1
|
Hu N, Chen G, Chen Y, Lin M, Tang P, Zhang W, Ye Z. Cement and zeolite stabilization/solidification of heavy metal-contaminated sediments: 841-Day leaching characteristics, mechanisms, and microstructure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:306-317. [PMID: 39378637 DOI: 10.1016/j.wasman.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/13/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
The long-term effectiveness of stabilized/solidified sediments (S/S sediments) is increasingly attracting attention. This study investigated the long-term leaching characteristics and mechanisms of S/S sediment through an 841-day tank leaching test, considering the influence of cement content, curing time, and zeolite. The results indicate significant correlations among pH, heavy metals, TN, NH3-N, and COD. The specimens with 6 % cement cured for 30 days (C6(30)) demonstrated considerable heavy metal stabilization, with stabilization rates for Cr, Ni, Cu, Zn, As, and Pb reaching 99.81 %, 99.06 %, 98.93 %, 99.61 %, 97.58 %, and 99.97 %, respectively. Compared to C6(30), partial replacement of cement with 10 % zeolite (C5 + Z0.5(30)) not only more effectively stabilized heavy metals except As, but also reduced the release of COD and NH3-N by 4.23 % and 10.04 %, respectively. However, there was a risk of TN, NH3-N, and COD exceeding permissible limits during long-term leaching. Microscopic analysis results suggested that hydration products and low porosity contributed to stabilization of heavy metals. Leaching mechanisms was revealed that surface wash-off controls the leaching of Cr and Pb, while diffusion controls the leaching of Ni, Cu, Zn, As, COD, TN, and NH3-N. Considering stabilization performance, cost and carbon emissions, C5 + Z0.5(30) is an effective strategy for reducing long-term environmental risks of S/S sediments.
Collapse
Affiliation(s)
- Nan Hu
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; Suzhou Institute of Hohai University, SuZhou 215100, China; Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing 210098, China
| | - Geng Chen
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; Suzhou Institute of Hohai University, SuZhou 215100, China; Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing 210098, China.
| | - Yonghui Chen
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; Suzhou Institute of Hohai University, SuZhou 215100, China; Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing 210098, China
| | - Minguo Lin
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; Suzhou Institute of Hohai University, SuZhou 215100, China; Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing 210098, China
| | - Panpan Tang
- Department of Engineering, University of Exeter, Exeter EX4 4QF, UK
| | - Wanlu Zhang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Zi Ye
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; Suzhou Institute of Hohai University, SuZhou 215100, China; Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing 210098, China
| |
Collapse
|
2
|
Long HY, Feng GF, Fang J. In-situ remediation of cadmium contamination in paddy fields: from rhizosphere soil to rice kernel. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:404. [PMID: 39207539 DOI: 10.1007/s10653-024-02099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) has become an important heavy metal pollutant because of its strong migration and high toxicity. The industrial production process aggravated the Cd pollution in rice fields. Human exposure to Cd through rice can cause kidney damage, emphysema, and various cardiovascular and metabolic diseases, posing a grave threat to health. As modern technology develops, the Cd accumulation model in rice and in-situ remediation of Cd pollution in cornfields have been extensively studied and applied, so it is necessary to sort out and summarize them systematically. Therefore, this paper reviewed the primary in-situ methods for addressing heavy metal contamination in rice paddies, including chemical remediation (inorganic-organic fertilizer remediation, nanomaterials, and composite remediation), biological remediation (phytoremediation and microbial remediation), and crop management remediation technologies. The factors that affect Cd transformation in soil and Cd migration in crops, the advantages and disadvantages of remediation techniques, remediation mechanisms, and the long-term stability of remediation were discussed. The shortcomings and future research directions of in situ remediation strategies for heavily polluted paddy fields and genetic improvement strategies for low-cadmium rice varieties were critically proposed. To sum up, this review aims to enhance understanding and serve as a reference for the appropriate selection and advancement of remediation technologies for rice fields contaminated with heavy metals.
Collapse
Affiliation(s)
- Hai Yan Long
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guang Fu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
3
|
Tan X, Cao J, Liu J, Wang J, Duan G, Zhang Y, Cui J, Lin A. Characteristics of three organic fertilizers and their influence on the mobility of cadmium and arsenic in a soil-rice (Oryza sativa L.) system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49469-49480. [PMID: 39080167 DOI: 10.1007/s11356-024-34218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/29/2024] [Indexed: 08/15/2024]
Abstract
The properties of different organic fertilizers and their potential for stabilizing toxic metals(loids) in soil have not been fully investigated. This study characterized and evaluated three organic fertilizers from different raw materials. The mushroom residue organic fertilizer (MO) had higher C, H, and O contents and more functional groups (-OH, C-H, and C = O). Its application significantly increased pH (1.00 ~ 1.32 units), organic matter (OM) content (26.58 ~ 69.11%), and cation exchange capacity (CEC) (31.52 ~ 39.91%) of soil. MO treatments can simultaneously reduce the bioavailable TCLP-Cd and TCLP-As in soil, solving the difficulties of remediating the combined Cd and As pollution. MO treatments inhibited the migration of Cd and As from soil to plant, promoting plant growth. Redundancy analysis (RDA) revealed that metal(loid) variations in plants were related to soil properties (40.09%) and TCLP-Cd/As (44.74%). Furthermore, the toxic metals(loids) risk assessment for all organic fertilizers was at safe levels. This study provided a valuable reference for choosing organic fertilizers and presented a novel option for the "producing while remediating" of farmlands with low pollution.
Collapse
Affiliation(s)
- Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinman Cao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiahao Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinhang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yinjie Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
4
|
Li X, Wang L, Hou D. Layered double hydroxides for simultaneous and long-term immobilization of metal(loid)s in soil under simulated aging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174777. [PMID: 39009152 DOI: 10.1016/j.scitotenv.2024.174777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Soil contamination by toxic metals and metalloids poses a grave threat to food security and human well-being. Immobilization serves as an effective method for the remediation of soils contaminated by metal(loid)s. Nevertheless, the ability of soil amendments for simultaneous immobilization of cations and oxyanions, and the long-term effectiveness of immobilization need substantial improvements. In this study, we used a series of layered double hydroxides (LDHs), including Mg-Al LDH and Ca-Al LDH fabricated from pure chemicals, and one waste-derived LDH synthesized using granulated ground blast furnace slag (GGBS), for the immobilization of Cu, Zn, As, and Sb in a historically contaminated soil obscured from a mining-affected region. The LDHs were first subjected to iron (Fe) modification to enhance their short-term immobilization performances toward metal(loid)s. Furthermore, the long-term effectiveness of Fe-modified LDHs was examined via two sets of experiments, including column experiments simulating 2-year water leaching, and accelerated aging experiments simulating 100-year proton attack. It was observed that Fe-modified LDHs, either made from pure chemicals or GGBS, demonstrated promising long-term immobilization performances toward metal(loid)s. Results from this study are encouraging for the future use of LDHs for simultaneous and long-term immobilization of metal(loid)s in soil.
Collapse
Affiliation(s)
- Xuanru Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Biswash MR, Li KW, Xu RK, Uwiringiyimana E, Guan P, Lu HL, Li JY, Jiang J, Hong ZN, Shi RY. Alteration of soil pH induced by submerging/drainage and application of peanut straw biochar and its impact on Cd(II) availability in an acidic soil to indica-japonica rice varieties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124361. [PMID: 38871167 DOI: 10.1016/j.envpol.2024.124361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The effects of soil pH variations induced by submergence/drainage and biochar application on soil cadmium (Cd) availability to different rice (Oryza sativa L.) varieties are not well understood. This study aims to investigate the possible reasons for available Cd(II) reduction in paddy soil as influenced by biochar and to determine Cd(II) absorption and translocation rates in different parts of various rice varieties. A pot experiment in a greenhouse using four japonica and four indica rice varieties was conducted in Cd(II) contaminated paddy soil with peanut straw biochar. The results indicated that the submerging led to an increase in soil pH due to the consumption of protons (H+) by the reduction reactions of iron/manganese (Fe/Mn) oxides and sulfate (SO42-) and thus the decrease in soil available Cd(II) contents. However, the drainage decreased soil pH due to the release of protons during the oxidation of Fe2+, Mn2+, and S2- and thus the increase in soil available Cd(II) contents. Application of the biochar increased soil pH during soil submerging and inhibited the decline in soil pH during soil drainage, and thus decreased soil available Cd(II) contents under both submerging and drainage conditions. The indica rice varieties absorbed more Cd(II) in their roots and accumulated higher amounts of Cd(II) in their shoots and grains than the japonica rice varieties. The Cd(II) sensitive varieties exhibited a greater absorption and translocation rate of Cd(II) compared to the tolerant varieties of both indica and japonica rice. Biochar inhibited the absorption and accumulation of Cd(II) in the rice varieties, which ultimately lowered the Cd(II) contents in rice grains below the national food safety limit (0.2 mg kg-1). Overall, planting japonica rice varieties in Cd(II) polluted paddy soils combined with the use of biochar can effectively reduce Cd(II) content in rice grains which protects human health against Cd(II) toxicity.
Collapse
Affiliation(s)
- Md Romel Biswash
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China; Adaptive Research Division (ARD), Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| | - Ke-Wei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ernest Uwiringiyimana
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Guan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Long Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China
| | - Jiu-Yu Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Neng Hong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren-Yong Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Kravchenko E, Dela Cruz TL, Chen XW, Wong MH. Ecological consequences of biochar and hydrochar amendments in soil: assessing environmental impacts and influences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42614-42639. [PMID: 38900405 DOI: 10.1007/s11356-024-33807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Anthropogenic activities have caused irreversible consequences on our planet, including climate change and environmental pollution. Nevertheless, reducing greenhouse gas (GHG) emissions and capturing carbon can mitigate global warming. Biochar and hydrochar are increasingly used for soil remediation due to their stable adsorption qualities. As soil amendments, these materials improve soil quality and reduce water loss, prevent cracking and shrinkage, and interact with microbial communities, resulting in a promising treatment method for reducing gas emissions from the top layer of soil. However, during long-term studies, contradictory results were found, suggesting that higher biochar application rates led to higher soil CO2 effluxes, biodiversity loss, an increase in invasive species, and changes in nutrient cycling. Hydrochar, generated through hydrothermal carbonization, might be less stable when introduced into the soil, which could lead to heightened GHG emissions due to quicker carbon breakdown and increased microbial activity. On the other hand, biochar, created via pyrolysis, demonstrates stability and can beneficially impact GHG emissions. Biochar could be the preferred red option for carbon sequestration purposes, while hydrochar might be more advantageous for use as a gas adsorbent. This review paper highlights the ecological impact of long-term applications of biochar and hydrochar in soil. In general, using these materials as soil amendments helps establish a sustainable pool of organic carbon, decreasing atmospheric GHG concentration and mitigating the impacts of climate change.
Collapse
Affiliation(s)
- Ekaterina Kravchenko
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Soil Health Laboratory, Southern Federal University, Rostov-On-Don, Russia
| | - Trishia Liezl Dela Cruz
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xun Wen Chen
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ming Hung Wong
- Soil Health Laboratory, Southern Federal University, Rostov-On-Don, Russia.
