1
|
Ward MCE, Fallon AM. A rapid and simple micro-assay to assess catalase activity in individual mosquito tissues. Exp Parasitol 2024; 267:108862. [PMID: 39542162 DOI: 10.1016/j.exppara.2024.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Oxidative stress generated as a normal byproduct of aerobic metabolism is minimized by the enzyme catalase (CAT; EC 1.11.1.6), which reduces hydrogen peroxide to molecular oxygen and water. In various mosquitoes, hydrogen peroxide and/or CAT activity have been implicated in oxidative responses to viral and protozoal pathogens as well as in ovarian maturation and insecticide resistance. We combined features of various CAT assays to develop a simple micro-assay that enables comparison of enzyme activities in individual mosquito tissues on a microscope slide. Activity recovered in the supernatant of mosquito whole body homogenates was inhibited by the CAT-specific inhibitor 3-amino-1,2,4-triazole. Activity was higher in blood-fed mosquitoes, consistent with exogenous enzyme in vertebrate blood. Triton X-100 improved evaluation of dissected organs, and accurate comparisons required careful removal of extraneous tissues. In unfed mosquitoes baseline CAT activity was lower in ovaries than in midgut or fatbody, but increased as oocytes matured after a blood meal, and was detectable in a single mature egg. CAT has unusual kinetics and can be difficult to assay directly. Our observations provide a simple approach for direct evaluation of CAT activity independent of changes in transcript levels and results of RNAi-based interference.
Collapse
Affiliation(s)
- Mikkel C E Ward
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, St. Paul, MN 55108, USA
| | - Ann M Fallon
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, St. Paul, MN 55108, USA.
| |
Collapse
|
2
|
Khederzadeh A, Ebrahimnejad P, Seyedabadi M, Babaei A, Amiri FT, Aslani N, Mojarad-Jabali S, Mohammadi H. Synergistic effect of curcumin and Piperine loaded Niosomal nanoparticles on acute pulmonary toxicity induced by Paraquat in mice. Toxicol Res (Camb) 2024; 13:tfae181. [PMID: 39507590 PMCID: PMC11537766 DOI: 10.1093/toxres/tfae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/16/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Objective Paraquat (PQ), a widely used non-selective herbicide, induces severe lung toxicity by promoting cell death and tissue necrosis through the generation of reactive oxygen species (ROS) and free radicals. This study aimed to develop and evaluate novel niosomal nanoparticles (NPs) encapsulating curcumin and piperine to mitigate PQ-induced acute pulmonary toxicity in Balb/c mice. Methods The NPs were prepared using non-ionic surfactants and cholesterol via the thin film hydration method. Results Characterization revealed high encapsulation efficiency (>85%), proper particle sizes (264-286 nm), narrow polydispersity index (PDI) (0.19 ± 0.04 to 0.23 ± 0.02), and good stability over 90 days. Thermal analysis confirmed successful encapsulation of curcumin and piperine within the niosomal NPs. In vivo studies showed that PQ exposure significantly elevated ROS, lipid peroxidation (LPO), and protein carbonylation (PC) levels, while reducing glutathione (GSH) levels and impairing mitochondrial function (P < 0.001). However, co-treatment with curcumin- and piperine-loaded niosomal NPs effectively reversed these effects (P < 0.001), improving mitochondrial function. Conclusion The combined formulation of curcumin and piperine in niosomal NPs offers a promising therapeutic strategy for treating PQ-induced pulmonary toxicity, likely due to enhanced bioavailability and potent antioxidant activity.
Collapse
Affiliation(s)
- Aram Khederzadeh
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Pedram Ebrahimnejad
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Mohammad Seyedabadi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Nasim Aslani
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Solmaz Mojarad-Jabali
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Hamidreza Mohammadi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| |
Collapse
|
3
|
Dong JH, Zhang M, Yang X, Wu B, Huang L, Li C, Ge Y. Fractionated plasma separation and adsorption integrated with continuous veno-venous hemofiltration in patients with acute bipyridine herbicide poisoning. Ren Fail 2024; 46:2374013. [PMID: 38967153 PMCID: PMC11229766 DOI: 10.1080/0886022x.2024.2374013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
OBJECTIVE To evaluate the clinical efficacy and safety of fractionated plasma separation and adsorption combined with continuous veno-venous hemofiltration (FPSA-CVVH) treatment in patients with acute bipyridine herbicide poisoning. METHODS A retrospective analysis of 18 patients with acute bipyridine herbicide poisoning was conducted, of which 9 patients were poisoned by diquat and 9 patients by paraquat. All patients underwent FPSA-CVVH treatment. The serum cytokine levels in pesticide-poisoned patients were assessed. The efficacy of FPSA-CVVH in eliminating cytokines, the 90-d survival rate of poisoned patients, and adverse reactions to the treatment were observed. RESULTS Fourteen patients (77.8%) had acute kidney injuries and 10 (55.6%) had acute liver injuries. The serum cytokine levels of high mobility group protein B-1 (HMGB-1), interleukin-6 (IL-6), IL-8, interferon-inducible protein-10 (IP-10), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1β (MIP-1β) were significantly elevated. A total of 41 FPSA-CVVH treatment sessions were administered. After a single 8-h FPSA-CVVH treatment, the decreases in HMGB-1, IL-6, IL-8, IP-10, MCP-1, and MIP-1β were 66.0%, 63.5%, 73.3%, 63.7%, 53.9%, and 54.1%, respectively. During FPSA-CVVH treatment, one patient required a filter change due to coagulation in the plasma component separator, and one experienced a bleeding adverse reaction. The 90-d patient survival rate was 50%, with 4 patients with diquat poisoning and 5 patients with paraquat poisoning, and both liver and kidney functions were restored to normal. CONCLUSION Cytokine storms may play a significant role in the progression of multiorgan dysfunction in patients with acute bipyridine herbicide poisoning. FPSA-CVVH can effectively reduce cytokine levels, increase the survival rate of patients with acute bipyridine herbicide poisoning, and decrease the incidence of adverse events.
Collapse
Affiliation(s)
- Jian-Hua Dong
- National Clinical Research Center of Kidney Diseases, JinLing Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Minghong Zhang
- National Clinical Research Center of Kidney Diseases, JinLing Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Xi Yang
- National Clinical Research Center of Kidney Diseases, JinLing Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Bian Wu
- National Clinical Research Center of Kidney Diseases, JinLing Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Li Huang
- National Clinical Research Center of Kidney Diseases, JinLing Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Chuan Li
- National Clinical Research Center of Kidney Diseases, JinLing Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Yongchun Ge
- National Clinical Research Center of Kidney Diseases, JinLing Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Tayeb FJ, Felemban MF, Adnan Ashour A, Shafie A. Paraquat-Induced Toxicities: Epidemiological Insights and Advances in Colorimetric and Fluorimetric Detection Methods. Crit Rev Anal Chem 2024:1-31. [PMID: 39602183 DOI: 10.1080/10408347.2024.2433005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Paraquat (PQ) is a potent and widely utilized herbicide known for its effectiveness in controlling a broad spectrum of weeds. Its chemical properties make it an invaluable tool in agriculture, where it helps maintain crop yields and manage invasive plant species. However, despite its benefits in weed management, PQ poses significant risks due to its severe toxicity, which affects multiple organ systems in both humans and animals. The dual nature of PQ, as both a valuable agricultural chemical and a hazardous toxicant, necessitates a comprehensive understanding of its toxicological impacts and the development of effective detection and development strategies. This review aims to provide a comprehensive overview of PQ-induced toxicities, including neurotoxicity, lung toxicity, liver toxicity, kidney toxicity, and immunotoxicity. By synthesizing current knowledge on PQ health impacts, highlighting epidemiological trends, and exploring recent advancements in colorimetric and fluorimetric detection methods, this review seeks to contribute to the development of strategies for improving public health outcomes and enhancing our ability to manage the risks associated with PQ exposure. Addressing PQ toxicity through a multidisciplinary approach, incorporating toxicological, epidemiological, and technological perspectives, is essential for safeguarding health and promoting effective interventions.
Collapse
Affiliation(s)
- Faris J Tayeb
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammed Fareed Felemban
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
5
|
Silva R, Sobral AF, Dinis-Oliveira RJ, Barbosa DJ. The Link Between Paraquat and Demyelination: A Review of Current Evidence. Antioxidants (Basel) 2024; 13:1354. [PMID: 39594496 PMCID: PMC11590890 DOI: 10.3390/antiox13111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Paraquat (1,1'-dimethyl-4,4'-bipyridilium dichloride), a widely used bipyridinium herbicide, is known for inducing oxidative stress, leading to extensive cellular toxicity, particularly in the lungs, liver, kidneys, and central nervous system (CNS), and is implicated in fatal poisonings. Due to its biochemical similarities with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), paraquat has been used as a Parkinson's disease model, although its broader neurotoxic effects suggest the participation of multiple mechanisms. Demyelinating diseases are conditions characterized by damage to the myelin sheath of neurons. They affect the CNS and peripheral nervous system (PNS), resulting in diverse clinical manifestations. In recent years, growing concerns have emerged about the impact of chronic, low-level exposure to herbicides on human health, particularly due to agricultural runoff contaminating drinking water sources and their presence in food. Studies indicate that paraquat may significantly impact myelinating cells, myelin-related gene expression, myelin structure, and cause neuroinflammation, potentially contributing to demyelination. Therefore, demyelination may represent another mechanism of neurotoxicity associated with paraquat, which requires further investigation. This manuscript reviews the potential association between paraquat and demyelination. Understanding this link is crucial for enhancing strategies to minimize exposure and preserve public health.
