1
|
Li M, Pan C, Zhang Z, Wang J, Wang S, Li W, Zhou T, Wang X, Liu Z, Hu Z, Sun R, Li D. Plant Coumarin Metabolism-Microbe Interactions: An Effective Strategy for Reducing Imidacloprid Residues and Enhancing the Nutritional Quality of Pepper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39731607 DOI: 10.1021/acs.jafc.4c10038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Imidacloprid (IMI) stress positively correlates with the potential of coumarins to alleviate abiotic stress. However, little is known about the pathways and mechanisms by which coumarin reduces the IMI residue by regulating plant secondary metabolism and plant-microbe interactions. This study examined the impact of coumarin on the uptake, translocation, and metabolism of IMI in pepper plants by modulating the signal molecule levels and microbial communities in the rhizosphere and phyllosphere. Analysis of 2 h─28 d pesticide residue dynamics revealed that coumarin dramatically reduced IMI concentration in pepper fruits. Coumarin upregulated the phenylpropane pathway genes, which increased the levels of flavonoids, phenolic acids, phytohormones, and capsaicinoids. Importantly, phyllosphere and rhizosphere microbial diversity results showed that coumarin improved the abundance of beneficial microorganisms and positively correlated with secondary metabolite secretion. Therefore, coumarin exploited the interaction between the phenylpropane and coumarin synthesis pathways and beneficial microbes to enhance the nutritional quality and IMI degradation.
Collapse
Affiliation(s)
- Mengmeng Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhijia Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Jialing Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Shuai Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Wenzhuo Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Tianbing Zhou
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Xiaoyi Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Ziyi Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Zhan Hu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Ranfeng Sun
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| |
Collapse
|
2
|
Zhang P, Yang T, Xie Y, Liu Y, Li QX, Wu X, Hua R, Jiao W. Metabolic mechanism, responses, and functions of genes HDH1, HDH3, and GST1 of tea (Camellia sinensis L.) to the insecticide thiamethoxam. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136969. [PMID: 39733754 DOI: 10.1016/j.jhazmat.2024.136969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
Misuse of insecticides such as thiamethoxam (TMX) not only affects the quality of tea but also leaves residues in tea. Therefore, exploring the metabolic mechanisms of TMX in tea plants can evaluate effects of pesticides on the environment and human health. Here, effects of TMX on tea plants were studied. Malondialdehyde (MDA) content reached a maximum of 12.59 nmol/g fresh weight (FW) on 1st d under X (the recommended dose: 0.015 kg a.i./ha) of TMX. Under 2 X (0.03 kg a.i./ha), the catalase, glutathione S-transferase and superoxide dismutase activity were increased by 45.0 %, 55.5 %, and 49.7 % at 7 d respectively. Metabolomic and transcriptomic analyses revealed that TMX significantly affected amino acid metabolism, flavonoid biosynthesis and glutathione metabolism, and induced the expression of 3-hydroxyisobutyric acid dehydrogenase genes (CsHDH1 and CsHDH3) and glutathione S-transferase gene (CsGST1). The three genes were transiently expressed in Nicotiana benthamiana for the first time to verify the function of TMX degradation, with the degradation rate of 59.2 %-85.3 % at X. This study elucidated the response of tea plants to abiotic stress on the molecular-scale perspective, and the molecular approaches could serve as a model for the study on pesticide metabolism in plants. SYNOPSIS: Degradation ability of CsHDH1, CsHDH3 and CsGST1 genes to thiamethoxam was verified for the first time, providing genetic resources for phytoremediation of pollutants.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States.
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization; School of Tea Science, Anhui Agricultural University, Hefei, 230036, China.
| | - Yunlong Xie
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States.
| | - Yulong Liu
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States.
| | - Xiangwei Wu
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States.
| | - Rimao Hua
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States.
