1
|
Chen A, Wang B, Feng Q, Wang R. Potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117019. [PMID: 39317077 DOI: 10.1016/j.ecoenv.2024.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
Carbonaceous nanomaterials (CNMs) are widely used in electronics, biomedicine, agriculture, environmental remediation, and catalysis due to their excellent biocompatibility, high reactivity, and high specific surface area. However, the extensive applications of CNMs cause their inevitable release into water, which may result in toxic effects on the aquatic ecological environment and organisms. CNMs can cause lipid peroxidation damage and neurotoxicity in aquatic organisms, affecting embryo hatching and larval morphology. The effects of CNMs on aquatic organisms vary depending on their structures and physicochemical properties, as well as the species, age, and tolerance of the tested organisms. The above uncertainties have increased the difficulty of exploring the impact of carbonaceous nanomaterials on the toxicity of aquatic organisms to a certain extent. Solving these issues is of great significance and reference value for promoting the research and safe utilization of carbon nanomaterials. Therefore, a systematic review of the effects of potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies is needed. This paper firstly summarizes the toxic effects of commonly used CNMs (i.e., carbon nanotubes, graphene, and fullerene) on different aquatic organisms, which include developmental toxicity, behavioral and metabolic toxicity, reproductive toxicity, and organ toxicity. Then the main mechanisms of CNMs to aquatic organisms are further explored, and the methods to reduce the toxicity of CNMs are also summarized. Finally, the current challenges and future perspectives for studying CNM toxicity to aquatic organisms are proposed.
Collapse
Affiliation(s)
- Anying Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Rui Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China
| |
Collapse
|
2
|
SinghDeo S, Naser SS, Nandi A, Sinha A, Shaikh SA, Mohapatra SK, Suar M, Verma SK, Tripathy J. Intrinsic physiochemical insights to green synthesized Ag-decorated GO nanosheet for photoluminescence and in vivo cellular biocompatibility with embryonic zebrafish. Colloids Surf B Biointerfaces 2024; 245:114212. [PMID: 39276757 DOI: 10.1016/j.colsurfb.2024.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
The advancement of nanotechnology and their application has intrigued a significant interest in green synthesis and application of organic and inorganic nanomaterials like graphene oxide (GO) and silver nanoparticles (AgNP). This study explores the intrinsic physiochemical properties of silver (Ag)-decorated graphene oxide (GO) nanosheets synthesized via a green approach, focusing on their photoluminescence behaviour and in vivo cellular biocompatibility with embryonic zebrafish. The nanocomposites were characterized using various spectroscopic and microscopic techniques to elucidate their structural and optical properties. Results reveal that the Ag-decorated GO nanosheets exhibit enhanced photoluminescence compared to pristine GO with an SPR at 405 nm and emission at 676 nm, attributed to the synergistic effects of Ag nanoparticles and GO. In addition, in vivo biocompatibility assessments using embryonic zebrafish demonstrate minimal cytotoxicity and high cellular viability upon exposure to the nanocomposites with an LC50 of 38 µg/ml, indicating their potential for biomedical applications. Further investigations into the interactions between the nanomaterials and biological systems provide valuable insights into their safety profile and suggest their suitability for various biomedical and therapeutic applications. Overall, this study offers a comprehensive understanding of the physiochemical characteristics and biological compatibility of Ag-decorated GO nanosheets, contributing to the advancement of nanotechnology in biomedicine and related fields.
Collapse
Affiliation(s)
- Simran SinghDeo
- School of Applied Sciences, KIIT University, Bhubaneswar 751024, India
| | | | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Sufiyan Ahmad Shaikh
- Institute of Chemical Technology - Indian Oil Odisha Campus, Bhubaneswar, Odisha 751013, India
| | - Swagat K Mohapatra
- Institute of Chemical Technology - Indian Oil Odisha Campus, Bhubaneswar, Odisha 751013, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India; Poznan University of Medical Sciences, Poznan 60-512, Poland.
| | | |
Collapse
|
3
|
Cymerys J, Bartak M, Słońska A, Lange A, Jaworski S, Chodkowski M, Ostrowska A, Wierzbicki M, Sawosz E, Bańbura MW. Antiviral Activity of Graphene Oxide-Silver Nanocomposites Against Murine Betacoronavirus. Int J Nanomedicine 2024; 19:9009-9033. [PMID: 39246425 PMCID: PMC11380865 DOI: 10.2147/ijn.s473448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Background The high infectivity of coronaviruses has led to increased interest in developing new strategies to prevent virus spread. Silver nanoparticles (AgNPs) and graphene oxide (GO) have attracted much attention in the antiviral field. We investigated the potential antiviral activity of GO and AgNPs combined in the nanocomposite GO-Ag against murine betacoronavirus MHV using an in vitro model. Methods GO, AgNPs, and GO-Ag characterization (size distribution, zeta potential, TEM visualization, FT-IR, and EDX analysis) and XTT assay were performed. The antiviral activity of GO-Ag nanocomposites was evaluated by RT-qPCR and TCID50 assays. The results were compared with free AgNPs and pure GO. Cell growth and morphology of MHV-infected hepatocytes treated with GO-Ag composites were analyzed by JuLI™Br. Immunofluorescence was used to visualize the cell receptor used by MHV. Ultrastructural SEM analysis was performed to examine cell morphology after MHV infection and GO-Ag composite treatment. Results A significant reduction in virus titer was observed for all nanocomposites tested, ranging from 3.2 to 7.3 log10 TCID50. The highest titer reduction was obtained for GO 5 µg/mL - Ag 25 µg/mL in the post-treatment method. These results were confirmed by RT-qPCR analysis. The results indicate that GO-Ag nanocomposites exhibited better antiviral activity compared to AgNPs and GO. Moreover, the attachment of AgNPs to the GO flake platform reduced their cytotoxicity. In addition, the GO-Ag composite modulates the distribution of the Ceacam1 cell receptor and can modulate cell morphology. Conclusion Graphene oxide sheets act as a stabilizing agent, inhibiting the accumulation of AgNPs and reducing their cellular toxicity. The GO-Ag composite can physically bind and inhibit murine betacoronavirus from entering cells. Furthermore, the constant presence of GO-Ag can inhibit MHV replication and significantly limit its extracellular release. In conclusion, GO-Ag shows promise as an antiviral coating on solid surfaces to minimize virus transmission and spread.
Collapse
Affiliation(s)
- Joanna Cymerys
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michalina Bartak
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anna Słońska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin W Bańbura
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Bessa IA, D’Amato DL, C. Souza AB, Levita DP, Mello CC, da Silva AFM, dos Santos TC, Ronconi CM. Innovating Leishmaniasis Treatment: A Critical Chemist's Review of Inorganic Nanomaterials. ACS Infect Dis 2024; 10:2485-2506. [PMID: 39001837 PMCID: PMC11320585 DOI: 10.1021/acsinfecdis.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Leishmaniasis, a critical Neglected Tropical Disease caused by Leishmania protozoa, represents a significant global health risk, particularly in resource-limited regions. Conventional treatments are effective but suffer from serious limitations, such as toxicity, prolonged treatment courses, and rising drug resistance. Herein, we highlight the potential of inorganic nanomaterials as an innovative approach to enhance Leishmaniasis therapy, aligning with the One Health concept by considering these treatments' environmental, veterinary, and public health impacts. By leveraging the adjustable properties of these nanomaterials─including size, shape, and surface charge, tailored treatments for various diseases can be developed that are less harmful to the environment and nontarget species. We review recent advances in metal-, oxide-, and carbon-based nanomaterials for combating Leishmaniasis, examining their mechanisms of action and their dual use as standalone treatments or drug delivery systems. Our analysis highlights a promising yet underexplored frontier in employing these materials for more holistic and effective disease management.