Collapse
Affiliation(s)
- Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Ana Filipa Sobral
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, 1400-136 Lisbon, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
6
|
Neikirk K, Harris C, Le H, Oliver A, Shao B, Liu K, Beasley HK, Jamison S, Ishimwe JA, Kirabo A, Hinton A. Air pollutants as modulators of mitochondrial quality control in cardiovascular disease. Physiol Rep 2024; 12:e70118. [PMID: 39562150 PMCID: PMC11576129 DOI: 10.14814/phy2.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
It is important to understand the effects of environmental factors such as air pollution on mitochondrial structure and function, especially when these changes increase cardiovascular disease risk. Although lifestyle choices directly determine many mitochondrial diseases, increasingly, it is becoming clear that the structure and function of mitochondria may be affected by pollutants found in the atmosphere (e.g., gases, pesticides herbicide aerosols, or microparticles). To date, the role of such agents on mitochondria and the potential impact on cardiovascular fitness is neglected. Here we offer a review of airborne stressors and pollutants, that may contribute to impairments in mitochondrial function and structure to cause heart disease.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Chanel Harris
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Han Le
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Ashton Oliver
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Bryanna Shao
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Kaihua Liu
- Department of Anatomy of Cell BiologyUniversity of IowaIowa CityIowaUSA
| | - Heather K. Beasley
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Sydney Jamison
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jeanne A. Ishimwe
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Center for ImmunobiologyNashvilleTennesseeUSA
- Vanderbilt Institute for Infection, Immunology and InflammationNashvilleTennesseeUSA
- Vanderbilt Institute for Global HealthNashvilleTennesseeUSA
| | - Antentor Hinton
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
7
|
Zhang Y, Jiang Y, Li Y, Yu Z, Lin X, Zheng F, Hu H, Shao W, Yu G, Guo Z, Wu S, Li H. Brain single-cell transcriptomics highlights comorbidity-related cell type-specific changes of Parkinson's disease with major depressive disorder after paraquat exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117193. [PMID: 39413649 DOI: 10.1016/j.ecoenv.2024.117193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Paraquat (PQ), a commonly used herbicide, is a potent environmental neurotoxin associated with Parkinson's disease (PD) and major depressive disorder (MDD). While the involvement of various brain cell types in the etiology of each disorder is well recognized, the specific cell subtypes implicated in the comorbidity of PD and MDD, especially under PQ neurotoxicity, remain poorly understood. In this study, we used single-cell RNA sequencing (scRNA-seq) to analyze brain tissues from mice with PQ-induced PD with MDD. By integrating genomic data with scRNA-seq profiles, we identified differences in cellular heterogeneity related to the pathogenesis of PD and MDD under PQ exposure. Our analysis of risk enrichment in genes with cell type-specific expression patterns revealed that astrocytes are predominantly linked to the comorbidity of PQ-induced PD and MDD. Furthermore, we identified a specific astrocyte subtype that plays a major role in the comorbidity-related changes observed in PQ-induced PD and MDD. This subtype appears to interact with and potentially transform into MDD-specific and PD-specific subtypes. Additionally, pathways related to chemical synaptic function and neuro-projection development were involved in all key stages of PD and MDD co-occurrence. We also identified RNF7 and MTCH2 as shared diagnostic hub genes for PD and MDD, which changed significantly in astrocytes following PQ exposure. These genes may serve as potential markers for astrocyte-specific prognostic diagnosis of PQ-induced PD with MDD. In summary, this study provides the first scRNA-seq profile of comorbidity in a PQ-exposed model. It highlights the heterogeneity of astrocytes in comorbidity and elucidates potential mechanisms underlying the co-occurrence of PD and MDD. These findings emphasize the need for further research into the pathogenesis of PD comorbid with MDD and offer novel insights into PQ neurotoxicity.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yihua Jiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yinhan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhen Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Siying Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
8
|
Jain A, Singh S, Kumar M. Herbicide paraquat dichloride augments the expression of the c-abl-noxa-apoptotic pathway, instigating ovarian atresia in edible fish, Channa punctatus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59179-59189. [PMID: 39340605 DOI: 10.1007/s11356-024-34875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024]
Abstract
Ovarian cells of animals undergo atresia to regulate egg numbers and their release. However, unrestrained atretic activity decreases the chances of oocyte maturity and further process, ultimately resulting in a reduced population. Edible fishes are a critical source of nutrition and it is required to regulate their population. The application of herbicides at fish production sites is a threat to their population by altering female reproductive activity. In concern to this, here, this 60-day study investigates herbicide paraquat dichloride (PD)-induced atresia in ovarian cells of Channa punctatus (C. punctatus). Further, 96-h LC50 of PD for C. punctatus was calculated as 58.40 mg/L. At the end of each exposure period, an increase in intracellular ROS in blood cells and activities of SOD and CAT in ovary tissue were observed in PD-treated fish with increasing concentration. The frequency of micronuclei in blood cells subsequently increased with the highest PD concentration. A significant (p < 0.05) increase in the relative expression of target genes was observed at the 30th and 60th day of the sampling periods in the fish treated with the highest concentration of PD. The histological study confirmed the occurrence of atretic ovary cells in PD-exposed fish. From the results it can be concluded that PD enhances the uncontrolled death of ovarian cells and has consequences of impairing the ovary health and reproductive potential of fish, hence reducing the fish population.
Collapse
Affiliation(s)
- Anamika Jain
- Department of Zoology, Environmental Toxicology & Bioremediation Laboratory (ETBL), University of Lucknow, Lucknow, 226007, India
| | - Shefalee Singh
- Department of Zoology, Environmental Toxicology & Bioremediation Laboratory (ETBL), University of Lucknow, Lucknow, 226007, India
| | - Manoj Kumar
- Department of Zoology, Environmental Toxicology & Bioremediation Laboratory (ETBL), University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
9
|
Zhang Y, Hou L, Yuan D, Wu J, Wang Y, Yu Y, Meng C, Yang F, Yan H, Du Y, Zhu H, Walline JH, Jiang Y, Gao Y, Li Y. Liver injury in paraquat poisoning: A retrospective cohort study. Liver Int 2024; 44:2564-2571. [PMID: 38963300 DOI: 10.1111/liv.16024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND AND AIMS Liver injury is one of the common complications of paraquat (PQ) poisoning, but whether the degree of liver injury is related to patient prognosis is still controversial. This study aimed to investigate whether liver injury was a risk factor for death in PQ-poisoned patients. METHODS We conducted a retrospective cohort study of PQ-poisoned patients from the past 10 years (2011-2020) from a large tertiary academic medical centre in China. PQ-poisoned patients were divided into a normal liver function group (n = 580) and a liver injury group (n = 60). Propensity score matching (PSM) analysis was then performed. RESULTS A total of 640 patients with PQ poisoning were included in this study. To reduce the impact of bias, dose of PQ, urinary PQ concentration and time from poisoning to hospital admission were matched between the two groups. A 3:1 PSM analysis was performed, ultimately including 240 patients. Compared with the normal liver function group, patients in the liver injury group were older, had a higher R value ([ALT/ULN]/[ALP/ULN]) (p < .001) and had a higher mortality rate. Cox regression analysis showed that there was no significant association between alanine aminotransferase, alkaline phosphatase, total bilirubin levels and hazard of death, but age, PQ dose, creatine kinase isoenzyme, creatine kinase, white blood cell count, neutrophil percentage and lymphocyte percentage were associated with mortality in patients with PQ poisoning. CONCLUSIONS The occurrence of liver injury within 48 h after PQ poisoning was a risk factor for mortality, and such liver injury was likely of a hepatocellular nature. Age, PQ dose, creatine kinase isoenzyme and white blood cell count were positively correlated with mortality, while creatine kinase, percentage of neutrophils and lymphocytes were inversely correlated.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Hou
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding Yuan
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yibo Wang
- Emergency Department, The 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Yanwu Yu
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cuicui Meng
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Yang
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyi Yan
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqi Du
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanzhou Zhu
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Joseph H Walline
- Department of Emergency Medicine, Penn State Health, Milton S. Hershey Medical Center and The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Yong Jiang
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanxia Gao
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Imam RA, Hassan FE, Ali IH, Alghamdi MA, Aboulhoda BE. Effect of Selenium nanoparticles on Paraquat-induced-neuroinflammation and oligodendocyte modulation: Implication of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Tissue Cell 2024; 89:102454. [PMID: 38905876 DOI: 10.1016/j.tice.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/11/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Paraquat (PQ), is an extensively used herbicide and is a well-established powerful neurotoxin. However, the mechanism underlying its neurotoxicity still needs further investigation. AIM OF WORK The study investigated the pathogenesis of PQ-induced neuroinflammation of the substantia nigra pars compacta (SNPC) and cerebellum and evaluated the potential effect of selenium nanoparticles (SeN) against such neurotoxicity. METHODS Thirty-six mice were randomly divided into three groups; Control group, PQ group: mice received PQ 10 mg/kg (i.p), and PQ + SeN group; mice received PQ in addition to oral SeN 0.1 mg/kg. All regimens were administered for 14 days. The mice's brains were processed for biochemical, molecular, histological, and immune-histochemical assessment. RESULTS SeN increased the SNPC and cerebellum antioxidants (reduced glutathione, glutathione peroxidase, and superoxide dismutase 1) while decreasing malondialdehyde concentration. Also, SeN increased the anti-inflammatory interleukin (IL)-10 and decreased the pro-inflammatory IL-1β and -6 along with improving the angiogenic nitric oxide and reducing caspase-1. Further, western blots of phosphorylated Janus kinase (JAK2)/signal transducer and activator of transcription3 (STAT3) proteins showed a significant decline. Those improving effects of SeN on SNPC, and cerebellum were supported by the significantly preserved dopaminergic and Purkinje neurons, the enhanced myelin fibers on Luxol fast blue staining, and the marked increase in Olig-2, Platelet-derived growth factor-alpha, and tyrosine hydroxylase immunoreactivity. CONCLUSION SeN could mitigate PQ-induced neurotoxicity via its antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Reda Abdelnasser Imam
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fatma E Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza 11562, Egypt; General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Isra H Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt; Nanomedicine Laboratory, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Mansour A Alghamdi
- College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
11
|
Eshaghi Ghalibaf MH, Taghavi zadeh Yazdi ME, Mansourian M, Mohammadian Roshan N, Boskabady MH. Evaluation of the protective effect of Curcuma longa and PPARγ agonist, pioglitazone on paraquat-induced lung injury in rats. Immun Inflamm Dis 2024; 12:e70001. [PMID: 39172009 PMCID: PMC11340013 DOI: 10.1002/iid3.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The inhalation of paraquat (PQ), one of the most widely used herbicides in the world, can result in lung injury. Curcuma longa (Cl) has long history in traditional and folk medicine for the treatment of a wide range of disorders including respiratory diseases. AIM The aim of the present work was to evaluate the preventive effect of Cl on inhaled PQ-induced lung injury in rats. METHODS Male Wistar rats were divided into 8 groups (n = 7), one group exposed to saline (control) and other groups exposed to PQ aerosol. Saline (PQ), Cl extract, (two doses), curcumin (Cu), pioglitazone (Pio), and the combination of Cl-L + Pio and dexamethasone (Dex) were administered during the exposure period to PQ. Total and differential white blood cell (WBC) counts, oxidant and antioxidant indicators in the bronchoalveolar lavage (BALF), interleukin (IL)-10, and tumor necrosis alpha (TNF-α) levels in the lung tissues, lung histologic lesions score, and air way responsiveness to methacholine were evaluated. RESULTS WBC counts (Total and differential), malondialdehyde level, tracheal responsiveness (TR), IL-10, TNF-α and histopathological changes of the lung were markedly elevated but total thiol content and the activities of catalase and superoxide dismutase were decreased in the BALF in the PQ group. Both doses of Cl, Cu, Pio, Cl-L + Pio, and Dex markedly improved all measured variables in comparison with the PQ group. CONCLUSION CI, Pio, and Cl-L + Pio improved PQ-induced lung inflammation and oxidative damage comparable with the effects of Dex.