- Consortium On Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, China.
| |
Collapse
|
7
|
Zeng P, Liu J, Zhou H, Wang Y, Ni L, Liao Y, Gu J, Liao B, Li Q. Long-term effects of compound passivator coupled with silicon fertilizer on the reduction of cadmium and arsenic accumulation in rice and health risk evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171245. [PMID: 38408656 DOI: 10.1016/j.scitotenv.2024.171245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Cadmium (Cd) and arsenic (As) are precedence-controlled contaminants in paddy soils, that can easily accumulate in rice grains. Limestone and sepiolite (LS) compound passivator can obviously reduce Cd uptake in rice, whereas Si fertilizer can effectively decrease rice As uptake. Here, the synergistic effects of the LS compound passivator coupled with Si fertilizer (LSCS) on the soil pH and availability of Si, Cd, and As, as well as rice grain Cd and As accumulation and its health risk were studied based on a 3-year consecutive field experiment. The results showed that the LSCS performed the best in terms of synchronously decreasing soil Cd and As availability and rice Cd and As uptake. In the LSCS treatments, soil pH gradually decreased with the rice-planting season, while soil available Cd and As contents gradually increased, suggesting that the influence of LSCS on Cd and As availability gradually weakened with rice cultivation. Nonetheless, the contents of Cd and inorganic As (i-As) in rice grains treated with LSCS were slightly affected by cultivation but were significantly lower than the single treatments of LS compound passivator or Si fertilizer. According to the Cd and As limit standards in food (GB2762-2022), the Cd and i-As content in rice grains can be lowered below the standard by using the 4500 kg/hm2 LS compound passivator coupled with 90 kg/hm2 Si fertilizer in soil and spraying 0.4 g/L Si fertilizer on rice leaves for at least three years. Furthermore, health risk evaluation revealed that LSCS treatments significantly reduced the estimated daily intake, annual excess lifetime cancer risk, and hazard quotient of Cd and i-As in rice grains. These findings suggest that LSCS could be a viable approach for reducing Cd and As accumulation in rice grains and lowering the potential health risks associated with rice.
Collapse
Affiliation(s)
- Peng Zeng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering and Technology Research Center for Soil Pollution Remediation and Carbon Sequestration, Changsha 410004, China.
| | - Jiawei Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering and Technology Research Center for Soil Pollution Remediation and Carbon Sequestration, Changsha 410004, China.
| | - Yun Wang
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde 415000, China
| | - Li Ni
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ye Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiaofeng Gu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering and Technology Research Center for Soil Pollution Remediation and Carbon Sequestration, Changsha 410004, China; Hunan Research Institute for Nonferrous Metals Co., Ltd., Changsha 410100, China
| | - Bohan Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering and Technology Research Center for Soil Pollution Remediation and Carbon Sequestration, Changsha 410004, China
| | - Qian Li
- Hunan Research Institute for Nonferrous Metals Co., Ltd., Changsha 410100, China
| |
Collapse
|
8
|
Teng Y, Chen K, Jiang H, Hu Y, Seyler BC, Appiah A, Peng S. Utilization of phosphoric acid-modified biochar to reduce vanadium leaching potential and bioavailability in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123360. [PMID: 38228260 DOI: 10.1016/j.envpol.2024.123360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Remediating vanadium (V) polluted soil has garnered widespread attention over the past decade. Yet, few research projects have investigated the stabilization of soil V using modified biochar, so the effects and interacting mechanisms between soil properties and modified biochar for V immobilization and stabilization remain unclear. Hence, this gap is addressed by determining the leaching behavior and mechanisms of soil V on different dosages of phosphoric acid (H3PO4) impregnated biochar (MLBC, 0.5%-4%). The applicability and durability in soil V immobilization was investigated under acid precipitation. The MLBC effect on V bioavailability and mobility was assessed first by CaCl2, Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leaching Procedure (SPLP) extractions in different periods. The V concentrations significantly reduced in CaCl2, TCLP, and SPLP extract with MLBC at each dosage (30 d), while slight to significant increase in SPLP and TCLP extract V was recorded in a long-term incubation (90 d). Column leaching test further demonstrated the high durability of 4% MLBC in V stabilization under continuous acid exposure. Compared to the control (no-biochar), the accumulated V content in the leaching solution significantly decreased in MLBC-amended soil. Acid soluble fraction of V showed significant negative correlation with both soil organic matter (SOM) and available P, which was positively correlated with pH, suggested that pH, available P and SOM were key factors affecting the bioavailability of V in soil. Moreover, combining with the characterization results of MLBC and amended soil, the results revealed that H3PO4 modified biochar played a vital role on V immobilization and soil improvement by forming electrostatic adsorption, ion exchange, redox reaction or complexation with the increase of functional groups. These revealed an efficient and steady development of soil quality and treatment for soil V contamination, under MLBC operation to soil polluted with exogenous V.
Collapse
Affiliation(s)
- Yi Teng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Proctection, Chengdu University of Technology, Chengdu 610059, Sichuan, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Kexin Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Proctection, Chengdu University of Technology, Chengdu 610059, Sichuan, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Hao Jiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Proctection, Chengdu University of Technology, Chengdu 610059, Sichuan, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Yunfei Hu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Barnabas C Seyler
- Shude International, Chengdu Shude High School, Chengdu 610000, Sichuan, China; Department of Environment, College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Augustine Appiah
- State Key Laboratory of Geohazard Prevention and Geoenvironment Proctection, Chengdu University of Technology, Chengdu 610059, Sichuan, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Shuming Peng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Proctection, Chengdu University of Technology, Chengdu 610059, Sichuan, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| |
Collapse
|
9
|
Cui H, Zhao Y, Hu K, Xia R, Zhou J, Zhou J. Impacts of atmospheric deposition on the heavy metal mobilization and bioavailability in soils amended by lime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170082. [PMID: 38220003 DOI: 10.1016/j.scitotenv.2024.170082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Atmospheric deposition is an important source of heavy metal in agricultural soils, but there is limited research on the mobility of these metals in soil and their impact on soil amendment. Here, we performed a dust incubation experiment in soils in the laboratory and a factorial transplant experiment at three field sites with a gradient of atmospheric deposition to examine the impacts of atmospherically deposited heavy metals (Cu, Cd, and Pb) on the mobility and bioavailability in soils with and without lime applications. Results showed that the atmospherically deposited heavy metals showed high mobility and were primarily presented in the soluble ionic fractions in the wet part and acid-exchangeable and reducible fractions in the dry part of atmospheric deposition. Atmospheric dust addition caused the 2p3/2 and 2p1/2 electrons of Cu atoms in uncontaminated soils to transition the 3d vacant states, resulting in similar copper absorption peaks as atmospheric particles by the observation of X-ray absorption near-edge spectroscopy (XANES). In the field, atmospheric deposition can only increase the mobile fractions in the surface soils, but not in the deeper layers. However, the deposition can increase the soluble and diffusive gradients in thin films (DGT)-measured bioavailable fractions in profile along with the soil depth. Lime applications cannot significantly reduce the mobile fractions of heavy metals in the surface soils exposed to atmospheric deposition, but significantly reduce the heavy metal concentrations in soil solutions and the DGT-measured bioavailable concentrations, particularly in the deeper layer (6-10 cm). The major implication is that atmospherically deposited heavy metals can significantly increase their bioavailable concentrations in the plough horizon of soil and constrain the effects of soil amendments on heavy metal immobilization, thereby increasing the risks of crop uptake.
Collapse
Affiliation(s)
- Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Yingjie Zhao
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Kaixin Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ruizhi Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Liu Q, Ding Y, Lai Y, Long Y, Shi H, Liu M. The Immobilization Mechanism of Inorganic Amendments on Cu and Cd in Polluted Paddy Soil in Short/Long Term. TOXICS 2024; 12:157. [PMID: 38393252 PMCID: PMC10892406 DOI: 10.3390/toxics12020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
This study investigated the impact of soil colloidal characteristics on the transfer patterns of different Cu and Cd speciation in contaminated soil treated with three different amendments: lime (L), zero-valent iron (ZVI), and attapulgite (ATP). It seeks to clarify the activation hazards and aging processes of these modifications on Cu and Cd. Compared with the control (CK), the available Cu concentrations treated with amendments reduced in the short term (6 months) by 96.49%, 5.54%, and 89.78%, respectively, and Cd declined by 55.43%, 32.31%, and 93.80%, respectively. Over a 12-year period, there was no significant change in the immobile effect with L, while Cu and Cd fell by 19.06% and 40.65% with ZVI and by 7.63% and 40.78% with ATP. Short- and long-term increases in the readily reducible iron and manganese oxide fraction of Cu and Cd were accompanied by a considerable rise in the concentrations of amorphous iron oxide in the soil and colloid after amendment treatment. This suggested that Cu and Cd were immobilized and stabilized in part by amorphous iron oxide.
Collapse
Affiliation(s)
- Qing Liu
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China; (Q.L.); (Y.L.); (Y.L.)
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China;
| | - Yuan Ding
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China; (Q.L.); (Y.L.); (Y.L.)
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China;
| | - Yuqi Lai
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China; (Q.L.); (Y.L.); (Y.L.)
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China;
| | - Yan Long
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China; (Q.L.); (Y.L.); (Y.L.)
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China;
| | - Hong Shi
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China;
- Jiangxi Key Laboratory of Agricultural Efficient Water-Saving and Non-Point Source Pollution Preventing, Jiangxi Central Station of Irrigation Experiment, Nanchang 330063, China
| | - Min Liu
- Jiangxi Ecological Environment Monitoring Center, Nanchang 330039, China
| |
Collapse
|
11
|
Zong W, Wang L, Wang X, Geng X, Lian Y, Wang H, Hou R, Guo J, Yang X, Hou D. Unraveling the aging dynamics in the simultaneous immobilization of soil metal(loid)s using oxides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167220. [PMID: 37734613 DOI: 10.1016/j.scitotenv.2023.167220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Immobilization represents the most extensively utilized technique for the remediation of soils contaminated by heavy metals and metalloids. However, it is crucial to acknowledge that contaminants are not removed during this process, thereby leaving room for potential mobilization over time. Currently, our comprehension of the temporal variations in immobilization efficacy, specifically in relation to amendments suitable for industrial sites, remains very limited. To address this knowledge gap, our research delved into the aging characteristics of diverse oxides, hydroxides, and hydroxy-oxides (collectively referred to as oxides) for the simultaneous immobilization of arsenic (As), cadmium (Cd), and antimony (Sb) in soils procured from 16 contaminated industrial sites. Our findings unveiled that Ca-oxides initially showed excellent immobilization performance for As and Sb within 7 days but experienced substantial mobilization by up to 71 and 13 times within 1 year, respectively. In contrast, the efficacy of Cd immobilization by Ca-oxides was enhanced with the passage of time. Fe- and Mg-oxides, which primarily operate through encapsulation or surface complexation, exhibited steady immobilization performances over time. This reliable and commendable immobilization effect was observed across distinct soils characterized by varying physicochemical properties, including pH, texture, CEC, TOC, and EC, underscoring the suitability of such amendments for immobilizing metal(loid)s in diverse soil types. MgO, in particular, displayed even superior immobilization performance over time, owing primarily to gradual hydration and physical entrapment effects. Remarkably, Mg-Al LDHs emerged as the most effective candidate for the simultaneous immobilization of As, Cd, and Sb. The results obtained from this study furnish valuable data for future investigations on the immobilization of metals and metalloids in industrial soils. They enable the projection of immobilization performance and offer practical guidance in selecting suitable amendments for the immobilization of metal(loid)s.
Collapse
Affiliation(s)
- Wenjing Zong
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoxiang Wang
- School of Environment, Tsinghua University, Beijing 100084, China; Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Xiaoguo Geng
- School of Environment, Tsinghua University, Beijing 100084, China; Wyoming Seminary, 201 N Sprague ave, Kingston, PA 18704, United States
| | - Yufei Lian
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Huixia Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Jing Guo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaodong Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Li Z, Qiu Y, Zhao D, Li J, Li G, Jia H, Du D, Dang Z, Lu G, Li X, Yang C, Kong L. Application of apatite particles for remediation of contaminated soil and groundwater: A review and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166918. [PMID: 37689195 DOI: 10.1016/j.scitotenv.2023.166918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/14/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
With rapid industrial development and population growth, the pollution of soil and groundwater has become a critical concern all over the world. Yet, remediation of contaminated soil and water remains a major challenge. In recent years, apatite has gained a surging interest in environmental remediation because of its high treatment efficiency, low cost, and environmental benignity. This review summarizes recent advances in: (1) natural apatite of phosphate ores and biological source; (2) synthesis of engineered apatite particles (including stabilized or surface-modified apatite nanoparticles); (3) treatment effectiveness of apatite towards various environmental pollutants in soil and groundwater, including heavy metals (e.g., Pb, Zn, Cu, Cd, and Ni), inorganic anions (e.g., As oxyanions and F-), radionuclides (e.g., thorium (Th), strontium (Sr), and uranium (U)), and organic pollutants (e.g., antibiotics, dyes, and pesticides); and (4) the removal and/or interaction mechanisms of apatite towards the different contaminants. Lastly, the knowledge or technology gaps are identified and future research needs are proposed.