Collapse
Affiliation(s)
- Isabela
A. A. Bessa
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Dayenny L. D’Amato
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Ana Beatriz C. Souza
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Daniel P. Levita
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Camille C. Mello
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Aline F. M. da Silva
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Thiago C. dos Santos
- Instituto
de Química, Universidade Federal
do Rio de Janeiro. Av. Athos da Silveira Ramos 149, CT, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Célia M. Ronconi
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| |
Collapse
|
5
|
Yang X, Wang Z, Xu J, Zhang C, Gao P, Zhu L. Effects of dissolved organic matter on the environmental behavior and toxicity of metal nanomaterials: A review. CHEMOSPHERE 2024; 358:142208. [PMID: 38704042 DOI: 10.1016/j.chemosphere.2024.142208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Metal nanomaterials (MNMs) have been released into the environment during their usage in various products, and their environmental behaviors directly impact their toxicity. Numerous environmental factors potentially affect the behaviors and toxicity of MNMs with dissolved organic matter (DOM) playing the most essential role. Abundant facts showing contradictory results about the effects of DOM on MNMs, herein the occurrence of DOM on the environmental process change of MNMs such as dissolution, dispersion, aggregation, and surface transformation were summarized. We also reviewed the effects of MNMs on organisms and their mechanisms in the environment such as acute toxicity, oxidative stress, oxidative damage, growth inhibition, photosynthesis, reproductive toxicity, and malformation. The presence of DOM had the potential to reduce or enhance the toxicity of MNMs by altering the reactive oxygen species (ROS) generation, dissolution, stability, and electrostatic repulsion of MNMs. Furthermore, we summarized the factors that affected different toxicity including specific organisms, DOM concentration, DOM types, light conditions, detection time, and production methods of MNMs. However, the more detailed mechanism of interaction between DOM and MNMs needs further investigation.
Collapse
Affiliation(s)
- Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhangjia Wang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China.
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
6
|
Darabi NH, Kalaee M, Mazinani S, Khajavi R. GO/AgNW aided sustained release of ciprofloxacin loaded in Starch/PVA nanocomposite mats for wound dressings application. Int J Biol Macromol 2024; 266:130977. [PMID: 38513893 DOI: 10.1016/j.ijbiomac.2024.130977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 02/01/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Compared to conventional bandages, which do not meet all wound care requirements, nanofiber wound dressings could provide a potentially excellent environment for healing. In the present research, nanocomposite membrane based on starch (St) - polyvinyl alcohol (PVA) nanofibers containing ciprofloxacin antibiotic drug loaded on graphene oxide‑silver nanowire (GO-AgNWs) hybrid nanoparticles is produced by electrospinning process. Morphological studies showed that the length and diameter of silver nanowires are 21 ± 9.17 μm and 82 ± 10.52 nm, respectively. The contact angle of 57.1° due to the hydrophilic nature of nanofibers, also the swelling degree of 679.51 % and, the water vapor permeability of 2627 ± 56 (g/m2.day) can be expressed as a confirmation of the ability of this wound dressing to manage secretions around the wound. In evaluating the antibacterial activity of these nanocomposite membranes against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria, the most potent antibacterial effect is in the case of nanofibers containing a high percentage of starch and nanoparticles carrying ciprofloxacin; with non-growth halos of 47.58 mm and 22.06 mm was recorded. The release of ciprofloxacin drug in vitro was reported to be 61.69 % during 24 h, and the final release rate was 82.17 %. Despite the biocompatibility and cell viability of 97.74 % and the biodegradability rate of 28.51 %, the StP-GOAgNWCip nanocomposite membrane can be introduced as a suitable candidate for wound dressing.
Collapse
Affiliation(s)
- Negar Hosseini Darabi
- Department of Polymer Engineering, South Tehran Branch, Islamic Azad University, P.O. BOX 19585-466, Tehran, Iran
| | - Mohammadreza Kalaee
- Department of Polymer Engineering, South Tehran Branch, Islamic Azad University, P.O. BOX 19585-466, Tehran, Iran; Nanotechnology Research Center, South Tehran Branch, Islamic Azad University, P.O. BOX 11365-4435, Tehran, Iran.
| | - Saeedeh Mazinani
- New Technologies Research Center (NTRC), Amirkabir University of Technology, P.O. BOX 15875-4413, Tehran, Iran
| | - Ramin Khajavi
- Department of Polymer Engineering, South Tehran Branch, Islamic Azad University, P.O. BOX 19585-466, Tehran, Iran
| |
Collapse
|
7
|
Durairaj S, Sridhar D, Ströhle G, Li H, Chen A. Bactericidal Effect and Cytotoxicity of Graphene Oxide/Silver Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18300-18310. [PMID: 38574271 DOI: 10.1021/acsami.3c15798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
To tackle the proliferation of pathogenic microorganisms without relying on antibiotics, innovative materials boasting antimicrobial properties have been engineered. This study focuses on the development of graphene oxide/silver (GO/Ag) nanocomposites, derived from partially reduced graphene oxide adorned with silver nanoparticles. Various nanocomposites with different amounts of silver (GO/Ag-1, GO/Ag-2, GO/Ag-3, and GO/Ag-4) were synthesized, and their antibacterial efficacy was systematically studied. The silver nanoparticles were uniformly deposited on the partially reduced graphene oxide surface, exhibiting spherical morphologies with an average size of 25 nm. The nanocomposites displayed potent antibacterial properties against both gram-positive bacteria (S. aureus and B. subtilis) and gram-negative bacteria (E. coli and S. enterica) as confirmed by minimum inhibition concentration (MIC) studies and time-dependent experiments. The optimal MIC for Gram-positive bacteria was 62.5 μg/mL and for Gram-negative bacteria was 125 μg/mL for the GO/Ag nanocomposites. Bacterial cells that encountered the nanocomposite films exhibited significantly greater inhibitory effects compared to those exposed to conventional antibacterial materials. Furthermore, the cytotoxicity of these nanocomposites was assessed using human epithelial cells (HEC), revealing that GO/Ag-1 and GO/Ag-2 exhibited lower toxicity levels toward HEC and remained compatible even at higher dilution rates. This study underscores the potential of GO/Ag-based nanocomposites as versatile materials for antibacterial applications, particularly as biocompatible wound dressings, offering promising prospects for wound healing and infection control.
