1
|
Zhao Y, Liang H, Zhang J, Chen Y, Dhital YP, Zhao T, Wang Z. Isolation and Characterization of Potassium-Solubilizing Rhizobacteria (KSR) Promoting Cotton Growth in Saline-Sodic Regions. Microorganisms 2024; 12:1474. [PMID: 39065241 PMCID: PMC11279176 DOI: 10.3390/microorganisms12071474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Cotton is highly sensitive to potassium, and Xinjiang, China's leading cotton-producing region, faces a severe challenge due to reduced soil potassium availability. Biofertilizers, particularly potassium-solubilizing rhizobacteria (KSR), convert insoluble potassium into plant-usable forms, offering a sustainable solution for evergreen agriculture. This study isolated and characterized KSR from cotton, elucidated their potassium solubilization mechanisms, and evaluated the effects of inoculating KSR strains on cotton seedlings. Twenty-three KSR strains were isolated from cotton rhizosphere soil using modified Aleksandrov medium. Their solubilizing capacities were assessed in a liquid medium. Strain A10 exhibited the highest potassium solubilization capacity (21.8 ppm) by secreting organic acids such as lactic, citric, acetic, and succinic acid, lowering the pH and facilitating potassium release. A growth curve analysis and potassium solubilization tests of A10 under alkali stress showed its vigorous growth and maintained solubilization ability at pH 8-9, with significant inhibition at pH 10. Furthermore, 16S rRNA sequencing identified strain A10 as Pseudomonas aeruginosa. Greenhouse pot experiments showed that inoculating cotton plants with strain A10 significantly increased plant height and promoted root growth. This inoculation also enhanced dry biomass accumulation in both the aerial parts and root systems of the plants, while reducing the root-shoot ratio. These results suggest that Pseudomonas aeruginosa A10 has potential as a biofertilizer, offering a new strategy for sustainable agriculture.
Collapse
Affiliation(s)
- Yue Zhao
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Hongbang Liang
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Jihong Zhang
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Yu Chen
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Yam Prasad Dhital
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Tao Zhao
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Zhenhua Wang
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| |
Collapse
|
2
|
Jiang S, Dai G, Rashid MS, Zhang J, Lin H, Shu Y. Effects of BC on metal uptake by crops (availability) and the vertical migration behavior in soil: A 3-year field experiments of crop rotation. CHEMOSPHERE 2024; 350:141075. [PMID: 38176590 DOI: 10.1016/j.chemosphere.2023.141075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/12/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Biochar (BC) has been substantiated to effectively reduce the available content of heavy metals (HMs) in soil-plant system; however, the risk of biochar (BC)derived dissolved organic matter (DOM) induced metal vertical migration has not been well documented, especially in the long-term field conditions. Therefore, this study investigated HM vertical migration ecological risks and the long-term effectiveness of the amendment of biochar in the three successive years of field trials during the rotation system. The results revealed that biochar application could increase soil pH and DOM with a decrease in soil CaCl2 extractable pool for Pb, Cu, and Cd. Furthermore, the results indicated a significant decrease in acid phosphatase activities and an increase in urease and catalase activities in the soil. Cucumber was shown to be safe during a three-year rotation system in the field. These results suggest that BC has the potential to enhance soil environment and crop yields. BC derived DOM-specific substances were identified using parallel factor analysis of excitation-emission matrix in deep soil (0-60 cm). The study incorporated HM concentration fluctuations in deep soils, providing an additional interpretation of DOM and co-migration of HMs.The environmental risk associated with the increase in DOM hydrophobicity should not be ignored by employing BC for soil HM remediation applications. The study enhances understanding of biochar-derived DOM's migration and stabilization mechanisms on heavy metals, providing guidelines for its use as a soil amendment.
Collapse
Affiliation(s)
- Shaojun Jiang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Guangling Dai
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Muhammad Saqib Rashid
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junhao Zhang
- School of Environment, South China Normal University, Guangzhou, 510006, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511517, China
| | - Hai Lin
- Guangzhou Marine Geological Survey, Guangzhou, 510760, China
| | - Yuehong Shu
- School of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Hou J, Wan H, Liang K, Cui B, Ma Y, Chen Y, Liu J, Wang Y, Liu X, Zhang J, Wei Z, Liu F. Biochar amendment combined with partial root-zone drying irrigation alleviates salinity stress and improves root morphology and water use efficiency in cotton plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166978. [PMID: 37704141 DOI: 10.1016/j.scitotenv.2023.166978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
An adsorption experiment and a pot experiment were executed in order to explore the mechanisms by which biochar amendment in combination with reduced irrigation affects sodium and potassium uptake, root morphology, water use efficiency, and salinity tolerance of cotton plants. In the adsorption experiment, ten NaCl concentration gradients (0, 50, 100, 150, 200, 250, 300, 350, 400, and 500 mM) were set for testing isotherm adsorption of Na+ by biochar. It was found that the isotherms of Na+ adsorption by wheat straw biochar (WSP) and softwood biochar (SWP) were in accordance with the Langmuir isotherm model, and the Na+ adsorption ability of WSP (55.20 mg g-1) was superior to that of SWP (47.38 mg g-1). The pot experiment consisted three factors, viz., three biochar amendments (no biochar, WSP, and SWP), three irrigation strategies (deficit irrigation, partial root-zone drying irrigation - PRD, full irrigation), and two NaCl concentrations gradients (0 mM and 200 mM). The findings indicated that salinity stress lowered K+ concentration, root length, root surface area, and root volume (RV), but increased Na+ concentration, root average diameter, and root tissue density. However, biochar amendment decreased Na+ concentration, increased K+ concentration, and improved root morphology. In particular, the combination of WSP and PRD increased K+/Na+ ratio, RV, root weight density, root surface area density, water use efficiency, and partial factor productivity under salt stress, which can be a promising strategy to cope with drought and salinity stress in cotton production.
