1
|
Xiong B, Wang Y, He J, Wang L, He R, Zhu M, Wang J, Li Y, Liu B, Xiao K, She Q. Association of domain-specific physical activity with albuminuria among prediabetes and diabetes: a large cross-sectional study. J Transl Med 2024; 22:252. [PMID: 38459493 PMCID: PMC10921818 DOI: 10.1186/s12967-024-05061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Albuminuria, the presence of excess of protein in urine, is a well-known risk factor for early kidney damage among diabetic/prediabetic patients. There is a complex interaction between physical activity (PA) and albuminuria. However, the relationship of specific-domain PA and albuminuria remained obscure. METHODS Albuminuria was defined as urinary albumin/creatinine ratio (ACR) > 30 mg/g. PA was self-reported by participants and classified into transportation-related PA (TPA), occupation-related PA (OPA), and leisure-time PA (LTPA). Weighted logistic regression was conducted to compute the odds ratios (ORs) and 95% confidence intervals (CIs). Restricted cubic spline (RCS) was used to evaluate the dose-response of PA domains with the risk of albuminuria. RESULTS A total of 6739 diabetic/prediabetic patients (mean age: 56.52 ± 0.29 years) were enrolled in our study, including 3181 (47.20%) females and 3558 (52.80%) males. Of them, 1578 (23.42%) were identified with albuminuria, and 5161(76.58%) were without albuminuria. Diabetic/prediabetic patients who adhered the PA guidelines for total PA had a 22% decreased risk of albuminuria (OR = 0.78, 95%CI 0.64-0.95), and those met the PA guidelines for LTPA had a 28% decreased of albuminuria (OR = 0.72, 95%CI 0.57-0.92). However, OPA and TPA were both not associated with decreased risk of albuminuria. RCS showed linear relationship between the risk of albuminuria with LTPA. CONCLUSIONS Meeting the PA guideline for LTPA, but not OPA and TPA, was inversely related to the risk of albuminuria among diabetic/prediabetic patients. Additionally, achieving more than 300 min/week of LTPA conferred the positive effects in reducing albuminuria among diabetic/prediabetic patients.
Collapse
Affiliation(s)
- Bingquan Xiong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Road, Chonqing, 400010, China
| | - Yufan Wang
- Department of Cardiovascular Medicine Intensive Care Unit, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Juan He
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Road, Chonqing, 400010, China
| | - Lisha Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Road, Chonqing, 400010, China
| | - Rui He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Road, Chonqing, 400010, China
| | - Min Zhu
- Department of Geriatrics, The First People's Hospital of Neijiang, No. 41 Tuozhong Lane, Jiaotong Road, Neijiang, 641000, Sichuan, China
| | - Jiaxing Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, No. 613, Huang Pu Avenue West, Guangzhou, Guangdong, China
| | - Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Road, Chonqing, 400010, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Road, Chonqing, 400010, China
| | - Kaihu Xiao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Road, Chonqing, 400010, China
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Road, Chonqing, 400010, China.
| |
Collapse
|
2
|
Zhu X, Meng Y, Ju Y, Yang Y, Zhang S, Miao L, Liu Z. Association of the urinary polycyclic aromatic hydrocarbons with sex hormones stratified by menopausal status older than 20 years: a mixture analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57717-57727. [PMID: 36971937 DOI: 10.1007/s11356-023-26099-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
We examined the relationships between exposure to polycyclic aromatic hydrocarbons (PAH) metabolites and sex hormones in pre- and postmenopausal women from the 2013-2016 National Health and Nutrition Examination Survey. The study comprised 648 premenopausal and 370 postmenopausal women (aged 20 years or older) with comprehensive data on PAH metabolites and sex steroid hormones. To evaluate the correlations between individual or mixture of the PAH metabolites and sex hormones stratified by menopausal status, we used linear regression and Bayesian kernel machine regression (BKMR). After controlling for confounders, 1-Hydroxynaphthalene (1-NAP) was inversely associated with total testosterone (TT), and 1-NAP, 3-Hydroxyfluorene (3-FLU), and 2-Hydroxyfluorene (2-FLU) were inversely associated with estradiol (E2). 3-FLU was positively associated with sex hormone-binding globulin (SHBG) and TT/E2, whereas 1-NAP and 2-FLU were inversely associated with free androgen index (FAI). In the BKMR analyses, chemical combination concentrations at or above the 55th percentile were inversely connected to E2, TT, and FAI values but positively correlated with SHBG when compared with the matching 50th percentile. In addition, we only found that mixed exposure to PAHs was positively associated with TT and SHBG in premenopausal women. Exposure to PAH metabolites, either alone or as a mixture, was negatively associated with E2, TT, FAI, and TT/E2 but positively associated with SHBG. These associations were stronger among postmenopausal women.
