidant detoxification and lipid metabolism.
Collapse
Affiliation(s)
- Yungu Zheng
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China
| | - Zhenyang Yu
- Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
16
|
Tolosi R, De Liguoro M. Delayed toxicity of three fluoroquinolones and their mixtures after neonatal or embryonic exposure, in Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112778. [PMID: 34537589 DOI: 10.1016/j.ecoenv.2021.112778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Fluoroquinolones (FQs) are antibacterial drugs, used both in human and veterinary medicine, that are currently considered as emerging micropollutants. This study investigated the delayed toxic effects of enrofloxacin (ENR), flumequine (FLU), levofloxacin (LEV) and their binary mixtures in D. magna. For this purpose, a 10-day follow-up in pure medium was added to the standard D. magna immobilization test. During this follow-up, phenotypic alterations were evidenced, which were related to scarce or zeroed egg production and early mortality. Consequently, the EC50 s recalculated at the end of the follow-up were always remarkably lower than those obtained after the 48 h immobilization test: ENR 3.13 vs. 16.72 mg L-1; FLU 7.18 vs. 25.35 mg L-1; LEV 15.11 vs. > 40 mg L-1. To analyse the possible interactions within the binary mixtures, the method of nonlinear additive isoboles was applied. The three compounds showed invariably to follow the principle of concentration addition. Furthermore, as previous experiments showed toxicity of FLU and ENR after embryonic exposure of D. magna at a concentration of 2 mg L-1, an additional two embryonic tests were conducted with identical design: one with 2 mg L-1 LEV and the other with a ternary mixture containing 0.66 mg L-1 of each of the three FQs. The embryos were exposed for three days in vitro to the drug solutions and were then reconducted to pure medium for 21 days observation. Both the tests ended-up with only non-significant effects on growth and reproduction, confirming the lower toxicity of LEV, when compared to ENR and FLU, and the absence of any evident synergistic interaction among the three FQs. Overall, these studies have shown two relevant features related to the toxicity of the three FQs: (1) they give rise to delayed toxic effects in D. magna that are undetectable by the standard immobilization test; (2) their interaction in mixtures follow the principle of Concentration Addition. Both these indications concern the Environmental Risk Assessment of FQs and may be of interest to regulatory authorities.
Collapse
Affiliation(s)
- Roberta Tolosi
- Department of Comparative Biomedicine and Food Science - BCA, University of Padua, Italy
| | - Marco De Liguoro
- Department of Comparative Biomedicine and Food Science - BCA, University of Padua, Italy.
| |
Collapse
|
17
|
Eluk D, Nagel O, Gagneten A, Reno U, Althaus R. Toxicity of fluoroquinolones on the cladoceran Daphnia magna. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2914-2930. [PMID: 34431154 DOI: 10.1002/wer.1631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
This study evaluates the acute and chronic toxicological effects of six fluoroquinolones on the mortality and growth of Daphnia magna. The NOECs calculated with the multivariate Probit regression model for the chronic study were 56 μg/L ciprofloxacin, 63 μg/L enrofloxacin, 78 μg/L levofloxacin, 85 μg/L marbofloxacin, 69 μg/L norfloxacin, and 141 μg/L ofloxacin. The risk quotients were determined using the measure environmental concentrations reported in water sources from different countries. The risks were low and moderate in water samples from rivers and lakes, although concentrations of ciprofloxacin, norfloxacin, and ofloxacin reported in some countries can cause toxicological damage to D. magna. In addition, urban wastewater and hospital wastewater samples constitute a threat to D. magna (high and moderate risks), requiring the treatment of these wastewater. PRACTITIONER POINTS: The NOECs calculated with the multivariate Probit model for the six fluoroquinolonas are between 56 μg/L ciprofloxacin and 141 μg/L ofloxacin. The levels of ciprofloxacin, norfloxacin, and ofloxacin in urban wastewater and hospital wastewater produce moderate and high risks for D. magna. Water and river samples from some countries containing ciprofloxacin, norlfoxacin, and ofloxacin present high risks for D. magna.