Collapse
Affiliation(s)
- Jingxiang Hou
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Heng Wan
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China; Soil Physics and Land Management Group, Wageningen University, P.O. Box 47, Wageningen, 6700 AA, Netherlands
| | - Kehao Liang
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Bingjing Cui
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Ma
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Yiting Chen
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Jie Liu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yin Wang
- College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xuezhi Liu
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
| | - Jiarui Zhang
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenhua Wei
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fulai Liu
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark.
| |
Collapse
|
4
|
Yao S, Zhou B, Duan M, Cao T, Wen Z, Chen X, Wang H, Wang M, Cheng W, Zhu H, Yang Q, Li Y. Combination of Biochar and Trichoderma harzianum Can Improve the Phytoremediation Efficiency of Brassica juncea and the Rhizosphere Micro-Ecology in Cadmium and Arsenic Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:2939. [PMID: 37631151 PMCID: PMC10458205 DOI: 10.3390/plants12162939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Phytoremediation is an environment-friendly method for toxic elements remediation. The aim of this study was to improve the phytoremediation efficiency of Brassica juncea and the rhizosphere soil micro-ecology in cadmium (Cd) and arsenic (As) contaminated soil. A field experiment was conducted with six treatments, including a control treatment (CK), two treatments with two contents of Trichoderma harzianum (T1: 4.5 g m-2; T2: 9 g m-2), one biochar treatment (B: 750 g m-2), and two combined treatments of T1B and T2B. The results showed Trichoderma harzianum promoted the total chlorophyll and translocation factor of Brassica juncea, while biochar promoted plant biomass compared to CK. T2B treatment showed the best results, which significantly increased Cd accumulation by 187.49-308.92%, and As accumulation by 125.74-221.43%. As a result, the soil's total Cd content was reduced by 19.04% to 49.64% and total As contents by 38.76% to 53.77%. The combined amendment increased the contents of soil available potassium, phosphorus, nitrogen, and organic matter. Meanwhile, both the activity of glutathione and peroxidase enzymes in plants, together with urease and sucrase enzymes in soil, were increased. Firmicutes (dominant bacterial phylum) and Ascomycota (dominant fungal phylum) showed positive and close correlation with soil nutrients and plant potentially toxic elements contents. This study demonstrated that phytoremediation assisted by biochar and Trichoderma harzianum is an effective method of soil remediation and provides a new strategy for enhancing plant remediation efficiency.
Collapse
Affiliation(s)
- Shaoxiong Yao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Beibei Zhou
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Manli Duan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Tao Cao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Zhaoquan Wen
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Xiaopeng Chen
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Hui Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Min Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Wen Cheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Hongyan Zhu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Qiang Yang
- PowerChina Northwest Engineering Corporation Limited, Xi’an 710065, China; (Q.Y.); (Y.L.)
| | - Yujin Li
- PowerChina Northwest Engineering Corporation Limited, Xi’an 710065, China; (Q.Y.); (Y.L.)
| |
Collapse
|
5
|
Pinnamaneni SR, Lima I, Boone SA, Anapalli SS, Reddy KN. Effect of continuous sugarcane bagasse-derived biochar application on rainfed cotton (Gossypium hirsutum L.) growth, yield and lint quality in the humid Mississippi delta. Sci Rep 2023; 13:10941. [PMID: 37414834 PMCID: PMC10325965 DOI: 10.1038/s41598-023-37820-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
Optimizing soil health through soil amendments is a promising strategy for enhancing rainwater efficiency for stabilizing crop production. Biochar, obtained by torrefaction of sugarcane bagasse, a byproduct from sugar mills, has a high potential for its use as a soil amendment, which can boost crop yields, but needs further field trials for its adoption in farming systems. A field study was conducted during 2019-2021 at Stoneville, Mississippi, to assess rainfed cotton (Gossypium hirsutum L.) production under four biochar levels (0, 10, 20, and 40 t ha-1) on Dundee silt loam soil. The effects of biochar on cotton growth and lint yield and quality were examined. Biochar levels had no significant impact on cotton lint and seed yield for the first two years. Still, in the third year, a significant increase in lint yield by 13 and 21.7% was recorded at 20 and 40 t ha-1 biochar levels, respectively. In the third year, lint yields were 1523, 1586, 1721, and 1854 kg ha-1 at 0, 10, 20 and 40 t ha-1 biochar levels, respectively. Similarly, cotton seed yield increased by 10.8% and 13.4% in 20 and 40 t ha-1 biochar plots. This study demonstrated that successive biochar applications at 20 or 40 t ha-1 can enhance cotton lint and seed yields under rainfed conditions. These improved yields with biochar did not produce increased net returns due to the increased production costs. Many lint quality parameters were unaffected except for micronaire, fiber strength and fiber length. However, potential long-term benefits of enhanced cotton production from biochar application beyond the length of the study merit further investigation. Additionally, biochar application is more relevant when accrued carbon credits through carbon sequestration outweigh the increased production costs due to biochar application.
Collapse
Affiliation(s)
- Srinivasa R Pinnamaneni
- Crop Production Systems Research Unit, USDA-ARS, P.O. Box 350, Stoneville, MS, 38776, USA.