Collapse
Affiliation(s)
- Sharmila Durairaj
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Deepak Sridhar
- Zentek Ltd., 24 Corporate Court, Guelph, Ontario N1G 5G5, Canada
| | - Gisela Ströhle
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Huiyan Li
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
8
|
Ede JD, Diges AS, Zhang Y, Shatkin JA. Life-cycle risk assessment of graphene-enabled textiles in fire protection gear. NANOIMPACT 2024; 33:100488. [PMID: 37940075 DOI: 10.1016/j.impact.2023.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/06/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
A nanomaterial life-cycle risk assessment (Nano LCRA) of a graphene-enabled textile used in the construction of heat and fire-resistant personal protective equipment (PPE) was conducted to develop, analyze, and prioritize potential occupational, health and environmental risks. The analysis identifies potential receptors and exposure pathways at each product life-cycle stage and makes a qualitative evaluation of the potential significance of each scenario. A literature review, quality evaluation, and database were developed as part of the LCRA to identify potential hazards associated with graphene-based materials (GBMs) throughout the product life-cycle. Generally, risks identified from graphene-enabled textiles were low. Of the developed exposure scenarios, occupational inhalation exposures during raw material and product manufacturing ranked highest. The analysis identifies the key potential human and environmental hazards and exposures of the products across the product life-cycle of graphene enabled textiles. Priority research gaps to reduce uncertainty include evaluating long-term, low dose graphene exposures typical of the workplace, as well as the potential release and hazard characterization of graphene-acrylic nanocomposites.
Collapse
Affiliation(s)
| | | | - Yueyang Zhang
- Vireo Advisors LLC, Boston, MA 02205, USA; University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
9
|
Wang J, Xue X, Miao X. Antioxidant Effects of Quercetin Nanocrystals in Nanosuspension against Hydrogen Peroxide-Induced Oxidative Stress in a Zebrafish Model. Pharmaceuticals (Basel) 2023; 16:1209. [PMID: 37765017 PMCID: PMC10536595 DOI: 10.3390/ph16091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Quercetin, a flavonoid compound rich in hydroxyl groups, possesses antioxidant properties, whereas its poor water solubility limits its bioavailability. In pursuit of addressing the water solubility of quercetin and comprehending the impact of nanocrystal particle size on antioxidant efficacy, we prepared three different-sized quercetin nanocrystals, namely small (50 nm), medium (140 nm), and large (360 nm), using a nanosuspension method in this study. Within the in vitro setting, assessments employing solubility and radical scavenging assays revealed that quercetin nanocrystals displayed superior solubility (26, 21, and 13 fold corresponding to small, medium, and large particle sizes) and antioxidant performance compared to the coarse quercetin. Furthermore, quercetin nanocrystals of three particle sizes all demonstrated significant protection effects on the survival rate of H2O2-treated zebrafish at 72 h (77.78%, 73.33%, and 66.67% for small, medium, and large particle sizes, respectively), while the coarse quercetin group exhibited a low survival rate (53.3%) similar to the H2O2-treated group (47.8%). Moreover, all quercetin nanocrystals exhibited potent antioxidant capacity on both the antioxidants and enzymatic antioxidant system in H2O2-treated zebrafish to restore zebrafish to a normal state under oxidative stress. For instance, the levels of reactive oxygen species were reduced to 101.10%, 108.83%, and 109.77% of the normal levels for small, medium, and large particle-sized quercetin nanocrystals, respectively. In conclusion, quercetin nanocrystals demonstrated enhanced solubility, robust antioxidant capacity, and protective effects in zebrafish compared to coarse quercetin.
Collapse
Affiliation(s)
- Junjie Wang
- Marine College, Shandong University, Weihai 264209, China; (J.W.); (X.X.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Xinyue Xue
- Marine College, Shandong University, Weihai 264209, China; (J.W.); (X.X.)
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China; (J.W.); (X.X.)
| |
Collapse
|
10
|
Rahman A, Roy KJ, Deb GK, Ha T, Rahman S, Aktar MK, Ali MI, Kafi MA, Choi JW. Nano-Enabled Antivirals for Overcoming Antibody Escaped Mutations Based SARS-CoV-2 Waves. Int J Mol Sci 2023; 24:13130. [PMID: 37685938 PMCID: PMC10488153 DOI: 10.3390/ijms241713130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
This review discusses receptor-binding domain (RBD) mutations related to the emergence of various SARS-CoV-2 variants, which have been highlighted as a major cause of repetitive clinical waves of COVID-19. Our perusal of the literature reveals that most variants were able to escape neutralizing antibodies developed after immunization or natural exposure, pointing to the need for a sustainable technological solution to overcome this crisis. This review, therefore, focuses on nanotechnology and the development of antiviral nanomaterials with physical antagonistic features of viral replication checkpoints as such a solution. Our detailed discussion of SARS-CoV-2 replication and pathogenesis highlights four distinct checkpoints, the S protein (ACE2 receptor coupling), the RBD motif (ACE2 receptor coupling), ACE2 coupling, and the S protein cleavage site, as targets for the development of nano-enabled solutions that, for example, prevent viral attachment and fusion with the host cell by either blocking viral RBD/spike proteins or cellular ACE2 receptors. As proof of this concept, we highlight applications of several nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanoparticles, carbon nanotubes, fullerene, carbon dots, quantum dots, polymeric nanoparticles, lipid-based, polymer-based, lipid-polymer hybrid-based, surface-modified nanoparticles that have already been employed to control viral infections. These nanoparticles were developed to inhibit receptor-mediated host-virus attachments and cell fusion, the uncoating of the virus, viral gene expression, protein synthesis, the assembly of progeny viral particles, and the release of the virion. Moreover, nanomaterials have been used as antiviral drug carriers and vaccines, and nano-enabled sensors have already been shown to enable fast, sensitive, and label-free real-time diagnosis of viral infections. Nano-biosensors could, therefore, also be useful in the remote testing and tracking of patients, while nanocarriers probed with target tissue could facilitate the targeted delivery of antiviral drugs to infected cells, tissues, organs, or systems while avoiding unwanted exposure of non-target tissues. Antiviral nanoparticles can also be applied to sanitizers, clothing, facemasks, and other personal protective equipment to minimize horizontal spread. We believe that the nanotechnology-enabled solutions described in this review will enable us to control repeated SAR-CoV-2 waves caused by antibody escape mutations.