Collapse
Affiliation(s)
- Zhiliang Li
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yi Qiu
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Dongye Zhao
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, CA 92182-1324, USA.
| | - Jian Li
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Guanlin Li
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hui Jia
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Daolin Du
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhi Dang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Guining Lu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Chengfang Yang
- College of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Linjun Kong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
13
|
Padhye LP, Srivastava P, Jasemizad T, Bolan S, Hou D, Shaheen SM, Rinklebe J, O'Connor D, Lamb D, Wang H, Siddique KHM, Bolan N. Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131575. [PMID: 37172380 DOI: 10.1016/j.jhazmat.2023.131575] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/14/2023]
Abstract
Contaminant containment measures are often necessary to prevent or minimize offsite movement of contaminated materials for disposal or other purposes when they can be buried or left in place due to extensive subsurface contamination. These measures can include physical, chemical, and biological technologies such as impermeable and permeable barriers, stabilization and solidification, and phytostabilization. Contaminant containment is advantageous because it can stop contaminant plumes from migrating further and allow for pollutant reduction at sites where the source is inaccessible or cannot be removed. Moreover, unlike other options, contaminant containment measures do not require the excavation of contaminated substrates. However, contaminant containment measures require regular inspections to monitor for contaminant mobilization and migration. This review critically evaluates the sources of persistent contaminants, the different approaches to contaminant remediation, and the various physical-chemical-biological processes of contaminant containment. Additionally, the review provides case studies of contaminant containment operations under real or simulated field conditions. In summary, contaminant containment measures are essential for preventing further contamination and reducing risks to public health and the environment. While periodic monitoring is necessary, the benefits of contaminant containment make it a valuable remediation option when other methods are not feasible.
Collapse
Affiliation(s)
- Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Prashant Srivastava
- CSIRO, The Commonwealth Scientific and Industrial Research Organisation, Environment Business Unit, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - David O'Connor
- School of Real Estate and Land Management, Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS, United Kingdom
| | - Dane Lamb
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
14
|
Fakhri R, Jalali M, Ranjbar F. Empirical and Mechanistic Modeling of Release Kinetics of Heavy Metals and Their Chemical Distribution in the Rhizosphere and Non-rhizosphere Soils Under Vegetable Cultivation. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:466-483. [PMID: 37084006 DOI: 10.1007/s00244-023-00996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Biochemical processes in the rhizosphere affect the availability and distribution of heavy metals (HMs) in various forms. Rhizosphere soil (RS) and non-rhizosphere soil (NRS) samples were collected from 10 fields under tarragon (Artemisia dracunculus L.) cultivation to investigate the release kinetics and distribution of HMs including cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), and zinc (Zn) in five fractions. The cumulative amounts of Cu and Fe released after 88 h were in the following ranges, respectively: 1.31-2.76 and 3.24-6.35 mg kg-1 in RS and 1.41-2.72 and 3.15-5.27 mg kg-1 in NRS. The parabolic diffusion and pseudo-second-order equations provided the best fit to the release kinetics data of Cu and Fe, respectively. The cation exchange model (CEM) based on Gaines-Thomas selectivity coefficients implemented in the PHREEQC program could well simulate the release of Cu and Fe suggesting that cation exchange was the dominant mechanism in the release of Fe and Cu from soils by 0.01 M CaCl2. Cadmium was predominantly found in fraction F2, while other HMs were mainly present in fraction F5. According to the risk assessment code, there was a very high risk for Cd, a medium risk for Co and Cu, a very low risk for Fe, and a low risk for Zn. Correlation analysis showed that soil physicochemical properties were effective in the distribution and transformation of HMs. Significant positive correlations between five fractions indicated that different forms of HMs can potentially transform into each other.
Collapse
Affiliation(s)
- Rosa Fakhri
- Department of Soil Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mohsen Jalali
- Department of Soil Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Faranak Ranjbar
- Department of Soil Science, Faculty of Agriculture, Razi University, Kermanshah, Iran
| |
Collapse
|
15
|
Shao P, Yin H, Li Y, Cai Y, Yan C, Yuan Y, Dang Z. Remediation of Cu and As contaminated water and soil utilizing biochar supported layered double hydroxide: Mechanisms and soil environment altering. J Environ Sci (China) 2023; 126:275-286. [PMID: 36503755 DOI: 10.1016/j.jes.2022.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 06/17/2023]
Abstract
Preparing materials for simultaneous remediation of anionic and cationic heavy metals contamination has always been the focus of research. Herein a biochar supported FeMnMg layered double hydroxide (LDH) composites (LB) for simultaneous remediation of copper and arsenic contamination in water and soil has been assembled by a facile co-precipitation approach. Both adsorption isotherm and kinetics studies of heavy metals removal by LB were applied to look into the adsorption performance of adsorbents in water. Moreover, the adsorption mechanisms of Cu and As by LB were investigated, showing that Cu in aqueous solution was removed by the isomorphic substitution, precipitation and electrostatic adsorption while As was removed by complexation. In addition, the availability of Cu and As in the soil incubation experiments was reduced by 35.54%-63.00% and 8.39%-29.04%, respectively by using LB. Meanwhile, the addition of LB increased the activities of urease and sucrase by 93.78%-374.35% and 84.35%-520.04%, respectively, of which 1% of the dosage was the best. A phenomenon was found that the richness and structure of microbial community became vigorous within 1% dosage of LB, which indirectly enhanced the passivation and stabilization of heavy metals. These results indicated that the soil environment was significantly improved by LB. This research demonstrates that LB would be an imaginably forceful material for the remediation of anionic and cationic heavy metals in contaminated water and soil.
Collapse
Affiliation(s)
- Pengling Shao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| | - Yingchao Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuhao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Caiya Yan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yibo Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| |
Collapse
|
16
|
Zhang C, Li J, Dai Y, Gustave W, Zhai W, Zhong Z, Chen J. Spatial and Temporal Variations of Heavy Metals' Bioavailability in Soils Regulated by a Combined Material of Calcium Sulfate and Ferric Oxide. TOXICS 2023; 11:296. [PMID: 37112523 PMCID: PMC10142891 DOI: 10.3390/toxics11040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Heavy metal pollution in soils threatens food safety and human health. Calcium sulfate and ferric oxide are commonly used to immobilize heavy metals in soils. However, the spatial and temporal variations of the heavy metals' bioavailability in soils regulated by a combined material of calcium sulfate and ferric oxide (CSF) remain unclear. In this work, two soil column experiments were conducted to investigate the spatial and temporal variations of CSF immobilized Cd, Pb, and As. In the horizontal soil column, the results showed that CSF's immobilization range for Cd increased over time, and adding CSF in the center of the soil column decreased the concentrations of bioavailable Cd significantly, up to 8 cm away by day 100. The CSF immobilization effect on Pb and As only existed in the center of the soil column. The CSF's immobilization depths for Cd and Pb in the vertical soil column increased over time and extended to 20 cm deep by day 100. However, the CSF's immobilization depths for As only extended to between 5 and 10 cm deep after 100 days of incubation. Overall, the results from this study can serve as a guide to determine the CSF application frequency and spacing distance for the in-situ immobilization of heavy metals in soils.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310058, China
- Zhejiang Key Laborary of Environmental Protect Technology, Eco-Environmental Sciences Research & Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Jie Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxia Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, New Providence, Nassau P.O. Box N-4912, Bahamas
| | - Weiwei Zhai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhong Zhong
- Zhejiang Key Laborary of Environmental Protect Technology, Eco-Environmental Sciences Research & Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Jianmeng Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310058, China
| |
Collapse
|
17
|
Li Y, Li X, Kang X, Zhang J, Sun M, Yu J, Wang H, Pan H, Yang Q, Lou Y, Zhuge Y. Effects of a novel Cd passivation approach on soil Cd availability, plant uptake, and microbial activity in weakly alkaline soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114631. [PMID: 36796206 DOI: 10.1016/j.ecoenv.2023.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal pollution, including that caused by cadmium (Cd), is a matter of increasing concern. Although in situ passivation remediation has been widely used to treat heavy metal-polluted soils, most studies have focused on acidic soils, while studies on alkaline soil conditions are scarce. In this study, the effects of biochar (BC), phosphate rock powder (PRP), and humic acid (HA) on Cd2+ adsorption were examined alone and in combination to choose an appropriate Cd passivation approach for weakly alkaline soils. Additionally, the combined impact of passivation on Cd availability, plant Cd absorption, plant physiology indexes, and soil microbial community was elucidated. BC had a higher Cd adsorption capacity and removal rate than those of PRP and HA. Moreover, HA and PRP enhanced the adsorption capacity of BC. A combination of biochar and humic acid (BHA), and biochar and phosphate rock powder (BPRP) significantly affected soil Cd passivation. BHA and BPRP decreased the plant Cd content and soil Cd-DTPA (diethylenetriaminepentaacetic acid) by 31.36 %, 20.80 %, 38.19 %, and 41.26 %, respectively; however, they increased the fresh weight by 65.64-71.48 % respectively, and dry weight by 62.41-71.35 %, respectively. Notably, only BPRP increased the node and root tip number in wheat. Total protein (TP) content increased in BHA and BPRP, with BHA showing lower TP than BPRP. BHA and BPRP showed a reduction in glutathione (GSH), malondialdehyde (MDA), H2O2, and peroxidase (POD); BHA showed a significantly lower GSH than BPRP. Additionally, BHA and BPRP increased soil sucrase, alkaline phosphatase, and urease activities, with BPRP showing considerably higher enzyme activity than BHA. Both BHA and BPRP increased the number of soil bacteria, altered the community composition, and critical metabolic pathways. The results demonstrated that BPRP could be used as a highly effective, novel passivation technique for the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Yaping Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Xu Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Xirui Kang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Jin Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Mingjie Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Jinpeng Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Hui Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Hong Pan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Quangang Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Yanhong Lou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Yuping Zhuge
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| |
Collapse
|
18
|
Cui W, Li X, Duan W, Xie M, Dong X. Heavy metal stabilization remediation in polluted soils with stabilizing materials: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01522-x. [PMID: 36906650 DOI: 10.1007/s10653-023-01522-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The remediation of soil contaminated by heavy metals has long been a concern of academics. This is due to the fact that heavy metals discharged into the environment as a result of natural and anthropogenic activities may have detrimental consequences for human health, the ecological environment, the economy, and society. Metal stabilization has received considerable attention and has shown to be a promising soil remediation option among the several techniques for the remediation of heavy metal-contaminated soils. This review discusses various stabilizing materials, including inorganic materials like clay minerals, phosphorus-containing materials, calcium silicon materials, metals, and metal oxides, as well as organic materials like manure, municipal solid waste, and biochar, for the remediation of heavy metal-contaminated soils. Through diverse remediation processes such as adsorption, complexation, precipitation, and redox reactions, these additives efficiently limit the biological effectiveness of heavy metals in soils. It should also be emphasized that the effectiveness of metal stabilization is influenced by soil pH, organic matter content, amendment type and dosage, heavy metal species and contamination level, and plant variety. Furthermore, a comprehensive overview of the methods for evaluating the effectiveness of heavy metal stabilization based on soil physicochemical properties, heavy metal morphology, and bioactivity has also been provided. At the same time, it is critical to assess the stability and timeliness of the heavy metals' long-term remedial effect. Finally, the priority should be on developing novel, efficient, environmentally friendly, and economically feasible stabilizing agents, as well as establishing a systematic assessment method and criteria for analyzing their long-term effects.