Collapse
Affiliation(s)
- Dafna Eluk
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Orlando Nagel
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ana Gagneten
- Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ulises Reno
- Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Rafael Althaus
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
18
|
Zhang Y, Guo P, Wang M, Wu Y, Sun Y, Su H, Deng J. Mixture toxicity effects of chloramphenicol, thiamphenicol, florfenicol in Daphnia magna under different temperatures. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:31-42. [PMID: 33247806 DOI: 10.1007/s10646-020-02311-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 05/24/2023]
Abstract
Acute toxicities of chloramphenicol (CAP), thiamphenicol (TAP), and florfenicol (FLO) and their mixtures on Daphnia magna under two representative temperatures of the aquatic environment (20 and 25 °C) have been examined. Their toxicities depicted with an order of 72-h EC50 values were as follows: CAP > FLO > TAP and CAP ≈ FLO > TAP under 20 and 25 °C, separately. Furthermore, the acute toxicity significantly increased with the rise of temperature from 20 to 25 °C in nearly all separate and mixture phenicol antibiotics. Meanwhile, the most toxic combination under two different temperatures was diverse. The nature of toxicological interactions of phenicol antibiotic mixtures was analyzed by Combination Index (CI) equation. In general, a dual synergism-antagonism effect was dominant in nearly all mixtures at both temperatures. The prediction suitability of Concentration Addition (CA), Independent Action (IA) models, and CI method was compared, suggesting that the CI equation seems to be more appropriate for predicting the toxicity values of phenicol drugs than CA and IA models. In brief, phenicol antibiotic mixtures with temperature variation may pose more significant hazards and risks to aquatic organisms; hence, the environment.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, 361021, Xiamen, China
| | - Peiyong Guo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China.
- Institute of Environmental and Resources Technology, Huaqiao University, 361021, Xiamen, China.
| | - Meixian Wang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, 361021, Xiamen, China
| | - Yanmei Wu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, 361021, Xiamen, China
| | - Yinshi Sun
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, 361021, Xiamen, China
| | - Haitao Su
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, 361021, Xiamen, China
| | - Jun Deng
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, 361021, Xiamen, China
| |
Collapse
|
19
|
Ishimota M, Tajiki-Nishino R, Fukuyama T, Tomiyama N. Rapid adaptation of Chironomus yoshimatsui to acetylcholinesterase inhibitors (pyraclofos and pirimicarb) in a multi-generation study. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:429-437. [PMID: 32065017 DOI: 10.1080/03601234.2019.1708165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
We evaluated the real effects of pollutants through a multi-generation study. We tested whether short-term exposure (48 h) of successive (first and second) generations of Chironomus yoshimatsui neonates (<24-h-old) to two acetylcholinesterase inhibitor insecticides, pyraclofos, and pirimicarb, would change insecticide sensitivity and life-cycle parameters over four generations. Additionally, we tested whether acetylcholinesterase (AChE) activity levels would be associated with this sensitivity change. Sensitivities (48 h EC50 value, using immobility as the endpoint) in chironomids (<24-h-old) and insect life-cycle parameters (the number of larvae per egg mass and adult size) were investigated. Parental chironomids produced larvae that were less sensitive than those in the control group following the two 48 h pirimicarb exposure events, whereas exposure to pyraclofos did not affect sensitivity. The AChE activity in larvae with low sensitivity to pirimicarb was significantly higher than that in the control. Thus, increased AChE activity might be associated with low sensitivity. The life-cycle parameters in chironomids recovered from the effects of pyraclofos and pirimicarb suggested they could adapt to the insecticides by changing biomass allocation. Our study suggested potential chemical risks of insecticide stress and how aquatic organisms adapt to it.
Collapse
Affiliation(s)
- Makoto Ishimota
- Chemistry Division and Toxicology Division, The Institute of Environmental Toxicology, Ibaraki, Japan
| | - Risako Tajiki-Nishino
- Chemistry Division and Toxicology Division, The Institute of Environmental Toxicology, Ibaraki, Japan
| | - Tomoki Fukuyama
- Chemistry Division and Toxicology Division, The Institute of Environmental Toxicology, Ibaraki, Japan
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Naruto Tomiyama
- Chemistry Division and Toxicology Division, The Institute of Environmental Toxicology, Ibaraki, Japan
| |
Collapse
|
20
|
Campos D, Silva ARR, Loureiro S, Grabicová K, Staňová AV, Soares AMVM, Pestana JLT. Two-generational effects of Benzophenone-3 on the aquatic midge Chironomus riparius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:983-990. [PMID: 30970465 DOI: 10.1016/j.scitotenv.2019.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/14/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Organic UV-filters are emergent contaminants continuously released into the aquatic ecosystems. These compounds are persistent showing potential for bioaccumulation. Partial life-cycle tests may underestimate the toxicity of UV-filters especially since these compounds have shown to act as endocrine disruptors. In the present study, the benthic aquatic insect Chironomus riparius was exposed to a gradient of Benzophenone-3 (BP3) concentrations over two generations to assess effects over a full life cycle from the first-instar larvae in the parental (P) generation (emergence, fecundity and fertility) until emergence in the subsequent generation (filial - F1). Recovery from exposure was also assessed after one generational exposure. Our results showed that concentrations of up to 8mg BP3/kg, elicited no effects regarding emergence rate and development time of C. riparius in the P generation. Our results also showed that C. riparius fecundity was not affected by BP3 exposure, but a strong dose-response relationship was observed for fertility with none of the egg ropes hatching at 8mg BP3/kg. Regarding effects observed in the F1 generation, emergence and development time were impaired by continuous exposure to BP3. Moreover, reduced emergence and changes in development time were observed in the F1 generation maintained in control/clean conditions but whose parents were exposed to BP3. Results found in this two-generational study clearly show reproductive effects of BP3 on C. riparius that would not be detected using standard tests. Full life cycle and multigenerational assays are critical to properly evaluate the population level effects of endocrine disrupting compounds such as organic UV-filters.