Collapse
Affiliation(s)
- Mohammad Hossein Eshaghi Ghalibaf
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, School of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Mona Mansourian
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Nema Mohammadian Roshan
- Department of Pathology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, School of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
12
|
Liu D, Guan Y. Mechanism of action of miR-15a-5p and miR-152-3p in paraquat-induced pulmonary fibrosis through Wnt/β-catenin signaling mediation. PeerJ 2024; 12:e17662. [PMID: 38993979 PMCID: PMC11238725 DOI: 10.7717/peerj.17662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/09/2024] [Indexed: 07/13/2024] Open
Abstract
Background miRNAs are small, conserved, single-stranded non-coding RNA that are typically transported by exosomes for their functional roles. The therapeutic potential of exosomal miRNAs has been explored in various diseases including breast cancer, pancreatic cancer, cholangiocarcinoma, skin diseases, Alzheimer's disease, stroke, and glioma. Pathophysiological processes such as cellular inflammation, apoptosis, necrosis, immune dysfunction, and oxidative stress are closely associated with miRNAs. Internal and external factors such as tissue ischemia, hypoxia, pathogen infection, and endotoxin exposure can trigger these reactions and are linked to miRNAs. Paraquat-induced fibrosis is a protracted process that may not manifest immediately after injury but develops during bodily recovery, providing insights into potential miRNA intervention treatments. Rationale These findings could potentially be applied for further pharmaceutical research and clinical therapy of paraquat-induced pulmonary fibrosis, and are likely to be of great interest to clinicians involved in lung fibrosis research. Methodology Through a literature review, we identified an association between miR-15a-5p and miR-152-3p and their involvement in the Wnt signaling pathway. This allowed us to deduce the molecular mechanisms underlying regulatory interactions involved in paraquat-induced lung fibrosis. Results miR-15a-5p and miR-152-3p play roles in body repair processes, and pulmonary fibrosis can be considered a form of reparative response by the body. Although the initial purpose of fibrotic repair is to restore normal body function, excessive tissue fibrosis, unlike scar formation following external skin trauma, can significantly and adversely affect the body. Modulating the Wnt/β-catenin signaling pathway is beneficial in alleviating tissue fibrosis in various diseases. Conclusions In this study, we delineate the association between miR-15a-5p and miR-152-3p and the Wnt/β-catenin signaling pathway, presenting a novel concept for addressing paraquat-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Dong Liu
- Weifang Medical University, Weifang, Shandong, China
| | - Yan Guan
- Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
13
|
Limcharoensuk T, Chusuth P, Utaisincharoen P, Auesukaree C. Protein quality control systems in the endoplasmic reticulum and the cytosol coordinately prevent alachlor-induced proteotoxic stress in Saccharomyces cerevisiae. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134270. [PMID: 38640676 DOI: 10.1016/j.jhazmat.2024.134270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Alachlor, a widely used chloroacetanilide herbicide for controlling annual grasses in crops, has been reported to rapidly trigger protein denaturation and aggregation in the eukaryotic model organism Saccharomyces cerevisiae. Therefore, this study aimed to uncover cellular mechanisms involved in preventing alachlor-induced proteotoxicity. The findings reveal that the ubiquitin-proteasome system (UPS) plays a crucial role in eliminating alachlor-denatured proteins by tagging them with polyubiquitin for subsequent proteasomal degradation. Exposure to alachlor rapidly induced an inhibition of proteasome activity by 90 % within 30 min. The molecular docking analysis suggests that this inhibition likely results from the binding of alachlor to β subunits within the catalytic core of the proteasome. Notably, our data suggest that nascent proteins in the endoplasmic reticulum (ER) are the primary targets of alachlor. Consequently, the unfolded protein response (UPR), responsible for coping with aberrant proteins in the ER, becomes activated within 1 h of alachlor treatment, leading to the splicing of HAC1 mRNA into the active transcription activator Hac1p and the upregulation of UPR gene expression. These findings underscore the critical roles of the protein quality control systems UPS and UPR in mitigating alachlor-induced proteotoxicity by degrading alachlor-denatured proteins and enhancing the protein folding capacity of the ER.
Collapse
Affiliation(s)
- Tossapol Limcharoensuk
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phakawat Chusuth
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pongsak Utaisincharoen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Choowong Auesukaree
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
14
|
Tahir R, Samra, Afzal F, Liang J, Yang S. Novel protective aspects of dietary polyphenols against pesticidal toxicity and its prospective application in rice-fish mode: A Review. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109418. [PMID: 38301811 DOI: 10.1016/j.fsi.2024.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The rice fish system represents an innovative and sustainable approach to integrated farming, combining rice cultivation with fish rearing in the same ecosystem. However, one of the major challenges in this system is the pesticidal pollution resulting from various sources, which poses risks to fish health and overall ecosystem balance. In recent years, dietary polyphenols have emerged as promising bioactive compounds with potential chemo-preventive and therapeutic properties. These polyphenols, derived from various plant sources, have shown great potential in reducing the toxicity of pesticides and improving the health of fish within the rice fish system. This review aims to explore the novel aspects of using dietary polyphenols to mitigate pesticidal toxicity and enhance fish health in the rice fish system. It provides comprehensive insights into the mechanisms of action of dietary polyphenols and their beneficial effects on fish health, including antioxidant, anti-inflammatory, and detoxification properties. Furthermore, the review discusses the potential application methods of dietary polyphenols, such as direct supplementation in fish diets or through incorporation into the rice fields. By understanding the interplay between dietary polyphenols and pesticides in the rice fish system, researchers can develop innovative and sustainable strategies to promote fish health, minimize pesticide impacts, and ensure the long-term viability of this integrated farming approach. The information presented in this review will be valuable for scientists, aqua-culturists, and policymakers aiming to implement eco-friendly and health-enhancing practices in the rice fish system.
Collapse
Affiliation(s)
- Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Samra
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fozia Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Ji Liang
- School of Humanities, Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
15
|
Kamalesh R, Karishma S, Saravanan A. Progress in environmental monitoring and mitigation strategies for herbicides and insecticides: A comprehensive review. CHEMOSPHERE 2024; 352:141421. [PMID: 38360415 DOI: 10.1016/j.chemosphere.2024.141421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Herbicides and insecticides are pervasively applied in agricultural sector to increase the yield by controlling or eliminating bug vermin and weeds. Although, resistance development occurs, direct and indirect impact on human health and ecosystem is clearly visible. Normally, herbicides and pesticides are water soluble in nature; accordingly, it is hard to decrease their deadliness and to dis-appear them from the environment. They are profoundly specific, and considered as poisonous to various peoples in agricultural and industrial work places. In order to substantially reduce the harmful impacts, it is crucial to thoroughly examine the detection and mitigation measures for these compounds. The primary objective of this paper is to provide an overview of various herbicide and pesticide detection techniques and associated remedial techniques. A short summary on occurrence and harmful effects of herbicides/insecticides on ecosystem has been included to the study. The conventional and advanced, rapid techniques for the detection of insecticides and herbicides were described in detail. A detailed overview on several mitigation strategies including advanced oxidation, adsorption, electrochemical process, and bioremediation as well as the mechanism behind the strategic approaches to reduce the effects of growing pesticide pollution has been emphasized. Regardless of the detection techniques and mitigation strategies, the recent advances employed, obstacles, and perspectives have been discussed in detail.
Collapse
Affiliation(s)
- R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
16
|
Ma Z, Wang N, Meng T, Zhang R, Huang Y, Li T. Integrated analysis of ceRNA-miRNA changes in paraquat-induced pulmonary epithelial-mesenchymal transition via high-throughput sequencing. J Biochem Mol Toxicol 2024; 38:e23681. [PMID: 38444083 DOI: 10.1002/jbt.23681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 09/13/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Recent studies have shown that epithelial-mesenchymal transition (EMT) plays an important role in paraquat (PQ)-induced tissue fibrosis, which is the main cause of death in patients with PQ poisoning. However, no effective treatment for pulmonary interstitial fibrosis caused by PQ poisoning exists. It is of great significance for us to find new therapeutic targets through bioinformatics in PQ-induced EMT. We conducted transcriptome sequencing to determine the expression profiles of 1210 messenger RNAs (mRNAs), 558 long noncoding RNAs, 28 microRNAs (miRNAs), including 18 known-miRNAs, 10 novel-miRNAs and 154 circular RNAs in the PQ-exposed EMT group mice. Using gene ontology and Kyoto Encyclopaedia of Genes and Genomes analyses, we identified the pathways associated with signal transduction, cancers, endocrine systems and immune systems were involved in PQ-induced EMT. Furthermore, we constructed long noncoding RNA-miRNA-mRNA interrelated networks and found that upregulated genes included Il22ra2, Mdm4, Slc35e2 and Angptl4, and downregulated genes included RGS2, Gabpb2, Acvr1, Prkd3, Sp100, Tlr12, Syt15 and Camk2d. Thirteen new potential competitive endogenous RNA targets were also identified for further treatment of PQ-induced pulmonary tissue fibrosis. Through further study of the pathway and networks, we may identify new molecular targets in PQ-induced pulmonary EMT.
Collapse
Affiliation(s)
- Zhiyu Ma
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Nana Wang
- Endocrinology Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tingting Meng
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Ruoying Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Yang Huang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| |
Collapse
|
17
|
Chen K, Li M, Tang Y, Lu Z. Mitochondrial reactive oxygen species initiate gasdermin D-mediated pyroptosis and contribute to paraquat-induced nephrotoxicity. Chem Biol Interact 2024; 390:110873. [PMID: 38237652 DOI: 10.1016/j.cbi.2024.110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Paraquat (PQ)-induced acute kidney injury (AKI) progresses rapidly and is associated with high mortality rates; however, no specific antidote for PQ has been identified. Poor understanding of toxicological mechanisms underlying PQ has hindered the development of suitable treatments to combat PQ exposure. Gasdermin D (GSDMD), a key executor of pyroptosis, has recently been shown to enhance nephrotoxicity in drug-induced AKI. To explore the role of pyroptosis in PQ-induced AKI, the plasma membrane damage of the cells was detected by LDH release assay. Western blot was performed to detect the cleavage of GSDMD. RNA sequencing analysis was performed to explore the mechanism of PQ induced nephrotoxicity. Herein, we demonstrated that PQ could induce pyroptosis in HK-2 cells and nephridial tissues. Mechanistically, PQ initiated GSDMD cleavage, and GSDMD knockout attenuated PQ-induced nephrotoxicity in vivo. Further analysis revealed that the accumulation of mitochondrial reactive oxygen species (ROS) induced p38 activation, contributing to PQ-induced pyroptosis. Furthermore, mitoquinone, a mitochondria-targeted antioxidant, reduced mitochondrial ROS levels and inhibited pyroptosis. Collectively, these findings provide insights into the role of GSDMD-dependent pyroptosis as a novel mechanism of PQ-induced AKI.
Collapse
Affiliation(s)
- Kaiyuan Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Mengxuan Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Yahui Tang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China.
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China.
| |
Collapse
|
18
|
Du J, Yu L, Yang X, Shao F, Xia J, Jin W, Zhang Y, Lei G, Wang Y, Li Y, Zhang J. Regulation of NCOA4-mediated iron recycling ameliorates paraquat-induced lung injury by inhibiting ferroptosis. Cell Commun Signal 2024; 22:146. [PMID: 38388414 PMCID: PMC10885609 DOI: 10.1186/s12964-024-01520-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Paraquat (PQ) is an irreplaceable insecticide in many countries for the advantage of fast-acting and broad-spectrum. However, PQ was classified as the most prevailing poisoning substance for suicide with no specific antidote. Therefore, it is imperative to develop more effective therapeutic agents for the treatment of PQ poisoning. In the present study, both the RNA-Seq and the application of various cell death inhibitors reflected that ferroptosis exerts a crucial regulatory role in PQ poisoning. Moreover, we found PQ strengthens lipid peroxidation as evidenced by different experimental approaches. Of note, pretreatment of iron chelation agent DFO could ameliorate the ferroptotic cell death and alleviate the ferroptosis-related events. Mechanistically, PQ treatment intensively impaired mitochondrial homeostasis, enhanced phosphorylation of AMPK, accelerated the autophagy flux and triggered the activation of Nuclear receptor coactivator 4-ferritin heavy chain (NCOA4-FTH) axis. Importantly, the activation of autophagy was observed prior to the degradation of ferritin, and inhibition of autophagy could inhibit the accumulation of iron caused by the ferritinophagy process. Genetic and pharmacological inhibition of ferritinophagy could alleviate the lethal oxidative events, and rescue the ferroptotic cell death. Excitingly, in the mouse models of PQ poisoning, both the administration of DFO and adeno-associated virus-mediated FTH overexpression significantly reduced PQ-induced ferroptosis and improved the pathological characteristics of pulmonary fibrosis. In summary, the current work provides an in-depth study on the mechanism of PQ intoxication, describes a framework for the further understanding of ferroptosis in PQ-associated biological processes, and demonstrates modulation of iron metabolism may act as a promising therapeutic agent for the management of PQ toxicity.