Collapse
Affiliation(s)
- Wenwen Cui
- College of Civil Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Xiaoqiang Li
- College of Civil Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Wei Duan
- College of Civil Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Mingxing Xie
- College of Civil Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Xiaoqiang Dong
- College of Civil Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China.
- Shanxi Key Laboratory of Civil Engineering Disaster Prevention and Control, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China.
| |
Collapse
|
19
|
Lin P, Liu H, Yin H, Zhu M, Luo H, Dang Z. Remediation performance and mechanisms of Cu and Cd contaminated water and soil using Mn/Al-layered double oxide-loaded biochar. J Environ Sci (China) 2023; 125:593-602. [PMID: 36375941 DOI: 10.1016/j.jes.2022.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 06/16/2023]
Abstract
The combined pollution of heavy metals is ubiquitous worldwide. Mn/Al-layered double oxide-loaded crab shells biochar (LDO/BC) was prepared, so as to remediate the combined pollution of Cd and Cu in soil and water. The pristine and used LDO/BC were characterized and the results revealed that the layered double oxide was successfully loaded on crab shells biochar (BC) and metal element Ca in crab shells was beneficial to the formation of more regular layered and flake structure. The maximal adsorption capacity (Qm) of LDO/BC for aqueous Cu2+ and Cd2+ was 66.23 and 73.47 mg/g, respectively. LDO/BC and BC were used to remediate e-waste-contaminated soil for the first time and exhibited highly efficient performance. The extraction amount of Cu and Cd in the contaminated soil by diethylene triamine penta-acetic acid (DTPA) after treating with 5% LDO/BC was significantly reduced from 819.84 to 205.95 mg/kg (with passivation rate 74.8%) and 8.46 to 4.16 mg/kg (with passivation rate 50.8%), respectively, inferring that the bioavailability of heavy metals declined remarkably. The experimental result also suggested that after remediation by LDO/BC the exchangeable and weak acid soluble Cu and Cd in soil translated to reducible, residual and oxidizable fraction which are more stable state. Precipitation, complexation and ion exchange were proposed as the possible mechanisms for Cd and Cu removal. In general, these experiment results indicate that LDO/BC can be a potentially effective reagent for remediation of heavy metal contaminated water and soil.
Collapse
Affiliation(s)
- Pengcheng Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Haoyu Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| |
Collapse
|
20
|
Han L, Zhao Z, Li J, Ma X, Zheng X, Yue H, Sun G, Lin Z, Guan S. Application of humic acid and hydroxyapatite in Cd-contaminated alkaline maize cropland: A field trial. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160315. [PMID: 36403838 DOI: 10.1016/j.scitotenv.2022.160315] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Soil quality is critical to the quality and safety of agricultural products, and remediation of heavy metal contaminated soils is an urgent task to be implemented. This study applied hydroxyapatite (HAP) and humic acid (HA) as remediation materials to Cd-contaminated alkaline cropland. Data on soil pH, electrical conductivity (EC), cation exchange capacity (CEC), soil organic matter (SOM), diethylenetriamine pentaacetic acid (DTPA) extraction, and improved BCR sequential extraction were obtained for different periods. The joint application of HAP and HA enhanced the soil's buffering capacity. During the experiment, treatment groups CK, H1, H2, H3, and H4 showed changes in pH of 0.29, 0.28, 0.21, 0.24, and 0.32, respectively, and changes in the conductivity of 341.4, 183.0, 133.1, 104.6 and 320.2 μS/cm. Soil organic matter had a positive effect on soil's effective phosphorus content. HAP and HA both reduced the BCFgrain/soil of Cd for the maize, but the impact of HA was more substantial (20.19 % reduction compared to CK). HA increased the yield of maize by 44.20 %. The combination of HA and HAP was recommended.
Collapse
Affiliation(s)
- Liangwei Han
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Zhuanjun Zhao
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Jie Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Xiangbang Ma
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Xu Zheng
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Haoyu Yue
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Guohuai Sun
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Zhiyuan Lin
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Shuqi Guan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| |
Collapse
|
21
|
Feng H, Cheng J. Whole-Process Risk Management of Soil Amendments for Remediation of Heavy Metals in Agricultural Soil-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1869. [PMID: 36767236 PMCID: PMC9914875 DOI: 10.3390/ijerph20031869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Reducing the mobility and bioavailability of heavy metals in soils by adding exogenous materials is a technology for remediating soils contaminated with heavy metals. Unlike industrial sites, the use of such techniques in agricultural soils requires consideration of not only reducing the mobility of heavy metals but also avoiding adverse effects on soil fertility and the growth of plants. Due to the uncertainty of the stability of amendments applied to agricultural soil, the application of amendments in farmland soil is controversial. This article reviewed the field studies in which amendments were used to immobilize heavy metals, and identified the potential environmental impacts of all aspects of soil amendment usage, including production and processing, transportation, storage, application to soil, long-term stability, and plant absorption. Results of the study indicated that after identifying the environmental risks of the whole process of the application of improvers in agricultural fields, it is necessary to classify the risks according to their characteristics, and design differentiated risk control measures for the safe application of this type of technology.
Collapse
|
22
|
Trace Element Contents in Petrol-Contaminated Soil Following the Application of Compost and Mineral Materials. MATERIALS 2022; 15:ma15155233. [PMID: 35955168 PMCID: PMC9369601 DOI: 10.3390/ma15155233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022]
Abstract
The global use of petroleum hydrocarbons as raw materials and an energy source in industry results in serious environmental, health, and ecological problems. Consequently, there is growing interest in the development of technologies for the rehabilitation of contaminated areas. This study was undertaken in order to determine the effect of different phytostabilising materials (compost, bentonite, and CaO) on the trace element content in soil contaminated with unleaded petroleum 95 (0, 2.5, 5, and 10 cm3 kg−1 of soil). The doses of petroleum applied to the soil were based on the previously conducted preliminary experiment. The highest petroleum dose (10 cm3 kg−1 of soil) significantly reduced the chromium, zinc, and cobalt contents in the soil. Petroleum increased the cadmium, lead, nickel, and copper contents in the soil. The materials used for phytostabilisation (compost, bentonite, calcium oxide) had a significant effect on the trace element content in the soil. The application of mineral materials (bentonite and calcium oxide) was more effective than the application of compost, compared to the control series (without soil amendments) as they reduced the contents of cadmium, chromium, nickel, and cobalt in the soil to the greatest extent. The reduction effect of bentonite and calcium oxide on the content of these trace elements in the soil was stronger than compost.
Collapse
|
23
|
Lu HL, Li KW, Nkoh JN, He X, Xu RK, Qian W, Shi RY, Hong ZN. Effects of pH variations caused by redox reactions and pH buffering capacity on Cd(II) speciation in paddy soils during submerging/draining alternation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113409. [PMID: 35286955 DOI: 10.1016/j.ecoenv.2022.113409] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Incubation experiments were conducted to investigate the influencing factors of pH variation in different paddy soils during submerging/draining alternation and the relationship between pH buffering capacity (pHBC) and Cd speciation in ten paddy soils developed from different parent materials (including 8 acid paddy soils and 2 alkaline paddy soils). The soil pHBC and the changes in soil pH, Eh, Fe2+, Mn2+, SO42- and Cd speciation were determined. The results showed that there was a significant positive correlation between cation exchange capacity (CEC) and pHBC of these paddy soils, indicating that soil CEC is a key factor affecting the pHBC of paddy soils. The contribution of Fe(III) oxide reduction to H+ consumption is far greater than the reduction of Mn(IV)/Mn(III) oxides and SO42- during the submerging. For example, the contribution of the reduction of manganese oxides, SO42- and iron oxides to H+ consumption in the paddy soils from Anthrosol at 15 d submerging was 1.2%, 11.6% and 87.2%, respectively. This confirms that the reduction of Fe(III) oxides plays a leading role in increasing soil pH. Importantly, we noticed that during submerging, soil pH was increased and resulted in the content of available Cd in soils being reduced. This was due to the transformation of Cd to less active forms. Also, there was a significant positive correlation between the change rate of available Cd, the percentage of acid extractable Cd and pH variation. This suggests that the variation in soil pH was responsible for the transformation of Cd speciation. In addition, the change rate of available Cd and the percentage of acid extractable Cd concentration were significantly negatively correlated with soil pHBC. The soil with higher pHBC experienced less pH change, and thus the change rate of available Cd and the percentage of acid extractable Cd concentration were less for the soil. The results of this study can provide a basis for the remediation of Cd-contaminated acidic paddy soils.
Collapse
Affiliation(s)
- Hai-Long Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ke-Wei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jackson Nkoh Nkoh
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xian He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Qian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ren-Yong Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhi-Neng Hong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
24
|
Yang X, Wang L, Guo J, Wang H, Mašek O, Wang H, Bolan NS, Alessi DS, Hou D. Aging features of metal(loid)s in biochar-amended soil: Effects of biochar type and aging method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152922. [PMID: 34999075 DOI: 10.1016/j.scitotenv.2022.152922] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/26/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination with toxic metals and metalloids has become a major threat to global food security. Among various immobilization agents that can stabilize toxic metal(loid)s effectively, biochar is promising due to its ability to restore soil health. Yet the aging characteristics of biochar following its amendment in soil remain poorly explored. Therefore, this study used standard biochars to depict their aging effects on remediation of metal(loid)-contaminated soil. A total of 2304 observations were made, including 6 biochar feedstocks (rice husk, soft wood, oilseed rape straw, miscanthus straw, sewage sludge and wheat straw), 2 pyrolysis temperatures (550 °C, 700 °C), 8 metal(loid)s (Mn, Ni, Cu, Zn, As, Cd, Sb, Pb), 4 aging methods (natural aging, freeze-thaw cycling, wet-dry cycling, chemical oxidation with H2O2), and 6 sampling intervals. Sewage sludge biochars exhibited the highest resistance to both artificial and natural aging, which may be related to the abundant oxygen-containing functional groups that favor metal complexation, and poorly-developed pore structures that limit the access of natural aging forces. A distinct relationship between ash and temperature was observed, where for high-ash biochars, an increase in pyrolysis temperature indicated lower resistance to aging, while for low-ash biochars, elevated pyrolysis temperature led to higher resistance. The aging behaviors of Cu and Sb were quite similar, which were both highly susceptible to chemical oxidation-induced dissolved organic carbon (DOC) release. Wet-dry cycling and freeze-thaw cycling revealed aging patterns that were similar to those of naturally aged soils as confirmed by cluster analysis. Lab aging data were then compared with existing biochar field aging results. Contrasting long-term immobilization performances were found in different studies, which were attributed to various causes associated with both biochar property and climate. The results of this study provide fresh insights into the long-term risks in the management of metal(loid)-contaminated agricultural soils.
Collapse
Affiliation(s)
- Xiaodong Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiameng Guo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Huixia Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, Guangdong, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6001, Australia
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, AB T6G 2E3, Canada
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
25
|
Literature review and meta-analysis of gastric and intestinal bioaccessibility for nine inorganic elements in soils and soil-like media for use in human health risk assessment. Int J Hyg Environ Health 2022; 240:113929. [DOI: 10.1016/j.ijheh.2022.113929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 11/21/2022]
|
26
|
Liu H, Zhang T, Tong Y, Zhu Q, Huang D, Zeng X. Effect of humic and calcareous substance amendments on the availability of cadmium in paddy soil and its accumulation in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113186. [PMID: 35030525 DOI: 10.1016/j.ecoenv.2022.113186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Humic substances (HS) are widely known as important components in soil and significantly affect the mobility of metals due to their large surface area and abundant organic functional groups. Calcareous substances (CSs) are also commonly used as robust and cost-effective amendments for increasing the pH of acidic soils and decreasing the mobility of metals in soils. In this study, we developed a new remediation scheme for cadmium (Cd)-contaminated soil remediation by coupling HS and CS. The results showed that regardless of the addition of fulvic acid (FA), all the CS-containing treatments significantly increased the soil pH by 0.32-0.60, and the concentration of bioavailable Cd decreased in the moderately (field experiment soil, maximum 62%) and highly (pot experiment soil, maximum 57%) Cd-contaminated soils. The Cd content in rice (Oryza sativa L.) tissues significantly decreased after all the treatments. The bioaccumulation factors (BAFs) decreased by over 50% in the roots, stems, leaves and husks in all treatments, while the translocation factors (TFs) only significantly decreased in the highly contaminated soil. Among all treatments, the two HS+CS treatments (FA+CaCO3 and FA+CaO) had the greatest effect on decreasing the concentration of bioavailable Cd in soil and Cd in brown rice grains. The suggested mechanism for the effectiveness of coupled HS and CS was that CS first mitigated the pH and precipitated Cd, followed by a complexation effect between HS and Cd. Although the Cd in rice grains in both cases was higher than the standard limit, HS+CS remediation can be advocated as a robust, simple and cost-effective scheme for Cd remediation if the additive dose is slightly increased, as this approach can simultaneously improve the pH of acidic soil and adsorb Cd in soil.