- Western Colorado Research Center-Grand Valley, Colorado State University, Fruita, CO, 81521, USA.
| | - Isabel Lima
- Southern Regional Research Center, Commodity Utilization Research, USDA-ARS, 1100 Robert E. Lee Blvd., New Orleans, LA, 70124, USA
| | - Stephanie A Boone
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85745, USA
| | - Saseendran S Anapalli
- Sustainable Water Management Research Unit, USDA-ARS, P.O. Box 327, Stoneville, MS, 38776, USA
| | - Krishna N Reddy
- Crop Production Systems Research Unit, USDA-ARS, P.O. Box 350, Stoneville, MS, 38776, USA
| |
Collapse
|
6
|
Gao Y, Shao C, Liu Z, Sun Z, Long B, Feng P. Planning Spatial Layout of a Typical Salt Tolerant Forage of Sweet Sorghum in the Yellow River Delta via Considering Resource Constraints, Nitrogen Use Efficiency, and Economic Benefits. PLANTS (BASEL, SWITZERLAND) 2023; 12:2483. [PMID: 37447044 DOI: 10.3390/plants12132483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
In order to effectively address the issue of severe soil salinization in the coastal area of the Yellow River Delta, which has led to a significant number of medium and low-yield fields in this region, and to satisfy the rising demand for feed grain in China in recent years, a highly effective solution is to replace conventional crops by cultivating a specialized type of forage grass that can withstand high salinity levels and is well adapted to the local climate. This study proposed a spatial layout scheme for planting salt-tolerant forages, with the aim of providing a foundation for enhancing saline-alkali land and increasing resource utilization efficiency. The results showed that the climate conditions in the Yellow River Delta were suitable for planting sweet sorghum. With respect to soil salt content, the suitable planting regions for sweet sorghum can be classified into four categories: Suitable, moderately suitable, less suitable, and unsuitable, with soil salt concentrations of 2.62-5.25‱, 5.25-7.88‱, respectively. Concerning economic benefits, sweet sorghum's input-output ratio (74.4%) surpasses that of cotton in high saline-alkali zones, providing a significant advantage in comparison with traditional crops. In non-saline-alkali and light saline-alkali areas, the traditional winter wheat-summer maize planting system offers higher economic benefits and nitrogen use efficiency, so it is recommended to maintain this system as the dominant agricultural model. In moderately and severe saline-alkali zones, although one-season maize exhibits greater nitrogen efficiency, its economic benefits are lower than those of sweet sorghum. Hence, it is advisable to promote one-season maize in suitable regions and introduce salt-tolerant forage, such as sweet sorghum in other areas. This approach offers novel ideas and methods for crop spatial layout planning and addresses potential feed grain shortages in the region.
Collapse
Affiliation(s)
- Yinan Gao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Changxiu Shao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Presky Technology Co., Ltd., Beijing 100195, China
| | - Zhen Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhigang Sun
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongke Shandong Dongying Institute of Geography, Dongying 257000, China
| | - Buju Long
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Puyu Feng
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Tian H, Sun H, Zhu L, Zhang K, Zhang Y, Zhang H, Zhu J, Liu X, Bai Z, Li A, Tian L, Liu L, Li C. Response of in situ root phenotypes to potassium stress in cotton. PeerJ 2023; 11:e15587. [PMID: 37361035 PMCID: PMC10290453 DOI: 10.7717/peerj.15587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Potassium plays a significant role in the basic functions of plant growth and development. Potassium uptake is closely associated with morphological characteristics of the roots. However, the dynamic characteristics of phenotype and lifespan of cotton (Gossypium hirsutum L.) lateral roots and root hairs under low and high potassium stress remain unclear. In this study, potassium stress experiments (low and high potassium, medium potassium as control) were conducted using RhizoPot (an in situ root observation device) to determine the response characteristics of lateral roots and root hairs in cotton under potassium stress. The plant morphology, photosynthetic characteristics, root phenotypic changes, and lifespan of lateral roots and root hairs were measured. Potassium accumulation, aboveground phenotype, photosynthetic capacity, root length density, root dry weight, root diameter, lateral root lifespan, and root hair lifespan under low potassium stress were significantly decreased compared to medium potassium treatment. However, the root hair length of the former was significantly increased than that of the latter. Potassium accumulation and the lateral root lifespan were significantly increased under high potassium treatment, while root length density, root dry weight, root diameter, root hair length, and root hair lifespan were significantly decreased compared to the medium potassium treatment. Notably, there were no significant differences in aboveground morphology and photosynthetic characters. Principal component analysis revealed that lateral root lifespan, root hair lifespan of the first lateral root, and root hair length significantly correlated with potassium accumulation. The root had similar regularity responses to low and high potassium stress except for lifespan and root hair length. The findings of this study enhance the understanding of the phenotype and lifespan of cotton's lateral roots and root hairs under low and high potassium stress.
Collapse
Affiliation(s)
- Heyang Tian
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Hongchun Sun
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Lingxiao Zhu
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Yongjiang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Haina Zhang
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semi-Arid Region, Ministry of Agriculture /Hebei Branch of National Cotton Improvement Center, Shijiazhuang, Hebei, China
| | - Jijie Zhu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xiaoqing Liu
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhiying Bai
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Anchang Li
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Liwen Tian
- Institute of Industrial Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Liantao Liu
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Cundong Li
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
8
|
Bilias F, Kalderis D, Richardson C, Barbayiannis N, Gasparatos D. Biochar application as a soil potassium management strategy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159782. [PMID: 36309281 DOI: 10.1016/j.scitotenv.2022.159782] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The established practices of intensive agriculture, combined with inadequate soil Κ replenishment by conventional inorganic fertilization, results in a negative environmental impact through the gradual exhaustion of different forms of K reserves in soils. Although biochar application as soil amendment has been established as an approach of integrated nutrient management, few works have focused on the impact of biochar application to soil K availability and crop uptake. This review provides an up-to-date analysis of the published literature, focusing on the impact of biochar in the availability of potassium in soil and crop growth. First, the effect of biomass type and pyrolysis temperature on potassium content of biochar was assessed. Second, the influence of biochar addition to the availability of potassium in soil and on potassium soil dynamics was examined. Finally, alternative methods for estimating available K in soils were proposed. The most promising biomasses in terms of potassium content were grape pomace, coffee husk and hazelnut husk however, these have not been widely utilized for biochar production. Higher pyrolysis temperatures (>500 °C) increase the total potassium content whereas lower temperatures increase the water-soluble and exchangeable potassium fractions. It was also determined that biochar has considerable potential for enhancing K availability through several distinct mechanisms which eventually lead directly or indirectly to increased K uptake by plants. Indirect mechanisms mainly include increased K retention capacity based on biochar properties such as high cation exchange capacity, porosity, and specific surface area, while the direct supply of K can be provided by K-rich biochar sources through purpose-made biochar production techniques. Research based on biochar applications for soil K fertility purposes is still at an early stage, therefore future work should focus on elucidating the mechanisms that define K retention and release processes through the complicated soil-biochar-plant system.