| | - Weiting Jiao
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States; State Key Laboratory of Tea Plant Biology and Utilization; School of Tea Science, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
3
|
Lu J, Yi S, Wang S, Shang Y, Yang S, Cui K. The effect of taraxerol acetate extracted from dandelion on alleviating oxidative stress responses in vitro. Free Radic Res 2024:1-15. [PMID: 39636737 DOI: 10.1080/10715762.2024.2437640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Oxidative stress can be alleviated by antioxidants intakes. Taraxerol acetate (TA), a natural triterpenoid extracted from dandelions, may reduce the risk of metabolic disorders by regulating oxidative stress. In the study, we investigated the effects of TA in relieving oxidative stress in murine intestinal epithelial cells using multiomics techniques. Here, we found that TA activated the antioxidant defense system. Total antioxidant capacity (T-AOC) and Catalase (CAT) activity notably increased after TA treatment. Additionally, TA treatment effectively reduced the levels of lactate dehydrogenase (LDH) and malonaldehyde (MDA) and alleviated H2O2-induced oxidative stress. Furthermore, TA induced significant changes in the levels of 30 important metabolites. Specifically, it activated the complement and coagulation cascades, NF-κB and MAPK and glycerophospholipid pathways, resulting in altered transcript levels of related genes, such as Serpinb9e, SCD2, Hspa1b, and Hspa1a. Thus, the results demonstrated that TA potentially could promote health by alleviating H2O2-induced oxidative damage and provide valuable insights for its further development.
Collapse
Affiliation(s)
- Jiaquan Lu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Siying Yi
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Shuna Wang
- Department of Municipal and Environmental Engineering, Hebei University of Architecture, Hebei, P.R. China
| | - Yafang Shang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Shaohua Yang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Kai Cui
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
4
|
Fu J, Li S, Yin S, Zhao X, Zhao E, Li L. Comprehensive effects of acetamiprid uptake and translocation from soil on pak choi and lettuce at the environmental level. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106178. [PMID: 39672607 DOI: 10.1016/j.pestbp.2024.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 12/15/2024]
Abstract
Acetamiprid (ACE) is widely used in agriculture to control pests. However, its accumulation in soil and subsequent translocation to plants can impact plant growth and development through mechanisms that remain unclear. This study evaluated the comprehensive effects of residual ACE from soil on cultivated pak choi and lettuce at environmental levels. Results showed that more than 90 % of ACE residues in the soils dissipated within 14 days. The average root concentration factor (RCF) values of pak choi and lettuce were 1.442 and 0.318, respectively, while the average translocation factor (TF) values were 2.145 for pak choi and 5.346 for lettuce. Seedling height increased by 6.32 % in pak choi but decreased by 8.54 % in lettuce. Furthermore, chlorophyll content decreased by 14.6 % in pak choi and increased by 23.7 % in lettuce. Non-targeted metabolomics analysis showed significant disturbances in carbohydrates, amino acids, and secondary metabolite levels. Additionally, KEGG pathway analysis revealed the down-regulation of amino acid metabolites in both vegetables, alongside an up-regulation of flavone and flavonol biosynthesis in pak choi. This research enhances the understanding of the effects and underlying metabolic mechanism of ACE on different vegetables.
Collapse
Affiliation(s)
- Jizhen Fu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Suzhen Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Shijie Yin
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiaojun Zhao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Ercheng Zhao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Li Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
5
|
Lin J, Yue G, Chen J, Xiao K, Ji Q. Impacts of the cyromazine emergence inhibition procedure of Bactrocera dorsalis on Fopius arisanus: implications for the biological control of diptera pest. PEST MANAGEMENT SCIENCE 2024; 80:5728-5740. [PMID: 38989597 DOI: 10.1002/ps.8290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Fopius arisanus (Sonan) is an important egg-pupal endoparasitic wasp of Bactrocera dorsalis (Hendel). As traditional method of sorting nonparasitic B. dorsalis from parasitic wasps is labor-intensive, requires specific equipment and poses the risk of spreading fertile hosts, the development of a more convenient, economical and safe sorting procedure is important. RESULTS The optimal cyromazine emergence inhibition procedure (CEIP) involved facilitating the pupation of B. dorsalis mature larvae (Bdml) in 3 mg kg-1 cyromazine sand substrate (CSS) for 48 h. When the Bdml that had been exposed to F. arisanus during the egg stage were treated with 3-7 mg kg-1 CSS for 48 h, no negative effects on the emergence parameters of parasitoids were observed. Treatment with 3-4 mg kg-1 CSS had insignificant effects on the biological and behavioral parameters of F. arisanus. However, treatment with 5-6 mg kg-1 CSS adversely affected the fecundity and antennating activity of the wasps; specifically, 6 mg kg-1 CSS negatively affected the lifespan and flight ability of wasps. Fortunately, no transgenerational effects on these parameters were observed in the progeny. Regarding the nutrient reserves of both sexes of F. arisanus, significant dose-dependent effects were observed. Moreover, 5-6 mg kg-1 CSS significantly reduced the protein and carbohydrate content in F. arisanus; in particular, 6 mg kg-1 CSS notably reduced the lipid content. CONCLUSION CEIP provides a more flexible, economical and safe mass-release program for F. arisanus. In addition, it has profound implications for the biological control of other dipteran pests. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia Lin