Collapse
Affiliation(s)
- Hao Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Institute Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Tuo Zhang
- Institute Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China; College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan 637009, China
| | - Yan'an Tong
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Qihong Zhu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Daoyou Huang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xibai Zeng
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Institute Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
27
|
Haider FU, Farooq M, Naveed M, Cheema SA, Ain NU, Salim MA, Liqun C, Mustafa A. Influence of biochar and microorganism co-application on stabilization of cadmium (Cd) and improved maize growth in Cd-contaminated soil. FRONTIERS IN PLANT SCIENCE 2022; 13:983830. [PMID: 36160996 PMCID: PMC9493347 DOI: 10.3389/fpls.2022.983830] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 05/06/2023]
Abstract
Cadmium (Cd) is one the leading environmental contaminants. The Cd toxicity and its potential stabilization strategies have been investigated in the recent years. However, the combined effects of biochar and microorganisms on the adsorption of Cd and maize plant physiology, still remained unclear. Therefore, this experiment was conducted to evaluate the combined effects of biochar (BC) pyrolyzed from (maize-straw, cow-manure, and poultry-manure, and microorganisms [Trichoderma harzianum (fungus) and Bacillus subtilis (bacteria)], on plant nutrient uptake under various Cd-stress levels (0, 10, and 30 ppm). The highest level of Cd stress (30 ppm) caused the highest reduction in maize plant biomass, intercellular CO2, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate as compared to control Cd0 (0 ppm). The sole application of BC and microorganisms significantly improved plant growth, intercellular CO2, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate and caused a significant reduction in root and shoot Cd. However, the co-application of BC and microorganisms was more effective than the sole applications. In this regard, the highest improvement in plant growth and carbon assimilation, and highest reduction in root and shoot Cd was recorded from co-application of cow-manure and combined inoculation of Trichoderma harzianum (fungus) + Bacillus subtilis (bacteria) under Cd stress. However, due to the aging factor and biochar leaching alkalinity, the effectiveness of biochar in removing Cd may diminish over time, necessitating long-term experiments to improve understanding of biochar and microbial efficiency for specific bioremediation aims.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Seeb, Oman
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | | | - Noor ul Ain
- Centre of Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Cai Liqun
| | - Adnan Mustafa
- Faculty of Chemistry, Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
28
|
Cui H, Wang Q, Zhang X, Zhang S, Zhou J, Zhou D, Zhou J. Aging reduces the bioavailability of copper and cadmium in soil immobilized by biochars with various concentrations of endogenous metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149136. [PMID: 34311356 DOI: 10.1016/j.scitotenv.2021.149136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Biochar is widely used for environmental remediation. However, the effects of aging on the bioavailability of trace metals in biochar-amended soil remain largely unknown, especially for the biochars with various concentrations of endogenous metals. In this study, three biochars marked as BB, MB, and HB were produced from the straws of Pennisetum sinese grown in background soil, moderately-, and highly-polluted soils by trace metals, respectively. We distinguished the effects of dry-wet (DW) and freeze-thaw (FT) aging on the bioavailability of copper (Cu) and cadmium (Cd) from soil particles, the biochar interior, and the surface of biochar. The adsorption capacities of Cu2+ and Cd2+ followed the order of BB > MB > HB. DW and FT aging both increased the adsorption capacity of Cu2+, but decreased that of Cd2+ in the three biochars, resulting in a reduction in Cu bioavailability and increase in Cd bioavailability in the biochars after the saturated adsorption of Cu2+ and Cd2+. The incorporation of the three biochars decreased Cu bioavailability compared to the control after incubation for 30d, while the addition of MB increased Cd bioavailability. DW and FT aging decreased Cu bioavailability in biochar-amended soil by decreasing the bioavailability of Cu adsorbed on the biochar surface and immobilized by soil particles. Meanwhile, aging decreased Cd bioavailability by decreasing the bioavailability of Cd immobilized by soil particles. Overall, environmental risk would be increased by the application of biochars with high endogenous Cd. The major implications are that biochar dosage and environmental risk should be carefully assessed before large-scale, continuous application, especially for biochars containing high contents of endogenous trace metals.
Collapse
Affiliation(s)
- Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China; Engineering laboratory of Anhui Province for comprehensive utilization of water and soil resources and construction of ecological protection in mining area with high groundwater level, Anhui University of Science and Technology, Huainan 232001, China; Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology (Wuhu), Wuhu 241003, China
| | - Qiuya Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Engineering laboratory of Anhui Province for comprehensive utilization of water and soil resources and construction of ecological protection in mining area with high groundwater level, Anhui University of Science and Technology, Huainan 232001, China; Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology (Wuhu), Wuhu 241003, China
| | - Xue Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Engineering laboratory of Anhui Province for comprehensive utilization of water and soil resources and construction of ecological protection in mining area with high groundwater level, Anhui University of Science and Technology, Huainan 232001, China; Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology (Wuhu), Wuhu 241003, China
| | - Shiwen Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Engineering laboratory of Anhui Province for comprehensive utilization of water and soil resources and construction of ecological protection in mining area with high groundwater level, Anhui University of Science and Technology, Huainan 232001, China; Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology (Wuhu), Wuhu 241003, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China
| | - Dongmei Zhou
- School of Environment, Nanjing University, Nanjing 210093, China.
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China.
| |
Collapse
|
29
|
Zhen Y, Wang M, Gu Y, Yu X, Shahzad K, Xu J, Gong Y, Li P, Loor JJ. Biosorption of Copper in Swine Manure Using Aspergillus and Yeast: Characterization and Its Microbial Diversity Study. Front Microbiol 2021; 12:687533. [PMID: 34475858 PMCID: PMC8406632 DOI: 10.3389/fmicb.2021.687533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Dietary copper supplementation in the feed of piglets generally exceeds 250-800 mg/kg, where a higher quantity (>250 mg/kg) can promote growth and improve feed conversion. Despite the reported positive effects, 90% of copper is excreted and can accumulate and pollute the soil. Data indicate that fungi have a biosorptive capacity for copper. Thus, the objectives of the present experiment were to study the effects of adding different strains of fungi on the biosorptive capacity for copper in swine manure and to evaluate potential effects on microbiota profiles. Aspergillus niger (AN), Aspergillus oryzae (AO), and Saccharomyces cerevisiae (SC) were selected, and each added 0.4% into swine manure, which contain 250 mg/kg of copper. The incubations lasted for 29 days, and biosorption parameters were analyzed on the 8th (D8), 15th (D15), 22nd (D22), and 29th (D29) day. Results showed that after biosorption, temperature was 18.47-18.77°C; pH was 6.33-6.91; and content of aflatoxin B1, ochratoxin A, and deoxynivalenol were low. In addition, residual copper concentration with AN was the lowest on D15, D22, and D29. The copper biosorption rate was also highest with AN, averaging 84.85% on D29. Biosorption values for AO reached 81.12% and for SC were lower than 80%. Illumina sequencing of 16S and ITS rRNA gene revealed that fungal treatments reduced the diversity and richness of fungal abundance, but had no effect on bacterial abundance. Unknown_Marinilabiliaceae, Proteiniphilum, Tissierella, and Curvibacter were the dominant bacteria, while Aspergillus and Trichoderma were the dominant fungi. However, the added strain of S. cerevisiae was observed to be lower than the dominant fungi, which contained less than 0.05%. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment predicted via PICRUSt2 that there were bacterial genes potentially related to various aspects of metabolism and environmental information processing. Overall, data indicated that Aspergillus can provide microbial materials for adsorption of copper.
Collapse
Affiliation(s)
- Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yalan Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Jun Xu
- Institute for Quality and Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yuqing Gong
- Jiangsu Provincial Station of Animal Husbandry, Nanjing, China
| | - Peizhen Li
- Jiangsu Provincial Station of Animal Husbandry, Nanjing, China
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
30
|
Bottom Ash Modification via Sintering Process for Its Use as a Potential Heavy Metal Adsorbent: Sorption Kinetics and Mechanism. MATERIALS 2021; 14:ma14113060. [PMID: 34205219 PMCID: PMC8200004 DOI: 10.3390/ma14113060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022]
Abstract
Heavy metal pollution in the environment is a critical issue, engendering ecosystem deterioration and adverse effects on human health. The main objective of this study was to evaluate heavy metal adsorbents by modifying industrial byproducts. The bottom ash was sintered and evaluated for Cd and Pb sorption. Three adsorbents (bottom ash, sintered bottom ash (SBA), and SBA mixed with microorganisms (SBMA)) were tested to evaluate the sorption kinetics and mechanism using a lab-scale batch experiment. The results showed that the highest sorption efficiency was observed for Cd (98.16%) and Pb (98.41%) with 10% SBA. The pseudo-second-order kinetic model (R2 > 0.99) represented the sorption kinetics better than the pseudo-first-order kinetic model for the SBA and SBMA, indicating that chemical precipitation could be the dominant sorption mechanism. This result is supported by X-ray photoelectron spectroscopy analysis, demonstrating that -OH, -CO3, -O, and -S complexation was formed at the surface of the sintered materials as Cd(OH)2 and CdCO3 for Cd and PbO, and PbS for Pb. Overall, SBA could be utilized for heavy metal sorption. Further research is necessary to enhance the sorption capacity and longevity of modified industrial byproducts.
Collapse
|
31
|
Gondek K, Mierzwa-Hersztek M, Grzymała W, Głąb T, Bajda T. Cavitated Charcoal-An Innovative Method for Affecting the Biochemical Properties of Soil. MATERIALS 2021; 14:ma14092466. [PMID: 34068651 PMCID: PMC8126090 DOI: 10.3390/ma14092466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
Thermal biomass transformation products are considered to be one of the best materials for improving soil properties. The aim of the study was to assess the effect of charcoal after cavitation on the chemical and biochemical properties of soil. The study was carried out with a 10% aqueous charcoal mixture that was introduced into loamy sand and clay at rates of 1.76%, 3.5%, 7.0%, and 14.0%. The effect of the application of cavitated charcoal was tested on Sorghum saccharatum (L.). Soil and plant material was collected to determine chemical and biochemical properties. The application of cavitated charcoal reduced the acidification of both soils. The highest rate (14.0%) of cavitated charcoal increased the content of soil total carbon (CTot) by 197% in the loamy sand compared to CTot in the control treatments, 19% for clay soil, respectively. The application of cavitated charcoal did not significantly change the total content of heavy metals. Regardless of the element and the soil used, the application of cavitated charcoal reduced the content of the CaCl2-extracted forms of heavy metals. Following the application of cavitated charcoal, the loamy sand soil presented an even lower content of the most mobile forms of the studied elements. It should also be noted that regardless of the soil texture, mobile forms of the elements decreased with the increased cavitated charcoal rate. The results of dehydrogenase and urease activity indicated the low metabolic activity of the microbial population in the soils, especially with the relatively high rates (7.0% and 14.0%) of cavitated charcoal. However, the cavitated charcoal used in the study showed a significant, positive effect on the amount of biomass S. saccharatum (L.), and its application significantly reduced the heavy metal content in the biomass of S. saccharatum (L.).