Collapse
Affiliation(s)
- Aminur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Kumar Jyotirmoy Roy
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Gautam Kumar Deb
- Department of Biotechnology, Bangladesh Livestock Research Institute, Dhaka 1341, Bangladesh;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| | - Saifur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Mst. Khudishta Aktar
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Isahak Ali
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| |
Collapse
|
11
|
Chen Q, Cao X, Yan B, Guo Z, Xi Z, Li J, Ci N, Yan M, Ci L. Ecotoxicological evaluation of functional carbon nanodots using zebrafish (Danio rerio) model at different developmental stages. CHEMOSPHERE 2023; 333:138970. [PMID: 37207902 DOI: 10.1016/j.chemosphere.2023.138970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Considering functional carbon nanodots (FCNs) are potential to be applied in many areas, their risk and toxicity to organisms are imperative to be evaluated. Thus, this study conducted acute toxicity test of zebrafish (Danio rerio) at embryonic and adult stage to estimate the toxicity of FCNs. Results show that the toxic effects of FCNs and nitrogen doped FCNs (N-FCNs) at their 10% lethal concentration (LC10) values on zebrafish are expressed in developmental retardation, cardiovascular toxicity, renal damage and hepatotoxicity. There are interactive relationships between these effects, but the main reason should be ascribed to the undesirable oxidative damage induced by high doses of materials, as well as the biodistribution of FCNs and N-FCNs in vivo. Even so, FCNs and N-FCNs can promote the antioxidant activity in zebrafish tissues to cope with the oxidative stress. FCNs and N-FCNs are not easy to cross the physical barriers in zebrafish embryos or larvae, and can be excreted from intestine by adult fish, which proves their biosecurity to zebrafish. In addition, because of the differences in physicochemical properties, especially nano-size and surface chemical property, FCNs show higher biosecurity to zebrafish than N-FCNs. The effects of FCNs and N-FCNs on hatching rates, mortality rates and developmental malformations are dose-dependent and time-dependent. The LC50 values of FCNs and N-FCNs on zebrafish embryo at 96 hpf are 1610 mg/L and 649 mg/L, respectively. According to the Acute Toxicity Rating Scale of the Fish and Wildlife Service, the toxicity grades of FCNs and N-FCNs are both defined as "practically nontoxic", and FCNs are "Relatively Harmless" to embryos because their LC50 values are above 1000 mg/L. Our results prove the biosecurity of FCNs-based materials for future practical application.
Collapse
Affiliation(s)
- Qiong Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xiufeng Cao
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China.
| | - Biao Yan
- Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Zhijiang Guo
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Zhenjie Xi
- Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Jianwei Li
- Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Naixuan Ci
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Lijie Ci
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China.
| |
Collapse
|
12
|
Ucar A, Yeltekin AÇ, Köktürk M, Calimli MH, Nas MS, Parlak V, Alak G, Atamanalp M. Has PdCu@GO effect on oxidant/antioxidant balance? Using zebrafish embryos and larvae as a model. Chem Biol Interact 2023; 378:110484. [PMID: 37054932 DOI: 10.1016/j.cbi.2023.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 04/08/2023] [Indexed: 04/15/2023]
Abstract
Industrial products containing PdCu@GO can gain access to the aquaculture environment, causing dangerous effects on living biota. In this study, the developmental toxicity of zebrafish treated with different concentrations (50, 100, 250, 500 and 1000 μg/L) of PdCu@GO was investigated. The findings showed that PdCu@GO administration decreased the hatchability and survival rate, caused dose-dependent cardiac malformation. Reactive oxygen species (ROS) and apoptosis were also inhibited in a dose-dependent manner, with acetylcholinesterase (AChE) activity affected by nano-Pd exposure. As evidence for oxidative stress, malondialdehyde (MDA) level increased and superoxide dismutase (SOD), catalase (CAT) glutathione peroxidase (GPx) activities and glutathione (GSH) level decreased due to the increase in PdCu@GO concentration. Our research, it was determined that the oxidative stress stimulated by the increase in the concentration of PdCu@GO in zebrafish caused apoptosis (Caspase-3) and DNA damage (8-OHdG). Stimulation of ROS, inflammatory cytokines, tumor Necrosis Factor Alfa (TNF-α) and interleukin - 6 (IL-6), which act as signaling molecules to trigger proinflammatory cytokine production, induced zebrafish immunotoxicity. However, it was determined that the increase of ROS induced teratogenicity through the induction of nuclear factor erythroid 2 level (Nrf-2), NF-κB and apoptotic signaling pathways triggered by oxidative stress. Taken together with the research findings, the study contributed to a comprehensive assessment of the toxicological profile of PdCu@GO by investigating the effects on zebrafish embryonic development and potential molecular mechanisms.
Collapse
Affiliation(s)
- Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| | | | - Mine Köktürk
- Department of Organic Agriculture Management, Faculty of Applied Sciences, Igdir University, TR-76000, Igdir, Turkey; Research Laboratory Application and Research Center (ALUM), Iğdır University, TR-76000, Iğdır, Turkey
| | - Mehmet Harbi Calimli
- Department of Medical Services and Techniques, Tuzluca Vocational School, Igdir University, TR-76000, Igdir, Turkey; Research Laboratory Application and Research Center (ALUM), Iğdır University, TR-76000, Iğdır, Turkey
| | - Mehmet Salih Nas
- Department of Environmental Engineering, Faculty of Engineering, Igdir University, TR-76000, Igdir, Turkey; Research Laboratory Application and Research Center (ALUM), Iğdır University, TR-76000, Iğdır, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
13
|
Da Silva GH, Franqui LS, De Farias MA, De Castro VLSS, Byrne HJ, Martinez DST, Monteiro RTR, Casey A. TiO 2-MWCNT nanohybrid: Cytotoxicity, protein corona formation and cellular internalisation in RTG-2 fish cell line. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106434. [PMID: 36870176 DOI: 10.1016/j.aquatox.2023.106434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Titanium dioxide nanoparticles-multiwalled carbon nanotubes (TiO2-MWCNT) nanohydrid has an enhanced photocatalytic activity across the visible light with promising applications in environmental remediation, solar energy devices and antimicrobial technologies. However, it is necessary to evaluate the toxicological effects of TiO2-MWCNT towards safe and sustainable development of nanohybrids. In this work, we studied the cytotoxicity, protein corona formation and cellular internalisation of TiO2-MWCNT on fibroblasts derived from gonadal rainbow trout tissue (RTG-2) for the first time. This nanohydrid did not show any toxicity effect on RTG-2 cells up to 100 mg L-1 after 24 h of exposure as monitored by alamar blue, neutral red and trypan blue assays (in presence or absence of foetal bovine serum, FBS). Futhermore, cryo-transmission electron microscopy analysis demonstrated that TiO2 particles is attached on nanotube surface after FBS-protein corona formation in cell culture medium. Raman spectroscopy imaging showed that TiO2-MWCNT can be internalised by RTG-2 cells. This work is a novel contribution towards better understanding the nanobiointeractions of nanohydrids linked to their in vitro effects on fish cells in aquatic nanoecotoxicology.
Collapse
Affiliation(s)
- Gabriela H Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; Laboratory of Ecotoxicology and Biosafety, EMBRAPA Environment, Jaguariúna, São Paulo, Brazil; FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland.
| | - Lidiane Silva Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Marcelo A De Farias
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | | | - Hugh J Byrne
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland
| | - Diego S T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Regina T R Monteiro
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Alan Casey
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
14
|
Liu S, Zhang X, Zeng K, He C, Huang Y, Xin G, Huang X. Insights into eco-corona formation and its role in the biological effects of nanomaterials from a molecular mechanisms perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159867. [PMID: 36334667 DOI: 10.1016/j.scitotenv.2022.159867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Broad application of nanotechnology inevitably results in the release of nanomaterials (NMs) into the aquatic environment, and the negative effects of NMs on aquatic organisms have received much attention. Notably, in the natural aquatic environment, ubiquitous ecological macromolecules (i.e., natural organic matter, extracellular polymeric substances, proteins, and metabolites) can easily adsorb onto the surfaces of NMs and form an "eco-corona". As most NMs have such an eco-corona modification, the properties of their eco-corona significantly determine the fate and ecotoxicity of NMs in the natural aquatic ecosystem. Therefore, it is of great importance to understand the role of the eco-corona to evaluate the environmental risks NMs pose. However, studies on the mechanism of eco-corona formation and its resulting nanotoxicity on aquatic organisms, especially at molecular levels, are rare. This review systemically summarizes the mechanisms of eco-corona formation by several typical ecological macromolecules. In addition, the similarities and differences in nanotoxicity between pristine and corona-coated NMs to aquatic organisms at different trophic levels were compared. Finally, recent findings about potential mechanisms on how NM coronas act on aquatic organisms are discussed, including cellular internalization, oxidative stress, and genotoxicity. The literature shows that 1) the formation of an eco-corona on NMs and its biological effect highly depend on both the composition and conformation of macromolecules; 2) both feeding behavior and body size of aquatic organisms at different trophic levels result in different responses to corona-coated NMs; 3) genotoxicity can be used as a promising biological endpoint for evaluating the role of eco-coronas in natural waters. This review provides informative insight for a better understanding of the role of eco-corona plays in the nanotoxicity of NMs to aquatic organisms which will aid the safe use of NMs.