- Institute of Biological control, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, China
| | - Guoqing Yue
- Institute of Biological control, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, China
| | - Jun Chen
- Institute of Biological control, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, China
| | - Kang Xiao
- Institute of Biological control, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, China
| | - Qing'e Ji
- Institute of Biological control, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, China
| |
Collapse
|
6
|
Wang W, Long J, Wang H, Huang W, Zhang Y, Duan T. Insights into the effects of anilofos on direct-seeded rice production system through untargeted metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124668. [PMID: 39103033 DOI: 10.1016/j.envpol.2024.124668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Weed infestation is the major biological threat in direct-seeded rice production and can cause significant yield losses. The effective use of herbicides is particularly important in direct-seeded rice production. Anilofos, a pre-emergence herbicide, has been shown to be effective against the weed barnyardgrass. However, its impacts on crop yield and the direct-seeded rice production ecosystem remain underexplored. In this study, we conducted field trials and used untargeted metabolomics to investigate systemic effects of two different treatments (40 g/acre and 60 g/acre) on rice shoot and root as well as the rhizosphere soil during the critical tillering stage. Here, a total of 400 metabolites were determined in the crop and soil, with differential metabolites primarily comprising lipids and lipid-like molecules as well as phenylpropanoids and polyketides. Spearman correlation network analysis and a Zi-Pi plot revealed 7 key differential metabolites with significant topological roles, including succinic acid semialdehyde and riboflavin. KEGG pathway analysis showed that anilofos downregulated the amino acid metabolism while mainly promoted carbohydrate metabolism and secondary metabolites biosynthesis of the crop, which made minimal disruption on soil metabolism. Notably, we found 40 g/acre anilofos application could significantly improve the rice yield, potentially linked to the improved activity of flavonoid biosynthesis and starch and sucrose metabolism. This research provides a comprehensive evaluation of anilofos effects in the direct-seeded rice production system, offering new insights into optimizing herbicide use to improve agricultural sustainability and productivity.
Collapse
Affiliation(s)
- Weitao Wang
- Earth, Ocean and Atmospheric Sciences Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, 511457, China; Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Jiahuan Long
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Huaixu Wang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wenyuan Huang
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Ying Zhang
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China.
| | - Tingting Duan
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| |
Collapse
|
7
|
Touzout N, Bouchibane M, Tahraoui H, Mihoub A, Zhang J, Amrane A, Ahmad I, Danish S, Alahmadi TA, Ansari MJ. Silicon-mediated resilience: Unveiling the protective role against combined cypermethrin and hymexazol phytotoxicity in tomato seedlings. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122370. [PMID: 39236605 DOI: 10.1016/j.jenvman.2024.122370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Insecticides and fungicides present potential threats to non-target crops, yet our comprehension of their combined phytotoxicity to plants is limited. Silicon (Si) has been acknowledged for its ability to induce crop tolerance to xenobiotic stresses. However, the specific role of Si in alleviating the cypermethrin (CYP) and hymexazol (HML) combined stress has not been thoroughly explored. This study aims to assess the effectiveness of Si in alleviating phytotoxic effects and elucidating the associated mechanisms of CYP and/or HML in tomato seedlings. The findings demonstrated that, compared to exposure to CYP or HML alone, the simultaneous exposure of CYP and HML significantly impeded seedling growth, resulting in more pronounced phytotoxic effects in tomato seedlings. Additionally, CYP and/or HML exposures diminished the content of photosynthetic pigments and induced oxidative stress in tomato seedlings. Pesticide exposure heightened the activity of both antioxidant and detoxification enzymes, increased proline and phenolic accumulation, and reduced thiols and ascorbate content in tomato seedlings. Applying Si (1 mM) to CYP- and/or HML-stressed seedlings alleviated pigment inhibition and oxidative damage by enhancing the activity of the pesticide metabolism system and secondary metabolism enzymes. Furthermore, Si stimulated the phenylpropanoid pathway by boosting phenylalanine ammonia-lyase activity, as confirmed by the increased total phenolic content. Interestingly, the application of Si enhanced the thiols profile, emphasizing its crucial role in pesticide detoxification in plants. In conclusion, these results suggest that externally applying Si significantly alleviates the physio-biochemical level in tomato seedlings exposed to a combination of pesticides, introducing innovative strategies for fostering a sustainable agroecosystem.