Collapse
Affiliation(s)
- Fotis Bilias
- Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios Kalderis
- Laboratory of Environmental Technologies and Applications, Department of Electronic Engineering, Hellenic Mediterranean University, Chania 73100, Greece
| | - Clive Richardson
- Department of Economic and Regional Development, Panteion University of Social and Political Sciences, Athens 17671, Greece
| | - Nikolaos Barbayiannis
- Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dionisios Gasparatos
- Laboratory of Soil Science and Agricultural Chemistry, Agricultural University of Athens, Athens 11855, Greece.
| |
Collapse
|
9
|
Xia H, Liu B, Riaz M, Li Y, Wang X, Wang J, Jiang C. 30-Month Pot Experiment: Biochar Alters Soil Potassium Forms, Soil Properties and Soil Fungal Diversity and Composition in Acidic Soil of Southern China. PLANTS (BASEL, SWITZERLAND) 2022; 11:3442. [PMID: 36559557 PMCID: PMC9783735 DOI: 10.3390/plants11243442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Biochar has a significant impact on improving soil, nutrient supply, and soil microbial amounts. However, the impacts of biochar on soil fungi and the soil environment after 30 months of cultivation experiments are rarely reported. We studied the potential role of peanut shell biochar (0% and 2%) in the soil properties and the soil fungal communities after 30 months of biochar application under different soil potassium (K) levels (100%, 80%, 60%, 0% K fertilizer). We found that biochar had a promoting effect on soil K after 30 months of its application, such as the available K, water-soluble K, exchangeable K, and non-exchangeable K; and increments were 125.78%, 124.39%, 126.01%, and 26.63% under biochar and K fertilizer treatment, respectively, compared to control treatment. Our data revealed that p_Ascomycota and p_Basidiomycota were the dominant populations in the soil, and their sub-levels showed different relationships with the soil properties. The relationships between c_sordariomycetes and its sub-level taxa with soil properties showed a significant positive correlation. However, c_Dothideomycetes and its sub-group demonstrated a negative correlation with soil properties. Moreover, soil enzyme activity, especially related to the soil C cycle, was the most significant indicator that affected the community and structure of fungi through structural equation modeling (SEM) and redundancy analysis (RDA). This work emphasized that biochar plays an important role in improving soil quality, controlling soil nutrients, and regulating fungal diversity and community composition after 30 months of biochar application.
Collapse
Affiliation(s)
- Hao Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Liu
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832000, China
| | - Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832000, China
| |
Collapse
|
10
|
Liu X, Wang X, Xu T, Ma H, Xia T. The combined application of γ-PGA-producing bacteria and biochar reduced the content of heavy metals and improved the quality of tomato (Solanum lycopersicum L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88938-88950. [PMID: 35840836 DOI: 10.1007/s11356-022-21842-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Plant growth-promoting bacteria and biochar have been widely used as immobilizers to remediate heavy metal contaminated soil. However, few studies have unraveled the effect and synergistic mechanism of combined application of plant growth-promoting bacteria and biochar on in situ heavy metal contaminated soil remediation and plant yield and quality improvement under heavy metal pollution stress. In this study, the effects of biochar, γ-PGA-producing bacteria (Bacillus amyloliquefaciens strain W25) and their combined application on Cd and Pb immobilization, γ-PGA production in soil filtrate, the bacterial community in rhizosphere soil, physicochemical properties of soil, heavy metal uptake, and quality and yield of tomato in heavy metal-contaminated soil were investigated. The application of W25, biochar, and their combinations significantly reduced Cd content in mature tomato fruits by 22-60%, increased the single fruit weight and lycopene content by 7-21% and 23-48%, respectively, and the combination of biochar and W25 had the best effect. All the treatments significantly reduced DTPA-Cd and DTPA-Pb contents in rhizosphere soil (42-53% and 6.5-35%), increased the pH value and the activities of urease-alkaline phosphatase of soil, but did not affect the expression of heavy metal transporter gene LeNRAMP1 in tomato roots. Biochar + W25 increased the relative abundance of plant growth-promoting bacteria such as Bacillus and Streptomyces. Biochar-enhanced plant growth-promoting bacteria to settle and colonize in soil significantly improved the ability of strain W25 to produce γ-PGA, and immobilized Cd in soil filtrate. The combination of biochar and plant growth-promoting bacteria ensures safe crop production in heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Xingwang Liu
- State Key Laboratory of Biobased Material and Green Papermaking, College of Biological Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
| | - Xiaohan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Biological Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
| | - Tianyu Xu
- State Key Laboratory of Biobased Material and Green Papermaking, College of Biological Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
| | - Haizhen Ma
- State Key Laboratory of Biobased Material and Green Papermaking, College of Biological Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
| | - Tao Xia
- State Key Laboratory of Biobased Material and Green Papermaking, College of Biological Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China.