Collapse
Affiliation(s)
- Jing Du
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinyi Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fangchun Shao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yinhao Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
- Department of Clinical Research Center, Luqiao Second People's Hospital, Taizhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
19
|
Lee KI, Fang KM, Kuo CY, Huang CF, Liu SH, Liu JM, Lai WC, Chang KC, Su CC, Chen YW. Roles of oxidative stress/JNK/ERK signals in paraquat-triggered hepatic apoptosis. Curr Res Toxicol 2024; 6:100155. [PMID: 38379848 PMCID: PMC10877118 DOI: 10.1016/j.crtox.2024.100155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Paraquat (PQ), a toxic and nonselective bipyridyl herbicide, is one of the most extensively used pesticides in agricultural countries. In addition to pneumotoxicity, the liver is an important target organ for PQ poisoning in humans. However, the mechanism of PQ in hepatotoxicity remains unclear. In this study, we found that exposure of rat hepatic H4IIE cells to PQ (0.1-2 mM) induced significant cytotoxicity and apoptosis, which was accompanied by mitochondria-dependent apoptotic signals, including loss of mitochondrial membrane potential (MMP), cytosolic cytochrome c release, and changes in the Bcl-2/Bax mRNA ratio. Moreover, PQ (0.5 mM) exposure markedly induced JNK and ERK1/2 activation, but not p38-MAPK. Blockade of JNK and ERK1/2 signaling by pretreatment with the specific pharmacological inhibitors SP600125 and PD98059, respectively, effectively prevented PQ-induced cytotoxicity, mitochondrial dysfunction, and apoptotic events. Additionally, PQ exposure stimulated significant oxidative stress-related signals, including reactive oxygen species (ROS) generation and intracellular glutathione (GSH) depletion, which could be reversed by the antioxidant N-Acetylcysteine (NAC). Buffering the oxidative stress response with NAC also effectively abrogated PQ-induced hepatotoxicity, MMP loss, apoptosis, and phosphorylation of JNK and ERK1/2 protein, however, the JNK or ERK inhibitors did not suppress ROS generation in PQ-treated cells. Collectively, these results demonstrate that PQ exposure induces hepatic cell toxicity and death via an oxidative stress-dependent JNK/ERK activation-mediated downstream mitochondria-regulated apoptotic pathway.
Collapse
Affiliation(s)
- Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
| | - Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Department of Nursing, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jui-Ming Liu
- Department of Urology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Wei-Cheng Lai
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Kai-Chih Chang
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Ya-Wen Chen
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
20
|
Hernandez-Baixauli J, Chomiciute G, Tracey H, Mora I, Cortés-Espinar AJ, Ávila-Román J, Abasolo N, Palacios-Jordan H, Foguet-Romero E, Suñol D, Galofré M, Alcaide-Hidalgo JM, Baselga-Escudero L, del Bas JM, Mulero M. Exploring Metabolic and Gut Microbiome Responses to Paraquat Administration in Male Wistar Rats: Implications for Oxidative Stress. Antioxidants (Basel) 2024; 13:67. [PMID: 38247491 PMCID: PMC10812659 DOI: 10.3390/antiox13010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
In this study, we examined the metabolic and gut microbiome responses to paraquat (PQ) in male Wistar rats, focusing on oxidative stress effects. Rats received a single intraperitoneal injection of PQ at 15 and 30 mg/kg, and various oxidative stress parameters (i.e., MDA, SOD, ROS, 8-isoprostanes) were assessed after three days. To explore the omic profile, GC-qTOF and UHPLC-qTOF were performed to assess the plasma metabolome; 1H-NMR was used to assess the urine metabolome; and shotgun metagenomics sequencing was performed to study the gut microbiome. Our results revealed reductions in body weight and tissue changes, particularly in the liver, were observed, suggesting a systemic effect of PQ. Elevated lipid peroxidation and reactive oxygen species levels in the liver and plasma indicated the induction of oxidative stress. Metabolic profiling revealed changes in the tricarboxylic acid cycle, accumulation of ketone body, and altered levels of key metabolites, such as 3-hydroxybutyric acid and serine, suggesting intricate links between energy metabolism and redox reactions. Plasma metabolomic analysis revealed alterations in mitochondrial metabolism, nicotinamide metabolism, and tryptophan degradation. The gut microbiome showed shifts, with higher PQ doses influencing microbial populations (e.g., Escherichia coli and Akkermansia muciniphila) and metagenomic functions (pyruvate metabolism, fermentation, nucleotide and amino acid biosynthesis). Overall, this study provides comprehensive insights into the complex interplay between PQ exposure, metabolic responses, and gut microbiome dynamics. These findings enhance our understanding of the mechanisms behind oxidative stress-induced metabolic alterations and underscore the connections between xenobiotic exposure, gut microbiota, and host metabolism.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (G.C.); (H.T.); (J.M.A.-H.); (L.B.-E.)
- Laboratory of Metabolism and Obesity, Vall d’Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (G.C.); (H.T.); (J.M.A.-H.); (L.B.-E.)
| | - Harry Tracey
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (G.C.); (H.T.); (J.M.A.-H.); (L.B.-E.)
- Department of Medical Sciences, School of Medicine, University of Girona, 17004 Girona, Spain
- School of Science, RMIT University, Bundoora, VIC 3000, Australia
| | - Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain;
| | - Antonio J. Cortés-Espinar
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
| | - Javier Ávila-Román
- Molecular and Applied Pharmacology Group (FARMOLAP), Department of Pharmacology, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Nerea Abasolo
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Hector Palacios-Jordan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Elisabet Foguet-Romero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - David Suñol
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Mar Galofré
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Juan María Alcaide-Hidalgo
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (G.C.); (H.T.); (J.M.A.-H.); (L.B.-E.)
| | - Laura Baselga-Escudero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (G.C.); (H.T.); (J.M.A.-H.); (L.B.-E.)
| | - Josep M. del Bas
- Eurecat, Centre Tecnològic de Catalunya, Àrea Biotecnologia, 43204 Reus, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
| |
Collapse
|
21
|
Naidoo K, Khathi A. The Potential Role of Gossypetin in the Treatment of Diabetes Mellitus and Its Associated Complications: A Review. Int J Mol Sci 2023; 24:17609. [PMID: 38139436 PMCID: PMC10743819 DOI: 10.3390/ijms242417609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder caused by insulin resistance and dysfunctional beta (β)-cells in the pancreas. Hyperglycaemia is a characteristic of uncontrolled diabetes which eventually leads to fatal organ system damage. In T2DM, free radicals are continuously produced, causing extensive tissue damage and subsequent macro-and microvascular complications. The standard approach to managing T2DM is pharmacological treatment with anti-diabetic medications. However, patients' adherence to treatment is frequently decreased by the side effects and expense of medications, which has a detrimental impact on their health outcomes. Quercetin, a flavonoid, is a one of the most potent anti-oxidants which ameliorates T2DM. Thus, there is an increased demand to investigate quercetin and its derivatives, as it is hypothesised that similar structured compounds may exhibit similar biological activity. Gossypetin is a hexahydroxylated flavonoid found in the calyx of Hibiscus sabdariffa. Gossypetin has a similar chemical structure to quercetin with an extra hydroxyl group. Furthermore, previous literature has elucidated that gossypetin exhibits neuroprotective, hepatoprotective, reproprotective and nephroprotective properties. The mechanisms underlying gossypetin's therapeutic potential have been linked to its anti-oxidant, anti-inflammatory and immunomodulatory properties. Hence, this review highlights the potential role of gossypetin in the treatment of diabetes and its associated complications.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
22
|
Xiao Y, Li H, Tu M, Sun L, Wang F. Novel AIEE pillar[5]arene-fluorene fluorescent copolymer for selective recognition of paraquat by forming polypseudorotaxane. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123112. [PMID: 37478758 DOI: 10.1016/j.saa.2023.123112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
A novel conjugated polymer (Co-P[5]Flu) was synthesized by copolymerizing a difunctionalized pillar[5]arene and a fluorene derivative monomer. Co-P[5]Flu displayed an aggregation-induced emission enhancement (AIEE) effect because of the restricted intramolecular rotations of the pillar[5]arene unit. Co-P[5]Flu exhibited high selectivity and sensitivity towards the pesticide paraquat (PQ) with excellent anti-interference properties. It presented fluorescence quenching response (1-I/I0=96.6%) only towards paraquat and not towards other competitive guests. The fluorescence titration experiments revealed that the detection limit (LOD) for paraquat was as low as 1.69×10-8 M, and the Stern-Volmer constant (KSV) was determined to be 2.11×104 M-1. The recognition mechanism was studied using both 1H NMR titration and theoretical calculations. The Co-P[5]Flu showed fluorescence quenching for PQ due to the synergistic effect of polypseudorotaxane formation and photoinduced electron transfer (PET). Additionally, the polymer chemosensor demonstrated potential for the detection of paraquat in practical samples.
Collapse
Affiliation(s)
- Yu Xiao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Hui Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Man Tu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Lei Sun
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Feng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| |
Collapse
|
23
|
Sun Q, Wu S, Liu K, Li Y, Mehmood K, Nazar M, Hu L, Pan J, Tang Z, Liao J, Zhang H. miR-181b-1-3p affects the proliferation and differentiation of chondrocytes in TD broilers through the WIF1/Wnt/β-catenin pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105649. [PMID: 38072524 DOI: 10.1016/j.pestbp.2023.105649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023]
Abstract
Thiram is a plant fungicide, its excessive use has exceeded the required environmental standards. It causes tibial dyschondroplasia (TD) in broilers which is a common metabolic disease that affects the growth plate of tibia bone. It has been studied that many microRNAs (miRNAs) are involved in the differentiation of chondrocytes however, their specific roles and mechanisms have not been fully investigated. The selected features of tibial chondrocytes of broilers were studied in this experiment which included the expression of miR-181b-1-3p and the genes related to WIF1/Wnt/β-catenin pathway in chondrocytes through qRT-PCR, western blot and immunofluorescence. The correlation between miR-181b-1-3p and WIF1 was determined by dual luciferase reporter gene assay whereas, the role of miR-181b-1-3p and WIF1/Wnt/β-catenin in chondrocyte differentiation was determined by mimics and inhibitor transfection experiments. Results revealed that thiram exposure resulted in decreased expression of miR-181b-1-3p and increased expression of WIF1 in chondrocytes. A negative correlation was also observed between miR-181b-1-3p and WIF1. After overexpression of miR-181b-1-3p, the expression of ACAN, β-catenin and Col2a1 increased but the expression of GSK-3β decreased. It was observed that inhibition of WIF1 increased the expression of ALP, β-catenin, Col2a1 and ACAN but decreased the expression of GSK-3β. It is concluded that miR-181b-1-3p can reverse the inhibitory effect of thiram on cartilage proliferation and differentiation by inhibiting WIF1 expression and activating Wnt/β-catenin signaling pathway. This study provides a new molecular target for the early diagnosis and possible treatment of TD in broilers.