Collapse
Affiliation(s)
- Nabil Touzout
- Department of Nature and Life Sciences, Faculty of Sciences, Pole Urban Ouzera, University of Medea, Medea, 26000, Algeria.
| | - Malika Bouchibane
- Department of Nature and Life Sciences, Faculty of Sciences, Pole Urban Ouzera, University of Medea, Medea, 26000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of MÉDÉA, ALGERIA, Nouveau Pôle Urbain, Médéa University, 26000, Médéa, Algeria
| | - Adil Mihoub
- Biophysical Environment Station, Center for Scientific and Technical Research on Arid Regions, Touggourt, Algeria
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Abdeltif Amrane
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000, Rennes, France
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad Vehari-Campus, Vehari, 61100, Pakistan.
| | - Subhan Danish
- Pesticide Quality Control Laboratory, Agriculture Complex, Old Shujabad Road, Multan, 60000, Punjab, Pakistan.
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia.
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University Bareilly, India, 244001.
| |
Collapse
|
8
|
Jiang S, Lin J, Zhang R, Wu Q, Li H, Zhang Q, Wang M, Dai L, Xie D, Zhang Y, Zhang X, Han B. In situ mass spectrometry imaging reveals pesticide residues and key metabolic pathways throughout the entire cowpea growth process. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134534. [PMID: 38733786 DOI: 10.1016/j.jhazmat.2024.134534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Cowpea plants, renowned for their high edibility, pose a significant risk of pesticide residue contamination. Elucidating the behavior of pesticide residues and their key metabolic pathways is critical for ensuring cowpea safety and human health. This study investigated the migration of pesticide residues and their key metabolic pathways in pods throughout the growth process of cowpea plants via in situ mass spectrometry. To this end, four pesticides--including systemic (thiram), and nonsystemic (fluopyram, pyriproxyfen, and cyromazine) pesticides--were selected. The results indicate the direct upward and downward transmission of pesticides in cowpea stems and pods. Systemic pesticides gradually migrate to the core of cowpea plants, whereas nonsystemic pesticides remain on the surface of cowpea peels. The migration rate is influenced by the cowpea maturity, logarithmic octanol-water partition coefficient (log Kow) value, and molecular weight of the pesticide. Further, 20 types of key metabolites related to glycolysis, tricarboxylic acid cycle, and flavonoid synthesis were found in cowpea pods after pesticide treatment. These findings afford insights into improving cowpea quality and ensuring the safe use of pesticides.
Collapse
Affiliation(s)
- Shufan Jiang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, China
| | - Jingling Lin
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China
| | - Rui Zhang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China
| | - Qiong Wu
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China
| | - Hongxing Li
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China
| | - Qun Zhang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China
| | - Mingyue Wang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China
| | - Longjun Dai
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
| | - Defang Xie
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China
| | - Yue Zhang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China.
