1
|
Abdulazeez R, Highab SM, Onyawole UF, Jeje MT, Musa H, Shehu DM, Ndams IS. Co-administration of resveratrol rescued lead-induced toxicity in Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104470. [PMID: 38763436 DOI: 10.1016/j.etap.2024.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/23/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Lead toxicity poses a significant environmental concern linked to diverse health issues. This study explores the potential mitigating effects of resveratrol on lead-induced toxicity in Drosophila melanogaster. Adult fruit flies, aged three days, were orally exposed to lead (60 mg/L), Succimer (10 mg), and varying concentrations of resveratrol (50, 100, and 150 mg). The investigation encompassed the assessment of selected biological parameters, biochemical markers, oxidative stress indicators, and antioxidant enzymes. Resveratrol exhibited a dose-dependent enhancement of egg-laying, eclosion rate, filial generation output, locomotor activity, and life span in D. melanogaster, significantly to 150 mg of diet. Most of the investigated biochemical parameters were significantly rescued in lead-exposed fruit flies when co-treated with resveratrol (p < 0.05). However, oxidative stress remained unaffected by resveratrol. The findings suggest that resveratrol effectively protects against lead toxicity in Drosophila melanogaster and may hold therapeutic potential as an agent for managing lead poisoning in humans.
Collapse
Affiliation(s)
- R Abdulazeez
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
| | - S M Highab
- Department of Clinical Pharmacology and Therapeutics, Faculty of Clinical Sciences, College of Medicine and Health Sciences, Federal University, Dutse, Jigawa State, Nigeria
| | - U F Onyawole
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - M T Jeje
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - H Musa
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - D M Shehu
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - I S Ndams
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
2
|
Feng Y, Zhao C, Li T, Wang M, Serrano BR, Barcenas AR, Qu L, Zhao W, Shen M. Quercetin ameliorates lipid deposition in primary hepatocytes of the chicken embryo. Br Poult Sci 2024; 65:429-436. [PMID: 38727603 DOI: 10.1080/00071668.2024.2332717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 07/27/2024]
Abstract
1. The accumulation of excessive fat plays a role in the development of non-alcoholic fatty liver disease (NAFLD) and phytogenic feed additives have the potential to ameliorate this. This study involved the isolation and culture of primary hepatocytes from chicken embryos to establish a model of hepatic steatosis induced by oleic acid/dexamethasone (OA/DEX). Lipid accumulation and cell viability were assessed using Nile Red staining, Oil Red O staining and cell count Kit -8 (CCK8) following treatment with varying concentrations of quercetin (Que). The potential mechanism by which Que exerts its effects was preliminarily investigated.2. The results indicated that OA effectively treated lipid accumulation in hepatocytes. There was no notable variance in cell proliferation between the normal and OA/DEX groups when subjected to Que treatment at concentrations of 1000 ng/ml and 10 000 ng/ml. Triglycerides and cholesterol (low and high density) decreased with Que treatment, with the most substantial reduction observed at 10 000 ng/ml.3. Gene expression levels decreased to levels similar to those in the control groups. Western blot data demonstrated that sterol regulatory element-binding protein 1 (SREBP-1) protein expression correlated with its mRNA expression level. Que mitigated lipid accumulation through the alpha serine/threonine protein kinase (AKT) and extracellular signal-regulated kinase (ERK) pathways. Expression levels of lipid-related genes (APOB, PPARα, CYP3A5 and SREBP-1) decreased to levels similar to the control groups. Western blot data demonstrated that the SREBP-1 protein expression correlated with its mRNA expression level.4. Supplementation with Que ameliorated lipid accumulation through AKT and ERK signalling pathway in OA/DEX-induced high-fat hepatocytes.