| |
Collapse
|
11
|
Proteomic Analysis of Roots Response to Potassium Deficiency and the Effect of TaHAK1-4A on K+ Uptake in Wheat. Int J Mol Sci 2022; 23:ijms232113504. [PMID: 36362290 PMCID: PMC9659051 DOI: 10.3390/ijms232113504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Potassium (K+) is essential for plant growth and stress responses. A deficiency in soil K+ contents can result in decreased wheat quality and productivity. Thus, clarifying the molecular mechanism underlying wheat responses to low-K+ (LK) stress is critical. In this study, a tandem mass tag (TMT)-based quantitative proteomic analysis was performed to investigate the differentially abundant proteins (DAPs) in roots of the LK-tolerant wheat cultivar “KN9204” at the seedling stage after exposure to LK stress. A total of 104 DAPs were identified in the LK-treated roots. The DAPs related to carbohydrate and energy metabolism, transport, stress responses and defense, and post-translational modifications under LK conditions were highlighted. We identified a high-affinity potassium transporter (TaHAK1-4A) that was significantly up-regulated after the LK treatment. Additionally, TaHAK1-4A was mainly expressed in roots, and the encoded protein was localized in the plasma membrane. The complementation assay in yeast suggested that TaHAK1-4A mediates K+ uptake under extreme LK conditions. The overexpression of TaHAK1-4A increased the fresh weight and root length of Arabidopsis under LK conditions and improved the growth of Arabidopsis athak5 mutant seedlings, which grow poorly under LK conditions. Moreover, silencing of TaHAK1-4A in wheat roots treated with LK stress decreased the root length, dry weight, K+ concentration, and K+ influx. Accordingly, TaHAK1-4A is important for the uptake of K+ by roots exposed to LK stress. Our results reveal the protein metabolic changes in wheat induced by LK stress. Furthermore, we identified a candidate gene potentially relevant for developing wheat lines with increased K+ use efficiency.
Collapse
|
12
|
Martínez-Gómez Á, Poveda J, Escobar C. Overview of the use of biochar from main cereals to stimulate plant growth. FRONTIERS IN PLANT SCIENCE 2022; 13:912264. [PMID: 35982693 PMCID: PMC9378993 DOI: 10.3389/fpls.2022.912264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The total global food demand is expected to increase up to 50% between 2010 and 2050; hence, there is a clear need to increase plant productivity with little or no damage to the environment. In this respect, biochar is a carbon-rich material derived from the pyrolysis of organic matter at high temperatures with a limited oxygen supply, with different physicochemical characteristics that depend on the feedstock and pyrolysis conditions. When used as a soil amendment, it has shown many positive environmental effects such as carbon sequestration, reduction of greenhouse gas emissions, and soil improvement. Biochar application has also shown huge benefits when applied to agri-systems, among them, the improvement of plant growth either in optimal conditions or under abiotic or biotic stress. Several mechanisms, such as enhancing the soil microbial diversity and thus increasing soil nutrient-cycling functions, improving soil physicochemical properties, stimulating the microbial colonization, or increasing soil P, K, or N content, have been described to exert these positive effects on plant growth, either alone or in combination with other resources. In addition, it can also improve the plant antioxidant defenses, an evident advantage for plant growth under stress conditions. Although agricultural residues are generated from a wide variety of crops, cereals account for more than half of the world's harvested area. Yet, in this review, we will focus on biochar obtained from residues of the most common and relevant cereal crops in terms of global production (rice, wheat, maize, and barley) and in their use as recycled residues to stimulate plant growth. The harvesting and processing of these crops generate a vast number and variety of residues that could be locally recycled into valuable products such as biochar, reducing the waste management problem and accomplishing the circular economy premise. However, very scarce literature focused on the use of biochar from a crop to improve its own growth is available. Herein, we present an overview of the literature focused on this topic, compiling most of the studies and discussing the urgent need to deepen into the molecular mechanisms and pathways involved in the beneficial effects of biochar on plant productivity.
Collapse
Affiliation(s)
- Ángela Martínez-Gómez
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
13
|
Li T, Li Y, Sun Z, Xi X, Sha G, Ma C, Tian Y, Wang C, Zheng X. Resveratrol Alleviates the KCl Salinity Stress of Malus hupehensis Rhed. FRONTIERS IN PLANT SCIENCE 2021; 12:650485. [PMID: 34054896 PMCID: PMC8149799 DOI: 10.3389/fpls.2021.650485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/01/2021] [Indexed: 05/26/2023]
Abstract
Applying large amounts of potash fertilizer in apple orchards for high apple quality and yield aggravates KCl stress. As a phytoalexin, resveratrol (Res) participates in plant resistance to biotic stress. However, its role in relation to KCl stress has never been reported. Herein we investigated the role of Res in KCl stress response of Malus hupehensis Rehd., a widely used apple rootstock in China which is sensitive to KCl stress. KCl-stressed apple seedlings showed significant wilting phenotype and decline in photosynthetic rate, and the application of 100 μmol Res alleviated KCl stress and maintained photosynthetic capacity. Exogenous Res can strengthen the activities of peroxidase and catalase, thus eliminating reactive oxygen species production induced by KCl stress. Moreover, exogenous Res can decrease the electrolyte leakage by accumulating proline for osmotic balance under KCl stress. Furthermore, exogenous Res application can affect K+/Na+ homeostasis in cytoplasm by enhancing K+ efflux outside the cells, inhibiting Na+ efflux and K+ absorption, and compartmentalizing K+ into vacuoles through regulating the expression of K+ and Na+ transporter genes. These findings provide a theoretical basis for the application of exogenous Res to relieve the KCl stress of apples.