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Bingjun Han
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China.
| |
Collapse
|
9
|
Ding Y, Tao M, Xu L, Wang C, Wang J, Zhao C, Xiao Z, Wang Z. Impacts of nano-acetamiprid pesticide on faba bean root metabolic response and soil health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171976. [PMID: 38547984 DOI: 10.1016/j.scitotenv.2024.171976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
The associated benefits and potential environmental risks of nanopesticides on plant and soil health, particularly in comparison with traditional pesticides, have not been systematically elucidated. Herein, we investigated the impacts of the as-synthesized nano-acetamiprid (Nano-Ace, 20 nm) at low (10 mg/L), medium (50 mg/L), high (100 mg/L) doses and the corresponding high commercial acetamiprid (Ace, 100 mg/L) on the physiological and metabolic response of faba bean (Vicia faba L.) plants, as well as on rhizosphere bacterial communities and functions over short-, medium- and long-term exposures. Overall, Nano-Ace exposure contributed to basic metabolic pathways (e.g., flavonoids, amino acids, TCA cycle intermediate, etc.) in faba bean roots across the whole exposure period. Moreover, Nano-Ace exposure enriched rhizosphere beneficial bacteria (e.g., Streptomyces (420.7%), Pseudomonas (33.8%), Flavobacterium (23.3%)) and suppressed pathogenic bacteria (e.g., Acidovorax (44.5%)). Additionally, Nano-Ace exposure showed a trend of low promotion and high inhibition of soil enzyme activities (e.g., invertase, urease, arylsulfatase, alkaline phosphatase) involved in soil C, N, S, and P cycling, while the inhibition was generally weaker than that of conventional Ace. Altogether, this study indicated that the redox-responsive nano-acetamiprid pesticide possessed high safety for host plants and soil health.
Collapse
Affiliation(s)
- Ying Ding
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Lanqing Xu
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Jinghong Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Chunjie Zhao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
10
|
Li L, Yin S, Pan W, Wang F, Fan J. Comprehensive metabolome and growth effects of thiamethoxam uptake and accumulation from soil on pak choi. Food Chem 2024; 433:137286. [PMID: 37669575 DOI: 10.1016/j.foodchem.2023.137286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Extensive use of the neonicotinoid thiamethoxam (TMX) results in its deposition in soil, which can then be absorbed and translocated in vegetables. Here we analyzed the comprehensive effects of TMX on pak choi. The TMX translocation factor (TF) was 0.37-11.65 and 0.46-39.75 for low and high treatments over 28 d, respectively, indicating its ready ability to move from the roots to the leaves of these plants. This uptake was associated with significant decrease in the fresh weight, and increase in vitamin C (VC), soluble sugars and soluble solid of pak choi. A metabolomic analysis revealed that fatty acids and purine nucleosides significantly decreased, and flavonoids and carbohydrates increased in the presence of TMX. TMX exposure thus influenced plant growth and disrupted the carbohydrate and lipid metabolism pathways. Our study raises concerns for food safety risk associated with TMX-contaminated soil.
Collapse
Affiliation(s)
- Li Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China.
| | - Shijie Yin
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Wei Pan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Fuyun Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jiqiao Fan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
11
|
Li D, Zhou C, Wang S, Hu Z, Xie J, Pan C, Sun R. Imidacloprid-induced stress affects the growth of pepper plants by disrupting rhizosphere-plant microbial and metabolite composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165395. [PMID: 37437628 DOI: 10.1016/j.scitotenv.2023.165395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Overusing imidacloprid (IMI) has been found to impede secondary metabolism and hinder plant growth. The impact of IMI stress on the interaction between metabolites, rhizosphere, and plant-microbe dispersion through various pathways in pepper plants has not been extensively studied. This study investigated the effects of IMI on plant signaling components, secondary metabolic pathways, and microbial communities in the rhizosphere and phyllosphere. Here, the distribution of IMI and its metabolites (6-chloronicotinic acid, IMI-desnitro, 5-hydroxy-IMI, IMI-urea, and IMI-olefin) was primarily observed in the pepper plant leaves. A rise in IMI concentration had a more significant inhibitive effect on the metabolism of pepper leaves than on pepper roots. The findings of non-target metabolomics indicated that IMI exposure primarily suppresses secondary metabolism in pepper plants, encompassing flavones, phenolic acids, and phytohormones. Notably, the IMI treatment disrupted the equilibrium between plants and microbes by decreasing the population of microorganisms such as Vicinamibacteria, Verrucomicrobiae, Gemmatimonadetes, and Gammaproteobacteria in the phyllosphere, as well as Vicinamibacteria, Gemmatimonadetes, Gammaproteobacteria, and Alphaproteobacteria in the rhizosphere of pepper plants. The study demonstrates that overexposure to IMI harms microbial composition and metabolite distribution in the rhizosphere soil and pepper seedlings, inhibiting plant growth.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, Hainan 570228, PR China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China Yuanmingyuan West Road 2, Beijing 100193, PR China
| | - Shuai Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, Hainan 570228, PR China
| | - Zhan Hu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, Hainan 570228, PR China
| | - Jia Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, Hainan 570228, PR China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China Yuanmingyuan West Road 2, Beijing 100193, PR China.