Collapse
Affiliation(s)
- Y Feng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - C Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - T Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - M Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - B R Serrano
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - A R Barcenas
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - L Qu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - W Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - M Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Plant Protein and Bionatural Products Research Center, Ministry of Agriculture, Havana, Cuba
| |
Collapse
|
3
|
Akram W, Khan I, Rehman A, Munir B, Guo J, Li G. A Physiological and Molecular Docking Insight on Quercetin Mediated Salinity Stress Tolerance in Chinese Flowering Cabbage and Increase in Glucosinolate Contents. PLANTS (BASEL, SWITZERLAND) 2024; 13:1698. [PMID: 38931131 PMCID: PMC11207431 DOI: 10.3390/plants13121698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The present study was performed to investigate the negative impact of salinity on the growth of Chinese flowering cabbage (Brassica rapa ssp. chinensis var. parachinensis) and the ameliorative effects of quercetin dihydrate on the plant along with the elucidation of underlying mechanisms. The tolerable NaCl stress level was initially screened for the Chinese flowering cabbage plants during a preliminary pot trial by exposing the plants to salinity levels (0, 50, 100, 150, 200, 250, 300, 350, and 400 mM) and 250 mM was adopted for further experimentation based on the findings. The greenhouse experiment was performed by adopting a completely randomized design using three different doses of quercetin dihydrate (50, 100, 150 µM) applied as a foliar treatment. The findings showed that the exposure salinity significantly reduced shoot length (46.5%), root length (21.2%), and dry biomass (32.1%) of Chinese flowering cabbage plants. Whereas, quercetin dihydrate applied at concentrations of 100, and 150 µM significantly diminished the effect of salinity stress by increasing shoot length (36.8- and 71.3%), root length (36.57- and 56.19%), dry biomass production (51.4- and 78.6%), Chl a (69.8- and 95.7%), Chl b (35.2- and 87.2%), and carotenoid contents (21.4- and 40.3%), respectively, compared to the plants cultivated in salinized conditions. The data of physiological parameters showed a significant effect of quercetin dihydrate on the activities of peroxidase, superoxide dismutase, and catalase enzymes. Interestingly, quercetin dihydrate increased the production of medicinally important glucosinolate compounds in Chinese flowering cabbage plants. Molecular docking analysis showed a strong affinity of quercetin dihydrate with three different stress-related proteins of B. rapa plants. Based on the findings, it could be concluded that quercetin dihydrate can increase the growth of Chinese flowering cabbage under both salinity and normal conditions, along with an increase in the medicinal quality of the plants. Further investigations are recommended as future perspectives using other abiotic stresses to declare quercetin dihydrate as an effective remedy to rescue plant growth under prevailing stress conditions.
Collapse
Affiliation(s)
- Waheed Akram
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (W.A.); (I.K.)
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Imran Khan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (W.A.); (I.K.)
| | - Areeba Rehman
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (A.R.); (B.M.)
| | - Bareera Munir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (A.R.); (B.M.)
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (W.A.); (I.K.)
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (W.A.); (I.K.)
| |
Collapse
|
4
|
Jia X, Yu H, Du B, Shen Y, Gui L, Xu X, Li J. Incorporating Lycium barbarum residue in diet boosts survival, growth, and liver health in juvenile grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109573. [PMID: 38636742 DOI: 10.1016/j.fsi.2024.109573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
This research elucidates the potential of Lycium barbarum residue (LBR), a by-product rich in bioactive substances, as a dietary supplement in aquaculture, especially for herbivorous fish like grass carp. In a detailed 120-day feeding trial, the impacts of varying LBR levels on juvenile grass carp were assessed, focusing on growth performance, survival rate, biochemical markers, and liver health. The study identified a 6% inclusion rate of LBR as optimal for enhancing survival and growth while mitigating hepatic lipid accumulation. Composition analysis of this diet revealed high concentrations of polysaccharides and flavonoids. Notably, the intake of LBR was found to enhance the antioxidant and immune-related enzymatic activities in the liver. Furthermore, it contributed to a reduction in hepatic fat deposition by decreasing the levels of triglycerides (TG) and total cholesterol (T-CHO) both in the liver and serum. Transcriptomic analysis of the liver highlighted LBR's substantial influence on lipid metabolism pathways, including the PPAR signaling pathway, primary bile acid biosynthesis, cholesterol metabolism, bile secretion, fat digestion and absorption, fatty acid degradation and fatty acid biosynthesis. Further, the expression level of genes pinpointed significant downregulation of fasn and dgat2, alongside upregulation of genes like pparda, cpt1b, cpt1ab and abca1b, in response to LBR supplementation. Overall, the findings present LBR as a promising enhancer of growth and survival in grass carp, with significant benefits in promoting fat metabolism and liver health, offering valuable insights for aquacultural nutrition strategies.
