1
|
Zou PC, Zhang Y, Bian Y, Du RZ, Qian M, Feng XS, Du C, Zhang XY. Triazoles in the environment: An update on sample pretreatment and analysis methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117156. [PMID: 39383824 DOI: 10.1016/j.ecoenv.2024.117156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Triazoles, due to their high bactericidal performance, have been widely used in the agricultural, clinical, and chemical industry. However, triazoles have been proven to cause endocrine-toxic and organ impairment in humans as a potentially toxic substance. Besides, because of the improper use and difficulty of degradation, triazoles pesticide residues left in the environment could pose a threat to the environment. Therefore, the rapid, reliable, accurate, and high-sensitivity triazoles analysis methods are significantly essential to effectively monitor their presence in various samples and safeguard human health. This review aims to summarize and update the progress of the pretreatment and analytical methods of triazole fungicides in environmental samples from 2012 to 2024. Common pretreatment methods used to extract and purify targets include simple steps (e.g., protein precipitation and coated blade spray), liquid-liquid extraction, solid-phase extraction, and various microextraction methods such as liquid-phase microextraction and solid-phase microextraction, among others. Detection methods mainly include liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, supercritical fluid chromatography, sensing methods, and capillary electrophoresis. In addition, we elaborate and compare the advantages and disadvantages of different pretreatment and analytical methods, and their development prospects are discussed.
Collapse
Affiliation(s)
- Pei-Chen Zou
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Rong-Zhu Du
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Min Qian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Cheng Du
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Xin-Yuan Zhang
- School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Diao Z, Di S, Qi P, Liu Z, Wang Z, Zhao H, Wang M, Zhang C, Wang X. Stereoselective study on chiral fungicide metconazole in four kinds of fruits: Absolute configuration, SFC-MS/MS enantioseparation, degradation and risk assessment. Food Chem 2024; 438:137944. [PMID: 37984002 DOI: 10.1016/j.foodchem.2023.137944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/28/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
Metconazole is a novel chiral fungicide with two chiral carbon atoms, but the research on its stereoselective behavior is limited. Therefore, the stereoselective behaviors of metconazole in four fruits, including grape, peach, pear and jujube, were summarized in this study. After determining the absolute configuration of metconazole stereoisomers, a chiral separation method through supercritical fluid chromatography/tandem triple quadrupole mass spectrometry was first developed, which combined an improved QuEChERS method obtained the recoveries of 71.6-113 % with RSD ≤ 19.8 %. The LOD and LOQ were 4.30-95.9 and 10.5-143.2 ng/kg, respectively. Different stereoselective and diastereoselective behaviors were observed in four fruits. Dietary risk assessments of rac-metconazole were performed in populations with different ages and genders. Both acute (RQa, 0.0124-0.140 %) and chronic (HQ, 0.0234-0.0794 %) intake risks were acceptable. The results of this study would contribute to more complete risk assessments of metconazole and provide data for chiral studies.
Collapse
Affiliation(s)
- Ziyang Diao
- College of Food Science & Engineering, Hainan University, No. 158 Renmin Avenue, Haikou 570228, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Meng Wang
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China; College of Plant Protection, Hainan University, Haikou 570228, PR China
| | - Chenghui Zhang
- College of Food Science & Engineering, Hainan University, No. 158 Renmin Avenue, Haikou 570228, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China.
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
3
|
Hýsková V, Jakl M, Jaklová Dytrtová J, Ćavar Zeljković S, Vrobel O, Bělonožníková K, Kavan D, Křížek T, Šimonová A, Vašková M, Kovač I, Račko Žufić A, Ryšlavá H. Antifungal triazoles affect key non-target metabolic pathways in Solanum lycopersicum L. plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115729. [PMID: 38000304 DOI: 10.1016/j.ecoenv.2023.115729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Several 1,2,4-triazoles are widely used as systemic fungicides in agriculture because they inhibit fungal 14ɑ-demethylase. However, they can also act on many non-target plant enzymes, thereby affecting phytohormonal balance, free amino acid content, and adaptation to stress. In this study, tomato plants (Solanum lycopersicum L. var. 'Cherrola') were exposed to penconazole, tebuconazole, or their combination, either by foliar spraying or soil drenching, every week, as an ecotoxicological model. All triazole-exposed plants showed a higher content (1.7-8.8 ×) of total free amino acids than the control, especially free glutamine and asparagine were increased most likely in relation to the increase in active cytokinin metabolites 15 days after the first application. Conversely, the Trp content decreased in comparison with control (0.2-0.7 ×), suggesting depletion by auxin biosynthesis. Both triazole application methods slightly affected the antioxidant system (antioxidant enzyme activity, antioxidant capacity, and phenolic content) in tomato leaves. These results indicated that the tomato plants adapted to triazoles over time. Therefore, increasing the abscisic and chlorogenic acid content in triazole-exposed plants may promote resistance to abiotic stress.
Collapse
Affiliation(s)
- Veronika Hýsková
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic
| | - Michal Jakl
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Agroenvironmental Chemistry and Plant Nutrition, Prague-Suchdol, Czech Republic
| | - Jana Jaklová Dytrtová
- Charles University, Faculty of Physical Education and Sport, Sport Sciences-Biomedical Department, Prague 6, Czech Republic
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic; Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic
| | - Ondřej Vrobel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic; Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic
| | - Kateřina Bělonožníková
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic
| | - Daniel Kavan
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic
| | - Tomáš Křížek
- Charles University, Faculty of Science, Department of Analytical Chemistry, Prague 2, Czech Republic
| | - Alice Šimonová
- Charles University, Faculty of Science, Department of Analytical Chemistry, Prague 2, Czech Republic
| | - Marie Vašková
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic
| | - Ishak Kovač
- Charles University, Faculty of Physical Education and Sport, Sport Sciences-Biomedical Department, Prague 6, Czech Republic
| | - Antoniana Račko Žufić
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic
| | - Helena Ryšlavá
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic.
| |
Collapse
|
4
|
Wu Z, Ma Y, Xiong H, An W, Zhang Y, Zhao Q, Li J. Simultaneous determination of spiropidion and its five major metabolites in sweet orange fruit and various processing by-products using ultra-high performance liquid chromatography-tandem mass spectrometry. Food Res Int 2023; 174:113498. [PMID: 37986498 DOI: 10.1016/j.foodres.2023.113498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
The present work reported the application of an ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous analysis of spiropidion and its five major metabolites in sweet orange fruit and by-products throughout the whole industrial juicing process of the orange fruit. The reversed-dispersive solid phase extraction (r-DSPE) with multi-walled carbon nanotubes (MWCNTs) was employed for the extraction and purification. The established method was validated and satisfactory parameters (linearity, trueness, precision, sensitivity, matrix effect and stability) were obtained. And then, the field trial of spiropidion on sweet oranges has been conducted and the effect of commercial juicing processing on the residue of spiropidion and its metabolites was further investigated. The various processing factors (PFs) for washing, juicing, sterilization, concentrating and essential oil collecting were also determined. The final results indicated that washing processing reduced residues by 18.4%; the juicing step allowed a significant decrease of the spiropidion residue by 34.2-70.8%, with PFs value in the range of 0.290-0.658. However, high level of residual spiropidion (ranging from 4.016 to 4.205 mg/kg) was detected in orange essential oil, with PFs value of 17.157. All the above results demonstrated the efficiency of the established method in the routine control analysis of spiropidion residues in sweet orange fruits and their by-products, and will facilitate the further intensive research on its spatial distribution, transfer and degradation during the different processing procedures of the sweet orange fruits.
Collapse
Affiliation(s)
- Zhi Wu
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Yuan Ma
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Huan Xiong
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Wenjin An
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Yaohai Zhang
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Qiyang Zhao
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Jing Li
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China.
| |
Collapse
|
5
|
Morgan AM, Ogaly HA, Kamel S, Rashad MM, Hassanen EI, Ibrahim MA, Galal MK, Yassin AM, Dulmani SAA, Al-Zahrani FA, Hussien AM. Protective effects of N-acetyl-l-cysteine against penconazole-triggered hepatorenal toxicity in adult rats. J Vet Res 2023; 67:459-469. [PMID: 37786839 PMCID: PMC10541664 DOI: 10.2478/jvetres-2023-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/26/2023] [Indexed: 10/04/2023] Open
Abstract
Introduction Penconazole (PEN) is a widely applied triazole fungicide. This study sought to define the efficacy of N-acetyl-l-cysteine (NAC) in mitigating PEN-triggered hepatorenal toxicity in rats. Material and Methods Twenty-eight adult male albino Wistar rats were assigned to four groups: a normal control (NC), a PEN group, a NAC group and a PEN+NAC group. Administration of PEN (50 mg/kg body weight (b.w.) every 2 days) and NAC (150 mg/kg b.w., daily) took place via oral gavage for 10 days. Results Effective amelioration by NAC of PEN-induced liver and kidney dysfunction was indicated by a significant reduction in the circulating liver and kidney markers (aspartate aminotransferase, alanine aminotransferase, urea and creatinine). Attenuation of PEN-induced oxidative stress and lipid peroxidation in liver and kidney tissues was evident in a significant reduction in malondialdehyde and enhanced total antioxidant capacity. Moreover, NAC significantly reduced the histopathological alterations and the expression of tumour necrosis factor α in liver and kidney tissue. Furthermore, NAC maintained the messenger RNA levels of nuclear factor erythroid 2-related factor 2 (Nrf2), haem oxygenase 1, and Kelch-like erythroid cell-derived protein 1 and prevented nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) protein upregulation caused by PEN. Conclusion N-acetyl-1-cysteine protected against PEN-induced hepatorenal oxidative damage and inflammatory response via activation of Nrf2 and inhibition of NF-κB pathways.