| | - Ranfeng Sun
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|
12
|
Wang Y, Pan G, Huang T, Zhang T, Lin J, Song L, Zhou G, Ma X, Ge Y, Xu Y, Yuan C, Zou N. Exogenous tannic acid relieves imidacloprid-induced oxidative stress in tea tree by activating antioxidant responses and the flavonoid biosynthetic pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115557. [PMID: 37820476 DOI: 10.1016/j.ecoenv.2023.115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Pesticide stress on plants is receiving increased scrutiny due to its effect on plant secondary metabolism and nutritional quality. Tannic acid (TA) is a natural polyphenolic compound showing excellent antioxidant properties and is involved in alleviating stress. The present study thoroughly investigated the effects and mechanism of exogenous TA on relieving imidacloprid (IMI) stress in tea plants. Our research found that TA(10 mg/L) activated the antioxidant defense system, enhanced the antioxidant ability, reduced the accumulation of ROS and membrane peroxidation, and notably promoted tea plant tolerance to imidacloprid stress. Additionally, TA boosted photosynthetic capacity, strengthened the accumulation of nutrients. regulated detoxification metabolism, and accelerated the digestion and metabolism of imidacloprid in tea plants. Furthermore, TA induced significant changes in 90 important metabolites in tea, targeting 17 metabolic pathways through extensively targeted metabolomics. Specifically, TA activated the flavonoid biosynthetic pathway, resulting in a 1.3- to 3.1-fold increase in the levels of 17 compounds and a 1.5- to 63.8-fold increase in the transcript level of related genes, such as ANR, LAR and CHS in this pathway. As a potential tea health activator, TA alleviates the oxidative damage caused by imidacloprid and improves the yield and quality of tea under pesticide stress.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China; Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Guojun Pan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Tingjie Huang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Tao Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jin Lin
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lubin Song
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong 250000, China
| | - Guangshuo Zhou
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiaoping Ma
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yanqing Ge
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Yongyu Xu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chunhao Yuan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China.
| | - Nan Zou
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
13
|
Jiao W, Zhang P, Cui C, Yan M, Li QX, Tang Y, Zhang N, Wang X, Hou R, Hua R. Metabolic responses of tea (Camellia sinensis L.) to the insecticide thiamethoxam. PEST MANAGEMENT SCIENCE 2023; 79:3570-3580. [PMID: 37160655 DOI: 10.1002/ps.7534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Thiamethoxam (TMX) is insecticidal, but also can trigger physiological and metabolic reactions of plant cycles. The objective of this work was to evaluate the physiological and metabolic effect of TMX on tea plants and its potential benefits. RESULTS In this study, dose of TMX (0.09, 0.135 and 0.18 kg a.i./ha) were tested. Except for peroxidase (POD) and glutathione S-transferase (GST), chlorophyll, carotenoid, catalase (CAT) and malondialdehyde (MDA) were significantly affected compared with the controls. The CAT activity was increased by 3.38, 1.71, 2.91 times, respectively, under three doses of TMX treatment. The metabolic response between TMX treatment and control groups on the third day was compared using a widely targeted metabolomics. A total of 97 different metabolites were identified, including benzenoids, flavonoids, lipids and lipid-like molecules, organic acids and derivatives, organic nitrogen compounds, organic oxygen compounds, organoheterocyclic compounds, phenylpropanoids and polyketides, and others. Those metabolites were mapped on the perturbed metabolic pathways. The results demonstrated that the most perturbation occurred in flavone and flavonol biosynthesis. The beneficial secondary metabolites luteolin and kaempferol were upregulated 1.46 and 1.31 times respectively, which protect plants from biotic and abiotic stresses. Molecular docking models suggest interactions between TMX and flavonoid 3-O-glucosyltransferase. CONCLUSION Thiamethoxam spray positively promoted the physiological and metabolic response of tea plants. And this work also provided the useful information of TMX metabolism in tea plants as well as rational application of insecticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiting Jiao