Collapse
Affiliation(s)
- Xihui Zhu
- Department of Perinatal Center, The Fourth Hospital of Shijiazhuang/Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Yancen Meng
- Department of Perinatal Center, The Fourth Hospital of Shijiazhuang/Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Yaru Ju
- Department of Perinatal Center, The Fourth Hospital of Shijiazhuang/Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Yanjing Yang
- Department of Perinatal Center, The Fourth Hospital of Shijiazhuang/Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Su'e Zhang
- Department of Perinatal Center, The Fourth Hospital of Shijiazhuang/Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Liye Miao
- Department of Perinatal Center, The Fourth Hospital of Shijiazhuang/Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Zhan Liu
- Department of Perinatal Center, The Fourth Hospital of Shijiazhuang/Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China.
| |
Collapse
|
3
|
Muacevic A, Adler JR. The Association of Increased Oxidative Stress and Tumor Biomarkers Related to Polyaromatic Hydrocarbons Exposure for Different Occupational Workers in Makkah, Saudi Arabia. Cureus 2022; 14:e32981. [PMID: 36578859 PMCID: PMC9793096 DOI: 10.7759/cureus.32981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2022] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Exposure to occupational polyaromatic hydrocarbons (PAHs) is correlated with several adverse effects on human health, including bladder, lung, and skin cancer. The correlation between PAH exposure and oxidative stress and tumor markers needs to be further explored. Therefore, we conducted this study to examine the effect of acute exposure to PAHs on oxidative stress and tumor marker levels in occupational workers during the Hajj season in Makkah. METHODS We conducted a cross-sectional study of 105 workers during Hajj; 60 workers were employed in the open air for ≥eight hours/day, exposed them to high levels of considerable traffic and huge crowds, and 45 workers served as our control group who were unexposed and working in a rural area. Using high-performance liquid chromatography, we analyzed participants' urinary 1-hydroxypyrene to determine PAH levels. Oxidative stress markers malondialdehyde (MDA), glutathione S-transferase (GST), and lactate dehydrogenase (LDH) were analyzed in serum using a spectrophotometer. The serum p53 and p21 proteins were analyzed using an enzyme-linked immunosorbent assay. We used IBM SPSS Statistics for Windows, Version 21.0 (IBM Corp., Armonk, NY, USA) to calculate multivariate logistic regression analysis for oxidative stress and tumor markers such as age, working period, and smoking status risk factors. Additionally, we evaluated associations between oxidative stress and tumor markers. RESULTS The mean levels of MDA, GST, and LDH were significantly elevated in exposed workers compared to the control group (p<.001). Also, p53 and p21 protein levels were significantly higher in the occupationally exposed group than in the unexposed control group (p<0.05). No significant correlation between age and increased levels of p53 and p21 was found. CONCLUSIONS In our study, PAH exposure is significantly correlated with higher levels of oxidative stress and tumor marker levels in occupational workers. The evaluation of oxidative stress and tumor marker indicators can efficiently identify workers at high risk of PAH exposure and may assist in preventing future health concerns. More biomarkers should be included in other longitudinal studies to address exposure related to different health risks among workers, especially cancer risk. More prospective studies are required to validate diagnostic utilities and efficiencies of different biomarker combinations.
Collapse
|
4
|
Jacobson MH, Wu Y, Liu M, Kannan K, Lee S, Ma J, Warady BA, Furth S, Trachtman H, Trasande L. Urinary Polycyclic Aromatic Hydrocarbons in a Longitudinal Cohort of Children with CKD: A Case of Reverse Causation? KIDNEY360 2022; 3:1011-1020. [PMID: 35845343 PMCID: PMC9255870 DOI: 10.34067/kid.0000892022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 01/10/2023]
Abstract
Background Air pollution, which results in the formation of polycyclic aromatic hydrocarbons (PAHs), has been identified as a cause of renal function decline and a contributor to CKD. However, the results of cross-sectional studies investigating personal, integrated biomarkers of PAHs have been mixed. Longitudinal studies may be better suited to evaluate environmental drivers of kidney decline. The purpose of this study was to examine associations of serially measured urinary PAH metabolites with clinical and subclinical measures of kidney function over time among children with CKD. Methods This study was conducted among 618 participants in the Chronic Kidney Disease in Children study, a cohort study of pediatric patients with CKD from the United States and Canada, between 2005 and 2015. In serially collected urine samples over time, nine PAH metabolites were measured. Clinical outcomes measured annually included eGFR, proteinuria, and BP. Subclinical biomarkers of tubular injury (kidney injury molecule-1 [KIM-1] and neutrophil gelatinase-associated lipocalin [NGAL]) and oxidant stress (8-hydroxy-2'-deoxyguanosine [8-OHdG] and F2-isoprostane) were assayed in urine samples. Results Children were followed over an average (SD) of 3.0 (1.6) years and 2469 study visits (mean±SD, 4.0±1.6). Hydroxynaphthalene (NAP) or hydroxyphenanthrene (PHEN) metabolites were detected in >99% of samples and NAP concentrations were greater than PHEN concentrations. PHEN metabolites, driven by 3-PHEN, were associated with increased eGFR and reduced proteinuria, diastolic BP z-score, and NGAL concentrations over time. However, PAH metabolites were consistently associated with increased KIM-1 and 8-OHdG concentrations. Conclusions Among children with CKD, these findings provoke the potential explanation of reverse causation, where renal function affects measured biomarker concentrations, even in the setting of a longitudinal study. Additional work is needed to determine if elevated KIM-1 and 8-OHdG excretion reflects site-specific injury to the proximal tubule mediated by low-grade oxidant stress.