Collapse
Affiliation(s)
| | - Hanan A. Ogaly
- Chemistry Department, Faculty of Science, King Khalid University, Abha 62421, Abha High City, Saudi Arabia
| | - Shaimaa Kamel
- Biochemistry and Molecular Biology Department, 12211Giza, Egypt
| | - Maha M. Rashad
- Biochemistry and Molecular Biology Department, 12211Giza, Egypt
| | - Eman I. Hassanen
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12211Giza, Egypt
| | | | - Mona K. Galal
- Biochemistry and Molecular Biology Department, 12211Giza, Egypt
| | - Aya M. Yassin
- Biochemistry and Molecular Biology Department, 12211Giza, Egypt
| | - Sharah A. Al Dulmani
- Chemistry Department, Faculty of Science, King Khalid University, Abha 62421, Abha High City, Saudi Arabia
| | - Fatimah A.M. Al-Zahrani
- Chemistry Department, Faculty of Science, King Khalid University, Abha 62421, Abha High City, Saudi Arabia
| | | |
Collapse
|
6
|
Hýsková V, Jakl M, Jaklová Dytrtová J, Ćavar Zeljković S, Vrobel O, Bělonožníková K, Kavan D, Křížek T, Šimonová A, Vašková M, Kovač I, Račko Žufić A, Ryšlavá H. Triazoles as a Potential Threat to the Nutritional Quality of Tomato Fruits. Metabolites 2023; 13:988. [PMID: 37755268 PMCID: PMC10536328 DOI: 10.3390/metabo13090988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Triazole fungicides can threaten plants as abiotic stressors but can also positively affect plant defense by inducing priming. Thus, plant yield is also both protected and endangered by triazoles that may influence several metabolic pathways during maturation processes, such as the biosynthesis of saccharides or secondary metabolites. Here, Solanum lycopersicum L. plants were exposed to foliar and soil applications of penconazole, tebuconazole, or their combination, and their resulting effect on tomato fruits was followed. The exposure to the equimolar mixture of both triazoles influenced the representation of free proteinogenic amino acids, especially Gln, Glu, Gly, Ile, Lys, Ser and Pro, saccharide content, and led to a significant increase in the contents of total phenolics and flavonoids as well as positive stimulation of the non-enzymatic antioxidant system. Among the identified secondary metabolites, the most abundant was naringenin, followed by chlorogenic acid in tomato peel. In turn, all triazole-treated groups showed a significantly lower content of rosmarinic acid in comparison with the control. Foliar application of penconazole affected the fruit more than other single triazole applications, showing a significant decrease in antioxidant capacity, the total content of secondary metabolites, and the activities of total membrane-bound peroxidases and ascorbate peroxidase.
Collapse
Affiliation(s)
- Veronika Hýsková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| | - Michal Jakl
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| | - Jana Jaklová Dytrtová
- Sport Sciences—Biomedical Department, Faculty of Physical Education and Sport, Charles University, José Martího 269, 162 52 Prague, Czech Republic; (J.J.D.); (I.K.)
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 241/27, 783 71 Olomouc, Czech Republic; (S.Ć.Z.); (O.V.)
- Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Ondřej Vrobel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 241/27, 783 71 Olomouc, Czech Republic; (S.Ć.Z.); (O.V.)
- Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Kateřina Bělonožníková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| | - Daniel Kavan
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University Albertov 6, 128 00 Prague, Czech Republic; (T.K.); (A.Š.)
| | - Alice Šimonová
- Department of Analytical Chemistry, Faculty of Science, Charles University Albertov 6, 128 00 Prague, Czech Republic; (T.K.); (A.Š.)
| | - Marie Vašková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| | - Ishak Kovač
- Sport Sciences—Biomedical Department, Faculty of Physical Education and Sport, Charles University, José Martího 269, 162 52 Prague, Czech Republic; (J.J.D.); (I.K.)
| | - Antoniana Račko Žufić
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| | - Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| |
Collapse
|
7
|
Jiang X, Wang J, Liu J, Zhu H, Hu J, Sun X, Zhou W. Resveratrol ameliorates penconazole-induced cardiotoxicity by inhibition of oxidative stress and apoptosis in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114865. [PMID: 37018857 DOI: 10.1016/j.ecoenv.2023.114865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Penconazole (PEN) is a typical systemic triazole fungicide with cardiac toxic effects. Resveratrol (RES) is a natural polyphenolic phytochemical with antioxidation properties. This study aimed to investigate if RES could protect against PEN-induced cardiotoxicity and to determine the underlying mechanisms. Zebrafish embryos were exposed to 0, 0.5, 1 and 2 mg/L of PEN from 4 to 96 h post fertilization (hpf) and cardiac developmental toxicity was assessed. Our results showed that PEN decreased hatching rate, survival rate, heart rate and body length, with increased malformation rate and spontaneous movement. PEN induced pericardial edema and abnormal cardiac structure in myl7:egfp transgenic zebrafish, as well as downregulation of cardiac development related genes (nkx2.5, tbx2.5, gata4, noto, and vmhc). In addition, PEN elevated oxidative stress via reactive oxygen species (ROS) accumulation and triggered cardiomyocytic apoptosis by upregulation of p53, bcl-2, bax and caspase 3. These adverse outcomes were counteracted by RES, indicating that RES ameliorated PEN-induced cardiotoxicity by inhibiting oxidative stress and apoptosis in zebrafish. Taken together, this study revealed the important role of oxidative stress in PEN-induced cardiotoxicity and identified dietary RES supplementation as a novel strategy to mitigate its toxicity.
Collapse
Affiliation(s)
- Xue Jiang
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Jie Wang
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Jin Liu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Haiyan Zhu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Jian Hu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Xingzhen Sun
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Wendi Zhou
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China.
| |
Collapse
|
8
|
Hergueta-Castillo ME, López-Ruiz R, Marín Membrive P, Romero-González R, Garrido Frenich A. Dissipation of penconazole formulation in horticultural crops by ultrahigh performance liquid chromatography-high resolution mass spectrometry: From the active substance to metabolites. Food Chem 2023; 422:136266. [PMID: 37141756 DOI: 10.1016/j.foodchem.2023.136266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The present study describes the dissipation and metabolism of penconazole in horticultural products by a method based on ultra-high performance liquid chromatography-quadrupole-orbitrap (UHPLC-Q-Orbitrap). Targeted and suspected analysis were carried out. Two independent trials were performed under laboratory conditions (on courgette samples), and under greenhouse conditions (on tomatoes) during 43 and 55 days, respectively. In both studies, a pesticide formulation (TOPAS® EW) containing penconazole was used. The results showed that penconazole was relatively short-lived (<30 days) in horticultural products. The proposed method allowed for the tentative identification and semi-quantification of nine metabolites. In addition, the potential toxicity of these metabolites was evaluated, observing that some of them are even more toxic than penconazole, as triazole lactic acid. This research may provide a starting point for understanding the dissipation process of penconazole, the formation pathways of its main metabolites, their concentrations and toxicity to ensure food safety and the environmental protection.
Collapse
Affiliation(s)
- María Elena Hergueta-Castillo
- Department of Chemistry and Physics (Analytical Chemistry Area), Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence ceiA3, University of Almería, Almería E-04120, Spain
| | - Rosalía López-Ruiz
- Department of Chemistry and Physics (Analytical Chemistry Area), Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence ceiA3, University of Almería, Almería E-04120, Spain
| | - Patricia Marín Membrive
- Department of Engineering, Research Centre CIAIMBITAL, University of Almería, University of Almería, Almería E-04120, Spain
| | - Roberto Romero-González
- Department of Chemistry and Physics (Analytical Chemistry Area), Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence ceiA3, University of Almería, Almería E-04120, Spain
| | - Antonia Garrido Frenich
- Department of Chemistry and Physics (Analytical Chemistry Area), Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence ceiA3, University of Almería, Almería E-04120, Spain.
| |
Collapse
|
9
|
Abolghasemi-Fakhri Z, Amjadi M. Highly sensitive colorimetric assay for penconazole using gold nanostar-graphene quantum dot composite. ANAL SCI 2023:10.1007/s44211-023-00320-w. [PMID: 36988901 DOI: 10.1007/s44211-023-00320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023]
Abstract
In this study, a simple and sensitive colorimetric method for penconazole sensing is reported. It is based on the etching/anti-etching strategy in which gold nanostar@graphene quantum dot (AuNS@GQD) nanocomposite acts as a sensing nanoprobe and IO4- as an etching agent. With adding IO4- to the solution of AuNSs@GQDs, the sharp tips of NSs are etched and they are transformed into nearly spherical nanostructures, and the color of the solution changes from green to violet. These changes can be attributed to the oxidation of gold atoms at the sharp corners and tips of NSs with I2, produced by the reaction of IO4- with AuNS@GQD solution. When penconazole is added into the system, the color and shape variations of AuNSs caused by periodate are impressively prevented. It can be assigned to the strong binding affinity between nitrogen atoms of penconazole and gold atoms, which protects them from etching by I2. This mechanism has been affirmed via transmission electron microscopy (TEM) and UV-Vis spectra. This approach exhibited a good linear relationship (R2 = 0.999) between the wavelength shift and penconazole concentration in the range of 5.0-1000.0 nM with a limit of detection (LOD) of 1.5 nM. The sensor is stable and reproducible and was used to measure penconazole in spiked water samples with recoveries over 97%.