- School of Resource & Environment of Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, China
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Ping Zhang
- School of Resource & Environment of Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, China
| | - Chuanjian Cui
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Min Yan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Yongfeng Tang
- School of Resource & Environment of Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, China
| | - Nan Zhang
- School of Resource & Environment of Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, China
| | - Xinyi Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Rimao Hua
- School of Resource & Environment of Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, China
| |
Collapse
|
14
|
Huang Y, Wan X, Zhao Z, Liu H, Wen Y, Wu W, Ge X, Zhao C. Metabolomic analysis and pathway profiling of paramylon production in Euglena gracilis grown on different carbon sources. Int J Biol Macromol 2023; 246:125661. [PMID: 37399871 DOI: 10.1016/j.ijbiomac.2023.125661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/18/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Paramylon (β-1,3-glucan) produced by Euglena gracilis displays antioxidant, antitumor, and hypolipidaemic functions. The biological properties of paramylon production by E. gracilis can be understood by elucidating the metabolic changes within the algae. In this study, the carbon sources in AF-6 medium were replaced with glucose, sodium acetate, glycerol, or ethanol, and the paramylon yield was measured. Adding 0.1260 g/L glucose to the culture medium resulted in the highest paramylon yield of 70.48 %. The changes in metabolic pathways in E. gracilis grown on glucose were assessed via non-targeted metabolomics analysis using ultra-high-performance liquid chromatography coupled to high-resolution quadrupole-Orbitrap mass spectrometry. We found that glucose, as a carbon source, regulated some differentially expressed metabolites, including l-glutamic acid, γ-aminobutyric acid (GABA), and l-aspartic acid. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes further showed that glucose regulated the carbon and nitrogen balance through the GABA shunt, which enhanced photosynthesis, regulated the flux of carbon and nitrogen into the tricarboxylic acid cycle, promoted glucose uptake, and increased the accumulation of paramylon. This study provides new insights into E. gracilis metabolism during paramylon synthesis.
Collapse
Affiliation(s)
- Yajun Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuzhi Wan
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zexu Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanqi Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaodong Ge
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
15
|
Lin Y, Zhou C, Li D, Jia Y, Dong Q, Yu H, Wu T, Pan C. Mitigation of Acetamiprid Residue Disruption on Pea Seed Germination by Selenium Nanoparticles and Lentinans. PLANTS (BASEL, SWITZERLAND) 2023; 12:2781. [PMID: 37570938 PMCID: PMC10420818 DOI: 10.3390/plants12152781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
The use of pesticides for pest control during the storage period of legume seeds is a common practice. This study evaluated the disruptive effects on pea seed germination and the repair effects of selenium nanoparticles (SeNPs) and lentinans (LNTs) This study examined the biomass, nutrient content, antioxidant indicators, plant hormones, phenolic compounds, and metabolites associated with the lignin biosynthesis pathway in pea sprouts. The application of acetamiprid resulted in a significant decrease in yield, amino-acid content, and phenolic compound content of pea sprouts, along with observed lignin deposition. Moreover, acetamiprid residue exerted a notable level of stress on pea sprouts, as evidenced by changes in antioxidant indicators and plant hormones. During pea seed germination, separate applications of 5 mg/L SeNPs or 20 mg/L LNTs partially alleviated the negative effects induced by acetamiprid. When used in combination, these treatments restored most of the aforementioned indicators to levels comparable to the control group. Correlation analysis suggested that the regulation of lignin content in pea sprouts may involve lignin monomer levels, reactive oxygen species (ROS) metabolism, and plant hormone signaling mediation. This study provides insight into the adverse impact of acetamiprid residues on pea sprout quality and highlights the reparative mechanism of SeNPs and LNTs, offering a quality assurance method for microgreens, particularly pea sprouts. Future studies can validate the findings of this study from the perspective of gene expression.