Collapse
Affiliation(s)
- Tingting Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Yuqi Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xiangli Xi
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Guangli Sha
- Qingdao Academy of Agricultural Sciences, Qingdao, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| |
Collapse
|
14
|
Evaluating the Effects of Biochar with Farmyard Manure under Optimal Mineral Fertilizing on Tomato Growth, Soil Organic C and Biochemical Quality in a Low Fertility Soil. SUSTAINABILITY 2021. [DOI: 10.3390/su13052652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biochar amendments are widely recognized to improve crop productivity and soil biogeochemical quality, however, their effects on vegetable crops are less studied. This pot study investigated the effects of cotton stick, corncob and rice straw biochars alone and with farmyard manure (FYM) on tomato growth, soil physico–chemical and biological characteristics, soil organic carbon (SOC) content and amount of soil nutrients under recommended mineral fertilizer conditions in a nutrient-depleted alkaline soil. Biochars were applied at 0, 1.5 and 3% (w/w, basis) rates and FYM was added at 0 and 30 t ha−1 rates. Biochars were developed at 450 °C pyrolysis temperature and varied in total organic C, nitrogen (N), phosphorus (P) and potassium (K) contents. The results showed that biochars, their amounts and FYM significantly improved tomato growth which varied strongly among the biochar types, amounts and FYM. With FYM, the addition of 3% corncob biochar resulted in the highest total chlorophyll contents (9.55 ug g−1), shoot (76.1 cm) and root lengths (44.7 cm), and biomass production. Biochars with and without FYM significantly increased soil pH, electrical conductivity (EC) and cation exchange capacity (CEC). The soil basal respiration increased with biochar for all biochars but not consistently after FYM addition. The water-extractable organic C (WEOC) and soil organic C (SOC) contents increased significantly with biochar amount and FYM, with the highest SOC found in the soil that received 3% corncob biochar with FYM. Microbial biomass C (MBC), N (MBN) and P (MBP) were the highest in corncob biochar treated soils followed by cotton stick and rice straw biochars. The addition of 3% biochars along with FYM also showed significant positive effects on soil mineral N, P and K contents. The addition of 3% corncob biochar with and without FYM always resulted in higher soil N, P and K contents at the 3% rate. The results further revealed that the positive effects of biochars on above-ground plant responses were primarily due to the improvements in below-ground soil properties, nutrients’ availability and SOC; however, these effects varied strongly between biochar types. Our study concludes that various biochars can enhance tomato production, soil biochemical quality and SOC in nutrient poor soil under greenhouse conditions. However, we emphasize that these findings need further investigations using long-term studies before adopting biochar for sustainable vegetable production systems.
Collapse
|
15
|
Qayyum MF, Haider G, Raza MA, Mohamed AKS, Rizwan M, El-Sheikh MA, Alyemeni MN, Ali S. Straw-based biochar mediated potassium availability and increased growth and yield of cotton (Gossypium hirsutum L.). JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Harindintwali JD, Zhou J, Yang W, Gu Q, Yu X. Biochar-bacteria-plant partnerships: Eco-solutions for tackling heavy metal pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111020. [PMID: 32810706 DOI: 10.1016/j.ecoenv.2020.111020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 05/22/2023]
Abstract
Over the past 30 years, the ever-rising demands of the modern and growing population have led to the rapid development of agricultural and industrial sectors worldwide. However, this expansion has exposed the environment to various pollutants including heavy metal (HM)s. Almost all HMs are serious toxicants and can pose serious health risks to living organisms in addition to their bioaccumulative and non-biodegradable nature. Different techniques have been developed to restore the ecological functions of the HM-contaminated soil (HMCS). However, the major downfalls of the commonly used remediation technologies are the generation of secondary wastes, high operating costs, and high energy consumption. Phytoremediation is a prominent approach that is more innocuous than the existing remediation approaches. Some microbes-plant interactions enhance the bioremediation process, with heavy metal resistant-plant growth promoting bacteria (HMRPGPB) being widely used to assist phytoremediation of HMs. However, the most common of all major microbial assisted-phytoremediation disturbances is that the HM-contaminated soil is generally deficient in nutrients and cannot sustain the rapid growth of the applied HMRPGPB. In this case, biochar has recently been approved as a potential carrier of microbial agents. The biochar-HMRPGPB-plant association could provide a promising green approach to remediate HM-polluted sites. Therefore, this review addresses the mechanisms through which biochar and HMRPGPB can enhance phytoremediation. This knowledge of biochar-HMRPGPB-plant interactions is significant with respect to sustainable management of the HM-polluted environment in terms of both ecology and economy, and it offers the possibility of further development of new green technologies.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China
| | - Jianli Zhou
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China; School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, 1 Caiguan Road, Guiyang, 550003, China
| | - Wenhua Yang
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China
| | - Qiuya Gu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China
| | - Xiaobin Yu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China.
| |
Collapse
|
17
|
Zhu Y, Ma J, Chen F, Yu R, Hu G, Zhang S. Remediation of Soil Polluted with Cd in a Postmining Area Using Thiourea-Modified Biochar. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207654. [PMID: 33092212 PMCID: PMC7589461 DOI: 10.3390/ijerph17207654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 11/23/2022]
Abstract
Cadmium presence in soil is considered a significant threat to human health. Biochar is recognized as an effective method to immobilize Cd ions in different soils. However, obtaining effective and viable biochar to remove elevated Cd from postmining soil remains a challenge. More modifiers need to be explored to improve biochar remediation capacity. In this investigation, pot experiments were conducted to study the effects of poplar-bark biochar (PBC600) and thiourea-modified poplar-bark biochar (TPBC600) on Cd speciation and availability, as well as on soil properties. Our results showed that the addition of biochar had a significant influence on soil properties. In the presence of TPBC600, the acid-soluble and reducible Cd fractions were transformed into oxidizable and residual Cd fractions. This process effectively reduced Cd bioavailability in the soil system. Compared to PBC600, TPBC600 was more effective in improving soil pH, electrical conductivity (EC), organic matter (SOM), total nitrogen (TN), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3−-N), available potassium (AK), available phosphorus (AP), and available sulfur (AS). However, this improvement diminished as incubation time increased. Results of Pearson correlation analysis, multivariate linear regression analysis, and principal component analysis showed that soil pH and available phosphorus played key roles in reducing the available cadmium in soil. Therefore, TPBC600 was shown to be an effective modifier that could be used in the remediation of soil polluted with Cd.