Collapse
Affiliation(s)
- Saibo Liu
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xinran Zhang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Kai Zeng
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chuntao He
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
15
|
Connolly M, Moles G, Carniel FC, Tretiach M, Caorsi G, Flahaut E, Soula B, Pinelli E, Gauthier L, Mouchet F, Navas JM. Applicability of OECD TG 201, 202, 203 for the aquatic toxicity testing and assessment of 2D Graphene material nanoforms to meet regulatory needs. NANOIMPACT 2023; 29:100447. [PMID: 36563784 DOI: 10.1016/j.impact.2022.100447] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Tests using algae and/or cyanobacteria, invertebrates (crustaceans) and fish form the basic elements of an ecotoxicological assessment in a number of regulations, in particular for classification of a substance as hazardous or not to the aquatic environment according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS-CLP) (GHS, 2022) and the REACH regulation (Registration, Evaluation, Authorisation and Restriction of Chemicals, EC, 2006). Standardised test guidelines (TGs) of the Organisation for Economic Co-operation and Development (OECD) are available to address the regulatory relevant endpoints of growth inhibition in algae and cyanobacteria (TG 201), acute toxicity to invertebrates (TG 202), and acute toxicity in fish (TG 203). Applying these existing OECD TGs for testing two dimensional (2D) graphene nanoforms may require more attention, additional considerations and/or adaptations of the protocols, because graphene materials are often problematic to test due to their unique attributes. In this review a critical analysis of all existing studies and approaches to testing used has been performed in order to comment on the current state of the science on testing and the overall ecotoxicity of 2D graphene materials. Focusing on the specific tests and available guidance's, a complete evaluation of aquatic toxicity testing for hazard classification of 2D graphene materials, as well as the use of alternative tests in an integrated approach to testing and assessment, has been made. This information is essential to ensure future assessments generate meaningful data that will fulfil regulatory requirements for the safe use of this "wonder" material.
Collapse
Affiliation(s)
- M Connolly
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain.
| | - G Moles
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain
| | - F Candotto Carniel
- UNITS, Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, Trieste I-34127, Italy
| | - M Tretiach
- UNITS, Department of Life Sciences, University of Trieste, via L. Giorgieri 10, Trieste I-34127, Italy
| | - G Caorsi
- UNITS, Department of Life Sciences, University of Trieste, via L. Giorgieri 10, Trieste I-34127, Italy
| | - E Flahaut
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - B Soula
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - E Pinelli
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - L Gauthier
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - F Mouchet
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - J M Navas
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain
| |
Collapse
|
16
|
Akere TH, de Medeiros AMZ, Martinez DST, Ibrahim B, Ali-Boucetta H, Valsami-Jones E. Synthesis and Characterisation of a Graphene Oxide-Gold Nanohybrid for Use as Test Material. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010033. [PMID: 36615944 PMCID: PMC9824158 DOI: 10.3390/nano13010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 05/28/2023]
Abstract
This paper reports the synthesis and characterization of a graphene oxide-gold nanohybrid (GO-Au) and evaluates its suitability as a test material, e.g., in nano(eco)toxicological studies. In this study, we synthesised graphene oxide (GO) and used it as a substrate for the growth of nano-Au decorations, via the chemical reduction of gold (III) using sodium citrate. The GO-Au nanohybrid synthesis was successful, producing AuNPs (~17.09 ± 4.6 nm) that were homogenously distributed on the GO sheets. They exhibited reproducible characteristics when characterised using UV-Vis, TGA, TEM, FTIR, AFM, XPS and Raman spectroscopy. The nanohybrid also showed good stability in different environmental media and its physicochemical characteristics did not deteriorate over a period of months. The amount of Au in each of the GO-Au nanohybrid samples was highly comparable, suggesting a potential for use as chemical label. The outcome of this research represents a crucial step forward in the development of a standard protocol for the synthesis of GO-Au nanohybrids. It also paves the way towards a better understanding of the nanotoxicity of GO-Au nanohybrid in biological and environmental systems.
Collapse
Affiliation(s)
- Taiwo Hassan Akere
- School of Geography, Earth and Environmental Science, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Nanomedicine, Drug Delivery & Nanotoxicology (NDDN) Laboratory, School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Aline M. Z. de Medeiros
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas 13083-100, SP, Brazil
- Centre of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba 13416-000, SP, Brazil
| | - Diego Stéfani T. Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas 13083-100, SP, Brazil
- Centre of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba 13416-000, SP, Brazil
| | - Bashiru Ibrahim
- School of Geography, Earth and Environmental Science, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Nanomedicine, Drug Delivery & Nanotoxicology (NDDN) Laboratory, School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Hanene Ali-Boucetta
- Nanomedicine, Drug Delivery & Nanotoxicology (NDDN) Laboratory, School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Science, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
17
|
Zhang F, Wang Z, Peijnenburg WJGM, Vijver MG. Review and Prospects on the Ecotoxicity of Mixtures of Nanoparticles and Hybrid Nanomaterials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15238-15250. [PMID: 36196869 PMCID: PMC9671040 DOI: 10.1021/acs.est.2c03333] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The rapid development of nanomaterials (NMs) and the emergence of new multicomponent NMs will inevitably lead to simultaneous exposure of organisms to multiple engineered nanoparticles (ENPs) at varying exposure levels. Understanding the joint impacts of multiple ENPs and predicting the toxicity of mixtures of ENPs are therefore evidently of importance. We reviewed the toxicity of mixtures of ENPs to a variety of different species, covering algae, bacteria, daphnia, fish, fungi, insects, and plants. Most studies used the independent-action (IA)-based model to assess the type of joint effects. Using co-occurrence networks, it was revealed that 53% of the cases with specific joint response showed antagonistic, 25% synergistic, and 22% additive effects. The combination of nCuO and nZnO exhibited the strongest interactions in each type of joint interaction. Compared with other species, plants exposed to multiple ENPs were more likely to experience antagonistic effects. The main factors influencing the joint response type of the mixtures were (1) the chemical composition of individual components in mixtures, (2) the stability of suspensions of mixed ENPs, (3) the type and trophic level of the individual organisms tested, (4) the biological level of organization (population, communities, ecosystems), (5) the exposure concentrations and time, (6) the endpoint of toxicity, and (7) the abiotic field conditions (e.g., pH, ionic strength, natural organic matter). This knowledge is critical in developing efficient strategies for the assessment of the hazards induced by combined exposure to multiple ENPs in complex environments. In addition, this knowledge of the joint effects of multiple ENPs assists in the effective prediction of hybrid NMs.