Collapse
Affiliation(s)
- Yongxi Lin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
- Huizhou Yinnong Technology Co., Ltd., Huizhou 516057, China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, College of Plant Protection, Ministry of Education, Hainan University, Haikou 570228, China
| | - Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Huan Yu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Tong Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| |
Collapse
|
16
|
Wang M, Tian Q, Li H, Dai L, Wan Y, Wang M, Han B, Huang H, Zhang Y, Chen J. Visualization and metabolome for the migration and distribution behavior of pesticides residue in after-ripening of banana. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130665. [PMID: 36592559 DOI: 10.1016/j.jhazmat.2022.130665] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Exploring the behavior of pesticide residues in fruits is important for effectively applying pesticides and minimizing the risk of pesticide exposure to humans. However, most studies do not consider in situ visual analysis of residues and migration patterns in fresh fruit samples. We investigated the migration patterns of thiram, propamocarb, imidacloprid and pyraclostrobin in fresh bananas based on ambient mass spectrometry imaging, metabolome and transcriptome analysis. The systemic pesticides entered via lateral penetration and vertical migration over time, which began to internally migrate to the inner core after 6 h. The non-systemic pesticide thiram did not enter the interior of the bananas, and remained only in the peel. The transportation rate of the pesticides increased with the decrease of water-octanol partition coefficient and the relative molecular mass. Moreover, the pesticide migrated fast with the increase of banana ripeness. The pesticides significantly enhanced pyruvate kinase, NADP-dependent malic enzyme, and malate synthase activities in the banana peels through carbohydrate metabolism. The banana pulp was also protected against the external toxicity of pesticides by the ascorbate-glutathione cycle. These results can provide guidelines for the appropriate application of pesticides and their safety evaluation.
Collapse
Affiliation(s)
- Meiran Wang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, Hainan, China; College of Plant Protection, Hainan University, Haikou 570228, Hainan, China
| | - Qiaoxia Tian
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, Hainan, China; International School of Public Health and One Health, Hainan Medical University, Haikou 571199, Hainan, China
| | - Hongxing Li
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, Hainan, China
| | - Longjun Dai
- Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, Hainan, China
| | - Mingyue Wang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, Hainan, China
| | - Bingjun Han
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, Hainan, China.
| | - Huaping Huang
- Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China.
| | - Yunuo Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, Hainan, China.
| | - Juncheng Chen
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, Hainan, China; International School of Public Health and One Health, Hainan Medical University, Haikou 571199, Hainan, China.
| |
Collapse
|
17
|
Metabolomics-Based Mechanistic Insights into Revealing the Adverse Effects of Pesticides on Plants: An Interactive Review. Metabolites 2023; 13:metabo13020246. [PMID: 36837865 PMCID: PMC9958811 DOI: 10.3390/metabo13020246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
In plant biology, metabolomics is often used to quantitatively assess small molecules, metabolites, and their intermediates in plants. Metabolomics has frequently been applied to detect metabolic alterations in plants exposed to various biotic and abiotic stresses, including pesticides. The widespread use of pesticides and agrochemicals in intensive crop production systems is a serious threat to the functionality and sustainability of agroecosystems. Pesticide accumulation in soil may disrupt soil-plant relationships, thereby posing a pollution risk to agricultural output. Application of metabolomic techniques in the assessment of the biological consequences of pesticides at the molecular level has emerged as a crucial technique in exposome investigations. State-of-the-art metabolomic approaches such as GC-MS, LC-MS/MS UHPLC, UPLC-IMS-QToF, GC/EI/MS, MALDI-TOF MS, and 1H-HR-MAS NMR, etc., investigating the harmful effects of agricultural pesticides have been reviewed. This updated review seeks to outline the key uses of metabolomics related to the evaluation of the toxicological impacts of pesticides on agronomically important crops in exposome assays as well as bench-scale studies. Overall, this review describes the potential uses of metabolomics as a method for evaluating the safety of agricultural chemicals for regulatory applications. Additionally, the most recent developments in metabolomic tools applied to pesticide toxicology and also the difficulties in utilizing this approach are discussed.
Collapse
|