Collapse
Affiliation(s)
- Qiuyu Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shouyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kai Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Mudassar Nazar
- University of Agriculture Faisalabad, Sub-Campus Burewala, 61010, Pakistan
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
Cai L, Gao G, Yin C, Bai R, Li Y, Sun W, Pi Y, Jiang X, Li X. The Effects of Dietary Silybin Supplementation on the Growth Performance and Regulation of Intestinal Oxidative Injury and Microflora Dysbiosis in Weaned Piglets. Antioxidants (Basel) 2023; 12:1975. [PMID: 38001828 PMCID: PMC10669228 DOI: 10.3390/antiox12111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is the major incentive for intestinal dysfunction in weaned piglets, which usually leads to growth retardation or even death. Silybin has caught extensive attention due to its antioxidant properties. Herein, we investigated the effect of dietary silybin supplementation on growth performance and determined its protective effect on paraquat (PQ)-induced intestinal oxidative damage and microflora dysbiosis in weaned piglets. In trial 1, a total of one hundred twenty healthy weaned piglets were randomly assigned into five treatments with six replicate pens per treatment and four piglets per pen, where they were fed basal diets supplemented with silybin at 0, 50, 100, 200, or 400 mg/kg for 42 days. In trial 2, a total of 24 piglets were randomly allocated to two dietary treatments with 12 replicates per treatment and 1 piglet per pen: a basal diet or adding 400 mg/kg silybin to a basal diet. One-half piglets in each treatment were given an intraperitoneal injection of paraquat (4 mg/kg of body weight) or sterile saline on day 18. All piglets were euthanized on day 21 for sample collection. The results showed that dietary supplementation with 400 mg/kg silybin resulted in a lower feed conversion ratio, diarrhea incidence, and greater antioxidant capacity in weaned piglets. Dietary silybin enhanced intestinal antioxidant capacity and mitochondrial function in oxidative stress piglets induced by PQ. Silybin inhibited mitochondria-associated endogenous apoptotic procedures and then improved the intestinal barrier function and morphology of PQ-challenged piglets. Moreover, silybin improved intestinal microbiota dysbiosis induced by the PQ challenge by enriching short-chain fatty-acid-producing bacteria, which augmented the production of acetate and propionate. Collectively, these findings indicated that dietary silybin supplementation linearly decreased feed conversion ratio and reduced diarrhea incidence in normal conditions, and effectively alleviated oxidative stress-induced mitochondrial dysfunction, intestinal damage, and microflora dysbiosis in weaned piglets.
Collapse
Affiliation(s)
| | | | | | | | - Yanpin Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (G.G.); (C.Y.); (R.B.); (W.S.); (Y.P.); (X.J.)
| | | | | | | | - Xilong Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (G.G.); (C.Y.); (R.B.); (W.S.); (Y.P.); (X.J.)
| |
Collapse
|
25
|
Hu L, Lan Q, Tang C, Yang J, Zhu X, Lin F, Yu Z, Wang X, Wen C, Zhang X, Lu Z. Abnormalities of serum lipid metabolism in patients with acute paraquat poisoning caused by ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115543. [PMID: 37827095 DOI: 10.1016/j.ecoenv.2023.115543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
As the mechanism of paraquat (PQ) poisoning is still not fully elucidated, and no specific treatment has been developed in medical practice, the management of PQ poisoning continues to present a medical challenge. In this study, the objective was to investigate the early metabolic changes in serum metabolism and identify the key metabolic pathways involved in patients with PQ poisoning. Quantitative analysis was conducted to determine the relevant metabolites. Additionally, experiments were carried out in both plasma and cell to elucidate the mechanisms underlying metabolic disorder and cell death in PQ poisoning. The study found that polyunsaturated fatty acids (PUFAs) and their metabolites, such as arachidonic acid (AA) and hydroxy eicosatetraenoic acids (HETEs), were significantly increased by non-enzymatic oxidative reaction. Reactive oxygen species (ROS) production increased rapidly at 2 h after PQ poisoning, followed by an increase in PUFAs at 12 h, and intracellular glutathione, cysteine (Cys), and Fe2+ at 24 h. However, at 36 h later, intracellular glutathione and Cys decreased, HETEs increased, and the expression of SLC7A11 and glutathione peroxidase 4 (GPX4) decreased. Ultrastructural examination revealed the absence of mitochondrial cristae. Deferoxamine was found to alleviate lipid oxidation, and increase the viability of PQ toxic cells in the low dose. In conclusion, unsaturated fatty acids metabolism was the key metabolic pathways in PQ poisoning. PQ caused cell death through the induction of ferroptosis. Inhibition of ferroptosis could be a novel strategy for the treatment of PQ poisoning.
Collapse
Affiliation(s)
- Lufeng Hu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Qin Lan
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; West China Hospital, Sichuan University
| | - Congrong Tang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianhui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xingjie Zhu
- Department of Theater, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Feiyan Lin
- Clinical research center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zheng Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xianqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Congcong Wen
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiuhua Zhang
- Clinical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhongqiu Lu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China.
| |
Collapse
|
26
|
Donaher SE, Van den Hurk P. Ecotoxicology of the herbicide paraquat: effects on wildlife and knowledge gaps. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1187-1199. [PMID: 37973658 DOI: 10.1007/s10646-023-02714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Paraquat (PQ) is an organic herbicide introduced to the commercial market in 1962 and since linked to a variety of human health effects, including lung fibrosis, liver tumors, and Parkinson's disease. Although PQ is banned in the European Union, it is still frequently used in agricultural areas of the United States and Asia. The general mechanism of PQ's toxicity is the disruption of the redox cycle in cells. This mini-review summarizes our current understanding of PQ toxicity in non-target plants and animals. Among vertebrates, PQ sensitivity tends follow the pattern of fish > amphibians > mammals > birds. Aquatic plants are particularly vulnerable to PQ, with EC50 values ranging from ~28-280 μg/L. A number of convenient but non-specific biomarkers have been identified for non-target species, including the activities of antioxidant enzymes such as superoxide dismutase and catalase, histological changes in the gill structures of fish, and the upregulation of genes associated with the cytochrome p450 monooxygenase system. Significant literature gaps include a lack of data for environmentally realistic conditions (i.e., chronic, low concentration, multi-stressor), toxicity in reptiles, and population- and ecosystem-level effects. Although PQ is a useful herbicide, considering the many human and ecological health impacts, it may be time for regulators and the agricultural industry to reconsider its use.
Collapse
Affiliation(s)
- Sarah E Donaher
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, USA.
| | | |
Collapse
|
27
|
Aghajanshakeri S, Ataee R, Karami M, Aghajanshakeri S, Shokrzadeh M. Cytomodulatory characteristics of Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) against cypermethrin on skin fibroblast cells (HFF-1). Toxicology 2023; 499:153655. [PMID: 37871686 DOI: 10.1016/j.tox.2023.153655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The hematopoietic factor granulocyte macrophage-colony stimulating factor (GM-CSF) has been identified via its capacity to promote bone marrow progenitors' development and differentiation into granulocytes and macrophages. Extensive pre-clinical research has established its promise as a critical therapeutic target in an assortment of inflammatory and autoimmune disorders. Despite the broad literature on GM-CSF as hematopoietic of stem cells, the cyto/geno protective aspects remain unknown. This study aimed to assess the cyto/geno protective possessions of GM-CSF on cypermethrin-induced cellular toxicity on HFF-1 cells as an in vitro model. In pre-treatment culture, cells were exposed to various GM-CSF concentrations (5, 10, 20, and 40 ng/mL) with cypermethrin at IC50 (5.13 ng/mL). Cytotoxicity, apoptotic rates, and genotoxicity were measured using the MTT, Annexin V-FITC/PI staining via flow-cytometry, and the comet assay. Cypermethrin at 5.13 ng/mL revealed cytotoxicity, apoptosis, oxidative stress, and genotoxicity while highlighting GM-CSF's protective properties on HFF-1. GM-CSF markedly attenuated cypermethrin-induced apoptotic cell death (early and late apoptotic rates). GM-CSF considerably regulated oxidative stress and genotoxicity by reducing the ROS and LPO levels, maintaining the status of GSH and activity of SOD, and suppressing genotoxicity in the comet assay parameters. Therefore, GM-CSF could be promising as an antioxidant, anti-apoptotic, genoprotective and cytomodulating agent.
Collapse
Affiliation(s)
- Shaghayegh Aghajanshakeri
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Ramin Ataee
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Karami
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahin Aghajanshakeri
- Biological Oncology Department, Orchid Pharmed, CinnaGen Pharmaceutical Company, Tehran, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
28
|
Wang D, Deng B, Cheng L, Li J, Guo X, Zhang J, Zhang X, Su P, Li G, Miao X, Yang W, Xie J, Wang R. The novel peptide DR4penA attenuates the bleomycin- and paraquat-induced pulmonary fibrosis by suppressing the TGF-β/Smad signaling pathway. FASEB J 2023; 37:e23225. [PMID: 37855708 DOI: 10.1096/fj.202301363r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023]
Abstract
Pulmonary fibrosis (PF), which is caused by continuous alveolar epithelial cell injury and abnormal repair, is referred to as a difficult disease of the lung system by the World Health Organization due to its rapid progression, poor prognosis, and high mortality rate. However, there is still a lack of ideal therapeutic strategies. The peptide DR8 (DHNNPQIR-NH2 ), which is derived from rapeseed, exerted antifibrotic activity in the lung, liver, and kidney in our previous studies. By studying the structure-activity relationship and rational design, we introduced an unnatural hydrophobic amino acid (α-(4-pentenyl)-Ala) into DR8 and screened the novel peptide DR4penA (DHNα-(4-pentenyl)-APQIR-NH2 ), which had higher anti-PF activity, higher antioxidant activity and a longer half-life than DR8. Notably, DR4penA attenuated bleomycin- and paraquat-induced PF, and the anti-PF activity of DR4penA was equivalent to that of pirfenidone. Additionally, DR4penA suppressed the TGF-β/Smad pathway in TGF-β1-induced A549 cells and paraquat-induced rats. This study demonstrates that the novel peptide DR4penA is a potential candidate compound for PF therapy, and its antifibrotic activity in different preclinical models of PF provides a theoretical basis for further study.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
| | - Bochuan Deng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lu Cheng
- School of Biomedical Engineering, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Jieru Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jiao Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiang Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ping Su
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Guofeng Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Xiaokang Miao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Rui Wang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
29
|
Zuo Z, Li J, Zhang B, Hang A, Wang Q, Xiong G, Tang L, Zhou Z, Chang X. Early-Life Exposure to Paraquat Aggravates Sex-Specific and Progressive Abnormal Non-Motor Neurobehavior in Aged Mice. TOXICS 2023; 11:842. [PMID: 37888693 PMCID: PMC10611227 DOI: 10.3390/toxics11100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Early-life exposure to environmental neurotoxicants is known to have lasting effects on organisms. In this study, we aim to investigate the impacts of PQ exposure during early developmental stages and adult re-challenge in aged mice on non-motor neurobehavior. Two mouse models, which were exposed once during early life stage and re-exposure at adulthood, were created to explore the long-term effects of PQ on non-motor neurobehavior. As the results showed, early-life exposure to PQ caused impairment in working memory and cognitive ability in aged male mice, but not in female mice, exhibiting a sex-specific impairment. Moreover, male mice that were re-challenged with PQ at adulthood following early-life exposure also exhibited non-motor neurobehavioral disorders. Notably, re-exposure to PQ exacerbated neurobehavioral disorders and anxiety levels compared to single exposure during different life stages. Collectively, early-life exposure to PQ can result in irreversible impairments in non-motor neurobehavior and increase susceptibility to subsequent insults in male mice, but not in female mice, suggesting greater sensitivity in male rodents to PQ-induced non-motor neurobehavioral deficits.