Collapse
Affiliation(s)
- Diana Campos
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana Rita R Silva
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Susana Loureiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Kateřina Grabicová
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 725/II, 389 25 Vodnany, Czech Republic
| | - Andrea Vojs Staňová
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 725/II, 389 25 Vodnany, Czech Republic; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovicova 6, SK-842 15 Bratislava, Slovak Republic
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
21
|
Bownik A, Ślaska B, Bochra J, Gumieniak K, Gałek K. Procaine penicillin alters swimming behaviour and physiological parameters of Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18662-18673. [PMID: 31055748 PMCID: PMC6570677 DOI: 10.1007/s11356-019-05255-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/15/2019] [Accepted: 04/22/2019] [Indexed: 05/23/2023]
Abstract
Procaine penicillin (PP) is a β-lactam antibiotic widely used in human and veterinary medicine. Although PP is detected in surface water, little is known on its effects on aquatic invertebrates. Our aim was to determine the influence of PP on swimming behaviour (track density, swimming speed, turning angle, hopping frequency) and physiological activity (oxygen consumption, heart rate, thoracic limb movement) of a freshwater invertebrate Daphnia magna exposed to PP at concentrations of 11.79 mg/L, 117.9 mg/L and 1179 mg/L for 2 h and 24 h. The results showed no mortality; however, reduction of swimming activity manifested by the decreased track density, swimming speed and turning angle noted in Daphnia exposed to all the concentrations of PP. Increase of oxygen consumption was observed after 2-h exposure; however, decrease of this parameter was found after 24 h. PP also reduced heart rate and thoracic limb movement in a concentration-dependent manner. The results suggest that the antibiotic should not induce mortality; however, it may affect swimming behaviour and physiological parameters of Daphnia magna particularly inhabiting aquaculture facilities with intensive antibiotic treatment. On the basis of the present results, we also suggest higher sensitivity of behavioural and physiological parameters of cladocerans than the commonly used endpoints: mortality or immobilisation and their possible application as a part of early warning systems in monitoring of surface water toxicity.
Collapse
Affiliation(s)
- Adam Bownik
- Institute of Biological Basis of Animal Production, Faculty of Biology, Animal Science and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13 Str, 20-950, Lublin, Poland.
| | - Brygida Ślaska
- Institute of Biological Basis of Animal Production, Faculty of Biology, Animal Science and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13 Str, 20-950, Lublin, Poland
| | - Justyna Bochra
- Institute of Biological Basis of Animal Production, Faculty of Biology, Animal Science and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13 Str, 20-950, Lublin, Poland
| | - Katarzyna Gumieniak
- Institute of Biological Basis of Animal Production, Faculty of Biology, Animal Science and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13 Str, 20-950, Lublin, Poland
| | - Kinga Gałek
- Institute of Biological Basis of Animal Production, Faculty of Biology, Animal Science and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13 Str, 20-950, Lublin, Poland
| |
Collapse
|
22
|
Sehonova P, Tokanova N, Hodkovicova N, Kocour Kroupova H, Tumova J, Blahova J, Marsalek P, Plhalova L, Doubkova V, Dobsikova R, Chloupek P, Dolezalova P, Faldyna M, Svobodova Z, Faggio C. Oxidative stress induced by fluoroquinolone enrofloxacin in zebrafish (Danio rerio) can be ameliorated after a prolonged exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 67:87-93. [PMID: 30769281 DOI: 10.1016/j.etap.2019.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
The purpose of our experiment was to evaluate the effect of enrofloxacin on biotransformation, oxidative stress and mRNA expression of related genes in fish as a non-target organisms. Zebrafish (Danio rerio) juveniles were treated with enrofloxacin at concentrations of 5, 10 and 500 μg/L for 14 days. A three-day-long test caused changes of catalytic activity of glutathione peroxidase and glutathione-S-transferase. Moreover, lipid peroxidation was observed at the highest concentration. No significant changes either in catalytic activity of antioxidant enzymes or elevated lipid peroxidation were observed from sampling day 7 on. mRNA expression of genes encoding antioxidant enzymes was also not affected by enrofloxacin after a 14-day exposure. This suggests the ability of D. rerio juveniles to adapt to enrofloxacin in a short time period. Moreover, enrofloxacin was not shown to affect collagen, cathepsin K, optic atrophy 1 and pyruvate kinase L/R mRNA expression in this study.