Collapse
Affiliation(s)
- Xuewen Jia
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Hongyan Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Biao Du
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
5
|
Farag MR, El-Kassas S, Attia YA, Alhotan RA, Mahmoud MA, Di Cerbo A, Alagawany M. Yucca schidigera Extract Mitigates the Oxidative Damages, Inflammation, and Neurochemical Impairments in the Brains of Quails Exposed to Lead. Biol Trace Elem Res 2024; 202:713-724. [PMID: 37171738 DOI: 10.1007/s12011-023-03696-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
The present study explored the neurotoxic impacts of lead (Pb) and the potential alleviating effect of Yucca schidigera extract (YSE) in Japanese quails. About 360 adult Japanese quails (8 weeks old) were used. Quails were randomly distributed to six groups with 4 replicates each: the control group (fed basal diet, BD), the BD + YSE1 and BD + YSE2 groups (BD + 100 and 200 mg/kg diet of YSE, respectively), the Pb group (BD + 100 mg/kg Pb), and the Pb + YSE1 and Pb + YSE2 groups (BD + Pb + 100 and 200 mg/kg YSE, respectively). This feeding trial lasted for 8 weeks. The exposure to Pb in the diet induced oxidative damage stress in the brain of exposed quails reflected by the significant increase in the oxidative markers including malonaldehyde (MDA) and protein carbonyl (PC) and the significant reduction in the activities of antioxidants including catalase (CAT), superoxide dismutase (SOD), and the reduced glutathione (GSH). Brain neurochemistry and enzyme activities were also altered following Pb exposure. Pb significantly reduced serotonin, dopamine, norepinephrine, GABA, Ach, and Na + /K + -ATPase activities. Pb dietary intoxication markedly increased brain inflammatory biomarkers, including tumor necrosis factor (TNF-α), myeloperoxidase, and nitric oxide. Peripherally, Pb toxicity decreased the amino acid neurotransmitters (glutamic acid, glycine, and aspartic acid) in the serum of birds. At the transcriptomic level, Pb exposure upregulated the transcription patterns of CASP3, TNF-α, HSP70, and IL-1β. The single effect of YSE maintained that all the assessed parameters were not changed compared to the control. Interestingly, the YSE co-supplementation with Pb alleviated the Pb-induced neuro-oxidative damages by lowering the lipid, protein, and DNA damage, and the inflammatory biomarkers.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44111, Egypt
| | - Seham El-Kassas
- Animal, Poultry, and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh, 33516, Egypt
| | - Youssef A Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rashed A Alhotan
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, New Valley University, Kharga, New Valley, Egypt
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
6
|
Al-Shammari KIA, Zamil SJ, Batkowska J. The antioxidative influence of dietary creatine monohydrate and L-carnitine on laying performance, egg quality, ileal microbiota, blood biochemistry, and redox status of stressed laying quails. Poult Sci 2024; 103:103166. [PMID: 37939584 PMCID: PMC10665932 DOI: 10.1016/j.psj.2023.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
The experiment was implemented to assess the influence of dietary supplementation of laying quails with creatine monohydrate (CrM), L-carnitine (CAR) and their mixture (CrMCAR) as antioxidants against oxidative stress (OS) induced by 2.5 ppm lead acetate (LA) in drinking water on productive, physiological and microbial aspects. In total, 400 laying quail females at 10 wk of age were divided into a randomized design with 5 groups and 4 replicates of 20 birds each. Birds were fed ad libitum with a balanced diet for 8 wk. The control group was kept under no-stress conditions and was given fresh water without any additives (G1). While birds in other groups were exposed to OS induced experimentally by 2.5 ppm LA in drinking water with no feed additive (G2) or supplemented with 500 mg/kg CrM (G3) or 500 mg/kg CAR (G4) or combination of 250 mg/kg each of CrM and CAR (CrMCAR, G5) to feed mixture. Compared to G2, G5 demonstrated the reduction (P ≤ 0.05) of feed conversion ratio, feed intake, mortality and ileal total coliform, as well as serum and egg malondialdehyde and serum lipid hydroperoxide, uric acid, glucose, cholesterol, enzymatic activities (alanine aminotransferase, aspartate transaminase, alkaline phosphatase, creatine phosphokinase, γ-glutamyl transferase), and heterophils/lymphocytes ratio. In the meanwhile, there was an increase (P ≤ 0.05) in egg production, egg mass, and weight with the improvement of egg quality, serum sex hormones level and ileal lactic acid bacteria for G5 followed by G4 and G3. Moreover, G5 enhanced (P ≤ 0.05), the total antioxidant capacity of egg and serum glutathione, superoxide dismutase, catalase, glutathione peroxidase, protein and calcium levels. Therefore, dietary CrMCAR, CAR and CrM have analogous influence to control by improving the antioxidant and physiological parameters which resulted in better productive performance and egg characteristics of stressed quails. These antioxidants, especially in their equal combination, are beneficial to alleviate oxidative stress incidence and can be recommended for poultry feeding under various aspects of environmental stresses.