Collapse
Affiliation(s)
- Melanie H Jacobson
- Division of Environmental Pediatrics, Department of Pediatrics, New York University Langone Medical Center, New York, New York
| | - Yinxiang Wu
- Department of Population Health, New York University Langone Medical Center, New York, New York
| | - Mengling Liu
- Department of Population Health, New York University Langone Medical Center, New York, New York
- Department of Environmental Medicine, New York University Langone Medical Center, New York, New York
| | - Kurunthachalam Kannan
- Division of Environmental Pediatrics, Department of Pediatrics, New York University Langone Medical Center, New York, New York
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York
| | - Sunmi Lee
- Division of Environmental Pediatrics, Department of Pediatrics, New York University Langone Medical Center, New York, New York
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York
| | - Jing Ma
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York
| | - Bradley A Warady
- Division of Nephrology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
| | - Susan Furth
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Howard Trachtman
- Department of Pediatrics, Division of Nephrology, New York University Langone Medical Center, New York, New York
- University of Michigan, Ann Arbor, Michigan
| | - Leonardo Trasande
- Division of Environmental Pediatrics, Department of Pediatrics, New York University Langone Medical Center, New York, New York
- Department of Population Health, New York University Langone Medical Center, New York, New York
- Department of Environmental Medicine, New York University Langone Medical Center, New York, New York
- New York University Wagner School of Public Service, New York, New York
- New York University College of Global Public Health, New York, New York
| |
Collapse
|
5
|
Rahman HH, Niemann D, Munson-McGee SH. Association of chronic kidney disease with exposure to polycyclic aromatic hydrocarbons in the US population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24024-24034. [PMID: 34822075 DOI: 10.1007/s11356-021-17479-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants formed from the incomplete combustion of carbon-containing products. Exposure can occur through ingestion or inhalation and has been linked to depression, stroke, liver disease, asthma, diabetes, heart failure, and cancer. Few studies have investigated the association between exposure to PAHs and chronic kidney disease (CKD) in humans. This study aims to investigate the association between seven urinary PAH concentrations (1-hydroxynaphthalene, 2-hydroxynaphthalene, 3-hydroxyfluorene 2-hydroxyfluorene, 1-hydroxyphenanthrene, 1-hydroxypyrene, and 2 & 3-hydroxyphenanthrene) and CKD in the US adult population. A cross-sectional analysis using the 2015-2016 National Health and Nutrition Examination Survey (NHANES) dataset was conducted. CKD was defined with estimated glomerular filtration rate (eGFR) and albumin to creatinine ratio (ACR). Participants with an eGFR < 60 ml/min/1.73m2 or ACR > 30 mg/gm were considered to have CKD. A specialized complex survey design analysis package using R version 4.0.3 was used in the data analysis. Multivariate logistic regression was used to study the correlation between seven forms of urinary PAH concentrations and CKD associated with abnormal eGFR or ACR. The models were adjusted for lifestyle and demographic factors. The study included a total of 4117 adults aged ≥ 20 years, with 49.6% males and 50.4% females. Urinary 2-hydroxynaphthalene (OR: 1.600, 95% CI: 1.141, 2.243) was significantly associated with an increased odds of CKD; the other six forms of urinary PAHs were not associated with CKD. Non-Hispanic Black (OR: 1.569, 95% CI: 1.168, 2.108), age of 60 years and older (OR: 2.546, 95% CI: 1.865, 3.476), and BMIs of underweight (OR: 2.386, 95% CI: 1.259, 4.524) and obese (OR: 1.407, 95% CI: 1.113, 1.778) all had significantly increased odds for CKD. Our study concluded that urinary 2-hydroxynaphthalene, a form of PAH, is significantly associated with CKD.
Collapse
Affiliation(s)
| | - Danielle Niemann
- Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr, Las Cruces, NM, 88003, USA
| | | |
Collapse
|
6
|
Associations of exposure to polycyclic aromatic hydrocarbons and kidney stones in U.S. general population: results from the National Health and Nutrition Examination Survey 2007-2016. World J Urol 2021; 40:545-552. [PMID: 34716773 DOI: 10.1007/s00345-021-03847-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE It has been reported that polycyclic aromatic hydrocarbons (PAHs) exposure was associated with the increasing risk of various diseases. Utilizing the data from the general population of the U.S., we tried to assess the association between PAHs exposure and KS. METHODS The dataset was extracted from National Health and Nutrition Examination Survey (NHANES) 2007-2016. The hydroxylated metabolites of polycyclic aromatic hydrocarbons (OH-PAHs) were detected as representative of urinary PAHs. Ranking-based PAHs score was used to evaluate the total PAHs exposure burden. Multivariable logistic regression analyses were performed to assess the association between PAHs exposure and KS after adjusting a series of confounding factors. RESULTS 8975 eligible participants were included. In multivariable logistic regression analyses, after adjusting confounding variables, 2-hydroxynaphthalene (OR 1.38, 1.16-1.65; p = 0.038) and 9-hydroxyfluorene (OR 1.39, 1.06-1.84, p = 0.019) were still observed to have significant positive correlations with the prevalence of KS, respectively. The incidence of KS increased significantly with the increase of total PAHs burden (p for trend = 0.011). Significant interaction effects were observed in the subgroup of gender (p for interaction < 0.05). Among female participants, PAHs exposure was more significantly correlated with KS. Higher 2-hydroxynaphthalene (OR 1.94, 1.39-2.70; p < 0.001), 1-hydroxyphenanthrene (OR 1.57, 1.07-2.30; p = 0.022) and 2-hydroxyphenanthrene (OR 1.85, 1.11-3.06; p = 0.018) were significantly associated with the increased incidence of KS in women. CONCLUSIONS There is a significant association between a high level of PAHs exposure and increased prevalence of KS. In particular, in the female population, the relationship between PAHs exposure and KS is especially significant.