Collapse
Affiliation(s)
- Pavla Sehonova
- Department of Veterinary Public Health and Forensic Medicine, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic; Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Nina Tokanova
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic; Department of Immunology, Veterinary Research Institute, Brno, Czech Republic
| | - Hana Kocour Kroupova
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Jitka Tumova
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Jana Blahova
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Petr Marsalek
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Lucie Plhalova
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Veronika Doubkova
- Department of Veterinary Public Health and Forensic Medicine, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic; Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Radka Dobsikova
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Petr Chloupek
- Department of Veterinary Public Health and Forensic Medicine, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Petra Dolezalova
- Department of Veterinary Public Health and Forensic Medicine, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Martin Faldyna
- Department of Immunology, Veterinary Research Institute, Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166, Agata-Messina, Italy.
| |
Collapse
|
23
|
Functional responses of Daphnia magna to zero-mean flow turbulence. Sci Rep 2019; 9:3844. [PMID: 30846810 PMCID: PMC6405858 DOI: 10.1038/s41598-019-40777-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/21/2019] [Indexed: 11/22/2022] Open
Abstract
Daphnia are important to understanding the biogeochemistry of aquatic ecosystems, mainly because of their ability to filter bacteria, algae and inorganic particles as well. Although there are many studies on the general effects that biotic and abiotic stressors, increased temperature and hypoxia, salinity, metals, pharmaceuticals, pesticides, etc., have on Daphnia populations, little is known about the impact elevated turbulence has. Here, we show that turbulence affects Daphnia magna survival, swimming behaviour and filtering capacity. Our data demonstrate that altering their habitat by induced mixing from turbulence, induces an increased filtering capacity of the Daphnia magna individuals, provided the level of background turbulence (defined by the dissipation of turbulent kinetic energy) is lower than ε = 0.04 cm2 s−3. The filtering capacity reduced exponentially with increasing ε, and at ε > 1 cm2 s−3 both mobility and filtration were suppressed and eventually led to the death of all the Daphnia magna individuals.
Collapse
|
24
|
De Liguoro M, Maraj S, Merlanti R. Transgenerational toxicity of flumequine over four generations of Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:814-821. [PMID: 30597780 DOI: 10.1016/j.ecoenv.2018.11.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
In this study, the effects of both continuous and alternate exposure to 2 mg L-1 of flumequine (FLU) on survival, growth and reproduction of Daphnia magna were evaluated over four generations. Mortality was the most evident effect, with an average mortality rate of 23 ± 14% across generations. Individuals destined to succumb were identifiable well in advance through their discolouration and lack of development, and limited or zero reproductive capacity. Inhibition of reproduction in surviving mothers varied across the four generations (14.3 ± 17%) without an apparent correlation with the duration of exposure over generations. Significant reproductive inhibition was observed in the generation that followed three non-exposed generations (the fourth generation), pointing to a transgenerational toxicity of FLU. In another experiment, in vitro exposure of 72 D. magna embryos to 2 mg L-1 FLU caused 14% mortality (versus 7% in the control). Among the 62 individuals that hatched alive, six showed birth defects and only one was able to survive the next few days. The other, apparently healthy newborns were randomly assigned to two groups and submitted to a reproduction test, either in the absence or in the presence of 2 mg L-1 FLU. A high mortality rate and/or strongly significantly inhibited reproduction were detected in both groups. As with previously run analogous tests with enrofloxacin, the multigenerational and embryonic tests showed a clear disruption to this crustacean population which would not be evidenced by the standard official acute and chronic tests. This indicates the necessity of taking a different and more comprehensive approach to the evaluation of substances having an inherent ability to interact with genetic material.