Collapse
Affiliation(s)
| | - Sarah Jasim Zamil
- Department of Animal Production Techniques, Al-Musaib Technical College, Al-Furat Al-Awsat Technical University, Babylon, Iraq
| | - Justyna Batkowska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland.
| |
Collapse
|
7
|
Parveen N, Akbarsha MA, Latif Wani AB, Ansari MO, Ahmad MF, Shadab GGHA. Protective effect of quercetin and thymoquinone against genotoxicity and oxidative stress induced by ZnO nanoparticles in the Wistar rat model. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 890:503661. [PMID: 37567646 DOI: 10.1016/j.mrgentox.2023.503661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are increasingly used in a variety of consumer and other commercial products. Hence, man faces the risk of exposure to ZnO-NPs and the consequent adverse health effects. Mitigation/prevention of such effects using natural products has drawn the attention of scientists. Therefore, the aim of the present study has been to find the toxic effects associated with exposure to ZnO-NPs, and the protective role of the phytochemicals thymoquinone (TQ) and quercetin (QCT) in the rat model. ZnO-NPs were administered to male Wistar rats through oral route; TQ / QCT was concurrently administered through intra-peritoneal route. The response in the animal was analyzed adopting chromosomal aberration test, micronucleus test, and comet assay of bone marrow cells to assess the genotoxicity, and biochemical assays of superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (LPO), total extractable protein of liver, and reduced glutathione (GSH) of liver homogenate to monitor the changes in the antioxidant defense mechanism in response to the oxidative stress. Treatment of 300 mg/kg body weight (bw) of ZnO-NPs produced adverse effects on all aspects analyzed viz., structural chromosomal aberrations, micronuclei formation, DNA damage, SOD, catalase, lipid peroxidation, GSH, and extractable total protein of liver. Co-treatment of TQ / QCT offered protection against the toxicity induced by ZnO-NPs. The most optimum doses of TQ and QCT that offered the best protection were 18 mg/kg bw and 500 mg/kg bw, respectively. The study reveals that TQ / QCT supplementation is beneficial in the context of toxic effects of ZnO-NPs.