Collapse
|
7
|
Zhang L, Ou C, Magana-Arachchi D, Vithanage M, Vanka KS, Palanisami T, Masakorala K, Wijesekara H, Yan Y, Bolan N, Kirkham MB. Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects, and Exposure Mitigation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11055. [PMID: 34769574 PMCID: PMC8582694 DOI: 10.3390/ijerph182111055] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023]
Abstract
Particulate matter (PM) is a complex mixture of solid particles and liquid droplets suspended in the air with varying size, shape, and chemical composition which intensifies significant concern due to severe health effects. Based on the well-established human health effects of outdoor PM, health-based standards for outdoor air have been promoted (e.g., the National Ambient Air Quality Standards formulated by the U.S.). Due to the exchange of indoor and outdoor air, the chemical composition of indoor particulate matter is related to the sources and components of outdoor PM. However, PM in the indoor environment has the potential to exceed outdoor PM levels. Indoor PM includes particles of outdoor origin that drift indoors and particles that originate from indoor activities, which include cooking, fireplaces, smoking, fuel combustion for heating, human activities, and burning incense. Indoor PM can be enriched with inorganic and organic contaminants, including toxic heavy metals and carcinogenic volatile organic compounds. As a potential health hazard, indoor exposure to PM has received increased attention in recent years because people spend most of their time indoors. In addition, as the quantity, quality, and scope of the research have expanded, it is necessary to conduct a systematic review of indoor PM. This review discusses the sources, pathways, characteristics, health effects, and exposure mitigation of indoor PM. Practical solutions and steps to reduce exposure to indoor PM are also discussed.
Collapse
Affiliation(s)
- Ling Zhang
- Nantong Key Laboratory of Intelligent and New Energy Materials, Nantong University, Nantong 226019, China;
- School of Health, Jiangsu Food & Pharmaceutical Science College, Huai’an 223003, China
| | - Changjin Ou
- Nantong Key Laboratory of Intelligent and New Energy Materials, Nantong University, Nantong 226019, China;
| | - Dhammika Magana-Arachchi
- Molecular Microbiology and Human Diseases Project, National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka; (D.M.-A.); (M.V.)
| | - Meththika Vithanage
- Molecular Microbiology and Human Diseases Project, National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka; (D.M.-A.); (M.V.)
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Kanth Swaroop Vanka
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Kanaji Masakorala
- Department of Botany, Faculty of Science, University of Ruhuna, Matara 80000, Sri Lanka;
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka;
| | - Yubo Yan
- Jiangsu Engineering Laboratory for Environment Functional Materials, Huaiyin Normal University, Huai’an 223300, China
| | - Nanthi Bolan
- School of Agriculture and Environment, Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia;
| | - M. B. Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
8
|
Hsu CN, Tain YL. Adverse Impact of Environmental Chemicals on Developmental Origins of Kidney Disease and Hypertension. Front Endocrinol (Lausanne) 2021; 12:745716. [PMID: 34721300 PMCID: PMC8551449 DOI: 10.3389/fendo.2021.745716] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Chronic kidney disease (CKD) and hypertension are becoming a global health challenge, despite developments in pharmacotherapy. Both diseases can begin in early life by so-called "developmental origins of health and disease" (DOHaD). Environmental chemical exposure during pregnancy can affect kidney development, resulting in renal programming. Here, we focus on environmental chemicals that pregnant mothers are likely to be exposed, including dioxins, bisphenol A (BPA), phthalates, per- and polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAH), heavy metals, and air pollution. We summarize current human evidence and animal models that supports the link between prenatal exposure to environmental chemicals and developmental origins of kidney disease and hypertension, with an emphasis on common mechanisms. These include oxidative stress, renin-angiotensin system, reduced nephron numbers, and aryl hydrocarbon receptor signaling pathway. Urgent action is required to identify toxic chemicals in the environment, avoid harmful chemicals exposure during pregnancy and lactation, and continue to discover other potentially harmful chemicals. Innovation is also needed to identify kidney disease and hypertension in the earliest stage, as well as translating effective reprogramming interventions from animal studies into clinical practice. Toward DOHaD approach, prohibiting toxic chemical exposure and better understanding of underlying mechanisms, we have the potential to reduce global burden of kidney disease and hypertension.