Collapse
Affiliation(s)
- Marco De Liguoro
- Dept. of Comparative Biomedicine and Food Science - BCA, University of Padua, Italy.
| | - Sindi Maraj
- Dept. of Comparative Biomedicine and Food Science - BCA, University of Padua, Italy
| | - Roberta Merlanti
- Dept. of Comparative Biomedicine and Food Science - BCA, University of Padua, Italy
| |
Collapse
|
25
|
Liu Y, Guo R, Tang S, Zhu F, Zhang S, Yan Z, Chen J. Single and mixture toxicities of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 on the feeding activity of Daphnia magna: From behavior assessment to neurotoxicity. CHEMOSPHERE 2018; 195:542-550. [PMID: 29277034 DOI: 10.1016/j.chemosphere.2017.12.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/03/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Although 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47), 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE-47) and 6-methoxy-2,2',4,4'-tetrabromodiphenyl ether (6-MeO-BDE-47) clearly disrupt the endocrine system, current knowledge of their single and/or mixture toxicities on other behaviors of aquatic organisms remains limited. In the present study, Daphnia magna was used to investigate the single and mixture toxicities of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 as measured by inhibition of feeding during exposure and post-exposure periods. Additionally, the biochemical performance, i.e., the activities of super oxidase dismutase (SOD), glutathione peroxidase (GPx) and acetylcholinesterase (AChE) of the test organism was studied to investigate the potential mechanisms of the toxicity of the target compounds. The three target compounds produced an obvious depressive effect on feeding behavior during the exposure period, and the effect increased with increasing concentrations. D. magna was most sensitive to 6-OH-BDE-47. The toxicity of the ternary mixture showed an obvious concentration-dependent effect, whereas the binary mixture toxicity showed the characteristics of hormesis. During the post-exposure period, overcompensation occurred, indicating a short-term effect of the target compounds on D. magna. Additionally, significant changes occurred in neurological responses, indicating that these compounds might have neurobehavioral toxicity in D. magna. The decrease in oxidative stress enzymes (SOD and GPx) indicated that the antioxidant response of D. magna was destroyed.
Collapse
Affiliation(s)
- Yanhua Liu
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Ruixin Guo
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Shengkai Tang
- Key Laboratory of Fisheries Resources in Inland Water of Jiangsu Province, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Fengyi Zhu
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Zhengyu Yan
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China.
| | - Jianqiu Chen
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China.
| |
Collapse
|
26
|
Ikem A, Lin CH, Broz B, Kerley M, Thi HL. Occurrence of enrofloxacin in overflows from animal lot and residential sewage lagoons and a receiving-stream. Heliyon 2017; 3:e00409. [PMID: 29034336 PMCID: PMC5635953 DOI: 10.1016/j.heliyon.2017.e00409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/12/2017] [Accepted: 09/13/2017] [Indexed: 11/25/2022] Open
Abstract
Enrofloxacin (ENRO), a fluoroquinolone, was quantified in overflows from an animal lot and residential sewage lagoons and in a receiving-stream (Gans Creek). The concentrations of ENRO in samples was determined by high-performance liquid chromatography - tandem mass spectrometry. In total, ninety samples including duplicates were analyzed during several monthly sampling campaigns. The samples collected represented the residential sewage lagoon overflow (RLO), animal lot lagoon overflow (ALLO), the combined overflows (RLO and ALLO), and Gans Creek (upstream, midstream and downstream positions). The frequency of detection of ENRO was 90% for RLO and 100% for both ALLO and Gans Creek. The highest concentration of ENRO (0.44 μg/L) was found in ALLO sample collected during high precipitation. ENRO levels found in RLO samples ranged from < LOQ to 259 ng/L and the highest value observed also coincided with high flow. The levels of ENRO found in Gans Creek ranged from 17-216 ng/L. A preliminary ecotoxicological assessment was conducted through calculation of the risk quotients (RQs) for organisms based on the ratio of the measured environmental concentrations in this study to the predicted-no-effect-concentrations (acute and chronic effect) data. From the RQs, high risks were observed for Microcystis aeruginosa (cyanobacteria; RQ = 4.4); Anabaena flosaquae (cyanobacteria; RQ = 1.3); and Lemna minor (aquatic vascular plant; RQ = 2.0). The long-term effects of mixtures of PHCs on Gans Creek watershed are probable.
Collapse
Affiliation(s)
- Abua Ikem
- Cooperative Research Programs/Department of Agriculture and Environmental Sciences, Lincoln University, Jefferson City, MO 65101, USA
| | - Chung-Ho Lin
- Center for Agroforestry and Department of Forestry, University of Missouri, Columbia, MO 65211, USA
| | - Bob Broz
- Agriculture Extension - Food Science and Nutrition, University of Missouri, 205 Agricultural Engineering, Columbia, MO 65211, USA
| | - Monty Kerley
- Animal Sciences Division, University of Missouri, Columbia, MO 65211, USA
| | - Ho Le Thi
- Center of Core Facilities, Cuu Long Delta Rice Research Institute, Tan Thanh - Thoi Lai - Can Tho, Vietnam
| |
Collapse
|