Collapse
Affiliation(s)
- Fan Zhang
- Institute
of Environmental Sciences (CML), Leiden
University, Leiden2300 RA, The Netherlands
| | - Zhuang Wang
- Collaborative
Innovation Center of Atmospheric Environment and Equipment Technology,
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution
Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing210044, People’s Republic of China
| | - Willie J. G. M. Peijnenburg
- Institute
of Environmental Sciences (CML), Leiden
University, Leiden2300 RA, The Netherlands
- Centre
for Safety of Substances and Products, National
Institute of Public Health and the Environment (RIVM), Bilthoven3720 BA, The Netherlands
- Email for W.J.G.M.P.:
| | - Martina G. Vijver
- Institute
of Environmental Sciences (CML), Leiden
University, Leiden2300 RA, The Netherlands
| |
Collapse
|
18
|
Köktürk M, Yildirim S, Yiğit A, Ozhan G, Bolat İ, Alma MH, Menges N, Alak G, Atamanalp M. What is the eco-toxicological level and effects of graphene oxide-boramidic acid (GO-ED-BA NP) ?: In vivo study on Zebrafish embryo/larvae. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:108443. [DOI: 10.1016/j.jece.2022.108443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
|
19
|
Hou J, Zhang X, Wang K, Ma P, Hu H, Zhou X, Zheng K. Synthesis of Silver Nanoparticles-Modified Graphitic Carbon Nitride Nanosheets for Highly Efficient Photocatalytic Hydrogen Peroxide Evolution. Molecules 2022; 27:molecules27175535. [PMID: 36080302 PMCID: PMC9457636 DOI: 10.3390/molecules27175535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
As a promising metal-free photocatalyst, graphitic carbon nitride (g-C3N4) is still limited by insufficient visible light absorption and rapid recombination of photogenerated carriers, resulting in low photocatalytic activity. Here, we adjusted the microstructure of the pristine bulk-g-C3N4 (PCN) and further loaded silver (Ag) nanoparticles. Abundant Ag nanoparticles were grown on the thin-layer g-C3N4 nanosheets (CNNS), and the Ag nanoparticles decorated g-C3N4 nanosheets (Ag@CNNS) were successfully synthesized. The thin-layer nanosheet-like structure was not only beneficial for the loading of Ag nanoparticles but also for the adsorption and activation of reactants via exposing more active sites. Moreover, the surface plasmon resonance (SPR) effect induced by Ag nanoparticles enhanced the absorption of visible light by narrowing the band gap of the substrate. Meanwhile, the composite band structure effectively promoted the separation and transfer of carriers. Benefiting from these merits, the Ag@CNNS reached a superior hydrogen peroxide (H2O2) yield of 120.53 μmol/g/h under visible light irradiation in pure water (about 8.0 times higher than that of PCN), significantly surpassing most previous reports. The design method of manipulating the microstructure of the catalyst combined with the modification of metal nanoparticles provides a new idea for the rational development and application of efficient photocatalysts.
Collapse
|
20
|
Tao M, Huang K. Biobased Chicken Eggshell Powder for Efficient Delivery of Low-Dose Silver Nanoparticles (AgNPs) to Enhance Their Antimicrobial Activities against Foodborne Pathogens and Biofilms. ACS APPLIED BIO MATERIALS 2022; 5:4390-4399. [PMID: 35944491 DOI: 10.1021/acsabm.2c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the current sanitation practices to decontaminate food-contact surfaces, persistent biofilms still pose significant threats to human health by inducing cross-contamination. This study aims to enhance the antimicrobial activity of low-dose silver nanoparticles (AgNPs) against foodborne pathogens and their biofilms through the development of a biobased delivery carrier for metallic nanoparticles. In this study, chicken eggshell powder (EP) was used as a biocompatible delivery carrier, and it possesses a strong ability to encapsulate green-synthesized AgNPs with an encapsulation efficiency of 80.18%. The EP carriers stabilized AgNPs in an organic-rich environment and prevented the aggregation of nanoparticles. The results of antimicrobial test demonstrate that EP significantly enhanced the antimicrobial efficacy of low-dose AgNPs (2 μg/mL), enabling 5-log reductions of planktonic Escherichia coli and Listeria innocua within 25 min and 60 min treatments, respectively, even in the presence of high organic content (chemical oxygen demand, COD = 1000 mg/L). Due to the high affinity of EP to bind biofilms, the encapsulated low-dose AgNPs can inactivate approximately 2-log CFU/cm2 of biofilms within a 2-h treatment. The proposed AgNPs@EP composite with a low silver concentration (2 μg/mL) can effectively inactivate and remove biofilms from food-contact surfaces in which such a low concentration of AgNPs is unlikely to induce negative impacts on human health and environment. Therefore, this antimicrobial AgNPs@EP composite can potentially be used as a biobased sanitizer for food-contact surfaces in a food manufacturing plant.
Collapse
Affiliation(s)
- Meihan Tao
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
21
|
Bu Y, Kushwaha A, Goswami L, Kim BS. Green Production of Functionalized Few-Layer Graphene-Silver Nanocomposites Using Gallnut Extract for Antibacterial Application. MICROMACHINES 2022; 13:1232. [PMID: 36014155 PMCID: PMC9412497 DOI: 10.3390/mi13081232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Recently, there has been much attention paid to functionalized few-layer graphene (FFG) owing to its many biomedical applications, such as in bioimaging, biosensors, drug delivery, tissue scaffolds, nanocarriers, etc. Hence, the preparation of FFG has now become of great interest to researchers. The present study systematically investigates the utilization of gallnut extract (GNE) during the process of high-shear exfoliation for the efficient conversion of expanded graphite to FFG. Various parameters, such as GNE concentration, graphite concentration, exfoliation time, and the rotation speed of the high-shear mixer, were initially optimized for FFG production. The prepared FFG was characterized in terms of surface functionality and morphology using Raman spectra, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy, and scanning electron microscopy analyses. Further, the conjugation of FFG with Ag was confirmed by XRD, XPS, and energy-dispersive X-ray spectra. The Ag-FFG composite exhibited antibacterial activity against both Gram-positive and Gram-negative bacteria through the agar well diffusion method. This study provides an efficient, economical, and eco-friendly FFG and Ag-FFG production method for biomedical applications.