Collapse
Affiliation(s)
- Krzysztof Gondek
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
- Correspondence: (K.G.); (T.G.); (T.B.)
| | - Monika Mierzwa-Hersztek
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | | | - Tomasz Głąb
- Department of Machinery Exploitation, Ergonomics and Production Processes, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Ul. Balicka 116B, 31-149 Krakow, Poland
- Correspondence: (K.G.); (T.G.); (T.B.)
| | - Tomasz Bajda
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
- Correspondence: (K.G.); (T.G.); (T.B.)
| |
Collapse
|
32
|
Assessment of Aqueous Extraction Methods on Extractable Organic Matter and Hydrophobic/Hydrophilic Fractions of Virgin Forest Soils. Molecules 2021; 26:molecules26092480. [PMID: 33922872 PMCID: PMC8123026 DOI: 10.3390/molecules26092480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
The assessment of water-extractable organic matter using an autoclave can provide useful information on physical, chemical, and biological changes within the soil. The present study used virgin forest soils from Chini Forest Reserve, Langkawi Island, and Kenyir Forest Reserve (Malaysia), extracted using different extraction methods. The dissolved organic carbon (DOC), total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), and ammonium-nitrate content were higher in the autoclave treatments, up to 3.0, 1.3, 1.2, and 1.4 times more than by natural extraction (extracted for 24 h at room temperature). Overall, the highest extractable DOC, TDN, TDP, ammonium and nitrate could be seen under autoclaved conditions 121 °C 2×, up to 146.74 mg C/L, 8.97 mg N/L, 0.23 mg P/L, 5.43 mg N mg/L and 3.47 N mg/L, respectively. The soil extracts became slightly acidic with a higher temperature and longer duration. Similar trends were observed in the humic and nonhumic substances, where different types of soil extract treatments influenced the concentrations of the fractions. Different soil extraction methods can provide further details, thus widening the application of soil extracts, especially in microbes.
Collapse
|
33
|
Kiran BR, Prasad MNV. Assisted phytostabilization of Pb-spiked soils amended with charcoal and banana compost and vegetated with Ricinus communis L. (Castor bean). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1507-1521. [PMID: 33501591 DOI: 10.1007/s10653-021-00825-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
A greenhouse experiment was performed to elucidate the potency of Prosopis juliflora charcoal (PJC) and banana waste compost (BWC) to improve soil fertility and enhance plant growth rate. Plantlets of Ricinus communis were grown in 0, 400, and 800 mg kg-1 Pb-spiked soil ameliorated with P. juliflora charcoal and banana waste compost at 0, 5%, and 10% (w/w) for 60 days. PJC and BWC significantly (p < 0.05) increased plant growth parameters, that is, number of leaves, node number, plant height, and leaf diameter and reduced oxidative stress manifested by the lesser production of proline, hydrogen peroxide (H2O2), and malondialdehyde (MDA) with respect to control plants. Soil usage of PJC at 10% decreased the Pb accumulation by 61%, whereas BWC decreased Pb concentration in roots by 56% concerning control. Field emission scanning electron microscope (FE-SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) showed high macro and microspores on the surface of charcoal while banana compost showed significant raise in the nutrient content (N, P, K, Zn, Ca, Fe, and Mg). Thermogravimetric (TG) and Fourier-transform infrared spectroscopy (FTIR) analysis of banana compost showed enhanced molar convolution of carbohydrate composites and nitrogen content. These findings pave a clear understanding that PJC and BWC are recalcitrant for Pb phytotoxicity and can also be used as nutrient-rich composites for increased crop production.
Collapse
Affiliation(s)
- Boda Ravi Kiran
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| | - M N V Prasad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| |
Collapse
|
34
|
Wang G, Zhang Q, Du W, Lin R, Li J, Ai F, Yin Y, Ji R, Wang X, Guo H. In-situ immobilization of cadmium-polluted upland soil: A ten-year field study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111275. [PMID: 32920316 DOI: 10.1016/j.ecoenv.2020.111275] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 05/21/2023]
Abstract
In-situ immobilization is an effective and economically viable strategy for remediation of soil extensively polluted with heavy metals. The long-term sustainability is critical for the remediation practice. In the present study, a ten-year experiment was performed in a Cd-polluted agricultural field to evaluate the long-term stability of lime, silicon fertilizer (SF), fused calcium magnesium phosphate fertilizer (FCMP), bone charcoal, steel slag, and blast furnace slag with one-off application. All amendments had no significant effect on biomass but significantly reduced Cd uptake by Artemisia selengensis at higher dose. Among them, SF and FCMP applied at 1% could reduce Cd uptake by more than 40% to meet the Chinese maximum permissible limit for Cd content in food products (50 μg kg-1). These amendments stimulated high Cd immobilization by increasing the soil pH and decreasing the soil acid-extractable Cd content, which were closely associated with Cd uptake. In addition, the two amendments altered the soil microbial structure and stimulated metabolism pathways, including amino acid, carbohydrate, and lipid metabolism, which are beneficial for soil function and quality. The results proved that SF and FCMP at 1% are stable and ecologically safe amendments, suitable for long-term Cd immobilization, and provide a strategy to mitigate the risk of food product contamination in heavy-metal-polluted soil.
Collapse
Affiliation(s)
- Guobing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Qingquan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, 210036, China.
| | - Renzhang Lin
- Penghu Town, Quanzhou City People's Government, Quanzhou, 362609, China.
| | - Jiahua Li
- Jiangsu Maritime Safety Administration, Nanjing, 210009, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Xiaorong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
35
|
Wang J, Shi L, Zhai L, Zhang H, Wang S, Zou J, Shen Z, Lian C, Chen Y. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111261. [PMID: 32950873 DOI: 10.1016/j.ecoenv.2020.111261] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Currently, the research and application of biochar in the remediation of heavy metal contaminated soil has become a hotspot, especially regarding the remediation of agricultural land. Biochar has been proved to be effective in reducing the content of available heavy metals in the soil as well as the heavy metals in plants. However, the long-term effectiveness of biochar immobilization has not been widely studied. In this review, retrospective search was carried out on the published literature results concerning remediation effects of biochar on different areas of heavy metal contaminated soil in the recent years, its application in field remediation (several years), and some potential abiotic and biotic factors that may weaken the immobilization effects of biochar. This results indicate that: (1) biochar is widely used in the remediation of heavy metal contaminated soil in different areas and has excellent immobilization effect. (2) Most of the research demonstrate that the immobilization effect of biochar is effective for 2-3 years or according to few results even for 5 years. However, there have been various reports claiming that the immobilization effect of biochar decreases with time. (3) Abiotic factors such as acid rain, flooded environment, changes in soil condition (pH, redox and dissolved organic matter) and changes in biochar (Cl- and alkali leaching) can significantly weaken the immobilization effect of biochar. (4) Biotic factors such as plant roots, earthworms and soil microorganisms can also significantly reduce the immobilization effect of biochar. Therefore, field experiments having longer time span with biochar need to be further carried out, and the developmental research of modified biochar with a more stable immobilization effect also needs further attention.
Collapse
Affiliation(s)
- Jie Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lulu Zhai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haowen Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengxiao Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunlan Lian
- Asian Natural Environmental Science Center, The University of Tokyo, 1-1-8 Midoricho, Nishitokyo, Tokyo, 188-0002, Japan
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
36
|
Yan Y, Li Q, Yang J, Zhou S, Wang L, Bolan N. Evaluation of hydroxyapatite derived from flue gas desulphurization gypsum on simultaneous immobilization of lead and cadmium in contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123038. [PMID: 32947730 DOI: 10.1016/j.jhazmat.2020.123038] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Flue gas desulphurization gypsum (FGD) is a major solid waste in coal-fired energy plants, and the appropriate reuse of this resources is still a major challenge. In this study, the feasibility of FGD as a calcium source to produce hydroxyapatite (FGD-HAP) for the immobilization of lead (Pb) and cadmium (Cd) in spiked soil was investigated. The effects of FGD and FGD-HAP on soil properties and redistribution, bioaccessibility and plant uptake of Pb and Cd were examined. Results showed that application of FGD and FGD-HAP could significantly improve the enzymes activities of contaminated soils, but the effectiveness was more pronounced with FGD-HAP. Addition of only 1% FGD-HAP could effectively reduce bioavailable Pb and Cd concentration in soil as measured by CaCl2 extraction by 60.6% and 65.4%, respectively. On the other hand, plant available Pb and Cd could significantly decrease by 93.8% and 73.2% after amendment of 5% FGD-HAP. Significant changes in the micro-scale distribution of heavy metals before and after FGD-HAP treatment demonstrated that while heavy metals were predominantly associated with iron/manganese oxides in untreated soil, high correlation between heavy metals and phosphorus/sulfur was observed in FGD-HAP treated soil. In addition, results of the leaching tests showed that incorporation of FGD-HAP enhanced the retention capacity of heavy metals in soil, indicating that application of FGD-HAP could diminish the environmental risk of leachable heavy metals to groundwater. Overall, this study highlighted the potential value of FGD-HAP as a low-cost and high-efficient amendment for remediation of Pb and Cd contaminated soils.
Collapse
Affiliation(s)
- Yubo Yan
- Jiangsu Engineering Laboratory for Environment Functional Materials, Huaiyin Normal University, Huai'an, 223300, China; Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Qiao Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jianjun Yang
- Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, 100081, China.
| | - Shouyong Zhou
- Jiangsu Engineering Laboratory for Environment Functional Materials, Huaiyin Normal University, Huai'an, 223300, China
| | - Lianjun Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Nanthi Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan Campus, NSW, 2308, Australia; Cooperative Research Centre for High Performance Soil (Soil CRC), Callaghan, NSW, 2308, Australia
| |
Collapse
|
37
|
Hamid Y, Tang L, Hussain B, Usman M, Liu L, Cao X, Ulhassan Z, Bilal Khan M, Yang X. Cadmium mobility in three contaminated soils amended with different additives as evaluated by dynamic flow-through experiments. CHEMOSPHERE 2020; 261:127763. [PMID: 32721697 DOI: 10.1016/j.chemosphere.2020.127763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
As arable land has become an important sink for cadmium (Cd), soil is being recognized as a major source of metals to the food chain. It becomes, therefore, essential to investigate metal mobility in contaminated soils and to identify suitable remediation strategies. For this, immobilization of Cd was evaluated in contaminated stagnic anthrosol: S1, gleysol: S2 and fluvisol: S3 under flow through conditions. Ten treatments including control were tested alone or in composite form firstly at natural Cd contents (0.58-0.69 mg kg-1). Here, T2 (lime), T5 (biochar) and T10 (composite amendment) were found better in reducing the Cd concentration in the soils' leachates, so, their efficacy was further investigated in the same soils of higher Cd contents (1 and 2 mg kg-1 imposed by soil spiking). Amendments significantly reduced the leachate metal contents especially in 1 mg kg-1 spiked soils. Characterization of T2, T5 and T10 revealed their structural transformations in all the studied soil types, while active functional groups e.g. C-O, CO, O-H, Si-O-Si, ester and alcoholic groups were notably involved in Cd precipitation or adsorption on amendments surface. Variations in Cd speciation in these soils exhibited the exchange of Cd to more stable fractions with tested amendments. These continuous-flow experiments confirmed the strong efficiency of T2, T5 and T10 in reducing the Cd concentration in the leachate of three soils. This study has strong implications in understanding the role of different amendments in controlling the fate, leaching behavior and immobilization of Cd in diverse soil types.