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Gearhart-Serna LM, Tacam M, Slotkin TA, Devi GR. Analysis of polycyclic aromatic hydrocarbon intake in the US adult population from NHANES 2005-2014 identifies vulnerable subpopulations, suggests interaction between tobacco smoke exposure and sociodemographic factors. ENVIRONMENTAL RESEARCH 2021; 201:111614. [PMID: 34216610 PMCID: PMC9922165 DOI: 10.1016/j.envres.2021.111614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 05/25/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a toxic and ubiquitous class of environmental chemicals, products of fuel combustion from human and natural sources. The objective of this study was to identify vulnerable populations for high PAH exposure and variability, to better understand where to target PAH exposure reduction initiatives. Urinary metabolite data were collected from 9517 individuals from the U.S. CDC National Health and Nutrition Examination Survey years 2005-2014 for four parental PAHs naphthalene, fluorene, phenanthrene, and pyrene. We utilized these urinary biomarkers to estimate PAH intake, and regression models were fit for multiple demographic and lifestyle variables, to determine variable effects, interactions, odds of high versus low PAH intake. Smoking and secondhand smoke exposure accounted for the largest PAH intake rate variability (25.62%), and there were strongest interactions between race/ethnicity and smoking or SHS exposure, reflected in a much greater contribution of smoking to PAH intake in non-Hispanic Whites as compared to other races/ethnicities. Increased odds of high PAH intake were seen in older age groups, obese persons, college graduates, midrange incomes, smokers, and those who were SHS exposed. Among the non-smoking population, effects of other demographic factors lessened, suggesting a highly interactive nature. Our results suggest that there are demographic subpopulations with high PAH intake as a result of different smoking behaviors and potentially other exposures. This has human health, environmental justice, and regulatory implications wherein smoking cessation programs, SHS exposure regulations, and public health initiatives could be better targeted towards vulnerable subpopulations to meaningfully reduce PAH exposures.
Collapse
Affiliation(s)
- Larisa M Gearhart-Serna
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Moises Tacam
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA; Trinity College of Arts & Sciences, Duke University, Durham, NC, USA.
| | - Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | - Gayathri R Devi
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA; Women's Cancer Program, Duke Cancer Institute, Durham, NC, USA.
| |
Collapse
|
10
|
Díaz de León-Martínez L, Ortega-Romero MS, Barbier OC, Pérez-Herrera N, May-Euan F, Perera-Ríos J, Rodríguez-Aguilar M, Flores-Ramírez R. Evaluation of hydroxylated metabolites of polycyclic aromatic hydrocarbons and biomarkers of early kidney damage in indigenous children from Ticul, Yucatán, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52001-52013. [PMID: 33997934 DOI: 10.1007/s11356-021-14460-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental persistent chemicals, produced by the incomplete combustion of solid fuels, found in smoke. PAHs are considered carcinogenic, teratogenic, and genotoxic. Children are susceptible to environmental pollutants, particularly those living in high-exposure settings. Therefore, the main objective of this study was to evaluate the exposure to PAHs through hydroxylated metabolites of PAHs (OH-PAHs), 1-hydroxynaphtalene (1-OH-NAP), and 2-hydroxynaphtalene (2-OH-NAP); 2-,3-, and 9-hydroxyfluorene (2-OH-FLU, 3-OH-FLU, 9-OH-FLU); 1-,2-,3-, and 4-hydroxyphenanthrene (1-OH-PHE, 2-OH-PHE, 3-OH-PHE, 4-OH-PHE); and 1-hydroxypyrene (1-OH-PYR), as well as kidney health through biomarkers of early kidney damage (osteopontin (OPN), neutrophil gelatinase-associated lipocalin (NGAL), α1-microglobulin (α1-MG), and cystatin C (Cys-C)) in children from an indigenous community dedicated to footwear manufacturing and pottery in Ticul, Yucatán, Mexico. The results show a high exposure to PAHs from the found concentrations of OH-PAHs in urine in 80.5% of the children in median concentrations of 18.4 (5.1-71.0) μg/L of total OH-PAHs, as well as concentrations of kidney damage proteins in 100% of the study population in concentrations of 4.8 (3-12.2) and 7.9 (6.5-13.7) μg/g creatinine of NGAL and Cys-C respectively, and 97.5% of the population with concentrations of OPN and α1-MG at mean concentrations of 207.3 (119.8-399.8) and 92.2 (68.5-165.5) μg/g creatinine. The information provided should be considered and addressed by the health authorities to establish continuous biomonitoring and programs to reduce para-occupational exposure in the vulnerable population, particularly children, based on their fundamental human right to health.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Manolo S Ortega-Romero
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
| | - Olivier C Barbier
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
| | | | - Fernando May-Euan
- Medicine Faculty, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Javier Perera-Ríos
- Medicine Faculty, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Maribel Rodríguez-Aguilar
- Department of Pharmacy, Health Sciences Division, Universidad de Quintana Roo, Av. Erick Paolo Martínez, Chetumal, Quintana Roo, Mexico.
| | - Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
11
|
Cheng J, Li Y, He Q, Luo L, Zhang Y, Gao Y, Feng H, Zhao L, Wei W, Fu S, Sun D. Essential hypertension in patients exposed to high-arsenic exposed areas in western China: Genetic susceptibility and urinary arsenic metabolism characteristics. J Trace Elem Med Biol 2021; 67:126778. [PMID: 34087579 DOI: 10.1016/j.jtemb.2021.126778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To clarify the urinary arsenic metabolism characteristics in individuals with essential hypertension and to analyze the relationship between lipid metabolism gene polymorphisms and susceptibility to essential hypertension in individuals in high-arsenic areas in western China. METHODS A case-control study was conducted and involved individuals exposed to high arsenic levels (in this study, the arsenic content in the pressurized well water was 0-510.2 μg/L, and that in the mechanical well water was 167 μg/L) in two adjacent high-arsenic areas in Shanxi Province and the Inner Mongolia Autonomous Region, China. A total of 699 samples were collected, including 192 case samples (patients with hypertension) and 507 control samples (no hypertension). Blood pressure measurement data obtained from an epidemiological survey were used to determine whether the subjects had hypertension, and a logistic regression model was used to analyze the association between lipid metabolism gene polymorphisms and hypertension susceptibility. Blood and urine samples were collected based on epidemiological methods, single nucleotide polymorphisms (SNPs) were genotyped using a SNPscan™ multiple SNP typing kit, and urinary arsenic concentrations were determined using the hydride generation atomic fluorescence method (HG-AFS). RESULTS ADIPOQ/rs266729 was the dominant genetic model [(GC + GG) vs CC = 0.686:1, 95 % CI = 0.478-0.983], and FABP2/rs1799883 was the recessive genetic model [TT vs (CC + TC) = 1.690:1, 95 % CI = 1.014-2.816]. The distribution of the urinary arsenic secondary methylation ratio (SMR) [dimethylated arsenic (DMA)/monomethylated arsenic (MMA)] was different between hypertensive patients and controls. CONCLUSION ADIPOQ/rs266729 and FABP2/rs1799883 polymorphisms affect susceptibility to essential hypertension in individuals exposed to high levels of arsenic; there was a clear difference in the urinary arsenic metabolism pattern between hypertensive patients and controls.
Collapse
Affiliation(s)
- Jin Cheng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province & Ministry of Health, Harbin, 150081, China(1).
| | - Yuanyuan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province & Ministry of Health, Harbin, 150081, China(1).
| | - Qian He
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.
| | - Lanrong Luo
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province & Ministry of Health, Harbin, 150081, China(1).
| | - Yanting Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province & Ministry of Health, Harbin, 150081, China(1).
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province & Ministry of Health, Harbin, 150081, China(1).
| | - Hongqi Feng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province & Ministry of Health, Harbin, 150081, China(1).
| | - Lijun Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province & Ministry of Health, Harbin, 150081, China(1).
| | - Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province & Ministry of Health, Harbin, 150081, China(1).
| | - Songbo Fu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province & Ministry of Health, Harbin, 150081, China(1).
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province & Ministry of Health, Harbin, 150081, China(1).
| |
Collapse
|
12
|
Cheng S, Zhang H, Wang P, Zou K, Duan X, Wang S, Yang Y, Shi L, Wang W. Benchmark dose analysis for PAHs hydroxyl metabolites in urine based on mitochondrial damage of peripheral blood leucocytes in coke oven workers in China. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103675. [PMID: 34033865 DOI: 10.1016/j.etap.2021.103675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES The aim was to explore the dose-response relationship between occupational polycyclic aromatic hydrocarbons (PAHs) exposure and mitochondrial damage in coke oven plants workers. METHODS 544 workers and 238 healthy people were recruited. The ultra-high performance liquid chromatography was used to determine the level of 1-hydroxypyrene, 1-hydroxynaphthalene, 2-hydroxynaphthalene and 3-hydroxyphenanthrene. The real-time fluorescence quantitative polymerase chain reaction was used to determine the mitochondrial DNA copy number (mtDNAcn). The benchmark dose software was used to analyze the benchmark dose. RESULTS The mtDNAcn in the exposure group was lower than that in the control group. The concentrations of 1-hydroxypyrene, 1-hydroxynaphthalene, 2-hydroxynaphthalene and 3-hydroxyphenanthrene in the exposure group were higher than those in the control group. There is a dose-response relationship between 1-hydroxypyrene, 3-hydroxyphenanthrene and mitochondrial DNA damage. The benchmark dose lower confidence limit (BMDL) of 1-hydroxypyrene were 0.045, 0.004, and 0.058 pg/μg creatinine in the total, male, and female population, respectively. The BMDL of 3-hydroxyphenanthrene were 5.142, 6.099, and 2.807 pg/μg creatinine in the total, male, and female population, respectively. CONCLUSIONS The BMDL of 1-hydroxypyrene and 3-hydroxyphenanthrene initially explored can provide a reference to establish occupational exposure biological limits.