Collapse
Affiliation(s)
- Zahra Abolghasemi-Fakhri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran.
| |
Collapse
|
10
|
Ren B, Liang H, Li L, Li Y, Liang H, Zhao T, Chen H, Zhao Y. Enantioselective toxic effects of the novel chiral antifungal agrochemical penthiopyrad in the early life stage of zebrafish (Danio rerio). Chem Biol Interact 2023; 369:110252. [PMID: 36347316 DOI: 10.1016/j.cbi.2022.110252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Penthiopyrad was extensively applied in agricultural production, however, the toxicities information of the penthiopyrad enantiomers on early life stages of aquatic organism were limited. This study investigated the enantioselective toxicity of penthiopyrad on the early life stage of zebrafish by acute toxicity, sublethal toxic effects and the mRNA relative expression levels of genes related to succinate dehydrogenase, cardiac development, and lipid metabolism. The results showed that the 96-h-LC50 of penthiopyrad racemate and enantiomers to zebrafish embryos were Rac-: 2.784 mg/L; R-(-)-: 3.528 mg/L; S-(+)-: 1.882 mg/L. Penthiopyrad exposure induced autonomous movement abnormalities, slowed heart rate and delayed hatching in zebrafish embryos, and caused developmental toxic effects such as pericardial edema and yolk sac edema. The mRNA relative expression levels results showed that penthiopyrad exposure induced significant enantioselectivity effect for the expression of the Sdha, Pr1 and Nkx2.5 with a 1.94-4.98-fold difference between different enantiomers, and significantly affected succinate dehydrogenase (energy metabolism), lipid metabolism and cardiac development-related genes expression. In general, S-(+)-penthiopyrad induced higher toxic effects in zebrafish embryos, and mitochondrial dysfunction may be an important cause of abnormal development. This study contributed to improve the comprehensive risk assessment and enantiomeric research system of penthiopyrad to early life stage of zebrafish.
Collapse
Affiliation(s)
- Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Environmental Testing Center of Inner Mongolia University, Hohhot, 010021, China.
| | - Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, 030031, China
| | - YanHong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
11
|
Bauer EM, Bogliardi G, Ricci C, Cecchetti D, De Caro T, Sennato S, Nucara A, Carbone M. Syntheses of APTMS-Coated ZnO: An Investigation towards Penconazole Detection. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8050. [PMID: 36431536 PMCID: PMC9697174 DOI: 10.3390/ma15228050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Extrinsic chemiluminescence can be an efficient tool for determining pesticides and fungicides, which do not possess any intrinsic fluorescent signal. On this basis, (3-aminopropyl) trimethoxysilane (APTMS)-coated ZnO (APTMS@ZnO) was synthesized and tested as an extrinsic probe for the fungicide penconazole. Several synthetic routes were probed using either a one-pot or two-steps method, in order to ensure both a green synthetic pathway and a good signal variation for the penconazole concentration. The synthesized samples were characterized using X-ray diffraction (XRD), infrared (IR), Raman and ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM) imaging and associated energy-dispersive X-ray (EDX) analysis. The average size of the synthesized ZnO nanoparticles (NPs) is 54 ± 10 nm, in line with previous preparations. Of all the samples, those synthesized in two steps, at temperatures ranging from room temperature (RT) to a maximum of 40 °C, using water solvent (G-APTMG@ZnO), appeared to be composed of nanoparticles, homogeneously coated with APTMS. Chemiluminescence tests of G-APTMG@ZnO, in the penconazole concentration range 0.7-1.7 ppm resulted in a quenching of the native signal between 6% and 19% with a good linear response, thus indicating a green pathway for detecting the contaminant. The estimated detection limit (LOD) is 0.1 ± 0.01 ppm.
Collapse
Affiliation(s)
- Elvira Maria Bauer
- Institute of Structure of Matter, Italian National Research Council (ISM-CNR), Via Salaria km 29.3, 00015 Monterotondo, RM, Italy
| | - Gabriele Bogliardi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, RM, Italy
| | - Cosimo Ricci
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, RM, Italy
| | - Daniele Cecchetti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, RM, Italy
| | - Tilde De Caro
- Institute of Nanostructure Materials, National Research Council (ISMN-CNR), Via Salaria km 29.3, 00015 Monterotondo, RM, Italy
| | - Simona Sennato
- Institute of Complex Systems, Italian National Research Council (ISC-CNR) Sapienza Unit, and Physics Department, Sapienza University, P.le A. Moro 5, 00185 Rome, RM, Italy
| | - Alessandro Nucara
- Department of Physics, Sapienza University, P.le A. Moro 5, 00185 Rome, RM, Italy
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, RM, Italy
| |
Collapse
|
12
|
Meng Z, Cui J, Li R, Sun W, Bao X, Wang J, Zhou Z, Zhu W, Chen X. Systematic evaluation of chiral pesticides at the enantiomeric level: A new strategy for the development of highly effective and less harmful pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157294. [PMID: 35839878 DOI: 10.1016/j.scitotenv.2022.157294] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Over the past few decades, pesticides have been used in large quantities, and they pose potential risks to organisms across various environments. Reducing the use of pesticides and their environmental risks has been an active research focus and difficult issue worldwide. As a class of pesticides with special structures, chiral pesticides generally exhibit enantioselectivity differences in biological activity, ecotoxicity, and environmental behavior. At present, replacing the racemates of chiral pesticides by identifying and developing their individual enantiomers with high efficiency and environmentally friendly characteristics is an effective strategy to reduce the use of pesticides and their environmental risks. In this study, we review the stereoselective behaviors of chiral pesticide, including their environmental behavior, stereoselective biological activity, and ecotoxicity. In addition, we emphasize that the systematic evaluation of chiral pesticides at the enantiomeric level is a promising novel strategy for developing highly effective and less harmful pesticides, which will provide important data support and an empirical basis for reducing pesticide application.
Collapse
Affiliation(s)
- Zhiyuan Meng
- School of Horticulture and Plant Protection, Yangzhou University, College of Guangling, Yangzhou, Jiangsu 225009, China
| | - Jiajia Cui
- School of Horticulture and Plant Protection, Yangzhou University, College of Guangling, Yangzhou, Jiangsu 225009, China
| | - Ruisheng Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Landscape Research Institute of Zhumadian, Zhumadian, Henan 463000, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xin Bao
- School of Horticulture and Plant Protection, Yangzhou University, College of Guangling, Yangzhou, Jiangsu 225009, China
| | - Jianjun Wang
- School of Horticulture and Plant Protection, Yangzhou University, College of Guangling, Yangzhou, Jiangsu 225009, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaojun Chen
- School of Horticulture and Plant Protection, Yangzhou University, College of Guangling, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
13
|
Du Y, Wang Q, Yang G, Han F. Determination of 43 pesticide residues in intact grape berries (Vitis Vinifera L.) by using an ultrasound-assisted acetonitrile extraction method followed by LC–MS/MS. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Li H, Zhong Q, Wang M, Luo F, Wang X, Zhou L, Zhang X. Residue degradation, transfer and risk assessment of pyriproxyfen and its metabolites from tea garden to cup by ultra performance liquid chromatography tandem mass spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3983-3993. [PMID: 34994973 DOI: 10.1002/jsfa.11746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/26/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Tea is one of the most popular drinks in the world. The growth of tea plant is inseparable from the control of pesticides on diseases and pests. Pyriproxyfen is used as a pesticide substitute to control insect pests in tea gardens, but little is known about its residue degradation. Here, we performed an integrative study of the degradation and metabolism of pyriproxyfen from the tea garden to the cup. RESULTS The dissipation half-life of pyriproxyfen during tea growth was 2.74 days, and five metabolites PYPAC, PYPA, DPH-Pyr, 5''-OH-Pyr, and 4'-OH-Pyr were generated. The total processing factors for pyriproxyfen in green tea and black tea were 2.41-2.83 and 2.77-3.70, respectively. The residues of pyriproxyfen and its metabolites were affected by different processing steps. The total leaching rates of pyriproxyfen from green tea and black tea into their infusions were 9.8-12.3% and 5.3-13.8%, respectively. The leaching rates of the five metabolites were higher than that of pyriproxyfen and increased the intake risk. CONCLUSION To ensure safe consumption, the recommended maximum residue limit value of pyriproxyfen in tea can be set to 5 mg kg-1 and the pre-harvest interval can be set to 5 days. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongxia Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Zhong
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xinru Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
15
|
Liu H, Shan M, Liu M, Song J, Chen K. Assessment of the eco-toxicological effects in zoxamide polluted soil amended with fertilizers-An indoor evaluation. CHEMOSPHERE 2022; 301:134630. [PMID: 35447215 DOI: 10.1016/j.chemosphere.2022.134630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Zoxamide is a benzamide fungicide applied to control diseases caused by oomycete fungi. Fertilizers are important agricultural supplies to adjust soil properties and increase nutrition. To investigate the impact of zoxamide and seven fertilizers urea, phosphate fertilizer, potash fertilizer, compound fertilizer, organic fertilizer, vermicompost and soya bean cakes on the soil environment, the enantioselective dissipation characteristics of zoxamide, soil enzyme activities, pH and N, P nutrition changes were comprehensively analyzed in our present study. The enantioseparation method was successfully validated to quantify the zoxamide enantiomers in soil by HPLC using Chiral NQ (2)-RH column. Our results demonstrated that the R-(-)- and S-(+)-zoxamide half dissipated in the range of 10.88-17.81 and 8.05-14.41 days, respectively. S-(+)-zoxamide disappeared faster in soil. The vermicompost accelerated the dissipation rate of S-(+)-zoxamide, while urea, phosphate, organic and vermicompost fertilizer increased the dissipation selectivity. Zoxamide and fertilizers other than urea caused soil acidification during 80 days. Zoxamide was beneficial to soil catalase, instead inhibited soil urease, dehydrogenase activities and available phosphorus content. No significant effects on sucrase activity and available nitrogen content were found by zoxamide. Vermicompost and soya bean cakes had lasting and outstanding performance in efficiently improving soil enzyme activity and N, P nutrition. The comprehensive understanding of the ecological impact induced by chiral pesticide enantiomers and fertilizers on soil is vital to ensure the sustainable development and safety of agricultural production.