Collapse
Affiliation(s)
- Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lin Tang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Bilal Hussain
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Lei Liu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xuerui Cao
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zaid Ulhassan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Bilal Khan
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
38
|
Zhu Y, Ma J, Chen F, Yu R, Hu G, Zhang S. Remediation of Soil Polluted with Cd in a Postmining Area Using Thiourea-Modified Biochar. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207654. [PMID: 33092212 PMCID: PMC7589461 DOI: 10.3390/ijerph17207654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 11/23/2022]
Abstract
Cadmium presence in soil is considered a significant threat to human health. Biochar is recognized as an effective method to immobilize Cd ions in different soils. However, obtaining effective and viable biochar to remove elevated Cd from postmining soil remains a challenge. More modifiers need to be explored to improve biochar remediation capacity. In this investigation, pot experiments were conducted to study the effects of poplar-bark biochar (PBC600) and thiourea-modified poplar-bark biochar (TPBC600) on Cd speciation and availability, as well as on soil properties. Our results showed that the addition of biochar had a significant influence on soil properties. In the presence of TPBC600, the acid-soluble and reducible Cd fractions were transformed into oxidizable and residual Cd fractions. This process effectively reduced Cd bioavailability in the soil system. Compared to PBC600, TPBC600 was more effective in improving soil pH, electrical conductivity (EC), organic matter (SOM), total nitrogen (TN), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3−-N), available potassium (AK), available phosphorus (AP), and available sulfur (AS). However, this improvement diminished as incubation time increased. Results of Pearson correlation analysis, multivariate linear regression analysis, and principal component analysis showed that soil pH and available phosphorus played key roles in reducing the available cadmium in soil. Therefore, TPBC600 was shown to be an effective modifier that could be used in the remediation of soil polluted with Cd.
Collapse
Affiliation(s)
- Yanfeng Zhu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China; (Y.Z.); (J.M.); (S.Z.)
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
| | - Jing Ma
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China; (Y.Z.); (J.M.); (S.Z.)
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
| | - Fu Chen
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China; (Y.Z.); (J.M.); (S.Z.)
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
- Correspondence: (F.C.); (G.H.); Tel.: +86-516-8388-3501 (F.C.); +86-059-2616-2300 (G.H.)
| | - Ruilian Yu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
| | - Gongren Hu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
- Correspondence: (F.C.); (G.H.); Tel.: +86-516-8388-3501 (F.C.); +86-059-2616-2300 (G.H.)
| | - Shaoliang Zhang
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China; (Y.Z.); (J.M.); (S.Z.)
| |
Collapse
|
39
|
Zhao B, O'Connor D, Shen Z, Tsang DCW, Rinklebe J, Hou D. Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: An accelerated simulation of long-term aging effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114687. [PMID: 32388301 DOI: 10.1016/j.envpol.2020.114687] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
The stability of mercury (Hg) contamination in soil environments can change over time. This has implications for agricultural sites under long-term management after in situ treatment involving soil amendments. In this study, rice husk biochar (RHB) and sulfur modified rice husk biochar (SRHB) were synthesized and applied (dosage = 5% dry wt.) to a Hg polluted agricultural soil collected from Guizhou province, Southern China (soil total Hg content = 28.3 mg/kg; C = 2%; and, S = 0.1%). The long-term stabilization effectiveness of the soil treatments was evaluated by a combined approach involving: (i) accelerated aging for 104 simulated years; (ii) soil extraction as a proxy for plant uptake; and, (iii) sequential extraction to identify Hg fractions. The SRHB amendment raised the soil's total S content by approximately an order of magnitude (to 0.9%), which remained at a generally constant level throughout the simulation. The initial pH levels for the untreated and treated soils were alkaline and remained between 7.0 and 7.5 for the first 50 years of simulated aging, before decreasing as the simulation time increased further. The pH of the SRHB treated soils did not drop below that of untreated soils during the simulation. Soil extraction tests with 0.1 M HCl solution indicated that RHB and SRHB treatments could effectively immobilize the Hg in soil for at least 50 and 75 simulated years, respectively. At simulated year 50, the amount of Hg extracted from RHB and SRHB treated soils was <200 ng/L and <100 ng/L, respectively. Thus, showing SRHB to be a particularly promising remedial option. The soil Hg was mostly associated with the stable sequential extraction fractions (F3-5). By the end of the simulation, the F5 fraction for SRHB and RHB treated soils reduced by 44.6%, and 42.0%, respectively, whereas the F4 fraction increased by >400% in both cases. In summary, SRHB may provide long-lasting Hg stabilization at contaminated sites. Therefore, further research toward the development of this stabilization technology is warranted.
Collapse
Affiliation(s)
- Bin Zhao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - David O'Connor
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhengtao Shen
- School of Environment, Tsinghua University, Beijing, 100084, China; Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, T6G 2E3, Canada
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal, 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
40
|
He Y, Lin H, Jin X, Dong Y, Luo M. Simultaneous reduction of arsenic and cadmium bioavailability in agriculture soil and their accumulation in Brassica chinensis L. by using minerals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110660. [PMID: 32361492 DOI: 10.1016/j.ecoenv.2020.110660] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/12/2020] [Accepted: 04/17/2020] [Indexed: 05/22/2023]
Abstract
In situ immobilization of heavy metal cations in contaminated soil using natural minerals is an attractive remediation technique. However, little research has focused on the remediation of arsenic (As) and cadmium (Cd) co-contaminated. In this work, three different crystal structures and chemical compositions minerals, zeolite; bentonite; and dolomite, were applied to simultaneously reduce the uptake of As and Cd in Brassica chinensis L., and the mechanism on reducing As and Cd bioavailability in soil were also investigated. The results showed that the three minerals decreased the bioavailability of As and Cd and restrained their uptake by Brassica chinensis L. with the order followed bentonite > zeolite > dolomite. Particularly, bentonite decreased the exchangeable As and Cd by 4.05% and 32.5% and the concentrations of As and Cd in shoots of Brassica chinensis L. by 36.2% and 64.6%, as compared with the controls. Moreover, with the addition of minerals increased, the dry biomass of Brassica chinensis L. and the rhizosphere microbial functional diversity increased significantly, and the highest biomass increased by 289% at 4.0% addition of bentonite. Correlation analysis indicated that the uptake of As and Cd was positive with the available Cd and As in soil, and was negative with soil pH and available N. Furthermore, the Scanning Electron Microscopy-Energy Dispersive Spectroscopy and Fourier Transform Infrared Spectroscopy analysis illustrated the interaction between minerals and Cd mainly involved ion-exchange and adsorption, while As was mainly immobilized by calcium and magnesium through forming precipitation. In conclusion, this present study implied that the bentonite can be recommended as the more effective amendment to immobilize metal (loid)s in soil and thereby reduce the exposure risk of metal (loid)s associated with grains consumption.
Collapse
Affiliation(s)
- Yinhai He
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Xiaona Jin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Mingke Luo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
41
|
Vandeginste V, Cowan C, Gomes RL, Hassan T, Titman J. Natural fluorapatite dissolution kinetics and Mn 2+ and Cr 3+ metal removal from sulfate fluids at 35 °C. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122150. [PMID: 32004846 DOI: 10.1016/j.jhazmat.2020.122150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
In light of the consequences of global warming and population growth, access to safe drinking water becomes an ever greater challenge, in particular in low to middle income countries in arid regions. Moreover, mining which may cause acid mine drainage and heavy metal contamination puts further pressure on management of limited water resources. Hence, the development of cost effective water treatment methods is critical. Here, using batch reactor experiments we investigate the kinetics and mechanisms behind divalent Mn and trivalent Cr removal from sulfate fluids using natural fluorapatite at 35 °C. The results show that the fluorapatite dissolution rate depends on fluid pH, and that dissolution is the dominant mechanism in fluids with pH below 4. Apatite can thus serve as remediation to neutralize acidic fluids. Fluid pH of 4-6 triggers a dissolution-precipitation mechanism, in some cases following upon a dissolution-only period, with the formation of a metal phosphate. In these experiments, Cr removal is two to ten times faster than Mn removal given similar solution pH. The results demonstrate that natural apatite represents a promising, cost effective material for use in passive remediation of mining-induced contamination of soils and groundwater in arid regions.
Collapse
Affiliation(s)
- Veerle Vandeginste
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom; GeoEnergy Research Centre, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| | - Charlotte Cowan
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Rachel L Gomes
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Tharwat Hassan
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Jeremy Titman
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
42
|
Anusha P, Natarajan D. Bioremediation potency of multi metal tolerant native bacteria Bacillus cereus isolated from bauxite mines, kolli hills, Tamilnadu- A lab to land approach. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Zhang Y, Wang X, Ji H. Stabilization process and potential of agro-industrial waste on Pb-Contaminated soil around Pb-Zn mining. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114069. [PMID: 32007913 DOI: 10.1016/j.envpol.2020.114069] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Sawdust wastes were used as precursors to prepare adsorbents by combustion and pyrolysis for experimental and mechanism studies and determine the potential of biomass extracted from agro-industrial residues for Pb-polluted soil remediation. Pot experiments were conducted on contaminated soils near Pb-Zn mining with sawdust ash (SA) and sawdust biochar (SB) in different proportions and dosage ratios. Studies have indicated that the application of biomass materials can enhance the adsorption, complexation and precipitation of Pb cations in soil and reduce the mobility of Pb. The concentrations of SPLP-Pb and DTPA-extractable Pb in amended soils were the lowest under 1% 1:2 and 5% 1:1 treatment, respectively. Results of fraction extraction and XANES analysis showed that the materials change the main forms of Pb in soil. Moreover, the binding behavior of Pb with organic matter increases the proportion of Pb (Ac)2, leading to the transformation of high toxicity Pb-compounds into precipitates and complexes. The remediation methods of 2% 1:2 and 5% 1:2 were better than those of other methods in stabilizing Pb in soil. This study indicated that heat-treated sawdust can be used for Pb-polluted soil remediation, which is a type of environmental remediation measure with considerable ecological potential.
Collapse
Affiliation(s)
- Yan Zhang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuemei Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongbing Ji
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Municipal Key Laboratory of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
44
|
Fan J, Cai C, Chi H, Reid BJ, Coulon F, Zhang Y, Hou Y. Remediation of cadmium and lead polluted soil using thiol-modified biochar. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122037. [PMID: 31951992 DOI: 10.1016/j.jhazmat.2020.122037] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 05/22/2023]
Abstract
Thiol-modified rice straw biochar (RS) was prepared by an esterification reaction with β-mercaptoethanol and used for the remediation of Cd and Pb polluted soils. Modified biochar was characterized through elemental analysis, BET analysis, FE-SEM, FT-IR and XPS. These analytical results revealed that thiol groups were successfully grafted onto the surface of the biochar and were involved in metal ion complexation. Batch sorption experiments indicated that Cd2+ and Pb2+ sorption onto RS described well by a pseudo second order kinetic model and a Langmuir isotherm. The maximum adsorption capacities for Cd2+ and Pb2+, in the single-metal systems, were 45.1 and 61.4 mg g-1, respectively. In the binary-metal systems, RS selectively adsorbed Cd2+ over Pb2+. Cd2+ and Pb2+ were removed mainly through surface complexation. In the soil incubation experiments (28 days), RS reduced the available Cd by 34.8-39.2 %; while, RS reduced the available Pb by 8.6 %-11.1 %. This research demonstrates RS as a potentially effective amendment for the remediation of heavy metal polluted soils.