Collapse
Affiliation(s)
- Yanfeng Zhu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China; (Y.Z.); (J.M.); (S.Z.)
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
| | - Jing Ma
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China; (Y.Z.); (J.M.); (S.Z.)
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
| | - Fu Chen
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China; (Y.Z.); (J.M.); (S.Z.)
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
- Correspondence: (F.C.); (G.H.); Tel.: +86-516-8388-3501 (F.C.); +86-059-2616-2300 (G.H.)
| | - Ruilian Yu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
| | - Gongren Hu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
- Correspondence: (F.C.); (G.H.); Tel.: +86-516-8388-3501 (F.C.); +86-059-2616-2300 (G.H.)
| | - Shaoliang Zhang
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China; (Y.Z.); (J.M.); (S.Z.)
| |
Collapse
|
18
|
Masud MM, Baquy MAA, Akhter S, Sen R, Barman A, Khatun MR. Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110865. [PMID: 32570103 DOI: 10.1016/j.ecoenv.2020.110865] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Crop production in acid soils is facing enormous challenges due to low soil quality associated with an increase in the acidification rate and aluminum toxicity. Despite comprehensive prior work with biochar application on nutrient availability and crop productivity in acid soils, little information is available about the recommendation or standardization of biochar application rates that are more suitable for soil fertility improvement under different soil environments (physico-chemical properties) for maximizing the benefits of biochar applications and minimizing the potential environmental risk. Thus, the objective of this study was to investigate the effectiveness of poultry litter (PL) and poultry litter biochar (PLB) in ameliorating the fertility of acid soils through incubation and pot experiments. The soil was amended with different materials as follows; lime (1 g kg-1), PL (5, 10 and 15 g kg-1) and PLB (5, 10 and 15 g kg-1) along with control (non-amended). A pot experiment was also conducted using similar treatments to observe the responses of maize crop to the different amendments. The results indicated an increase in the pH and a decrease in exchangeable acidity in lime, PL and PLB amended soils. Lower soil pH, base cations and soil available phosphorus (P), and higher exchangeable acidity were found in control than the amended soils. Compared to PL and lime, PLB achieved greater increase rate in soil pH and reduction rate in soil exchangeable acidity with increased soil exchangeable base cations. An increase in soil available calcium (Ca) was observed in the lime treatment, while in PL and PLB treatments, there was an increase in soil available Ca, magnesium (Mg), potassium (K) and P. Application of the amendments increased availability of nitrogen (N), P, K, Ca and Mg relative to the control for maize in the pot experiment. When PL and PLB amendments were compared, it was found that the PLB was the best choice for the amelioration of acid soils as well as nutrient uptake by maize plants. It is suggested that application of PLB at the rate of 15 g kg-1 is suitable for maize growth in acid soils.
Collapse
Affiliation(s)
- M M Masud
- Soil Science Division, Bangladesh Agricultural Research Institute, Gazipur, 1701, Bangladesh
| | - M Abdulaha-Al Baquy
- Department of Soil Science, Faculty of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh.
| | - S Akhter
- Soil Science Division, Bangladesh Agricultural Research Institute, Gazipur, 1701, Bangladesh
| | - R Sen
- Soil Science Division, Bangladesh Agricultural Research Institute, Gazipur, 1701, Bangladesh
| | - A Barman
- Soil Science Division, Bangladesh Agricultural Research Institute, Gazipur, 1701, Bangladesh
| | - M R Khatun
- Soil Science Division, Bangladesh Agricultural Research Institute, Gazipur, 1701, Bangladesh
| |
Collapse
|
19
|
Li G, Chen F, Jia S, Wang Z, Zuo Q, He H. Effect of biochar on Cd and pyrene removal and bacteria communities variations in soils with culturing ryegrass (Lolium perenne L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114887. [PMID: 32505933 DOI: 10.1016/j.envpol.2020.114887] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Organic contaminations and heavy metals in soils cause large harm to human and environment, which could be remedied by planting specific plants. The biochars produced by crop straws could provide substantial benefits as a soil amendment. In the present study, biochars based on wheat, corn, soybean, cotton and eggplant straws were produced. The eggplant straws based biochar (ESBC) represented higher Cd and pyrene adsorption capacity than others, which was probably owing to the higher specific surface area and total pore volume, more functional groups and excellent crystallization. And then, ESBC amendment hybrid Ryegrass (Lolium perenne L.) cultivation were investigated to remediate the Cd and pyrene co-contaminated soil. With the leaching amount of 100% (v/w, mL water/g soil) and Cd content of 16.8 mg/kg soil, dosing 3% ESBC (wt%, biochar/soil) could keep 96.2% of the Cd in the 10 cm depth soil layer where the ryegrass root could reach, and it positively help root adsorb contaminations. Compared with the single planting ryegrass, the Cd and pyrene removal efficiencies significantly increased to 22.8% and 76.9% by dosing 3% ESBC, which was mainly related with the increased plant germination of 80% and biomass of 1.29 g after 70 days culture. When the ESBC dosage increased to 5%, more free radicals were injected and the ryegrass germination and biomass decreased to 65% and 0.986 g. Furthermore, when the ESBC was added into the ryegrass culture soil, the proportion of Cd and pyrene degrading bacteria Pseudomonas and Enterobacter significantly increased to 4.46% and 3.85%, which promoted the co-contaminations removal. It is suggested that biochar amendment hybrid ryegrass cultivation would be an effective method to remediate the Cd and pyrene co-contaminated soil.