Collapse
Affiliation(s)
- Nuzhat Parveen
- Cytogenetics and Molecular Toxicology Lab., Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | | | - A B Latif Wani
- Cytogenetics and Molecular Toxicology Lab., Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohd Owais Ansari
- Cytogenetics and Molecular Toxicology Lab., Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Md Fahim Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - G G H A Shadab
- Cytogenetics and Molecular Toxicology Lab., Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
8
|
Wu Q, He M, Wang J, Tong T, Yang D, Tang H. The therapeutic mechanism of Chebulae Fructus in the treatment of immunosuppression in Chinese yellow quail on the basis of network pharmacology. Front Vet Sci 2023; 10:1123449. [PMID: 37275616 PMCID: PMC10235497 DOI: 10.3389/fvets.2023.1123449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Chebulae Fructus (Terminalia chebula Retz.) is a well-known traditional Chinese medicine (TCM), one of the family Combretaceae, whose immature fruit is called Fructus Chebulae Immaturus or Zangqingguo. This present study aimed at detecting the target and therapeutic mechanism of Chebulae Fructus against immunosuppression through network analysis and experimental validation. Methods Effective components and potential targets of Chebulae Fructus were Search and filtered through the Chinese herbal medicine pharmacology data and analysis platform. A variety of known disease target databases were employed to screen the therapeutic target proteins against immunosuppression and thus constructing a protein-protein interaction network. Hub genes and key pathways in this study were identified by continuous project enrichment analysis. Further, the core targets and therapeutic mechanism of Chebulae Fructus against immunosuppression in Chinese yellow quail through animal experiment. Results Seventy-five identifiable major candidate targets of Chebulae Fructus were found and thus constructing a drug-compound-target-disease network. Targets derived from gene enrichment analysis play pivotal roles in lipid and atherosclerosis, fluid shear stress and atherosclerosis, and the hepatitis B pathway. Height of plicate and areas of lymphoid follicle were both increased and the expression of GATA-3 and T-bet was upregulated in Chinese yellow quail fed with Chebulae Fructus in animal experiment. Conclusion Chebulae Fructus may be a helpful Chinese medicine with immunosuppressive effect and prospective applications in future. Further research is also needed to understand the mechanisms of immunosuppression and the mechanism of action of immunomodulators.
Collapse
Affiliation(s)
- Qiang Wu
- Agricultural College, Yibin Vocational and Technical College, Yibin, China
| | - Min He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Wang
- Agricultural College, Yibin Vocational and Technical College, Yibin, China
| | - TieJin Tong
- Agricultural College, Yibin Vocational and Technical College, Yibin, China
| | - Dan Yang
- Agricultural College, Yibin Vocational and Technical College, Yibin, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Shen M, Li T, Feng Y, Wu P, Serrano BR, Barcenas AR, Qu L, Zhao W. Effects of quercetin on granulosa cells from prehierarchical follicles by modulating MAPK signaling pathway in chicken. Poult Sci 2023; 102:102736. [PMID: 37209658 DOI: 10.1016/j.psj.2023.102736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/22/2023] Open
Abstract
Quercetin (Que), widely found in a huge variety of plants, plays important roles in ovarian function. However, to data, there have been no reports about Que regulating granulosa cells (GCs) in prehierarchical follicles in chicken. Herein, GCs from follicles diameter from 4 to 8 mm in chicken were treated by Que in vitro culture to investigate how Que exerts its effect on follicular development. GCs treated by Que in concentrations of 10, 100, and 1,000 ng/mL were tested for cell proliferation and progesterone secretion. Eight cDNA libraries were constructed from GCs (4 samples per group) to explore transcriptome expression changes. The role of the MAPK/ERK signaling pathway was validated in this process. Treatment with 100 and 1,000 ng/mL levels of Que significantly promoted cell proliferation and progesterone secretion (P < 0.05). RNA-seq analysis data showed that 402 and 263 differentially expressed genes (DEGs) were up- and down-regulated, respectively. Functional enrichment analysis that the pathways related to follicular development included biosynthesis of amino acids, MAPK signaling pathway, and calcium signaling pathway. Notably, the function exerted in GCs of the different levels of Que was associated with the suppression of the MAPK pathway. In conclusion, our results proved that low levels of Que could promote MAPK signaling pathway, but high levels of Que inhibit MAPK signaling pathway in GCs from the prehierarchical follicles, promote cell proliferation and progesterone secretion, and benefit follicle selection.
Collapse
Affiliation(s)
- Manman Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 225108, China; Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tao Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 225108, China
| | - Yuan Feng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 225108, China
| | - Ping Wu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 225108, China
| | | | | | - Liang Qu
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Weiguo Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 225108, China.