Collapse
Affiliation(s)
- Hui Liu
- Department of Plant Protection, College of Agronomy, Northeast Agricultural University, Harbin, 150030, China.
| | - Mei Shan
- Department of Plant Protection, College of Agronomy, Northeast Agricultural University, Harbin, 150030, China.
| | - Mengqi Liu
- Department of Plant Protection, College of Agronomy, Northeast Agricultural University, Harbin, 150030, China.
| | - Jiaqi Song
- Department of Plant Protection, College of Agronomy, Northeast Agricultural University, Harbin, 150030, China.
| | - Kuiyuan Chen
- Department of Plant Protection, College of Agronomy, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
16
|
Particularities of Fungicides and Factors Affecting Their Fate and Removal Efficacy: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14074056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic fungicide use has increased over the last decades, despite the susceptibility of resistance development and the side effects to human health and the environment. Although herbicides and insecticides are detected more frequently in environmental samples, there are many fungicides that have the ability to enter water bodies due to their physicochemical properties and their increasing use. Key factors affecting fungicide fate in the environment have been discussed, including the non-target effects of fungicides. For instance, fungicides are associated with the steep decline in bumblebee populations. Secondary actions of certain fungicides on plants have also been reported recently. In addition, the use of alternative eco-friendly disease management approaches has been described. Constructed Wetlands (CWs) comprise an environmentally friendly, low cost, and efficient fungicide remediation technique. Fungicide removal within CWs is dependent on plant uptake and metabolism, absorption in porous media and soil, hydrolysis, photodegradation, and biodegradation. Factors related to the efficacy of CWs on the removal of fungicides, such as the type of CW, plant species, and the physicochemical parameters of fungicides, are also discussed in this paper. There are low-environmental-risk fungicides, phytohormones and other compounds, which could improve the removal performance of CW vegetation. In addition, specific parameters such as the multiple modes of action of fungicides, side effects on substrate microbial communities and endophytes, and plant physiological response were also studied. Prospects and challenges for future research are suggested under the prism of reducing the risk related to fungicides and enhancing CW performance.
Collapse
|
17
|
Li M, Di X, Jiang Z. Enantioselective separation, analysis and stereoselective dissipation of the chiral pesticide cloquintocet-mexyl using a modified QuEChERS method by high-performance liquid chromatography tandem mass spectrometry. CHEMOSPHERE 2022; 291:133084. [PMID: 34848224 DOI: 10.1016/j.chemosphere.2021.133084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
An efficient and novel enantioseparation method was successfully developed and validated to quantify the enantiomers of cloquintocet-mexyl in soil, millet, enoki mushroom, oilseed rape, and watermelon using a modified QuEChERS technique combined with HPLC-MS/MS. This method showed reliable performances for determining both enantiomers of cloquintocet-mexyl in all five matrices. The limits of detection and limits of quantification were in the range of 0.06-0.15 μg kg-1 and 0.2-0.5 μg kg-1, respectively. Good linearities were obtained with correlation coefficients ≥0.9954. The mean recoveries were between 84.1% and 111.5%, with relative standard deviations ranging from 1.2% to 9.8% at three spiked levels. Additionally, the study of stereoselective dissipation of cloquintocet-mexyl in soil indicated that (R)-cloquintocet-mexyl was preferentially degraded. This work is the first to describe a chiral analytical method and enantioselective behavior of cloquintocet-mexyl and provide basic data for the risk evaluation of cloquintocet-mexyl in food and environmental safety.
Collapse
Affiliation(s)
- Meng Li
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Xin Di
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, People's Republic of China.
| | - Zhen Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, People's Republic of China.
| |
Collapse
|
18
|
Li Y, Nie J, Zhang J, Xu G, Zhang H, Liu M, Gao X, Shah BSA, Yin N. Chiral fungicide penconazole: Absolute configuration, bioactivity, toxicity, and stereoselective degradation in apples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152061. [PMID: 34861299 DOI: 10.1016/j.scitotenv.2021.152061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Traditional evaluation of chiral pesticides can lead to inaccurate results, as their enantiomers may show different properties. Penconazole, a chiral triazole fungicide with two enantiomers, is widely applied to protect against phytopathogens. In this study, its absolute configuration, bioactivity, ecotoxicity, and stereoselective degradation were investigated at the enantiomeric level in detail. The absolute configuration of the two enantiomers (R-(+)-penconazole and S-(-)-penconazole) was first confirmed by electronic circular dichroism (ECD), and their enantioseparation method was developed and optimized using UPLC-MS/MS. S-(-)-penconazole showed high bioactivity, as its fungicidal activity against four target phytopathogens (Alternaria alternate f. sp. mali, Botryosphaeria berengeriana f. sp. piricola, Colletotrichum gloeosporioides, and Fusarium oxysporum) was 1.8-4.4 times higher than that of R-(+)-penconazole. The results of an acute toxicity test showed that the LC50 values of S-(-)-penconazole against Daphnia magna were 32.5 times higher than those of R-(+)-penconazole at 24 h during the test period. Stereoselective degradation behaviors were found in nonbagging and bagging Fuji apples collected from three major apple-producing regions in China, with half-lives of 23.5-51.6 d (nonbagging treatment) and 23.0-57.5 d (bagging treatment) for R-(+)-penconazole and 41.1-60.9 d (nonbagging treatment) and 52.5-91.2 d (bagging treatment) for S-(+)-penconazole, respectively. This study provided new insights into the bioactivity, ecotoxicity, and stereoselective degradation of penconazole enantiomers. The above results also emphasized the importance of risk assessments of chiral pesticides at the enantiomeric level.
Collapse
Affiliation(s)
- Ye Li
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao 266109, China; National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao 266109, China; Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China.
| | - Jia Zhang
- Xuzhou Institute of Agricultural Sciences of Xuhuai District of Jiangsu Province, 221000, China.
| | - Guofeng Xu
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Hui Zhang
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Mingyu Liu
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Xiaoqin Gao
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Bacha Syde Asim Shah
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Ning Yin
- Center for Modern Agricultural Development Service, 033000, China
| |
Collapse
|
19
|
Zhang H, Yang G, Bao Z, Jin Y, Wang J, Chen J, Qian M. Stereoselective effects of fungicide difenoconazole and its four stereoisomers on gut barrier, microbiota, and glucolipid metabolism in male mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150454. [PMID: 34818760 DOI: 10.1016/j.scitotenv.2021.150454] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Difenoconazole is a commonly used triazole fungicide that consists of four stereoisomers [(2S,4S)-, (2S,4R)-, (2R,4R)-, and (2R,4S)-isomers] with different bioactivity. For example, the toxicity of the (2R,4S)-isomer to fish is approximately seven times higher than that of the (2S,4S)-isomer. However, the stereoselective toxic effects of difenoconazole stereoisomers on mammals have received little attention. In the present study, adult male mice were orally treated with a mixture of the four stereoisomers or each stereoisomer individually (0, 30, or 100 mg/kg/d) by gavage for 28 days. Pathological staining of the liver sections showed that the (2R,4R)-isomer caused lipid droplet accumulation. The mixture or each individual stereoisomers decreased the levels of amino acids and acyl-carnitine in serum. Moreover, the (2S,4R)-, (2R,4R)-, and (2R,4S)-isomers affected intestinal permeability, causing decreases in mucus secretion and tight junction protein expression in colon. Analysis of the gut microbiota composition showed that the stereoisomers caused decreases of OTU numbers and observed species at different levels. Interestingly, difenoconazole and its four stereoisomers reduced the relative abundance of Bacteroidetes at the phylum level and some short-chain fatty acid (SCFA)-producing bacteria. Taking the findings together, 2R-difenoconazole with strong bioactivity against pathogenic fungi also had significant effects in mammals, disrupting hepatic lipid metabolism, intestinal permeability, and gut microbiota. It is concluded that the health risks of the four difenoconazole stereoisomers to mammals should not be overlooked.
Collapse
Affiliation(s)
- Hu Zhang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guiling Yang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jianmei Wang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Chen
- Zhejiang Medicine Co., Ltd., Shaoxing 312366, China
| | - Mingrong Qian
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
20
|
An X, Pan X, Li R, Jiang D, Dong F, Zhu W, Xu J, Liu X, Wu X, Zheng Y. Enantioselective monitoring chiral fungicide mefentrifluconazole in tomato, cucumber, pepper and its pickled products by supercritical fluid chromatography tandem mass spectrometry. Food Chem 2021; 376:131883. [PMID: 34971887 DOI: 10.1016/j.foodchem.2021.131883] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
A fast, effective, and environmental-friendly method was developed for enantioseparation and analysis of mefentrifluconazole in vegetables based on supercritical fluid chromatography tandem mass spectrometry. The enantioselective behaviors of mefentrifluconazole enantiomers in tomato, cucumber, and pepper in the greenhouse, and pickled cucumber and pepper during processing were investigated. Mefentrifluconazole enantiomers could obtain baseline separation within 2 min. The average recoveries of all matrices ranged from 78.4% to 119.0%, with relative standard deviations less than 16.8% for two enantiomers. S-(+)-mefentrifluconazole was preferentially degraded in pepper, while there was no enantioselectivity in tomato and cucumber under field conditions. During processing, S-(+)-mefentrifluconazole was reduced preferentially than R-(-)-mefentrifluconazole in pickled cucumber and cucumber brine. Inversely, R-(-)-mefentrifluconazole degraded faster than S-(+)-mefentrifluconazole in pepper brine. But, no obvious enantioselectivity was observed in pickled pepper. The result of this study could contribute to a more accurate dietary risk assessment of mefentrifluconazole in vegetables and processed products.