Collapse
|
22
|
Molecular Biocompatibility of a Silver Nanoparticle Complex with Graphene Oxide to Human Skin in a 3D Epidermis In Vitro Model. Pharmaceutics 2022; 14:pharmaceutics14071398. [PMID: 35890292 PMCID: PMC9319156 DOI: 10.3390/pharmaceutics14071398] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Silver nanoparticles (AgNP) can migrate to tissues and cells of the body, as well as to agglomerate, which reduces the effectiveness of their use for the antimicrobial protection of the skin. Graphene oxide (GO), with a super-thin flake structure, can be a carrier of AgNP that stabilizes their movement without inhibiting their antibacterial properties. Considering that the human skin is often the first contact with antimicrobial agent, the aim of the study was to assess whether the application of the complex of AgNP and GO is biocompatible with the skin model in in vitro studies. The conducted tests were performed in accordance with the criteria set in OECD TG439. AgNP-GO complex did not influence the genotoxicity and metabolism of the tissue. Furthermore, the complex reduced the pro-inflammatory properties of AgNP by reducing expression of IP-10 (interferon gamma-induced protein 10), IL-3 (interleukin 3), and IL-4 (interleukin 4) as well as MIP1β (macrophage inflammatory protein 1β) expressed in the GO group. Moreover, it showed a positive effect on the micro- and ultra-structure of the skin model. In conclusion, the synergistic effect of AgNP and GO as a complex can activate the process of epidermis renewal, which makes it suitable for use as a material for skin contact.
Collapse
|
23
|
Krishnaraj C, Kaliannagounder VK, Rajan R, Ramesh T, Kim CS, Park CH, Liu B, Yun SI. Silver nanoparticles decorated reduced graphene oxide: Eco-friendly synthesis, characterization, biological activities and embryo toxicity studies. ENVIRONMENTAL RESEARCH 2022; 210:112864. [PMID: 35149108 DOI: 10.1016/j.envres.2022.112864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 05/27/2023]
Abstract
This study was aimed on the eco-friendly synthesis of silver nanoparticles (AgNPs), reduced graphene oxide (rGO) and AgNPs decorated rGO (rGO/AgNPs) nanocomposite and appraisal of their bioactivities and toxicity. As-prepared nanomaterials were established through high resolution X-ray diffraction (HR-XRD), high resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-Vis. spectroscopy and Fourier transform infrared spectroscopy (FT-IR). In this study, leaves extract, graphene oxide (GO) and rGO did not show antibacterial and anticancer activities; no significant embryo toxicity was recorded. On the other hand, AgNPs displayed good antibacterial and anticancer activities; however, higher toxic effects were observed even at the lowest test concentration (0.7 μg/ml). In case of rGO/AgNPs nanocomposite, significant antibacterial activity together with low cytotoxicity was noticed. Interestingly, the embryo toxicity of AgNPs was significantly reduced by rGO, implying the biocompatible nature of as-synthesized nanocomposite. Taken together, these results clearly suggest that rGO/AgNPs nano hybrid composite could be developed as the promising biomaterial for future biomedical applications.
Collapse
Affiliation(s)
- Chandran Krishnaraj
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| | - Vignesh Krishnamoorthi Kaliannagounder
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Ramachandran Rajan
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Mechanical Design Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
24
|
Côa F, Delite FDS, Strauss M, Martinez DST. Toxicity mitigation and biodistribution of albumin corona coated graphene oxide and carbon nanotubes in Caenorhabditis elegans. NANOIMPACT 2022; 27:100413. [PMID: 35940564 DOI: 10.1016/j.impact.2022.100413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
In this work, the toxicity and biodistribution of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (MWCNT) were investigated in Caenorhabditis elegans. Bovine serum albumin (BSA) was selected as a model protein to evaluate the influence of protein corona formation on materials physicochemical properties, colloidal stability, and toxicity. Biological assays were performed to assess the effects of bare and albumin corona coated materials on survival, oxidative stress, intestinal barrier permeability, growth, reproduction, and fertility. Critical alterations in topography, surface roughness and chemistry of GO and MWCNT were observed due to albumin corona formation. These modifications were associated with changes in colloidal stability of materials and prevention of their aggregation and sedimentation in nematode testing medium. Both GO and MWCNT caused damage to nematode survival, growth, reproduction, and fertility, as well as enhanced oxidative stress and permeability of the intestinal barrier. But GO was more toxic than MWCNT to C. elegans, especially at long-term assays. Albumin corona mitigated 100% of acute and chronic effects of MWCNT. In contrast, the negative effects of GO were not completely mitigated; GO inhibited 16.2% of nematode growth, 86.5% of reproduction, and 32.0% of fertility at the highest concentration evaluated (10 mg L-1), while corona coated GO mitigated 50% and 100% of fertility and growth, respectively. Confocal Raman spectroscopy imaging was crucial to point out that bare and albumin corona coated GO and MWCNT crossed the C. elegans intestinal barrier reaching its reproductive organs. However, BSA corona protected the nematodes targeted organs from negative effects from MWCNT and blocked its translocation to other tissues, while coated GO was translocated inside the nematode affecting the functionality of crucial organs. In addition, coated MWCNT was excreted after 2 h of food resumption, whereas coated GO still accumulated in the nematode intestine. Our results demonstrate that the materials different translocation and excretion patterns in C. elegans had a relation to the impaired physiological functions of primary and secondary organs. This work is a contribution towards a better understanding of the impacts of protein corona on the toxicity of graphene oxide and carbon nanotubes; essential information for biological applications and nanosafety.
Collapse
Affiliation(s)
- Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Fabrício de Souza Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
25
|
Arshad F, Nabi F, Iqbal S, Khan RH. Applications of graphene-based electrochemical and optical biosensors in early detection of cancer biomarkers. Colloids Surf B Biointerfaces 2022; 212:112356. [PMID: 35123193 DOI: 10.1016/j.colsurfb.2022.112356] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 12/26/2022]
Abstract
Graphene is a one-atom-thick carbon compound, which holds promises for detecting cancer biomarkers along with its derivatives. The atom-wide graphene layer is ideal for cancer biomarker detection due to its unique physicochemical properties like increased electrical and thermal conductivity, optical transparency, and enhanced chemical and mechanical strength. The scientific aim of any biosensor is to create a smaller and portable point of care device for easy and early cancer detection; graphene is able to live up to that. Apart from tumour detection, graphene-based biosensors can diagnose many diseases, their biomarkers, and pathogens. Many existing remarkable pieces of research have proven the candidacy of nanoparticles in most cancer biomarkers detection. This article discusses the effectiveness of graphene-based biosensors in different cancer biomarker detection. This article provides a detailed review of graphene and its derivatives that can be used to detect cancer biomarkers with high specificity, sensitivity, and selectivity. We have highlighted the synthesis procedures of graphene and its products and also discussed their significant properties. Furthermore, we provided a detailed overview of the recent studies on cancer biomarker detection using graphene-based biosensors. The different paths to create and modify graphene surfaces for sensory applications have also been highlighted in each section. Finally, we concluded the review by discussing the existing challenges of these biosensors and also highlighted the steps that can be taken to overcome them.