| |
Collapse
|
10
|
Wang S, Jin X, Chen H, Han M, Bao J, Niu D, Wang Y, Li R, Wu Z, Li J. Quercetin alleviates Mycoplasma gallisepticum-induced inflammatory damage and oxidative stress through inhibition of TLR2/MyD88/NF-κB pathway in vivo and in vitro. Microb Pathog 2023; 176:106006. [PMID: 36746315 DOI: 10.1016/j.micpath.2023.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/25/2023] [Indexed: 02/07/2023]
Abstract
Chronic respiratory disease (CRD) caused by Mycoplasma gallisepticum (MG) in chickens leads to enormous economic damage to the poultry industry yearly. The active components and mechanism of action of the traditional herbal remedy Ephedra houttuynia powder (EHP), which had been approved for clinical treatment against MG infection in China, remain unknown. In this study, the active components of EHP against MG were screened using a network pharmacological method, additionally, we studied the mechanism of action of the screened results (quercetin (QUE)). The findings demonstrated that QUE was an essential element of EHP against MG infection, effectively attenuating MG-induced oxidative stress and activation of the TLR2/MyD88/NF-κB pathway. Following QUE therapy, IL-1, IL-6, and TNF-α content and expression were downregulated, whereas IL-4 and IL-10 expression were upregulated, eventually suppressing the inflammatory response both in vitro and in vivo. Together, this study presents a strong rationale for using QUE as a therapeutic strategy to inhibit MG infection-induced inflammatory damage and oxidative stress.
Collapse
Affiliation(s)
- Shun Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Xiaodi Jin
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Mingdong Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Jiaxin Bao
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Dong Niu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Yikang Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China; Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150036, PR China.
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China.
| |
Collapse
|
11
|
Liu J, Fu Y, Zhou S, Zhao P, Zhao J, Yang Q, Wu H, Ding M, Li Y. Comparison of the effect of quercetin and daidzein on production performance, anti-oxidation, hormones, and cecal microflora in laying hens during the late laying period. Poult Sci 2023; 102:102674. [PMID: 37104906 PMCID: PMC10160590 DOI: 10.1016/j.psj.2023.102674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
This study aims to compare the effect of quercetin and daidzein on production performance, anti-oxidation, hormones, and cecal microflora in laying hens during the late laying period. A total of 360 53-week-old healthy Hyline brown laying hens were randomly divided into 3 groups (control, 0.05% quercetin, and 0.003% daidzein). Diets were fed for 10 wk, afterwards 1 bird per replicate (6 replicates) were euthanized for sampling blood, liver and cecal digesta. Compared with the control, quercetin significantly increased laying rate and decreased feed-to-egg weight ratio from wk 1 to 4, wk 5 to 10, and wk 1 to 10 (P < 0.05). Quercetin significantly increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased catalase (CAT) activity and malondialdehyde (MDA) content in serum and liver (P < 0.05) and increased content of total antioxidant capacity (T-AOC) in liver (P < 0.05). Quercetin increased content of estradiol (E2), luteinizing hormone (LH), follicle-stimulating hormone (FSH), growth hormone (GH), insulin-like growth factor 1 (IGF-1), triiodothyronine (T3) and thyroxine (T4) in serum (P < 0.05). Quercetin significantly decreased the relative abundance of Bacteroidaceae and Bacteroides (P < 0.01) and significantly increased the relative abundance of Lactobacillaceae and Lactobacillus (P < 0.05) at family and genus levels in cecum. Daidzein did not significantly influence production performance from wk 1 to 10. Daidzein significantly increased SOD activity and decreased CAT activity and MDA content in serum and liver (P < 0.05), and increased T-AOC content in liver (P < 0.05). Daidzein increased content of FSH, IGF-1, T3 in serum (P < 0.05). Daidzein increased the relative abundance of Rikenellaceae RC9 gut group at genus level in cecum (P < 0.05). Quercetin increased economic efficiency by 137.59% and 8.77%, respectively, compared with daidzein and control. In conclusion, quercetin improved production performance through enhancing antioxidant state, hormone levels, and regulating cecal microflora in laying hens during the late laying period. Quercetin was more effective than daidzein in improving economic efficiency.