Collapse
Affiliation(s)
- Xiaokang An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Runan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Duoduo Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
21
|
Abou Zeid MI, Awad MK, Melki KC, Jawdah YA, Jammoul AM. Pesticides residues on Loquat: A minor crop in Lebanon. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Lin Z, Zhang Y, Zhao Q, Chen A, Jiao B. Ultrasound-assisted dispersive liquid-phase microextraction by solidifying L-menthol-decanoic acid hydrophobic deep eutectic solvents for detection of five fungicides in fruit juices and tea drinks. J Sep Sci 2021; 44:3870-3882. [PMID: 34418890 DOI: 10.1002/jssc.202100590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/13/2023]
Abstract
An ecofriendly and efficient ultrasound-assisted deep eutectic solvents dispersive liquid-phase microextraction by solidifying the deep eutectic solvents-rich phase was developed to determine azoxystrobin, fludioxonil, epoxiconazole, cyprodinil, and prochloraz in fruit juices and tea drinks by high-performance liquid chromatography. A varieties of environmental hydrophobic deep eutectic solvents serving as extraction agents were prepared using L-menthol and decanoic acid as hydrogen-bond acceptor and hydrogen-bond donor, respectively. The deep eutectic solvents were ultrasonically dispersed in sample solutions, solidified in a freezer and easily harvested. The main variables were optimized by one-factor-at-a-time and response surface test. The new method performs well with relative recovery of 71.75-109.40%, linear range of 2.5-5000 μg/L (r ≥ 0.9968), detection limit of 0.75-8.45 μg/L, quantification limit of 2.5-25 μg/L,, and inter- and intraday relative standard deviations below 13.53 and 14.84%, respectively. As for the extraction mechanism, deep eutectic solvents were disposed into many fine particles in the solution and captured the analytes based on the changes of particle size and quantity in deep eutectic solvents droplets after extraction. The environmental method can successfully detect fungicide residues in real fruit juices and tea drinks.
Collapse
Affiliation(s)
- Zhihao Lin
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing, P. R. China.,Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China
| | - Yaohai Zhang
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing, P. R. China.,Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China
| | - Qiyang Zhao
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing, P. R. China.,Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China
| | - Aihua Chen
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing, P. R. China.,Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China
| | - Bining Jiao
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing, P. R. China.,Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China
| |
Collapse
|
23
|
Dong C, Zhou J, Zuo W, Li Z, Li J, Jiao B. Enantioselective determination of phenthoate enantiomers in plant-origin matrices using reversed-phase high-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 2021; 36:e5229. [PMID: 34414593 DOI: 10.1002/bmc.5229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 11/06/2022]
Abstract
Phenthoate is a chiral organophosphate pesticide with a pair of enantiomers which differ in toxicity, behavior and insecticidal activity, and its acute toxicity on human health owing to the inhibition of acetylcholinesterase highlights the need for enantioselective detection of enantiomers. Therefore, this study aimed to establish a simple rapid method for separation and detection of phenthoate enantiomers in fruits, vegetables and grains. The enantiomers were separated using reversed-phase high-performance liquid chromatography-tandem mass spectrometry for the first time. Rapid chiral separation (within 9 min) of the target compound was achieved on a chiral OJ-RH column with the mobile phase of methanol-water = 85:15(v/v), at a flow rate of 1 ml/min and a column temperature of 30°C. Acetonitrile and graphitized carbon black were used as the extractant and sorbent for pretreatment, respectively. This method provides excellent linearity (correlation coefficient ≥0.9986), high sensitivity (limit of quantification 5 μg/kg and limit of detection <0.25 μg/kg), satisfactory mean recoveries (76.2-91.0%) and relative standard deviation (intra-day RSDs ranged from 2.0 to 7.9% and inter-day RSDs ranged from 2.4 to 8.4%). In addition, a field trial to explore the stereoselective degradation of phenthoate enantiomers in citrus showed that (-)-phenthoate degraded faster than its antipode, resulting in the relative accumulation of (+)-phenthoate.
Collapse
Affiliation(s)
- Chao Dong
- Citrus Research Institute, Southwest University, Chongqing, China.,Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Jie Zhou
- Citrus Research Institute, Southwest University, Chongqing, China.,Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Wei Zuo
- Citrus Research Institute, Southwest University, Chongqing, China.,Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Zhixia Li
- Citrus Research Institute, Southwest University, Chongqing, China.,Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Jing Li
- Citrus Research Institute, Southwest University, Chongqing, China.,Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Bining Jiao
- Citrus Research Institute, Southwest University, Chongqing, China.,Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, China
| |
Collapse
|
24
|
Wang Y, Song Q, Wang F, Tang S, Pan T, Zhang Y, Hu D. Bagging and non-bagging treatment on the dissipation and residue of four mixed application pesticides on banana fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3472-3480. [PMID: 33270234 DOI: 10.1002/jsfa.10978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bananas are vulnerable to disease and insect pests after producing fruit. In order to increase the yield and produce high-quality fruit, the insecticides and fungicides are mixed and applied 2-3 times on banana, then the fruit is bagged. Buprofezin, imidacloprid, difenoconazole, and pyraclostrobin are widely used on banana. However, there is a lack of research on the effect of fruit bagging on pesticide dissipation and residues on bananas. RESULTS A versatile liquid chromatography-tandem mass spectrometry method with modified QuEChERS sample preparation has been developed for the determination of buprofezin, imidacloprid, difenoconazole, and pyraclostrobin in bananas. The recovery of four pesticides was satisfactory (74.96-98.63%) with reasonable relative standard deviation (≤ 8.78%). In Hainan and Guangzhou, the half-lives of the four pesticides were 4.68-13.9 and 5.63-20.4 days in non-bagged and bagged bananas, respectively. The significance analysis of the half-lives in the two sites showed that the dissipation rates of the three pesticides (imidacloprid, difenoconazole, pyraclostrobin) on whole bananas were significantly decreased by the effect of bagging (P < 0.05). However, there was no significant difference in the degradation of half-life of buprofezin under bagging and without bagging (P > 0.05). CONCLUSION The high vapor pressure and the non-systemic property cause buprofezin to evaporate and dissipate the fastest among the four studied pesticides. The ultimate residues of four pesticides in bananas are lower than the maximum residue limits in China after three times of mixed applications under bagging or non-bagging. The results provide scientific data for evaluating the safety of four pesticides in banana bagging. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Qingmei Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Fei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shouying Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Tingtiao Pan
- College of Biological Sciences and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Yuping Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
25
|
Sun R, Yang W, Li Y, Sun C. Multi-residue analytical methods for pesticides in teas: a review. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03765-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Yang F, Zhang X, Shao J, Xiong W, Ji Y, Liu S, Tang G, Deng H, Wang Y. A rapid method for the simultaneous stereoselective determination of the triazole fungicides in tobacco by supercritical fluid chromatography-tandem mass spectrometry combined with pass-through cleanup. J Chromatogr A 2021; 1642:462040. [PMID: 33721813 DOI: 10.1016/j.chroma.2021.462040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/19/2022]
Abstract
This work presents a simple, rapid and green chiral analysis method for five triazole fungicides (penconazole, tebuconazole, triadimefon, myclobutanil, and triadimenol) in tobacco, by which the samples were cleaned up by the novel pass-through solid phase extraction and subsequently the stereoisomers were separated and determined by the supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS). Optimized separation of the stereoisomers was achieved on an ACQUITY UPC2 Trefoil AMY 1 column within 6 min. Under fortified concentration levels of 0.1, 0.5 and 2.0 mg/kg, the mean recoveries were 82.8-106.6%, the intra-day relative standard deviations (RSDs) were 1.1-6.6%, and the inter-day RSDs were 2.5-5.6%. The correlation coefficient was greater than 0.9926 for all studied analytes within the range of 10-500 ng/mL. The limits of detection (LODs) for all stereoisomers ranged from 0.26 μg/kg to 3.24 μg/kg. The established method was subsequently successfully applied to analyze authentic samples, confirming that this method is a novel, rapid and environmentally friendly method for the stereoselective separation of triazole fungicides in tobacco.
Collapse
Affiliation(s)
- Fei Yang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
| | - Xiaotao Zhang
- China tobacco Guizhou Industrial Co. Ltd, Guiyang 550009, China
| | - Jimin Shao
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu 610041, China
| | - Wei Xiong
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu 610041, China
| | - Yuan Ji
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
| | - Shanshan Liu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
| | - Gangling Tang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
| | - Huimin Deng
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
| | - Ying Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| |
Collapse
|
27
|
Liu Z, Chen D, Han J, Chen Y, Zhang K. Stereoselective degradation behavior of the novel chiral antifungal agrochemical penthiopyrad in soil. ENVIRONMENTAL RESEARCH 2021; 194:110680. [PMID: 33385389 DOI: 10.1016/j.envres.2020.110680] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Penthiopyrad is a chiral carboxamide fungicide with a broad spectrum of fungicidal activity. However, there is no report on the analysis of the enantiomers of penthiopyrad and their environmental behavior. Soil is an important carrier for pesticides to affect the environment. Therefore, this study aimed to investigate the absolute configuration, stereoselective degradation, configuration stability and potential metabolites of this agrochemical in soil under different laboratory conditions. R-(-)-penthiopyrad and S-(+)-penthiopyrad were identified by the electronic circular dichroism method. Regarding the racemic analyte, the degradation half-lives of the stereoisomers ranged from 38.9 to 97.6 days, the S-(+)-stereoisomer degraded preferentially in four types of Chinese soil. However, enantiopure R-(-)-penthiopyrad degraded faster than its antipode, a finding that might be related to the microbial activity in soil. The organic matter (OM) content influenced the stereoselective degradation of rac-penthiopyrad. No configuration conversion was observed in both enantiopure analyte degradation processes. One possible metabolite, 753-A-OH, was detected in the treated soil samples, and the degradation pathway might be a hydroxylation reaction. This is the first report of the absolute configuration of penthiopyrad stereoisomers and the first comprehensive evaluation of the stereoselective degradation of penthiopyrad in Chinese soil. Stereoselective degradation of rac-penthiopyrad was observed in the four types of soil. And the stereoselectivity might be inhibited by OM. This study provides more accurate data to investigate the environmental behavior of penthiopyrad at the stereoisomer level.