Collapse
Affiliation(s)
- Shuai Cheng
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hui Zhang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Pengpeng Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Kaili Zou
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoran Duan
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Sihua Wang
- Henan Provincial Institute of Occupational Health, Zhengzhou, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Liuhua Shi
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China.
| |
Collapse
|
13
|
Sun S, Mao W, Tao S, Zou X, Tian S, Qian S, Yao C, Zhang G, Chen M. Polycyclic Aromatic Hydrocarbons and the Risk of Kidney Stones in US Adults: An Exposure-Response Analysis of NHANES 2007-2012. Int J Gen Med 2021; 14:2665-2676. [PMID: 34188522 PMCID: PMC8232959 DOI: 10.2147/ijgm.s319779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Background Polycyclic aromatic hydrocarbons (PAHs) exposure may cause various diseases. However, the association between PAHs exposure and kidney stones remains unclear. The purpose of this study was to examine the relationship between PAHs and the risk of kidney stones in the US population. Methods The study included a total of 30,442 individuals (≥20 years) from the 2007–2012 National Health and Nutrition Examination Survey (NHANES). Nine urinary PAHs were included in this study. Logistic regression and dose–response curves were used to evaluate the association between PAHs and the risk of kidney stones. Results We selected 4385 participants. The dose–response curves showed a significant positive association between total PAHs, 2-hydroxynaphthalene, 1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 9-hydroxyfluorene and the risk of kidney stones after adjusting for confounding factors. Compared with the low group, an increased risk of kidney stones was observed in the high group of total PAHs [OR (95% CI), 1.32 (1.06–1.64), P=0.013], 2-hydroxynaphthalene [OR (95% CI), 1.37 (1.10–1.71), P=0.005], 1-hydroxyphenanthrene [OR (95% CI), 1.24 (1.00–1.54), P=0.046] and 9-hydroxyfluorene [OR (95% CI), 1.36 (1.09–1.70), P=0.007]. Conclusion High levels of PAHs were positively associated with the risk of kidney stones in the US population.
Collapse
Affiliation(s)
- Si Sun
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Weipu Mao
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, 210009, People's Republic of China.,Department of Urology, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, 211200, People's Republic of China
| | - Shuchun Tao
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xiangyu Zou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Shengwei Tian
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Siwei Qian
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Chi Yao
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, 210009, People's Republic of China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, 210009, People's Republic of China.,Department of Urology, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, 211200, People's Republic of China
| |
Collapse
|
14
|
Flores-Ramírez R, Ortega-Romero M, Christophe-Barbier O, Meléndez-Marmolejo JG, Rodriguez-Aguilar M, Lee-Rangel HA, Díaz de León-Martínez L. Exposure to polycyclic aromatic hydrocarbon mixtures and early kidney damage in Mexican indigenous population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23060-23072. [PMID: 33432415 DOI: 10.1007/s11356-021-12388-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The traditions and habits of indigenous communities in México include the use of wood and biomass burning to cook their food, which generates large amounts of smoke and therefore pollution inside the households. This smoke is composed of a complex mixture of polycyclic aromatic hydrocarbons (PAHs) which at high levels of exposure cause carcinogenic, genotoxic effects and some chronic pulmonary and cardiovascular diseases; however, few studies relate kidney health with exposure to PAHs. Thus, the aim of this study was the evaluation of 10 hydroxylated metabolites of PAHs (OH-PAHs), and their correlation with biomarkers of early kidney damage renal (cystatin-C (Cys-C)), osteopontin (OPN), retinol-binding protein-4 (RPB-4), and neutrophil gelatinase-associated lipocalin (NGAL) in the indigenous population of the Huasteca Potosina in Mexico. The results demonstrate the presence of the OH-PAHs and kidney damage biomarkers in 100% of the study population. The OH-PAHs were shown in the following order of frequency, 1-OH-PYR > 4-OH-PHE > 2-OH-NAP > 1-OH-NAP > 9-OH-FLU > 3-OH-FLU > 2-OH-FLU > 3-OH-PHE and with the following percentages of detection 97.6, 87.8, 78, 73.2, 68.3, 31.7, 14.6, and 12.2%, respectively. NGAL and RBP-4 were present in above 85% of the population, with mean concentrations of 78.5 ± 143.9 and 139.4 ± 131.7 ng/g creatinine, respectively, OPN (64%) with a mean concentration of 642.6 ± 723.3 ng/g g creatinine, and Cys-C with a mean concentration of 33.72 ± 44.96 ng/g creatinine. Correlations were found between 1-OH-NAP, 2-OH-NAP, 9-OH-FLU, and 4-OH-PHE and the four biomarkers of early kidney damage. 3-OH-FLU with OPN and 1-OH-PYR correlated significantly with NGAL, OPN, and RPB-4.