Collapse
|
12
|
Fawzy MA, Nasr G, Ali FEM, Fathy M. Quercetin potentiates the hepatoprotective effect of sildenafil and/or pentoxifylline against intrahepatic cholestasis: Role of Nrf2/ARE, TLR4/NF-κB, and NLRP3/IL-1β signaling pathways. Life Sci 2023; 314:121343. [PMID: 36592787 DOI: 10.1016/j.lfs.2022.121343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
AIM Intrahepatic cholestasis is a common pathological condition of several types of liver disorders. In this study, we aimed to investigate the regulatory effects of quercetin (QU) on selected phosphodiesterase inhibitors against alpha-naphthyl isothiocyanate (ANIT)-induced acute intrahepatic cholestasis. METHODS Cholestasis was induced in Wistar albino rats by ANIT as a single dose (60 mg/kg; P·O.). QU (50 mg/kg, daily, P·O.), sildenafil (Sild; 10 mg/kg, twice daily, P·O.), and pentoxifylline (PTX; 50 mg/kg, daily, P.O.) were evaluated either alone or in combinations for 10 days for their antioxidant, anti-inflammatory, and anti-pyroptotic effects. RESULTS ANIT produced a prominent intrahepatic cholestasis as evidenced by a significant alteration in liver functions, histological structure, inflammatory response, and oxidative stress biomarkers. Furthermore, up-regulation of NF-κB-p65, TLR4, NLRP3, cleaved caspase-1, IKK-β, and IL-1β concurrently with down-regulation of Nrf-2, HO-1, and PPAR-γ expressions were observed after ANIT. QU, Sild, or PTX treatment significantly alleviated the disturbance induced by ANIT. These findings were further supported by the improvement in histopathological features. Additionally, co-administration of QU with Sild or PTX significantly improved liver defects due to ANIT as compared to the individual drugs. SIGNIFICANCE Combined QU with Sild or PTX exhibited promising hepatoprotective effects and anti-cholestatic properties through modulation of Nrf2/ARE, TLR4/NF- κB, and NLRP3/IL-1β signaling pathways.
Collapse
Affiliation(s)
- Michael A Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Gehad Nasr
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
13
|
Pharmacological Activity of Quercetin: An Updated Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3997190. [PMID: 36506811 PMCID: PMC9731755 DOI: 10.1155/2022/3997190] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
Quercetin, a natural flavonoid compound with a widespread occurrence throughout the plant kingdom, exhibits a variety of pharmacological activities. Because of the wide spectrum of health-promoting effects, quercetin has attracted much attention of dietitians and medicinal chemists. An updated review of the literature on quercetin was performed using PubMed, Embase, and Science Direct databases. This article presents an overview of recent developments in pharmacological activities of quercetin including anti-SARS-CoV-2, antioxidant, anticancer, antiaging, antiviral, and anti-inflammatory activities as well as the mechanism of actions involved. The biological activities of quercetin were evaluated both in vitro and in vivo, involving a number of cell lines and animal models, but metabolic mechanisms of quercetin in the human body are not clear. Therefore, further large sample clinical studies are needed to determine the appropriate dosage and form of quercetin for the treatment of the disease.
Collapse
|
14
|
Sun L, Guo L, Xu G, Li Z, Appiah MO, Yang L, Lu W. Quercetin Reduces Inflammation and Protects Gut Microbiota in Broilers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103269. [PMID: 35630745 PMCID: PMC9147699 DOI: 10.3390/molecules27103269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022]
Abstract
The aim of this study was to investigate the effects of quercetin on inflammatory response and intestinal microflora in broiler chicken jejuna. A total of 120 broiler chickens were allocated into 3 groups: saline-challenged broilers fed a basal diet (CTR group), lipopolysaccharide (LPS)-challenged broilers fed a basal diet (L group) and LPS-challenged broilers fed a basal diet supplemented with 200 mg/kg quercetin (LQ group). Our results showed that LPS significantly increased expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, interferon (IFN)-γ, toll-like receptor (TLR)-4, Bax, Caspase-3 and diamine oxidase activity (DAO), and decreased expression of zona occludens-1 (ZO-1), Occludin and Bcl-2 in the jejunum, while dietary quercetin prevented the adverse effects of LPS injection. LPS injection significantly decreased the number of Actinobacteria, Armatimonadetes and Fibrobacteriae at the phylum level when compared to the CTR group. Additionally, at genus level, compared with the CTR group, the abundance of Halomonas, Micromonospora, Nitriliruptor, Peptococcus, Rubellimicrobium, Rubrobacter and Slaclda in L group was significantly decreased, while dietary quercetin restored the numbers of these bacteria. In conclusion, our results demonstrated that dietary quercetin could alleviate inflammatory responses of broiler chickens accompanied by modulating jejunum microflora.
Collapse
|