Collapse
Affiliation(s)
- Zhengyi Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Dan Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Jiahua Han
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Ye Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Kankan Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
28
|
Jagirani MS, Ozalp O, Soylak M. New Trend in the Extraction of Pesticides from the Environmental and Food Samples Applying Microextraction Based Green Chemistry Scenario: A Review. Crit Rev Anal Chem 2021; 52:1343-1369. [PMID: 33560139 DOI: 10.1080/10408347.2021.1874867] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focused on the green microextraction methods used for the extraction of pesticides from the environmental and food samples. Microextraction techniques have been explored and applied in various fields of analytical chemistry since its beginning, as evinced by the numerous reviews published. The success of any technique in science and technology is measured by the simplicity, environmentally friendly, and its applications; and the microextraction technique is highly successive. Deliberations were attentive to studies where efforts have been made to validate the methods through the inter-laboratory comparison study to assess the analytical performance of microextraction techniques against conventional methods. Succinctly, developed microextraction methods are shown to impart significant benefits over conventional techniques. Provided that the analytical community continues to put forward attention and resources into the growth and validation of the microextraction technique, a promising future for microextraction is forecasted.
Collapse
Affiliation(s)
- Muhammad Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Ozgur Ozalp
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
29
|
Musarurwa H, Tavengwa NT. Emerging green solvents and their applications during pesticide analysis in food and environmental samples. Talanta 2021; 223:121507. [DOI: 10.1016/j.talanta.2020.121507] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022]
|
30
|
Bielská L, Hale SE, Škulcová L. A review on the stereospecific fate and effects of chiral conazole fungicides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141600. [PMID: 33182213 DOI: 10.1016/j.scitotenv.2020.141600] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
The production and use of chiral pesticides are triggered by the need for more complex molecules capable of effectively combating a greater spectrum of pests and crop diseases, while sustaining high production yields. Currently, chiral pesticides comprise about 30% of all pesticides in use; however, some pesticide groups such as conazole fungicides (CFs) consist almost exclusively of chiral compounds. CFs are produced and field-applied as racemic (1:1) mixtures of two enantiomers (one chiral center in the molecule) or four diastereoisomers, i.e., two pairs of enantiomers (two chiral centers in the molecule). Research on the stereoselective environmental behavior and effects of chiral pesticides such as CFs has become increasingly important within the fields of environmental chemistry and ecotoxicology. This is motivated by the fact that currently, the fate and effects of chiral pesticides such as CFs that arise due to their stereoselectivity are not fully understood and integrated into risk assessment and regulatory decisions. In order to fill this gap, a summary of the state-of-the-art literature related to the stereospecific fate and effects of CFs is needed. This will also benefit the agrochemistry industry as they enhance their understanding of the environmental implications of CFs which will aid future research and development of chiral products. This review provides a collection of >80 stereoselective studies for CFs related to chiral analytical methods, fungicidal activity, non-target toxicity, and behavior of this broadly used pesticide class in the soil environment. In addition, the review sheds more light on mechanisms behind stereoselectivity, considers possible agricultural and environmental implications, and suggests future directions for the safe use of chiral CFs and the reduction of their environmental footprint.
Collapse
Affiliation(s)
- Lucie Bielská
- Recetox, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
| | - Sarah E Hale
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Lucia Škulcová
- Recetox, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| |
Collapse
|
31
|
Sun H, Luo F, Zhang X, Zhou L, Lou Z, Chen Z. Residue analysis and dietary exposure risk assessment of acibenzolar-S-methyl and its metabolite acibenzolar acid in potato, garlic, cabbage, grape and tomato. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111178. [PMID: 32905931 DOI: 10.1016/j.ecoenv.2020.111178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Acibenzolar-S-methyl (ASM) is one of the most effective plant resistance activators and protects against a broad spectrum of fungal, bacterial and viral pathogens. A rapid, efficient and high-throughput analysis method for ASM and its metabolite acibenzolar acid in fruits and vegetables was developed using potato, garlic, cabbage, grape and tomato as representative commodities by modified QuEChERS and UPLC-MS/MS. The modified procedure showed satisfying recoveries (70-108%) fortified in the range of 0.01-1 mg/kg with relative standard deviations (RSDs) lower than 17.7%. With the established analytical method, the dietary risk of ASM in fruits and vegetables from Chinese markets were further monitored using risk quotient (RQ) method. The RQ value based on ASM residue in China are far less than 1, elucidating that the potential health risk induced by ASM ingestion for Chinese population is not significant. Comparing the residue and risk assessment results of ASM in agricultural products in China to those in Codex, the maximum residue limits (MRLs) for ASM on garlic, cabbage and tomato established by CAC (Codex Alimentarius Commission) can be safely adopted in China, whereas the MRLs on potato and grape in China should be proposed as 0.01 mg/kg.
Collapse
Affiliation(s)
- Hezhi Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Zhengyun Lou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China.
| |
Collapse
|
32
|
Wang Z, Liu S, Zhao X, Tian B, Sun X, Zhang J, Gao Y, Shi H, Wang M. Enantioseparation and stereoselective dissipation of the novel chiral fungicide pydiflumetofen by ultra-high-performance liquid chromatography tandem mass spectrometry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111221. [PMID: 32911181 DOI: 10.1016/j.ecoenv.2020.111221] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Pydiflumetofen is a novel and efficient broad-spectrum chiral fungicide consisting of a pair of enantiomers. A simple and sensitive chiral analytical method was established to determine the enantiomers of this chiral fungicide in food and environmental samples by ultra-high-performance liquid chromatography tandem triple quadrupole mass spectrometry (UHPLC-MS/MS) using QuEChERS method coupled with octadecylsilane-dispersive solid-phase extraction (C18-dSPE) as extraction procedure. The specific optical rotation and the absolute configuration of the enantiomers were identified by polarimetry and electronic circular dichroism (ECD). The elution order of the pydiflumetofen enantiomers on Lux Cellulose-2 was S-(-)-pydiflumetofen and R-(+)-pydiflumetofen. The average recoveries of eleven matrices ranged from 71.3% to 107.4%. The intraday relative standard deviations (RSDs) were less than 11.8%, and the interday RSDs were less than 12.6% for the two enantiomers. Stereoselective dissipation in pakchoi and soil were observed: S-(-)-pydiflumetofen was degraded faster than R-(+)-pydiflumetofen in pakchoi, causing the enantiomer fraction (EF) of the enantiomers to change from 0.50 to 0.42 in 7 days. However, R-(+)-pydiflumetofen was degraded faster than S-(-)-pydiflumetofen in soil, causing the EF of the enantiomers to change from 0.49 to 0.52 in 21 days. This study provides a method for monitoring pydiflumetofen enantiomer residues, which is crucial for improving risk assessments and the development of chiral pesticides.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiling Liu
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuejun Zhao
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baohua Tian
- Fungicide Development Manager, Syngenta (China) Investment Co.,Ltd, Shanghai, 200120, China
| | - Xiaofang Sun
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingying Gao
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
33
|
Yang Y, Liu X, Zhang Q, Chen Y, Zhang S, Lu P, Hu D. Dissipation, Processing, Leaching, and Safety Evaluation of Flonicamid and Its Metabolites in Tea. J AOAC Int 2020; 103:1441-1450. [PMID: 33247740 DOI: 10.1093/jaoacint/qsaa052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Tea is a popular traditional non-alcoholic beverage worldwide. Flonicamid is a selective systemic pyridine carboxamide insecticide that is widely used for controlling tea leafhopper in tea. OBJECTIVE The leaching rates, dissipation dynamics, and residue levels of flonicamid and its metabolites in tea leaves during processing and transferring were investigated to validate the safe risk in tea and transfer behavior using high performance liquid chromatography-tandem mass spectrometry with a convenient pretreatment method. METHOD The extracting method and immersion rate experiments were optimized by single factor analysis and orthogonal tests. The acetonitrile extracting solvent with 0.5% formic acid was used and optimal leaching conditions were obtained with a regime of 15 min immersion time, 100°C temperature, three immersions and a tea-to-water ratio of 1:50. RESULTS Average recoveries in processed green tea and infusions were 80.85-98.75% with relative standard deviations <5.87%. LODs and LOQs of flonicamid, 4-trifluoromethylnicotinic acid (TFNA), N-(4-trifluoromethylnicotinoyl) glycine (TFNG), and 4-trifluoromethylnicotinamide (TFNA-AM) were 0.0013-0.350 and 0.004-1 μg/g, respectively. The processing factor of flonicamid was 0.36-5.52 during green tea manufacture. The leaching rates were 22.9-97.4% from processed tea to infusion. CONCLUSIONS The risk of long-term and short-term dietary intake of flonicamid was safe in tea infusions with the risk quotient (RQ) values <1 for the Chinese consumer. This work may provide guidance for safe and reasonable consumption of flonicamid in tea in China. HIGHLIGHTS The suitable leaching factors of flonicamid and its metabolites in tea infusions were optimized by orthogonal experimentation for the first time.
Collapse
Affiliation(s)
- Ya Yang
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| | - Xiangwu Liu
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| | - Qingtao Zhang
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| | - Ya Chen
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| | - Sumei Zhang
- Linyi Academy of Agricultural Sciences, Linyi, Shandong 276012, China
| | - Ping Lu
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| | - Deyu Hu
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| |
Collapse
|
34
|
Zhang X, Sun H, Wang X, Li H, Zhong Q, Luo F, Chen Z. Enantioselective residue analysis of oxathiapiprolin and its metabolite in tea and other crops by ultra-high performance liquid chromatography-tandem mass spectrometry. J Sep Sci 2020; 43:3856-3867. [PMID: 32776703 DOI: 10.1002/jssc.202000457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/28/2022]
Abstract
Oxathiapiprolin is the first chiral piperidinyl thiazole isoxazoline fungicide developed to control downy mildew and other diseases, and there were no prior reports on its enantiomeric residue. In this study, a modified quick, easy, cheap, effective, rugged, and safe extraction and purification method followed by ultra-high performance liquid chromatography-tandem mass spectrometry determination was first developed and validated for the residue analysis of oxathiapiprolin enantiomers and its metabolite IN-E8S72 in green tea and other crops. Oxathiapiprolin enantiomers and IN-E8S72 were separated on a chiral Lux Cellulose-3 column with the use of 0.1% formic acid in acetonitrile and 5 mmol/L ammonium acetate in water as mobile phases. IN-E8S72 was eluted first, followed by (-)-oxathiapiprolin, and then (+)-oxathiapiprolin. The recoveries ranged from 53.3 to 125.3% with relative standard deviations ranging from 1.4 to 16.0%. The limits of quantification for (-)-oxathiapiprolin and (+)-oxathiapiprolin were 0.005 mg/kg in romaine lettuce, head cabbage, potato, grape, and garlic, 0.01 mg/kg in soybean and pea, and 0.025 mg/kg in green tea and dry pepper. The limits of quantification of IN-E8S72 were twice those of (-)-oxathiapiprolin. Screening results with real market samples indicated that there was no enantiomeric excess in the oxathiapiprolin residue in romaine lettuce.