Collapse
Affiliation(s)
- Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Manolo Ortega-Romero
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, Mexico
| | - Olivier Christophe-Barbier
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, Mexico
| | - Jessica Guadalupe Meléndez-Marmolejo
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | | | - Héctor A Lee-Rangel
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Universidad Autonoma de San Luis Potosí, km. 14.5 Carr. San Luis Potosí-Matehuala, 78321, San Luis Potosí, SLP, Mexico
| | - Lorena Díaz de León-Martínez
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
15
|
Jain RB. Concentrations of selected monohydroxy polycyclic aromatic hydrocarbons across various stages of glomerular function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23220-23234. [PMID: 33439441 DOI: 10.1007/s11356-021-12376-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to evaluate the variabilities in the concentrations of selected monohydroxy polycyclic aromatic hydrocarbons (OH-PAH) in urine across various stages of glomerular function. Data from National Health and Nutrition Examination Survey for US adult smokers (N = 3125) and nonsmokers (N = 6793) were selected for analysis to meet the objectives of the study. OH-PAHs selected for analysis were as follows: 1-hydroxynaphthalene, 2-hydroxynaphthalene, 2-hydroxyfluorene, 3-hydroxyfluorene, 9-hydroxyfluorene, 1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, and 1-hydroxypyrene. Stages of glomerular function (GF) considered were as follows: hyperfiltrators (GF-1A, eGFR ≥ 110 mL/min/1.73 m2), normal filtrators (GF-1B, 90 < eGFR < 110 mL/min/1.73 m2), GF-2 (60 ≤ eGFR < 90 mL/min/1.73 m2), GF-3A (45 ≤ eGFR < 60 mL/min/1.73 m2), and GF-3B/4 (15 ≤ eGFR < 45 mL/min/1.73 m2). For the analysis of data for smokers, however, data for GF-3A and GF-3B/4 were merged because of small sample sizes for these GF stages for smokers. Among nonsmokers, (i) there was almost a straight-line decrease in adjusted concentrations of 2-hydroxyfluorene, 3-hydroxyfluorene, 9-hydroxyfluorene, 1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, and 1-hydroxypyrene over GF-1A through GF-3B/4; (ii) concentrations of these OH-PAHs at GF-3B/4 varied from being 37.5% for 1-hydroxypyrene to being 87% for 9-hydroxyfluorene of what they were at GF-1A; and (iii) while concentrations of 1-hydroxynaphthalene were located on an inverted U-shaped curve, concentrations of 2-hydroxynaphthalene were located on a U-shaped curve with pints of inflections at GF-3A. Among smokers, concentrations of all nine OH-PAHs in urine were located on inverted U-shaped curves with points of inflections located at GF-2 and concentrations of these OH-PAHs at GF-3/4 varied from being 48.7% for 1-hydroxypyrene to being 116.1% for 9-hydroxyfluorene of what they were at GF-1A. The kidneys differ in how they process urinary metabolites of PAHs among smokers and nonsmokers.
Collapse
|
16
|
Jain RB. Contributions of dietary, demographic, disease, lifestyle and other factors in explaining variabilities in concentrations of selected monohydroxylated polycyclic aromatic hydrocarbons in urine: Data for US children, adolescents, and adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115178. [PMID: 32688109 DOI: 10.1016/j.envpol.2020.115178] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Data from National Health and Nutrition Examination Survey for 2003-2014 for US children aged 6-11 years (N = 2097), adolescents aged 12-19 ears (N = 2642), and adults aged ≥ 20 years (N = 9170) were analyzed to investigate the effects of dietary, demographic, disease, lifestyle, and other factors on concentrations of nine metabolites of polycyclic aromatic hydrocarbons (PAH) in urine. PAHs analyzed were: 1-hydroxynaphthalene, 2-hydroxynaphthalene, 2-hydroxyfluorene, 3-hydroxyfluorene, 9-hydroxyfluorene, 1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, and 1-hydroxypyrene. Adults with diabetes were found to have higher adjusted levels of 1-hydroxynaphthalene (4139 vs. 3622 ng/L, p < 0.01) than nondiabetics. Adults with albuminuria had higher adjusted levels of 1-hydroxynaphthalene (4140 vs.3621 ng/L, p < 0.01) and 2-hydroxynaphthalene (6039 vs. 5468 ng/L, p < 0.01) than those without albuminuria. Children with albuminuria had lower adjusted levels of 9-hydroxyfluorene (162 vs. 187 ng/L, p = 0.04), 1-hydroxyphenanthrene (92 vs. 108 ng/L, p < 0.01), and 1-hydroxypyrene (118 vs. 138 ng/L, p < 0.01) than those without albuminuria. The ratios of smoker to nonsmoker adjusted levels for adults varied from a low of 1.4 for 2-hydroxyphenanthrene to a high of 5.6 for 3-hydroxyfluorene. Exposure to environmental tobacco smoke at home was associated with higher levels of most OH-PAHs among children, adolescents, and adults. Consumption of red meat not processed at high temperatures was associated with increased levels of 1-hydroxypyrene (β = 0.00040, p = 0.01), 1-, 2-, and 3-hydroxyphenanthrene, 3-, and 9-hydroxyfluorene. Consumption of red meat processed at high temperatures was associated with increased levels of 2-hydroxynaphthalene (β = 0.00046, p = 0.02) among adults. Consumption of fish processed at high temperatures was associated with decreased levels of 1-hydroxynaphtahlene (β = - 0.00088, p < 0.01), 2-, 3-, and 9-hydroxyfluorene, 1-, 2-, and 3-hydroxyphenanthrene. Among adults, alcohol consumption and caffeine may be associated with increased levels of certain OH-PAHs. Oxidative stress and inflammation associated with exposure to PAHs are associated with albuminuria and have the potential to lead to the development of diabetes.
Collapse
Affiliation(s)
- Ram B Jain
- 2959 Estate View Ct, Dacula, Ga, 30019, USA.
| |
Collapse
|