Collapse
Affiliation(s)
- Fareeha Arshad
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202001, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Sana Iqbal
- Department of Electrical Engineering, Aligarh Muslim University, Aligarh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India.
| |
Collapse
|
26
|
Dual-Layered Approach of Ovine Collagen-Gelatin/Cellulose Hybrid Biomatrix Containing Graphene Oxide-Silver Nanoparticles for Cutaneous Wound Healing: Fabrication, Physicochemical, Cytotoxicity and Antibacterial Characterisation. Biomedicines 2022; 10:biomedicines10040816. [PMID: 35453566 PMCID: PMC9032229 DOI: 10.3390/biomedicines10040816] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 12/22/2022] Open
Abstract
Tissue engineering products have grown rapidly as an alternative solution available for chronic wound and burn treatment. However, some drawbacks include additional procedures and a lack of antibacterial properties that can impair wound healing, which are issues that need to be tackled effectively for better wound recovery. This study aimed to develop a functionalized dual-layered hybrid biomatrix composed of collagen sponge (bottom layer) to facilitate cell proliferation and adhesion and gelatin/cellulose hydrogel (outer layer) incorporated with graphene oxide and silver nanoparticles (GC-GO/AgNP) to prevent possible external infections post-implantation. The bilayer hybrid scaffold was crosslinked with 0.1% (w/v) genipin for 6 h followed by advanced freeze-drying technology. Various characterisation parameters were employed to investigate the microstructure, biodegradability, surface wettability, nanoparticles antibacterial activity, mechanical strength, and biocompatibility of the bilayer bioscaffold towards human skin cells. The bilayer bioscaffold exhibited favourable results for wound healing applications as it demonstrated good water uptake (1702.12 ± 161.11%), slow rate of biodegradation (0.13 ± 0.12 mg/h), and reasonable water vapour transmission rate (800.00 ± 65.85 gm−2 h−1) due to its porosity (84.83 ± 4.48%). The biomatrix was also found to possess hydrophobic properties (48.97 ± 3.68°), ideal for cell attachment and high mechanical strength. Moreover, the hybrid GO-AgNP promoted antibacterial properties via the disk diffusion method. Finally, biomatrix unravelled good cellular compatibility with human dermal fibroblasts (>90%). Therefore, the fabricated bilayer scaffold could be a potential candidate for skin wound healing application.
Collapse
|
27
|
Seyed Alian R, Dziewięcka M, Kędziorski A, Majchrzycki Ł, Augustyniak M. Do nanoparticles cause hormesis? Early physiological compensatory response in house crickets to a dietary admixture of GO, Ag, and GOAg composite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147801. [PMID: 34022572 DOI: 10.1016/j.scitotenv.2021.147801] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to identify the physiological responses of house cricket females following short-term exposure to relatively low dietary doses of graphene oxide (GO, 20 μg · g-1 food), silver (Ag, 400 μg · g-1 food) nanoparticles (NPs), or graphene oxide‑silver nanoparticle composite (GO-AgNPs, 20: 400 μg · g-1 food). Energy intake and distribution were measured on the third, sixth, and tenth day. A semi-quantitative API®ZYM assay of digestive enzyme fingerprints was performed on the third and tenth day of continuous treatment. Physicochemical properties of the NPs were obtained by combining SEM, EDX spectrometry, AFM, and DLS techniques. The obtained results showed decreased energy consumption, particularly assimilation as an early response to dietary NPs followed by compensatory changes in feeding activity leading to the same consumption and assimilation throughout the experimental period (10 days). The increased activities of digestive enzymes in NP-treated females compared to the control on the third day of the experiment suggest the onset of compensatory reactions of the day. Moreover, the insects treated with GO-AgNP composite retained more body water, suggesting increased uptake. The observed changes in the measured physiological parameters after exposure to NPs are discussed in light of hormesis.
Collapse
Affiliation(s)
- Reyhaneh Seyed Alian
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Łukasz Majchrzycki
- Centre of Advanced Technology, Adam Mickiewicz University in Poznan, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| |
Collapse
|
28
|
Nene A, Galluzzi M, Hongrong L, Somani P, Ramakrishna S, Yu XF. Synthetic preparations and atomic scale engineering of silver nanoparticles for biomedical applications. NANOSCALE 2021; 13:13923-13942. [PMID: 34477675 DOI: 10.1039/d1nr01851e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to their peculiar oxidative effect, silver cations (Ag+) are well known for their antimicrobial properties and explored as therapeutic agents for biomedical applications. Size control with improved dispersion and stability are the key factors of Ag NPs (silver nanoparticles) to be used in biomedical applications. Silver based nano-materials are highly efficient due to their biological, chemical and physical properties in comparison with bulk silver. Atomic scale fabrication is achieved by rearranging the internal components of a material, in turn, influencing the mechanical, electrical, magnetic, thermal and chemical properties. For instance, size and shape have a strong impact on the optical, thermal and catalytic properties of Ag NPs. Such properties can be tuned by controlling the surface/volume ratio of Ag nanostructures with a small size (ideally <100 nm), in turn showing peculiar biological activity different from that of bulk silver. Silver nanomaterials such as nanoparticles, thin films and nanorods can be synthesized by various physical, chemical and biological methods whose most recent implementations will be described in this review. By controlling the structure-functionality relationship, silver based nano-materials have high potential for commercialization in biomedical applications. Antimicrobial, antifungal, antiviral, and anti-inflammatory Ag NPs can be applied in several fields such as pharmaceutics, sensors, coatings, cosmetics, wound healing, bio-labelling agents, antiviral drugs, and packaging.
Collapse
Affiliation(s)
- Ajinkya Nene
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | | | | | | | | | | |
Collapse
|
29
|
Bortolozzo LS, Côa F, Khan LU, Medeiros AMZ, Da Silva GH, Delite FS, Strauss M, Martinez DST. Mitigation of graphene oxide toxicity in C. elegans after chemical degradation with sodium hypochlorite. CHEMOSPHERE 2021; 278:130421. [PMID: 33839394 DOI: 10.1016/j.chemosphere.2021.130421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/28/2023]
Abstract
Graphene oxide (GO) is a promising and strategic carbon-based nanomaterial for innovative and disruptive technologies. It is therefore essential to address its environmental health and safety aspects. In this work, we evaluated the chemical degradation of graphene oxide by sodium hypochlorite (NaClO, bleach water) and its consequences over toxicity, on the nematode Caenorhabditis elegans. The morphological, chemical, and structural properties of GO and its degraded product, termed NaClO-GO, were characterized, exploring an integrated approach. After the chemical degradation of GO at room temperature, its flake size was reduced from 156 to 29 nm, while NaClO-GO showed changes in UV-vis absorption, and an increase in the amount of oxygenated surface groups, which dramatically improved its colloidal stability in moderately hard reconstituted water (EPA medium). Acute and chronic exposure endpoints (survival, growth, fertility, and reproduction) were monitored to evaluate material toxicities. NaClO-GO presented lower toxicity at all endpoints. For example, an increase of over 100% in nematode survival was verified for the degraded material when compared to GO at 10 mg L-1. Additionally, enhanced dark-field hyperspectral microscopy confirmed the oral uptake of both materials by C. elegans. Finally, this work represents a new contribution toward a better understanding of the links between the transformation of graphene-based materials and nanotoxicity effects (mitigation), which is mandatory for the safety improvements that are required to maximize nanotechnological benefits to society.
Collapse
Affiliation(s)
- Leandro S Bortolozzo
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Sao Paulo, Brazil
| | - Latif U Khan
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Aline M Z Medeiros
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Sao Paulo, Brazil
| | - Gabriela H Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Fabricio S Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; Centre of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Sao Paulo, Brazil.
| |
Collapse
|