Collapse
Affiliation(s)
- Xinzhong Zhang
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, P. R. China
| | - Hezhi Sun
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, P. R. China
| | - Xinru Wang
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, P. R. China
| | - Hongxia Li
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, P. R. China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qing Zhong
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, P. R. China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Fengjian Luo
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, P. R. China
| | - Zongmao Chen
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, P. R. China
| |
Collapse
|
35
|
Alkan Uçkun A, Barım Öz Ö. Acute exposure to the fungicide penconazole affects some biochemical parameters in the crayfish (Astacus leptodactylus Eschscholtz, 1823). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35626-35637. [PMID: 32601870 DOI: 10.1007/s11356-020-09595-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Penconazole is one of the most widely used fungicides all over the world, and since it spreads to large environments, its toxic effects on non-target organisms are of great concern. The toxic effects of penconazole on crayfish (Astacus leptodactylus), which is a bioindicator in freshwater ecosystems and consumed economically, are not known. Therefore, in this study, the purpose was to contribute to the literature on the potential harmful effects of penconazole on a non-target species, Astacus leptodactylus. For this aim, the acute toxicity (96 h) of penconazole was examined. The 96-h LC50 value of penconazole was detected as 18.7 mg L-1. Four concentrations of penconazole (18.7 mg L-1, 9.35 mg L-1, 4.68 mg L-1, 2.34 mg L-1) were applied to crayfish for 96 h. The results showed that penconazole had destructive effects on esterase mechanisms by inhibiting acetylcholinesterase (AChE) and carboxylesterase (CaE) activities. Significant increases were observed in all antioxidant parameters (superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), reduced glutathione (GSH), malondialdehyde (MDA)) in all doses except the lowest concentration (2.34 mg L-1). All adenosine triphosphatase (ATPase) activities (Na+/K+-ATPase, Mg2+-ATPase, Ca2+-ATPase, total ATPase) had significant dose-related inhibition in both gill and muscle tissues. In summary, our findings show that acute penconazole administration to crayfish causes significant toxic effects on esterase, antioxidative parameters, and metabolic enzymes.
Collapse
Affiliation(s)
- Aysel Alkan Uçkun
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Altınşehir neighborhood, Ataturk Boulevard, No. 1, Central Campus, 02040, Adıyaman, Turkey.
| | - Özden Barım Öz
- Department of Physiology, Faculty of Aquaculture, Fırat University, Elazığ, Turkey
| |
Collapse
|
36
|
Liu Q, Dong F, Xu J, Liu X, Wu X, Li R, Jiang D, Wu X, Liu Y, Zheng Y. Enantioseparation and dissipation monitoring of oxathiapiprolin in grape using supercritical fluid chromatography tandem mass spectrometry. J Sep Sci 2020; 43:4077-4087. [DOI: 10.1002/jssc.202000668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Qianyu Liu
- College of Plant Protection Hebei Agricultural University Baoding P. R. China
- Institute of Plant Protection Chinese Academy of Agricultural Sciences State Key Laboratory for Biology of Plant Diseases and Insect Pests Beijing P. R. China
| | - Fengshou Dong
- Institute of Plant Protection Chinese Academy of Agricultural Sciences State Key Laboratory for Biology of Plant Diseases and Insect Pests Beijing P. R. China
| | - Jun Xu
- Institute of Plant Protection Chinese Academy of Agricultural Sciences State Key Laboratory for Biology of Plant Diseases and Insect Pests Beijing P. R. China
| | - Xingang Liu
- Institute of Plant Protection Chinese Academy of Agricultural Sciences State Key Laboratory for Biology of Plant Diseases and Insect Pests Beijing P. R. China
| | - Xiaohu Wu
- Institute of Plant Protection Chinese Academy of Agricultural Sciences State Key Laboratory for Biology of Plant Diseases and Insect Pests Beijing P. R. China
| | - Runan Li
- Institute of Plant Protection Chinese Academy of Agricultural Sciences State Key Laboratory for Biology of Plant Diseases and Insect Pests Beijing P. R. China
| | - Duoduo Jiang
- Institute of Plant Protection Chinese Academy of Agricultural Sciences State Key Laboratory for Biology of Plant Diseases and Insect Pests Beijing P. R. China
| | - Xiuming Wu
- Institute of Plant Protection Chinese Academy of Agricultural Sciences State Key Laboratory for Biology of Plant Diseases and Insect Pests Beijing P. R. China
| | - Yingchao Liu
- College of Plant Protection Hebei Agricultural University Baoding P. R. China
| | - Yongquan Zheng
- Institute of Plant Protection Chinese Academy of Agricultural Sciences State Key Laboratory for Biology of Plant Diseases and Insect Pests Beijing P. R. China
| |
Collapse
|
37
|
Musarurwa H, Tavengwa NT. Deep eutectic solvent-based dispersive liquid-liquid micro-extraction of pesticides in food samples. Food Chem 2020; 342:127943. [PMID: 33041169 DOI: 10.1016/j.foodchem.2020.127943] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/01/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
Deep eutectic solvents are versatile, green and new generation solvents that can be used during dispersive liquid-liquid micro-extraction techniques for pesticides. They have tunable physico-chemical properties that can be easily changed by varying the ratios of hydrogen bond donors and hydrogen bond acceptors in their structures. Deep eutectic solvents are non-flammable, chemically and thermally stable solvents with low vapour pressure. Thus, they have characteristics that are similar to those of ionic liquids. However, they have simpler synthetic procedures, less expensive and are more biodegradable than ionic liquids. One of the limitations of deep eutectic solvents is their toxicity to the environment but they are less toxic than ionic liquids. This paper gives a focused and comprehensive recent review on the applications of deep eutectic solvents during dispersive liquid-liquid micro-extraction of pesticides in food samples for the period starting from 2016 to 2020. Emphasis was placed on the modifications done to the deep eutectic solvent-based dispersive liquid-liquid micro-extraction techniques in order to enhance their greenness during pesticide pre-concentration in food samples. In addition, hyphenated dispersive liquid-liquid micro-extraction techniques were also reviewed and lastly, the paper outlined the challenges associated with the use of DESs during the DLLME techniques.
Collapse
Affiliation(s)
- Herbert Musarurwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa.
| |
Collapse
|
38
|
Ando D, Fujisawa T. Metabolism of esfenvalerate in tomato plants ( Solanum lycopersicum). JOURNAL OF PESTICIDE SCIENCE 2020; 45:138-146. [PMID: 32913416 PMCID: PMC7453297 DOI: 10.1584/jpestics.d20-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The metabolic fate of esfenvalerate (1), 14C-labeled at the chlorophenyl or phenoxyphenyl ring, in tomato plants was investigated by spraying it three times at 15 g/ha. The overall metabolic trend of 1 was similar in foliage and fruit. The applied 1 gradually penetrated into the foliage/fruit, and approximately 30% of the total radioactive residue (TRR) distributed within the plant. The applied radioactivity remained mostly intact on the plant surface, while its degradation proceeded via ester cleavage to produce two corresponding acids derived from the chlorophenyl and phenoxyphenyl moieties, followed by saccharide conjugation at the inner tissues (each <5%TRR). While 1 retained its optical configuration (2S,αS) on the plant surface and in the fruit, a very slight isomerization at the α-cyanobenzyl carbon occurred to form a (2S,αR) isomer in the foliage (≤1%TRR). The isomerization at another asymmetric carbon C2 in the isovaleric acid moiety did not proceed on/in the plant for 1 or its metabolite.
Collapse
Affiliation(s)
- Daisuke Ando
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 4–2–1 Takarazuka, Hyogo 665–8555, Japan
| | - Takuo Fujisawa
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 4–2–1 Takarazuka, Hyogo 665–8555, Japan
| |
Collapse
|
39
|
Enantioseparation and Determination of Penconazole in Rat Plasma by Chiral LC-MS/MS: Application to a Stereoselective Toxicokinetic Study. Molecules 2020; 25:molecules25132964. [PMID: 32605157 PMCID: PMC7411863 DOI: 10.3390/molecules25132964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023] Open
Abstract
In this study, a specific and sensitive method of liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was developed for the determination of penconazole enantiomers in rat plasma. The enantioseparation was achieved on a Chiralpak IC column by using acetonitrile/water (80:20, v/v) as the mobile phase. Penconazole enantiomers and internal standard l-lansoprazole (IS) were detected in multiple reaction monitoring (MRM) mode with positive electrospray ionization source. The method was validated over the concentration range of 2.5–250.0 ng mL−1 for penconazole enantiomers. Good linearity was obtained for both enantiomers with correlation coefficients (R) greater than 0.995. The relative error was well within the admissible range of −1.1–3.2%, and relative standard deviation was less than 6.0%. After validation, the established method was successfully applied to a stereoselective toxicokinetic study in female and male rats after oral administration of 50 mg kg−1 racemic penconazole. This is the first experiment regarding the stereospecific toxicokinetic study of penconazole and the bioanalytical approach for its quantitation in vivo.