Collapse
Affiliation(s)
- Jiajun Fan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Chao Cai
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Haifeng Chi
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Brian J Reid
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Environmental Sciences, University of East Anglia, Norwich NR47TJ, UK
| | - Frédéric Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Youchi Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Yanwei Hou
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
45
|
Hussain MI, Qureshi AS. Health risks of heavy metal exposure and microbial contamination through consumption of vegetables irrigated with treated wastewater at Dubai, UAE. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11213-11226. [PMID: 31960237 DOI: 10.1007/s11356-019-07522-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
The shortage of fresh water is a major problem throughout the world, but the situation is worst in the arid and semiarid regions. Therefore, reuse of nonconventional water resources such as treated wastewater (TWW) is a common practice to irrigate field crops, vegetables, and forestry sectors. The present study was conducted to evaluate the significant impact of different heavy metals such as copper (Cu), iron (Fe), chromium (Cr), and zinc (Zn) on the soil and leafy, root, and fruit vegetables following irrigation with TWW through subsurface drip irrigation. Our results indicate that iron (Fe) was highest in lettuce followed by spinach, and Zn and Cr were second and third most abundant element in the different vegetables. Eggplant and radish showed the lowest concentrations of various heavy metals. A significant difference was observed in transfer factor (TF) among vegetables, and highest TFsoil-veg was observed for Fe in lettuce and the lowest for Cr in eggplant. Estimated daily intake (EDI) was the lowest in adults and highest in children. Target hazard quotient (THQ) of Cu, Zn, and Fe being < 1.0 appears relatively safe in all the tested vegetables. Risk index (RI) values showed that heavy metals were lower than 1.0 and hence lower risk for human. The combined HI values for Cu, Zn, Cd, Cr, and Pb were substaintionaly higher 12.8 and 9.21 after consumption of lettuce and carrot. So, consumption of these vegetables should be avoided after irrigation with TWW. Spinach exhibited maximum total coliform loading, while ecological risk was negligible due to sandy nature of soil type. Health risks to human could be reduced through proper selection of suitable vegetables, time of maturity, and consumed organs (leaf, fruit, or root part). Appropriate should be followed to decontaminate the microbial load in order to avoid any risks to human health (both adults and children).
Collapse
Affiliation(s)
- Muhammad Iftikhar Hussain
- Research Institute of Science and Engineering (RISE), University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
- Department of Plant Biology and Soil Science, University of Vigo, Campus Lagoas-Marcosende, E-36310, Vigo, Spain.
| | - Asad Sarwar Qureshi
- International Center for Biosaline Agriculture (ICBA), PO Box 14660, Dubai, United Arab Emirates
| |
Collapse
|
46
|
Nzediegwu C, Prasher S, Elsayed E, Dhiman J, Mawof A, Patel R. Biochar applied to soil under wastewater irrigation remained environmentally viable for the second season of potato cultivation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109822. [PMID: 31733469 DOI: 10.1016/j.jenvman.2019.109822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/20/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
The environmental effectiveness of plantain peel biochar in the second season of its application to soil was studied using outdoor lysimeters (0.45 m diameter x 1.0 m height) packed with sandy soil, cultivated with potatoes (Solanum tuberosum) and irrigated with wastewater. Biochar (1% w/w) was amended in the soil one-time in the first season. For two seasons, the biochar improved the soil properties, immobilized the heavy metals in the soil, and reduced their uptake by the crop. The CEC of the biochar-amended soil (WW + B) for example, as compared to the unamended treatment (WW-B), was significantly higher (p<0.05; >65%) for both seasons due to higher pH which controls the availability of cations in soils, influencing their CECs. The soil sampled in the second season showed accumulation of all the heavy metals in the topsoil, while only Zn, Pb and Fe moved to the 0.1 m depth. The Fourier transform infra-red spectra of the soil and soil-biochar mix were similar and suggested that oxygen-containing functional groups were partly responsible for binding the heavy metals. The heavy metals translocated to all the potato parts (flesh, peel, root, stem and leaves). The concentrations of the heavy metals in potato parts under freshwater were lower than those under wastewater irrigated condition. After the second season of being in the soil, biochar significantly reduced (p < 0.05) the concentrations of Cd, Cu, Cr, Pb and Zn in the edible flesh suggesting that biochar immobilized wastewater-laden heavy metals in soil and reduced their uptake in potatoes for at least two seasons.
Collapse
Affiliation(s)
| | - Shiv Prasher
- Department of Bioresource Engineering, McGill University, Canada
| | - Eman Elsayed
- Department of Bioresource Engineering, McGill University, Canada
| | - Jaskaran Dhiman
- Department of Bioresource Engineering, McGill University, Canada
| | - Ali Mawof
- Department of Bioresource Engineering, McGill University, Canada
| | - Ramanbhai Patel
- Department of Bioresource Engineering, McGill University, Canada
| |
Collapse
|
47
|
Palansooriya KN, Shaheen SM, Chen SS, Tsang DCW, Hashimoto Y, Hou D, Bolan NS, Rinklebe J, Ok YS. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. ENVIRONMENT INTERNATIONAL 2020; 134:105046. [PMID: 31731004 DOI: 10.1016/j.envint.2019.105046] [Citation(s) in RCA: 459] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 07/21/2019] [Indexed: 05/18/2023]
Abstract
Soil contamination by potentially toxic elements (PTEs) has led to adverse environmental impacts. In this review, we discussed remediation of PTEs contaminated soils through immobilization techniques using different soil amendments with respect to type of element, soil, and amendment, immobilization efficiency, underlying mechanisms, and field applicability. Soil amendments such as manure, compost, biochar, clay minerals, phosphate compounds, coal fly ash, and liming materials are widely used as immobilizing agents for PTEs. Among these soil amendments, biochar has attracted increased interest over the past few years because of its promising surface properties. Integrated application of appropriate amendments is also recommended to maximize their use efficiency. These amendments can reduce PTE bioavailability in soils through diverse mechanisms such as precipitation, complexation, redox reactions, ion exchange, and electrostatic interaction. However, soil properties such as soil pH, and clay, sesquioxides and organic matter content, and processes, such as sorption/desorption and redox processes, are the key factors governing the amendments' efficacy for PTEs immobilization in soils. Selecting proper immobilizing agents can yield cost-effective remediation techniques and fulfill green and sustainable remediation principles. Furthermore, long-term stability of immobilized PTE compounds and the environmental impacts and cost effectiveness of the amendments should be considered before application.
Collapse
Affiliation(s)
- Kumuduni Niroshika Palansooriya
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Season S Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yohey Hashimoto
- Department of Bioapplications and Systems Engineering, Tokyo University of Agriculture and Technology, Japan
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; CRC for High Performance Soil, Callaghan, NSW-2308, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
48
|
Janus A, Waterlot C, Douay F, Pelfrêne A. Ex situ evaluation of the effects of biochars on environmental and toxicological availabilities of metals and polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1852-1869. [PMID: 31760614 DOI: 10.1007/s11356-019-06764-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
The present study experimented five biochars, one made from wood (400 °C, 12 h) and four made from miscanthus cultivated on contaminated soils (temperature 400/600 °C, duration 45/90 min). They were used as amendments at a 2% application rate on soil, cultivated or not cultivated with ryegrass, contaminated with (i) metals (Cd, Pb, and Zn), (ii) eight polycyclic aromatic hydrocarbons (PAHs), and (iii) a mix of metals and PAHs. The objectives were (i) to compare the effectiveness of the five biochars on soil parameters and pollutant availability and (ii) to determine the influence of soil multicontamination and ryegrass cultivation on biochar effectiveness. The results showed that biochar application did not necessarily lead to lower pollutant extractability and metal bioaccessibility. However, differences were highlighted between the biochars. The miscanthus biochars produced at 600 °C (BM600) showed higher effectiveness at decreasing metal extractability than the miscanthus biochars produced at 400 °C (BM400) due to its better sorption characteristics. In addition, ryegrass cultivation did not impact pollutant availability but modified metal bioaccessibility, especially for the soil amended with the BM600 and the woody biochar. Moreover, the presence of PAHs also negatively impacted the metal bioaccessibility in the soil amended with the BM600, and, on the contrary, positively impacted it in the soil amended with the BM400. Complementary studies are therefore necessary to understand the mechanisms involved, particularly in a context where soils requiring remediation operations are often multicontaminated and vegetated.
Collapse
Affiliation(s)
- Adeline Janus
- Laboratoire Génie Civil et géoEnvironnement (LGCgE), Yncréa Hauts-de-France, 48 boulevard Vauban, BP 41290, 59014, Lille cedex, France.
| | - Christophe Waterlot
- Laboratoire Génie Civil et géoEnvironnement (LGCgE), Yncréa Hauts-de-France, 48 boulevard Vauban, BP 41290, 59014, Lille cedex, France
| | - Francis Douay
- Laboratoire Génie Civil et géoEnvironnement (LGCgE), Yncréa Hauts-de-France, 48 boulevard Vauban, BP 41290, 59014, Lille cedex, France
| | - Aurélie Pelfrêne
- Laboratoire Génie Civil et géoEnvironnement (LGCgE), Yncréa Hauts-de-France, 48 boulevard Vauban, BP 41290, 59014, Lille cedex, France
| |
Collapse
|
49
|
Tian H, Wang Y, Xie J, Li H, Zhu Y. Effects of Soil Properties and Land Use Types on the Bioaccessibility of Cd, Pb, Cr, and Cu in Dongguan City, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:64-70. [PMID: 31696244 DOI: 10.1007/s00128-019-02740-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
In order to determine the potential heavy metal contamination in soil across Dongguan City, 124 soil samples from seven land use types were collected, four heavy metals (Cd, Pb, Cr, and Cu) were analyzed. Total Cd, Cr, and Cu contents were significantly higher than the background values for Guangdong Province. Lead bioaccessibility in urban green land was lower than that in industrial and abandoned districts. The bioaccessibility of heavy metals was affected by total metal concentrations, soil properties, and land use types. The results showed that there was a negative correlation between the bioaccessibility of heavy metals (except for Cu) and their total concentrations. Soil pH and organic matter were the main factors affecting the bioaccessibility of Cd, Cr, Pb, and Cu in most land use types. Furthermore, sand, P, and clay also affected Pb, Cr, and Cu bioaccessibility. With the exception of the industrial zone periphery and urban green land, the bioaccessibility of heavy metals was mainly affected by clay.
Collapse
Affiliation(s)
- Haoqi Tian
- School of Environment and Resources, Shanxi University, Taiyuan, 030006, China
| | - Yuzhe Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jingfang Xie
- School of Environment and Resources, Shanxi University, Taiyuan, 030006, China
| | - Hua Li
- School of Environment and Resources, Shanxi University, Taiyuan, 030006, China
| | - Yuen Zhu
- School of Environment and Resources, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
50
|
Inkham R, Kijjanapanich V, Huttagosol P, Kijjanapanich P. Low-cost alkaline substances for the chemical stabilization of cadmium-contaminated soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109395. [PMID: 31473398 DOI: 10.1016/j.jenvman.2019.109395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Owing to poor waste management in zinc mining, toxic heavy metals, particularly cadmium, are released and contaminate the surrounding agricultural areas. Waterlogging, which is a common practice in rice vegetation, creates anaerobic conditions that result in the conversion of organic matter into acetic acid and the reducing phase. This accelerates the release of cadmium into the water, where it is absorbed into the cells of rice. Chemical stabilization methods can be used to treat cadmium-contaminated soil by reacting an alkaline substance with acetic acid and increasing the soil pH for cadmium immobilization. However, to date, few studies using limestone dust and corncob fly ash have been conducted, and no studies have focused on the neutralization of the produced acetic acid in the anaerobic zone of the soil. This study aims to determine the optimum conditions for cadmium stabilization using different types of low-cost alkaline substances (lime, limestone dust, and corncob fly ash). The effects of alkaline amount, soil moisture content, and reaction time on soil stabilization were investigated. Lime was the most suitable for stabilization among the tested alkaline substances, and increasing the amount of lime can effectively reduce the amount of exchangeable cadmium. At 25% w/w of lime/soil, the exchangeable cadmium can be reduced from 29.3 to 7.8 mg kg-1. The stabilization efficiencies of limestone dust and corncob fly ash were much lower. The statistical analysis shows that the amount of alkaline substance is the main factor affecting the stabilization performance at a 95% confidence limit for all tested alkalines.
Collapse
Affiliation(s)
- Ratchada Inkham
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Vililuck Kijjanapanich
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panlop Huttagosol
- Department of Mining Engineering and Petroleum, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pimluck Kijjanapanich
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|