Collapse
Affiliation(s)
- Guirong Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Fukai Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengyong Jia
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; Yellow River Institute of Hydraulic Research, Zhengzhou, 450003, China.
| | - Zongshuo Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiting Zuo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongmou He
- Yellow River Institute of Hydraulic Research, Zhengzhou, 450003, China
| |
Collapse
|
20
|
Zhang M, Riaz M, Liu B, Xia H, El-Desouki Z, Jiang C. Two-year study of biochar: Achieving excellent capability of potassium supply via alter clay mineral composition and potassium-dissolving bacteria activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137286. [PMID: 32092812 DOI: 10.1016/j.scitotenv.2020.137286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
At present, there has been renewed interest in biochar research, but most of them were focused on the short-term effects of biochar and the information of long-term application of biochar is still lacking. In addition, the nutrient mechanism of biochar has rarely been the subject of research. This research explored the effect of potassium (K) nutrient and the response of bacterial communities to biochar in yellow-brown soil based on two-year experiment. In this study, we used peanut shell biochar obtained by pyrolysis at 400 °C, and at the same time, 0%, 20%, 40%, 100% conventional potassium fertilizer were used. The results indicated that the effective improvement of biochar on acidic soil was long-term and 2% biochar replaced 40% conventional potassium fertilizer. Biochar accelerated the conversion of slowly-available K to available K by changing the composition of clay minerals and promoting the growth of K-dissolving bacteria. From the perspective of bacterial community, biochar significantly increased the relative abundance of Sphingomonas, Gaiella, and Elev-16S-1332, which improved the potential ability of soil to degrade pollutants and inhibit pathogens. The pH, organic matter, cation exchange capacity (CEC), and available phosphorus and potassium were important environmental factors that caused significant effects in the bacterial community of yellow-brown soil. Overall, the study demonstrates that biochar is not only an effective alternative to potash fertilizer but also improves soil bacterial communities.
Collapse
Affiliation(s)
- Mengyang Zhang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Muhammad Riaz
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Bo Liu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430070, PR China
| | - Hao Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Zeinab El-Desouki
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
21
|
Overexpression of V-type H + pyrophosphatase gene EdVP1 from Elymus dahuricus increases yield and potassium uptake of transgenic wheat under low potassium conditions. Sci Rep 2020; 10:5020. [PMID: 32193452 PMCID: PMC7081212 DOI: 10.1038/s41598-020-62052-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/06/2020] [Indexed: 11/14/2022] Open
Abstract
Lack of potassium in soil limits crop yield. Increasing yield and conserving potassium ore requires improving K use efficiency (KUE). Many genes influence KUE in plants, but it is not clear how these genes function in the field. We identified the V-type H+-pyrophosphatase gene EdVP1 from Elymus dahurica. Gene expression analysis showed that EdVP1 was induced by low potassium stress. Protein subcellular localization analysis demonstrated that EdVP1 localized on the plasma membrane. We overexpressed EdVP1 in two wheat varieties and conducted K tolerance experiments across years. Yield per plant, grain number per spike, plant height, and K uptake of four transgenic wheat lines increased significantly compared with WT; results from two consecutive years showed that EdVP1 significantly increased yield and KUE of transgenic wheat. Pot experiments showed that transgenic plants had significantly longer shoots and roots, and higher K accumulation in shoots and roots and H+-PPase activity in shoots than WT under low K. A fluidity assay of potassium ion in EdVP1 transgenic plant roots showed that potassium ion influx and H+ outflow in transgenic plants were higher than WT. Overexpressing EdVP1 significantly improved yield and KUE of transgenic wheat and was related to higher K uptake capacity in root.
Collapse
|
22
|
Zamani S, Naderi MR, Soleymani A, Nasiri BM. Sunflower (Helianthus annuus L.) biochemical properties and seed components affected by potassium fertilization under drought conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110017. [PMID: 31846862 DOI: 10.1016/j.ecoenv.2019.110017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
The seed yield and healthy oil in sunflower (Helianthus annuus L.), as an important industrial crop, decrease under stress. There is not much investigation, to our knowledge, on the use of potassium fertilization, a regulator of plant water potential, affecting the biochemical properties and seed components of sunflower under drought stress. Accordingly, such parameters were investigated in a split-split plot field experiment, conducted in two different field sites (Natanz (Nt) and Eghlid (Eg), Iran), using potassium fertilization (subplots, 0, 150 and 300 kg/ha) and six drought levels (main plots) in four replicates. Although stress significantly affected sunflower biochemical properties and seed components in the two fields, the effects of stress were more pronounced in the Eg site (significant interaction of field and drought). The plant alleviated the stress by increasing the proline, oleic and linoleic acid concentrations, however, potassium fertilization also increased plant tolerance further under stress by enhancing such components compared with control. Interestingly, the Eg site was more responsive to the potassium fertilization (significant interaction of field and fertilization), as the fertilizer resulted in a higher rate of plant biochemical properties and seed components. The use of potassium fertilization at 300 kg/ha (K3) was the most effective treatment in the alleviation of stress. Interestingly, under drought stress, potassium contributed to the enhanced quantity and quality of sunflower by increasing seed components, and enhancing the biochemical properties of the plant, which can also improve crop physiological mechanisms. The results can further increase our understanding related to the effects of potassium fertilization on the yield and physiology of sunflower under drought stress. Such results are of economic, environmental and health significance.
Collapse
Affiliation(s)
- Saeid Zamani
- Department of Agronomy and Crop Breeding, College of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Reza Naderi
- Department of Agronomy and Crop Breeding, College of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Ali Soleymani
- Department of Agronomy and Crop Breeding, College of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Bahram Majd Nasiri
- Department of Agronomy and Crop Breeding, College of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|