Collapse
Affiliation(s)
- Zhenzi Zuo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Jiayi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Bing Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Ai Hang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Qiaoxu Wang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai 201203, China; (Q.W.); (L.T.)
| | - Guiya Xiong
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Liming Tang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai 201203, China; (Q.W.); (L.T.)
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| |
Collapse
|
30
|
Rand MD, Tennessen JM, Mackay TFC, Anholt RRH. Perspectives on the Drosophila melanogaster Model for Advances in Toxicological Science. Curr Protoc 2023; 3:e870. [PMID: 37639638 PMCID: PMC10463236 DOI: 10.1002/cpz1.870] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The use of Drosophila melanogaster for studies of toxicology has grown considerably in the last decade. The Drosophila model has long been appreciated as a versatile and powerful model for developmental biology and genetics because of its ease of handling, short life cycle, low cost of maintenance, molecular genetic accessibility, and availability of a wide range of publicly available strains and data resources. These features, together with recent unique developments in genomics and metabolomics, make the fly model especially relevant and timely for the development of new approach methodologies and movements toward precision toxicology. Here, we offer a perspective on how flies can be leveraged to identify risk factors relevant to environmental exposures and human health. First, we review and discuss fundamental toxicologic principles for experimental design with Drosophila. Next, we describe quantitative and systems genetics approaches to resolve the genetic architecture and candidate pathways controlling susceptibility to toxicants. Finally, we summarize the current state and future promise of the emerging field of Drosophila metabolomics for elaborating toxic mechanisms. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Matthew D. Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Trudy F. C. Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, South Carolina 29646, USA
| | - Robert R. H. Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, South Carolina 29646, USA
| |
Collapse
|
31
|
Duan W, Liu C, Zhou J, Yu Q, Duan Y, Zhang T, Li Y, Fu G, Sun Y, Tian J, Xia Z, Yang Y, Liu Y, Xu S. Upregulation of mitochondrial calcium uniporter contributes to paraquat-induced neuropathology linked to Parkinson's disease via imbalanced OPA1 processing. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131369. [PMID: 37086674 DOI: 10.1016/j.jhazmat.2023.131369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Paraquat (PQ) is the most widely used herbicide in agriculture worldwide and has been considered a high-risk environmental factor for Parkinson's disease (PD). Chronic PQ exposure selectively induces dopaminergic neuron loss, the hallmark pathologic feature of PD, resulting in Parkinson-like movement disorders. However, the underlying mechanisms remain unclear. Here, we demonstrated that repetitive PQ exposure caused dopaminergic neuron loss, dopamine deficiency and motor deficits dose-dependently in mice. Accordingly, mitochondrial calcium uniporter (MCU) was highly expressed in PQ-exposed mice and neuronal cells. Importantly, MCU knockout (KO) effectively rescued PQ-induced dopaminergic neuron loss and motor deficits in mice. Genetic and pharmacological inhibition of MCU alleviated PQ-induced mitochondrial dysfunction and neuronal death in vitro. Mechanistically, PQ exposure triggered mitochondrial fragmentation via imbalance of the optic atrophy 1 (OPA1) processing manifested by cleavage of L-OPA1 to S-OPA1, which was reversed by inhibition of MCU. Notably, the upregulation of MCU was mediated by miR-129-1-3p posttranscriptionally, and overexpression of miR-129-1-3p could rebalance OPA1 processing and attenuate mitochondrial dysfunction and neuronal death induced by PQ exposure. Consequently, our work uncovers an essential role of MCU and a novel molecular mechanism, miR-MCU-OPA1, in PQ-induced pathogenesis of PD, providing a potential target and strategy for environmental neurotoxins-induced PD treatment.
Collapse
Affiliation(s)
- Weixia Duan
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Cong Liu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Jie Zhou
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qin Yu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Yu Duan
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Tian Zhang
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yuanyuan Li
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Guanyan Fu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Yapei Sun
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiacheng Tian
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhiqin Xia
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingli Yang
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yongseng Liu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Shangcheng Xu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China.
| |
Collapse
|
32
|
Prathiksha J, Narasimhamurthy RK, Dsouza HS, Mumbrekar KD. Organophosphate pesticide-induced toxicity through DNA damage and DNA repair mechanisms. Mol Biol Rep 2023; 50:5465-5479. [PMID: 37155010 DOI: 10.1007/s11033-023-08424-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Organophosphate pesticides (OPs) are widely used in agriculture, healthcare, and other industries due to their ability to kill pests. However, OPs can also have genotoxic effects on humans who are exposed to them. This review summarizes the research on DNA damage caused by OPs, the mechanisms behind this damage, and the resulting cellular effects. Even at low doses, OPs have been shown to damage DNA and cause cellular dysfunction. Common phenomena seen in cells that are exposed to OPs include the formation of DNA adducts and lesions, single-strand and double-strand DNA breaks, and DNA and protein inter and intra-cross-links. The present review will aid in comprehending the extent of genetic damage and the impact on DNA repair pathways caused by acute or chronic exposure to OPs. Additionally, understanding the mechanisms of the effects of OPs will aid in correlating them with various diseases, including cancer, Alzheimer's, and Parkinson's disease. Overall, knowledge of the potential adverse effects of different OPs will help in monitoring the health complications they may cause.
Collapse
Affiliation(s)
- Joyline Prathiksha
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rekha K Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kamalesh D Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
33
|
Niu XJ, Sun YH, Wang LJ, Huang YY, Wang Y, Guo XQ, Xu BH, Wang C. Fox transcription factor AccGRF1 in response to glyphosate stress in Apis cerana cerana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105419. [PMID: 37105625 DOI: 10.1016/j.pestbp.2023.105419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Glyphosate is an herbicide commonly used in agriculture, and its widespread use has adversely affected the survival of nontarget organisms. Among these organisms, bees in particular are important pollinators, and declining bee populations have severely affected crop yields around the world. However, the molecular mechanism by which glyphosate harms bees remains unclear. In our experiment, we screened and cloned a glyphosate-induced gene in Apis cerana cerana (A. c. cerana) and named glyphosate response factor 1 (AccGRF1). Sequence analysis showed that AccGRF1 contains a winged-helix DNA binding domain, which suggests that it belongs to the Forkhead box (Fox) protein family. qRT-PCR and heterologous expression in Escherichia coli and yeast showed that AccGRF1 can respond to glyphosate and oxidative stress. After AccGRF1 knockdown by means of RNA interference (RNAi), the resistance of A. c. cerana to glyphosate stress improved. The results suggested that AccGRF1 is involved in A. c. cerana glyphosate stress tolerance. This study reveals the functions of Fox transcription factors in response to glyphosate stress and provides molecular insights into the regulation of glyphosate responses in honeybees.
Collapse
Affiliation(s)
- Xiao-Jing Niu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yun-Hao Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Li-Jun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuan-Yuan Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xing-Qi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Bao-Hua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China.
| |
Collapse
|
34
|
Feng Z, Wang T, Sun Y, Chen S, Hao H, Du W, Zou H, Yu D, Zhu H, Pang Y. Sulforaphane suppresses paraquat-induced oxidative damage in bovine in vitro-matured oocytes through Nrf2 transduction pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114747. [PMID: 36907095 DOI: 10.1016/j.ecoenv.2023.114747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Sulforaphane (SFN), a bioactive phytocompound extracted from cruciferous plants, has received increasing attention due to its vital cytoprotective role in eliminating oxidative free radical through activation of nuclear factor erythroid 2-related factor (Nrf2)-mediated signal transduction pathway. This study aims at a better insight into the protective benefit of SFN in attenuating paraquat (PQ)-caused impairment in bovine in vitro-matured oocytes and the possible mechanisms involved therein. Results showed that addition of 1 μM SFN during oocyte maturation obtained higher proportions of matured oocytes and in vitro-fertilized embryos. SFN application attenuated the toxicological effects of PQ on bovine oocytes, as manifested by enhanced extending capability of cumulus cell and increased extrusion proportion of first polar body. Following incubation with SFN, oocytes exposed to PQ exhibited reduced intracellular ROS and lipid accumulation levels, and elevated T-SOD and GSH contents. SFN also effectively inhibited PQ-mediated increase in BAX and CASPASE-3 protein expressions. Besides, SFN promoted the transcription of NRF2 and its downstream antioxidative-related genes GCLC, GCLM, HO-1, NQO-1, and TXN1 in a PQ-exposed environment, indicating that SFN prevents PQ-caused cytotoxicity through activation of Nrf2 signal transduction pathway. The mechanisms underlying the role of SFN against PQ-induced injury included the inhibition of TXNIP protein and restoration of the global O-GlcNAc level. Collectively, these findings provide novel evidence for the protective role of SFN in alleviating PQ-caused injury, and suggest that SFN application may be an efficacious intervention strategy against PQ cytotoxicity.
Collapse
Affiliation(s)
- Zhiqiang Feng
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tengfei Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Reproductive Medicine Center, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang Province 313000, China
| | - Yawen Sun
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Siying Chen
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dawei Yu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
35
|
Use of invertebrates to model chemically induced parkinsonism-symptoms. Biochem Soc Trans 2023; 51:435-445. [PMID: 36645005 PMCID: PMC9987996 DOI: 10.1042/bst20221172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
The prevalence of neurological diseases is currently growing due to the combination of several factor, including poor lifestyle and environmental imbalance which enhance the contribution of genetic factors. Parkinson's disease (PD), a chronic and progressive neurological condition, is one of the most prevalent neurodegenerative human diseases. Development of models may help to understand its pathophysiology. This review focuses on studies using invertebrate models to investigate certain chemicals that generate parkinsonian-like symptoms models. Additionally, we report some preliminary results of our own research on a crustacean (the crab Ucides cordatus) and a solitary ascidian (Styela plicata), used after induction of parkinsonism with 6-hydroxydopamine and the pesticide rotenone, respectively. We also discuss the advantages, limits, and drawbacks of using invertebrate models to study PD. We suggest prospects and directions for future investigations of PD, based on invertebrate models.
Collapse
|
36
|
HIF-1α promotes paraquat induced acute lung injury and implicates a role NF-κB and Rac2 activity. Toxicology 2023; 483:153388. [PMID: 36462643 DOI: 10.1016/j.tox.2022.153388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Paraquat (PQ) is a bipyridine herbicide and oral exposure is the main way of PQ exposure with a very high mortality. At present, it is believed that large number of oxygen free radicals are generated and cause lipid peroxidation of tissue and organ cell membranes after PQ is absorbed. PQ exposure could cause multiple organ dysfunction, among which acute lung injury is the most common and most serious. However, its specific mechanism is still unclear. In this study, the C57BL/6J mouse (alveolar epithelial cell-specific knockout HIF-1α) model of acute lung injury (40 mg/kg PQ) at several time pointes and a model of acute type II alveolar epithelial cell (A549, 800 μM PQ) injury constructed. The oxidative stress (ROS, MDA) and inflammatory response (IL-1β, IL-6, TNF-α) were significantly inhibited in the alveolar epithelial cell-specific knockout of HIF-1α mice and siRNA technology to inhibit HIF-1α in alveolar epithelial cells. Further proteomic analysis showed that the expression of Rac2 protein, which is closely related to oxidative stress, was significantly increased after PQ exposure. And the inhibition of Rac2 expression in vitro significantly alleviated PQ-induced oxidative stress and inflammatory response. The expression of Rac2 protein was regulated by HIF-1α. The above suggests that HIF-1α may promote oxidative stress and inflammatory response in alveolar epithelial cells by regulating the expression of Rac2, and then participate in the promotion of PQ exposure-induced acute lung injury.