Collapse
|
40
|
Determination of 9,10-anthraquinone in tea consumed in Shandong Province of China. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01254-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Liu H, Lin T, Li Q. A magnetic multi-walled carbon nanotube preparative method for analyzing asymmetric carbon, phosphorus and sulfur atoms of chiral pesticide residues in Chinese herbals by chiral liquid chromatography-quadrupole/linear ion trap mass spectrometry determination. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1148:122152. [PMID: 32422531 DOI: 10.1016/j.jchromb.2020.122152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/16/2022]
Abstract
An analytical method for the determination of asymmetric carbon, phosphorus and sulfur atoms in chiral pesticide residues by magnetic multi-walled carbon nanotube sample pretreatment combined with chiral ultra-performance liquid chromatography/quadrupole/linear ion trap mass spectrometry (UPLC-MS/Qtrap) was developed and applied to chiral pesticide residues analysis in Chinese herbals. Eleven different chiral pesticides were found, and 36.4% were positive in Chinese herbals. Three plants containing detectable pesticide residues were observed in Dendrobium nobile, Panax notoginseng flowers and honeysuckle, in the order of decreasing detected concentration. High detection frequencies of 26.1% for (R/S)-(±)-difenoconazole and 14.5% for (R/S)-(±)-metalaxyl and (R/S)-(±)-propiconazole were observed, the residual amount for (R/S)-(±)-difenoconazole, (R/S)-(±)-metalaxyl and (R/S)-(±)-propiconazole were 0.32 ~ 2.5 mg/kg, 0.022 ~ 0.23 mg/kg, 0.62 ~ 3.21 mg/kg respectively. The EF value of (R/S)-(±)-difenoconazole was 0.506 ± 0.046. The EF value of (R/S)-(±)-metalaxyl was lower than 0.5 in Dendrobium nobile, Panax notoginseng flowers, Panax notoginseng roots and hawthorn. The EF of (R/S)-(±)-propiconazole was not significantly enantioselective in honeysuckle and Panax notoginseng flowers. The enantioselectivity of various pesticide residues in different plants cannot be predicted from our existing knowledge and may closely depend on plant growth, environmental conditions or molecular structure.
Collapse
Affiliation(s)
- Hongcheng Liu
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agriculture Science, Supervision & Testing Center for Farm Product Quality, Ministry of Agriculture, (Kunming), Laboratory of Quality & Safety Risk Assessment for Agro-Product, Ministry of Agriculture, (Kunming), 650223 Kunming, PR China
| | - Tao Lin
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agriculture Science, Supervision & Testing Center for Farm Product Quality, Ministry of Agriculture, (Kunming), Laboratory of Quality & Safety Risk Assessment for Agro-Product, Ministry of Agriculture, (Kunming), 650223 Kunming, PR China
| | - Qiwan Li
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agriculture Science, Supervision & Testing Center for Farm Product Quality, Ministry of Agriculture, (Kunming), Laboratory of Quality & Safety Risk Assessment for Agro-Product, Ministry of Agriculture, (Kunming), 650223 Kunming, PR China.
| |
Collapse
|
42
|
Wang Z, Chen J, Zhan T, He X, Wang B. Simultaneous determination of eight neonicotinoid insecticides, fipronil and its three transformation products in sediments by continuous solvent extraction coupled with liquid chromatography-tandem mass spectrometry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110002. [PMID: 31825794 DOI: 10.1016/j.ecoenv.2019.110002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Neonicotinoids (NEOs) and fipronil (FIP) are insecticides that are widely used in modern agriculture and have received considerable attention in recent years due to their adverse effects on non-target organisms in the environment. In the present study, a new method to simultaneously detect eight common NEO insecticides and FIP and its three transformation products (FIPs) in sediments was developed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) based on a combined pretreatment of continuous solvent extraction (CSE) and solid phase extraction (SPE). Under optimized conditions, 5.0 g of freeze-dried sediment samples were initially extracted with methanol (20 mL)-methanol (15 mL)-water (20 mL) in sequence, and then the extract was cleaned with hydrophilic-lypophilic balance SPE cartridges, and HPLC-MS/MS analysis was conducted. The established method was validated to be sensitive, linear, accurate, and precise. The limits of detection (LOD) and limits of quantification (LOQ) of target compounds were 0.012-0.055 μg/kg d.w and 0.031-0.091 μg/kg d.w, respectively. Good linearity (R2 > 0.990) was observed between 4.0 × 10-2 and 20.0 μg/kg d.w. The recovery rates of all target insecticides were between 75.5% and 98.5%, and the relative standard deviations (RSD) were all less than 15.0% at the low, medium, and high spiked levels. Finally, the optimized method was applied to analyze 12 target insecticides in the sediments obtained from Jiaozhou Bay of China and its main inflow rivers. Acetamiprid, thiamethoxam, fipronil sulfide, and fipronil sulfone were detected in the river sediment samples at the concentration from <LOQ to 0.197 μg/kg d.w. Thus, the two types of studied insecticides can enter the sedimentary environment. Overall, the proposed method can be used to investigate the contamination status of typical NEOs and FIP insecticides in sediments and provide base data to comprehensively understand their environmental behavior, safety, and fate.
Collapse
Affiliation(s)
- Zhiwei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Junhui Chen
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Tianrong Zhan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiuping He
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| | - Baodong Wang
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| |
Collapse
|
43
|
You X, Zheng H, Ge J, Fang S, Suo F, Kong Q, Zhao P, Zhang G, Zhang C, Li Y. Effect of Biochar on the Enantioselective Soil Dissipation and Lettuce Uptake and Translocation of the Chiral Pesticide Metalaxyl in Contaminated Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13550-13557. [PMID: 31721576 DOI: 10.1021/acs.jafc.9b05559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Enantioselectivity is usually ignored when assessing potential biochar-based methods of redressing pesticide contamination of soils. In this study, the effect of woodchip biochar (WBC) on the enantioselective dissipation of metalaxyl in soil and its uptake and translocation by lettuce were investigated. S-metalaxyl (T1/2 = 29.8 days) dissipated more quickly than R-metalaxyl (T1/2 = 36.4 days) in unamended soil. The addition of WBC to the soil decreased the dissipation rate and the enantioselectivity of metalaxyl. Metalaxyl distribution showed opposing enantioselectivity in lettuce, with roots and shoots showing preferences for R-metalaxyl and S-metalaxyl, respectively. Enrichment with WBC decreased the concentrations of metalaxyl and metalaxyl acid enantiomers in lettuce and reduced the ability of the shoots to transport the highly toxic R-metalaxyl from roots. This is the first study to provide evidence that amending soil with biochar affects the enantioselective uptake and translocation of a chiral pesticide.
Collapse
Affiliation(s)
- Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute , Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute for Advanced Ocean Study , Ocean University of China , Qingdao 266100 , China
| | - Jing Ge
- Institute of Food Quality and Safety , Jiangsu Academy of Agricultural Sciences , Zhongling Street , Nanjing 210014 , China
| | - Song Fang
- Marine Agriculture Research Center, Tobacco Research Institute , Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Fengyue Suo
- Marine Agriculture Research Center, Tobacco Research Institute , Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Qingxian Kong
- Marine Agriculture Research Center, Tobacco Research Institute , Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Peng Zhao
- Marine Agriculture Research Center, Tobacco Research Institute , Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Guangyu Zhang
- Marine Agriculture Research Center, Tobacco Research Institute , Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute , Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute , Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| |
Collapse
|
44
|
Zeng H, Xie X, Huang Y, Chen J, Liu Y, Zhang Y, Mai X, Deng J, Fan H, Zhang W. Enantioseparation and determination of triazole fungicides in vegetables and fruits by aqueous two-phase extraction coupled with online heart-cutting two-dimensional liquid chromatography. Food Chem 2019; 301:125265. [DOI: 10.1016/j.foodchem.2019.125265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022]
|
45
|
Wen Y, Wang Z, Gao Y, Zhao X, Gao B, Zhang Z, Li L, He Z, Wang M. Novel Liquid Chromatography-Tandem Mass Spectrometry Method for Enantioseparation of Tefluthrin via a Box-Behnken Design and Its Stereoselective Degradation in Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11591-11597. [PMID: 31557017 DOI: 10.1021/acs.jafc.9b04888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A simple and eco-friendly dispersive solid-phase extraction method coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed for the determination of the chiral pesticide tefluthrin in food and environmental samples. The response surface methodology was applied to optimize separation conditions. The elution order of tefluthrin enantiomers was Z-cis-(1S,3S)-(-)-tefluthrin and Z-cis-(1R,3R)-(+)-tefluthrin on a Lux Cellulose-1 chiral column was identified via a polarimeter and vibrating circular dichroism. The average recoveries in five matrices ranged from 76.9 to 107.6%, with intraday relative standard deviations (RSDs) less than 15.6% and interday RSDs less than 12.5% for two enantiomers. The enantioselective degradation was investigated via laboratory incubation experiments. Slightly enantioselective degradation was observed under aerobic conditions; (1S,3S)-tefluthrin degraded preferentially with the enantiomer fraction value of 0.57 at 120 days of incubation. No remarkable enantioselective degradation was observed under anaerobic and sterile conditions. It was the first time that pyrethroid pesticides were determined at the enantiomer levels via UPLC-MS/MS. This novel method was successfully applied for the enantioselective analysis of tefluthrin enantiomers in authentic samples, indicating its efficacy in investigating the environmental stereochemistry of tefluthrin in the food web and environment. It is of crucial importance to improve risk assessment and regulation of chiral pesticides in an agricultural system.
Collapse
Affiliation(s)
- Yong Wen
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Yingying Gao
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Xuejun Zhao
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Beibei Gao
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Zhaoxian Zhang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Lianshan Li
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Zongzhe He
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| |
Collapse
|