Collapse
|
37
|
Huang J, Cao Y, Li X, Yu F, Han X. E2F1 regulates miR-215-5p to aggravate paraquat-induced pulmonary fibrosis via repressing BMPR2 expression. Toxicol Res (Camb) 2022; 11:940-950. [PMID: 36569483 PMCID: PMC9773066 DOI: 10.1093/toxres/tfac071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 02/01/2023] Open
Abstract
Background Pulmonary fibrosis is considered to be an irreversible lung injury, which can be caused by paraquat (PQ) poisoning. MiRNAs have been demonstrated crucial roles in pulmonary fibrosis caused by numerous approaches including PQ induction. The purpose of this study was to investigate the role and the underlying mechanism of miR-215 in PQ-induced pulmonary fibrosis. Methods The cell and animal models of pulmonary fibrosis were established through PQ intervention. Cell viability was performed to test by MTT assay. Immunofluorescence assay was used to detect COL1A1 expression and its location. The relationships among E2F1, miR-215-5p, and BMPR2 were validated by dual luciferase reporter gene assay, chromatin immunoprecipitation and RNA-binding protein immunoprecipitation. Lung morphology was evaluated by hematoxylin and eosin staining. Results MiR-215-5p was upregulated in PQ-induced pulmonary fibrosis in vitro and in vivo. MiR-215-5p silencing relieved PQ-induced pulmonary fibrosis progression by enhancing cell viability and reducing the expression of fibrosis-related markers (COL1A1, COL3A1, and α-SMA). Mechanistically, miR-215-5p directly targeted BMRP2. BMPR2 knockdown abolished the suppressive effects of miR-215-5p knockdown on PQ-induced pulmonary fibrosis. In addition, E2F1 interacted with miR-215-5p promoter and positively regulated miR-215-5p expression. E2F1 downregulation reduced miR-215-5p level and promoted BMPR2 level via regulating TGF-β/Smad3 pathway, and then suppressed PQ-induced pulmonary fibrosis, whereas these effects were compromised by miR-215-5p sufficiency. Conclusion MiR-215-5p was activated by E2F1 to repress BMPR2 expression and activate TGF-β/Smad3 pathway, which aggravated PQ-induced pulmonary fibrosis progression. Targeting the E2F1/miR-215-5p/BMPR2 axis might be a new approach to alleviate PQ-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Jie Huang
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, No.61, Jiefang west Road, Furong District, Changsha, Hunan Province 410005, P. R. China
| | - Yan Cao
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, No.61, Jiefang west Road, Furong District, Changsha, Hunan Province 410005, P. R. China
| | - Xiang Li
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, No.61, Jiefang west Road, Furong District, Changsha, Hunan Province 410005, P. R. China
| | - Fang Yu
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, No.61, Jiefang west Road, Furong District, Changsha, Hunan Province 410005, P. R. China
| | - Xiaotong Han
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, No.61, Jiefang west Road, Furong District, Changsha, Hunan Province 410005, P. R. China
| |
Collapse
|
38
|
Tong T, Duan W, Xu Y, Hong H, Xu J, Fu G, Wang X, Yang L, Deng P, Zhang J, He H, Mao G, Lu Y, Lin X, Yu Z, Pi H, Cheng Y, Xu S, Zhou Z. Paraquat exposure induces Parkinsonism by altering lipid profile and evoking neuroinflammation in the midbrain. ENVIRONMENT INTERNATIONAL 2022; 169:107512. [PMID: 36108500 DOI: 10.1016/j.envint.2022.107512] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Paraquat (PQ) is the most widely used herbicide in the world and a well-known potent neurotoxin for humans. PQ exposure has been linked to increase the risk of Parkinson's disease (PD). However, the mechanism underlying its neurotoxic effects in PD pathogenesis is unclear. In our present study, C57BL/6J mice treated with PQ manifested severe motor deficits indicated by the significant reductions in suspension score, latency to fall from rotarod, and grip strength at 8 weeks after PQ exposure. Pathological hallmarks of Parkinsonism in the midbrain such as dopaminergic neuron loss, increased α-synuclein protein, and dysregulated PD-related genes were observed. Non-targeted lipidome analysis demonstrated that PQ exposure alters lipid profile and abundance, increases pro-inflammatory lipids.27 significantly altered subclasses of lipids belonged to 6 different lipid categories. Glycerophospholipids, sphingolipids, and glycerides were the most abundant lipids. Abundance of pro-inflammatory lipids such as Cer, LPC, LPS, and LPI was significantly increased in the midbrain. mRNA expressions of genes regulating ceramide biosynthesis in the midbrain were markedly up-regulated. Moreover, PQ exposure increased serum pro-inflammatory cytokines and provoked neuroinflammation in the midbrain. Pro-inflammatory lipids and cytokines in the midbrain were positively correlated with motor deficits. PQ poisoning in humans significantly also elevated serum pro-inflammatory cytokines and induced an intense systemic inflammation. In summary, we presented initial investigations of PQ induced molecular events related to the PD pathogenesis, capturing aspects of disturbed lipid metabolism, neuroinflammation, impairment of dopaminergic neurons in the midbrain, and an intense systemic inflammation. These neurotoxic effects of PQ exposure may mechanistically contribute to the pathogenesis of PQ induced Parkinsonism. Results of this study also strongly support the hypothesis that ever-increasing prevalence of Parkinson's disease is etiologically linked to the health risk of exposure to neurotoxic environmental pollutants.
Collapse
Affiliation(s)
- Tong Tong
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Weixia Duan
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, China
| | - Yudong Xu
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Huihui Hong
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Xu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou, China
| | - Guanyan Fu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, China
| | - Xue Wang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Lingling Yang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Jingjing Zhang
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Haotian He
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Gaofeng Mao
- Neurology Department, General Hospital of Center Theater Command, Wuhan, China
| | - Yuanqiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou, China
| | - Xiqin Lin
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yong Cheng
- Neurology Department, General Hospital of Center Theater Command, Wuhan, China.
| | - Shangcheng Xu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, China.
| | - Zhou Zhou
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
39
|
Jewell S, Herath AM, Gordon R. Inflammasome Activation in Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S113-S128. [PMID: 35848038 PMCID: PMC9535572 DOI: 10.3233/jpd-223338] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Chronic sterile inflammation and persistent immune activation is a prominent pathological feature of Parkinson’s disease (PD). Inflammasomes are multi-protein intracellular signaling complexes which orchestrate inflammatory responses in immune cells to a diverse range of pathogens and host-derived signals. Widespread inflammasome activation is evident in PD patients at the sites of dopaminergic degeneration as well as in blood samples and mucosal biopsies. Inflammasome activation in the nigrostriatal system is also a common pathological feature in both neurotoxicant and α-synuclein models of PD where dopaminergic degeneration occurs through distinct mechanisms. The NLRP3 (NLR Family Pyrin Domain Containing 3) inflammasome has been shown to be the primary driver of inflammatory neurotoxicity in PD and other neurodegenerative diseases. Chronic NLRP3 inflammasome activation is triggered by pathogenic misfolded α-synuclein aggregates which accumulate and spread over the disease course in PD. Converging lines of evidence suggest that blocking inflammasome activation could be a promising therapeutic strategy for disease modification, with both NLRP3 knockout mice and CNS-permeable pharmacological inhibitors providing robust neuroprotection in multiple PD models. This review summarizes the current evidence and knowledge gaps around inflammasome activation in PD, the pathological mechanisms by which persistent inflammasome activation can drive dopaminergic degeneration and the therapeutic opportunities for disease modification using NLRP3 inhibitors.
Collapse
Affiliation(s)
- Shannon Jewell
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Ashane M. Herath
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Richard Gordon
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
40
|
Henriquez G, Ahlawat J, Fairman R, Narayan M. Citric Acid-Derived Carbon Quantum Dots Attenuate Paraquat-Induced Neuronal Compromise In Vitro and In Vivo. ACS Chem Neurosci 2022; 13:2399-2409. [PMID: 35942850 DOI: 10.1021/acschemneuro.2c00099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The potent environmental herbicide and weedicide paraquat is linked to neuromotor defects and Parkinson's disease (PD). We have evaluated the neuroprotective role of citric acid-sourced carbon quantum dots (Cit-CQDs) on paraquat-insulted human neuroblastoma-derived SH-SY5Y cell lines and on a paraquat-exposed nematode (Caenorhabditis elegans). Our data reveal that Cit-CQDs are able to scavenge free radicals in test tube assays and mitigate paraquat-elevated reactive oxygen species (ROS) levels in SH-SY5Y cells. Furthermore, Cit-CQDs protect the cell line from paraquat, which otherwise elicits cell death. Cit-CQDs-challenged nematodes demonstrate enhanced survival rates 72 h post-paraquat exposure compared to controls. Paraquat ablates dopamine (DA) neurons, which results in compromised locomotor function in nematodes. However, the neurons remained intact when the nematodes were incubated with Cit-CQDs prior to neurotoxicant exposure. The collective data suggest Cit-CQDs offer neuroprotection for cell lines and organisms from xenotoxicant-associated neuronal injury and death. The study suggests Cit-CQDs as a potentially viable green chemistry-synthesized, biobased nanomaterial for intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Gabriela Henriquez
- Department of Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Jyoti Ahlawat
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
41
|
Wu Q, Tao H, Wu Y, Wang X, Shi Q, Xiang D. A Label-Free Electrochemical Aptasensor Based on Zn/Fe Bimetallic MOF Derived Nanoporous Carbon for Ultra-Sensitive and Selective Determination of Paraquat in Vegetables. Foods 2022; 11:foods11162405. [PMID: 36010404 PMCID: PMC9407144 DOI: 10.3390/foods11162405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
Paraquat (PQ) has high acute toxicity, even at low concentrations. For most people, the main pathway of exposure to PQ is through the diet. Therefore, the development of simple and efficient methods for PQ testing is critical for ensuring food safety. In this study, a new electrochemical detection strategy for paraquat is proposed based on the specific binding of PQ to its nucleic acid aptamer. Firstly, the Zn/Fe bimetallic ZIF derived nanoporous carbon (Zn/Fe-ZIF-NPC) and nickel hexacyanoferrate nanoparticles (NiHCF-NPs) were sequentially modified onto the glassy carbon electrode (GCE). NiHCF-NPs served as the signal probes, while Zn/Fe-ZIF-NPC facilitated electron transfer and effectively enhanced the sensing signal of NiHCF-NPs. Au nanoparticles (AuNPs) were then electrodeposited on the NiHCF-NPs/Zn/Fe-ZIF-NPC/GCE and then the thiolated aptamer was assembled on the AuNPs/NiHCF-NPs/Zn/Fe-ZIF-NPC/GCE via Au-S bonding. When incubated with PQ, the formation of PQ–aptamer complexes delayed the interfacial electron transport reaction of NiHCF-NPs, which caused a decrease in the current signals. As a result, simple and highly sensitive detection of PQ can be readily achieved by detecting the signal changes. A linear range was obtained from 0.001 to 100 mg/L with a detection limit as low as 0.34 μg/L. Due to the recognition specificity of the aptamer to its target molecule, the proposed method has excellent anti-interference ability. The prepared electrochemical aptasensor was successfully used for PQ assay in lettuce, cabbage and agriculture irrigation water samples with recoveries ranging from 96.20% to 104.02%, demonstrating the validity and practicality of the proposed method for PQ detection in real samples.
Collapse
Affiliation(s)
- Qiaoling Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Han Tao
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-0851-88236895
| | - Yuangen Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xiao Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qili Shi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Donglin Xiang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
42
|
Ginkgolide C Alleviates Acute Lung Injury Caused by Paraquat Poisoning via Regulating the Nrf2 and NF- κB Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7832983. [PMID: 35707280 PMCID: PMC9192221 DOI: 10.1155/2022/7832983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/02/2022] [Indexed: 12/15/2022]
Abstract
Paraquat (PQ), a highly toxic herbicide and primary attack for lung, results in severe acute lung injury (ALI) appeared as evident oxidative stress, inflammation, and apoptosis. Increasing evidence elucidates that nuclear factor erythroid-2-related factor 2 (Nrf2) and its associated nuclear factor-κB (NF-κB) exhibit many merits for protection of ALI by coordinating a fine-turned response to oxidative stress, inflammation, and apoptosis. Ginkgolide C (GC) has been reported to be a safe and potent therapeutic agent against ALI. However, whether GC could protect ALI induced by PQ poisoning and the possible underlining mechanisms have remained not to be fully elucidated. A rat model of ALI and a model of acute type II alveolar epithelial cell (RLE-6TN) injury constructed by exposure to PQ were applied to discuss the protective effect of GC. Furthermore, Nrf2 gene silencing RLE-6TN cells were used to discuss the exact mechanism. We confirmed that GC significantly ameliorated the histopathological damages, ultrastructural changes, lung injury score, W/D ratio, and Hyp activity of lung tissue and inhibited polymorphonuclear neutrophil (PMN) infiltration after PQ poisoning. Further results revealed that GC remarkably activated Nrf2-based cytoprotective system and inhibited NF-κB-induced inflammatory injury as well as apoptosis. Taken together, we concluded that GC preserved protection of PQ-induced ALI via the Nrf2-NF-κB dependent signal pathway, which may provide us novel insights into the treatment strategies for PQ poisoning.
Collapse
|
43
|
Yuan D, Li Y, Hou L, Yang F, Meng C, Yu Y, Sun C, Duan G, Xu Z, Zhu G, Guo J, Zhang L, Yan G, Chen J, Yang Y, Zhang Y, Gao Y. Metformin Regulates Alveolar Macrophage Polarization to Protect Against Acute Lung Injury in Rats Caused by Paraquat Poisoning. Front Pharmacol 2022; 13:811372. [PMID: 35645808 PMCID: PMC9136134 DOI: 10.3389/fphar.2022.811372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/29/2022] [Indexed: 12/18/2022] Open
Abstract
This study explored the role of metformin (MET) in regulating the polarization of alveolar macrophages to protect against acute lung injury (ALI) in rats caused by paraquat (PQ) poisoning. The in vivo studies showed that the 35 mg/kg dose of MET increased the survival rate of rats, alleviated pathological damages to the lungs and their systemic inflammation, promoted the reduction of the pro-inflammatory factors interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels, and increased the anti-inflammatory factor IL-10 levels in the rat serum. At the same time, the MET intervention decreased the expression of M1 macrophage marker iNOS in the lungs of the PQ-poisoned rats while increasing the M2 macrophage marker, Arg1, expression. In vitro, the concentration of MET > 10 mmol/L affected NR8383 viability adversely and was concentration-dependent; however, no adverse impact on NR8383 viability was observed at MET ≤ 10 mmol/L concentration, resisting the reducing effect of PQ on NR8383 vitality. The PQ-induced NR8383 model with MET intervention showed significantly reduced secretions of IL-6 and TNF-α in NR8383, and lowered expressions of M1 macrophage markers iNOS and CD86. Additionally, MET increased IL-10 secretion and the M2 macrophage markers, Arg1 and Mrcl, expressions. Therefore, we speculate that MET could regulate alveolar macrophage polarization to protect against PQ-poisoning caused ALI.
Collapse
Affiliation(s)
- Ding Yuan
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Hou
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Yang
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cuicui Meng
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanwu Yu
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Changhua Sun
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guoyu Duan
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigao Xu
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guiying Zhu
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianjun Guo
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Leilei Zhang
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gaiqin Yan
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jihong Chen
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Yang
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou, China
- *Correspondence: Yan Zhang, ; Yanxia Gao,
| | - Yanxia Gao
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yan Zhang, ; Yanxia Gao,
| |
Collapse
|
44
|
Peng H, Fu S, Wang S, Xu H, Dhanasekaran M, Chen H, Shao C, Yuanzhuo, Ren J. Ablation of FUNDC1-dependent mitophagy renders myocardium resistant to paraquat-induced ferroptosis and contractile dysfunction. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166448. [DOI: 10.1016/j.bbadis.2022.166448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/08/2023]
|
45
|
Citrullus colocynthis Seed Ameliorates Layer Performance and Immune Response under Acute Oxidative Stress Induced by Paraquat Injection. Animals (Basel) 2022; 12:ani12080945. [PMID: 35454193 PMCID: PMC9032143 DOI: 10.3390/ani12080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In recent years, natural, plant-based antioxidants have been increasingly popular among poultry producers to boost production and welfare. Colocynth, i.e., Citrullus colocynthis, is an herbaceous plant known to have antioxidant properties. Employing laying hens, this study investigated the potency of dietary colocynth seed supplementation to reduce the deleterious effects of acute oxidative stress induced by paraquat injection. The results demonstrated that supplementing layers’ diets with colocynth seed at 0.1% alleviated oxidative stress responses and significantly improved egg production performance. Furthermore, the immunological responses of the acute-oxidative-stressed layers were enhanced with colocynth seed supplementation. Thus, the inclusion of colocynth seed in layer chickens’ diets can improve egg production performance, restore the redox balance, and enhance immunological responses when they are reared under acute oxidative stress conditions. Abstract Oxidative stress is a detrimental physiological state that threatens birds’ productivity and general health. Colocynth is an herbal plant known for its bioactive properties, and it is mainly known for its antioxidant effects. This study’s purpose was to investigate how effective colocynth seed is at lowering the detrimental impact of acute oxidative stress caused by paraquat (PQ) injection in laying hens. A total of 360 Hy-Line Brown chickens, aged 39 weeks, were gathered and divided into four equal groups (10 hens × 9 replicates) in a 2 × 2 factorial design. The experimental groups were given either a basal diet or the basal diet supplemented with colocynth seed (1% of diet). Starting from week 40 of age and for 7 successive days, the experimental groups were either injected daily with paraquat (5 mg/kg body weight) or with saline (0.5 mL, 0.9% NaCl). Egg production performance with selected stress biomarkers and immunological response parameters were investigated at the end of week 40 of age. Our data revealed a significant reduction in egg production with an increase in blood stress biomarkers (i.e., HSP-70, corticosterone, and H/L ratio) in PQ-injected groups compared with non-stressed groups. Furthermore, an unbalanced redox state was detected in acute oxidative stress groups, with a significant rise in lipid peroxidation level, a reduction in total antioxidant capacity (TAC), and a drop in superoxide dismutase (SOD) and catalase enzyme activity. Supplementing PQ-injected hens with colocynth seed reduced the deleterious effects of acute oxidative stress. There was a significant drop in stress biomarkers with a significant rise in antioxidant enzyme activity and TAC observed in the PQ-injected group provided with colocynth seed supplementation. Remarkably, supplementation of colocynth in the non-stressed group resulted in a significant 27% increase in TAC concentration and 17% higher SOD activity when compared with the non-stressed control group. Colocynth supplementation in the PQ-injected group elevated the total white blood cell count by 25% and improved the B-lymphocyte proliferation index (a 1.3-fold increase) compared with the PQ-injected group that did not receive supplementation. Moreover, the non-stressed colocynth-supplemented group had significantly higher cell-mediated and humoral immune responses than the non-stressed control group. This study demonstrated that colocynth seed supplementation in birds exposed to acute oxidative stress may effectively alleviate its negative impacts on production performance, immunological responses, and redox status. We also inferred that, under normal conditions, colocynth seed can be added to laying hens’ diets to stimulate production and ameliorate immune responses.
Collapse
|
46
|
Chen W, Li C, Yu Z, Song Y, Zhang X, Ni D, Zhang D, Liang P. Optimum synthesis of cactus-inspired SERS substrate with high roughness for paraquat detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120703. [PMID: 34896679 DOI: 10.1016/j.saa.2021.120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Paraquat is a highly effective herbicide and widely used in agricultural production. However, paraquat residue is harmful for human health and can cause irreversible hazard. Thus, it is crucial for monitoring of paraquat residues. In this paper, an efficient SERS platform based on cactus-inspired nanoparticles is proposed for sensitive detection of paraquat. The cactus-liked nanoparticles obtained from one-pot stepwise reduction method possess multiple spiny structures and can produce abundant hot spots, resulting in remarkable SERS performance. SEM, TEM, UV-vis and Raman tests were conducted to characterize and optimize the morphology of cactus-liked nanoparticles under different preparation conditions. The synthesis mechanism and corresponding parameters influence mechanism of cactus-liked nanoparticles were explored in detail. Optimized substrate exhibited a high sensitivity with the detectable concentration of crystal violet (CV) down to 10-9 M and an excellent reproducibility proved by SERS mapping. Furthermore, it behaved good linear relationship with a correlation coefficient (R2) of 96.89% between Raman intensities and concentrations of paraquat, which indicates the SERS substrate prepared with cactus-liked nanoparticles could offer a great potential for identification of paraquat.
Collapse
Affiliation(s)
- Wenwen Chen
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, 430070 Wuhan, China
| | - Chen Li
- Jiangxi Sericulture and Tea Research Institute, 330203 Nanchang, China
| | - Zhi Yu
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, 430070 Wuhan, China
| | - Ying Song
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, 430070 Wuhan, China
| | - Xiubing Zhang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Dejiang Ni
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, 430070 Wuhan, China
| | - De Zhang
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, 430070 Wuhan, China.
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
| |
Collapse
|
47
|
Sule RO, Condon L, Gomes AV. A Common Feature of Pesticides: Oxidative Stress-The Role of Oxidative Stress in Pesticide-Induced Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5563759. [PMID: 35096268 PMCID: PMC8791758 DOI: 10.1155/2022/5563759] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022]
Abstract
Pesticides are important chemicals or biological agents that deter or kill pests. The use of pesticides has continued to increase as it is still considered the most effective method to reduce pests and increase crop growth. However, pesticides have other consequences, including potential toxicity to humans and wildlife. Pesticides have been associated with increased risk of cardiovascular disease, cancer, and birth defects. Labels on pesticides also suggest limiting exposure to these hazardous chemicals. Based on experimental evidence, various types of pesticides all seem to have a common effect, the induction of oxidative stress in different cell types and animal models. Pesticide-induced oxidative stress is caused by both reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are associated with several diseases including cancer, inflammation, and cardiovascular and neurodegenerative diseases. ROS and RNS can activate at least five independent signaling pathways including mitochondrial-induced apoptosis. Limited in vitro studies also suggest that exogenous antioxidants can reduce or prevent the deleterious effects of pesticides.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Liam Condon
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
48
|
Fan L, Xu J, Lv T, Lu M. Asthma attacks: Patients who survived paraquat poisoning. J Toxicol Sci 2022; 47:147-149. [PMID: 35370242 DOI: 10.2131/jts.47.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Lu Fan
- Department of Emergency, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, China
| | - Jiyang Xu
- Department of Emergency, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, China
| | - Tianyi Lv
- Department of Emergency, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, China
| | - Mingfeng Lu
- Department of Emergency, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, China
| |
Collapse
|