1
|
Wang Y, Alptekin R, Goldring RM, Oppenheimer BW, Shao Y, Reibman J, Liu M. Association between World Trade Center disaster exposures and body mass index in community members enrolled at World Trade Center Environmental Health Center. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125414. [PMID: 39615564 PMCID: PMC11634636 DOI: 10.1016/j.envpol.2024.125414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/01/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Studies suggest that environmental disasters have a big impact on population health conditions including metabolic risk factors, such as obesity and hypertension. The World Trade Center (WTC) destruction from the 9/11 terrorist attack resulted in environmental exposures to community members (Survivors) with potential for metabolic effects. We now examine the impact of WTC exposure on Body Mass Index (BMI) using the data from 7136 adult participants enrolled in the WTC Environmental Health Center (EHC) from August 1, 2005, to December 31, 2022. We characterized WTC-related exposures by multiple approaches including acute dust-cloud exposure, occupational or residential exposures, and latent exposure patterns identified by synthesizing multiplex exposure questions using latent class analysis. Employing multivariable linear and quantile regressions for continuous BMI and ordered logistic regression for BMI categories, we found significant associations of BMI with WTC exposure categories or latent exposure patterns. For example, using exposure categories, compared to the group of local residents, local workers exhibited an average BMI increase of 1.71 kg/m2 with 95% confidence intervals (CI) of (1.33, 2.09), the rescue/recovery group had an increase of 3.13 kg/m2 (95% CI: 2.18, 4.08), the clean-up worker group had an increase of 0.75 kg/m2 (95% CI: 0.09, 1.40), and the other mixer group had an increase of 1.01 kg/m2 (95% CI: 0.43, 1.58). Furthermore, quantile regression analysis demonstrated that WTC exposures adversely affected the entire distribution of BMI in the WTC EHC Survivors, not merely the average. Our analysis also extended to blood pressure and hypertension, demonstrating statistically significant associations with WTC exposures. These outcomes highlight the intricate connection between WTC exposures and metabolic risk factors including BMI and blood pressure in the WTC Survivor population.
Collapse
Affiliation(s)
- Yuyan Wang
- Department of Population Health, NYU Grossman School of Medicine, 180 Madison, New York, NY 10016, USA
| | - Ramazan Alptekin
- Department of Medicine, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Roberta M Goldring
- Department of Medicine, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Beno W Oppenheimer
- Department of Medicine, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, 180 Madison, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA.
| | - Mengling Liu
- Department of Population Health, NYU Grossman School of Medicine, 180 Madison, New York, NY 10016, USA.
| |
Collapse
|
2
|
Peng Y, Zhao Y, Wang M, He Y, Zhang L, Zhao Y, Liu J, Zheng S. Exposure to PM 2.5 and its components leads to obesity: role of socioeconomic status. Sci Rep 2025; 15:114. [PMID: 39748012 PMCID: PMC11696562 DOI: 10.1038/s41598-024-83923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Exposure to air pollutants is linked to an increased risk of obesity, and socioeconomic status (SES) could modulate this risk. We employed the "Jinchang Cohort" as a platform to investigate the influence of SES (education level, monthly income per household, and marital status) on the obesity risk associated with PM2.5 and its constituents. Study has demonstrated that air pollutant exposure enhances the likelihood of overweight/obesity, with a risk ratio (HR) of 1.229 for each quartile increase in PM2.5 concentration (95% CI: 1.137-1.328, P < 0.05). The risk of overweight/obesity rises with pollutant levels across various SES strata, with the effect being most marked among those with higher SES. For instance, the HRs and 95% CIs for overweight/obesity with each quartile increase in SO42- concentration were 1.338 (1.207-1.484), 1.311 (1.121-1.533), and 2.224 (1.823, 2.714) at low, medium, and high SES levels, respectively (all P < 0.05). An interaction between air pollutants and SES was observed in the context of obesity risk, with RERIs of 0.723 (0.473-0.973) and 0.562 (0.268-0.856) for medium-high SES levels and high NO3- exposure, respectively (both P < 0.05). These findings have practical implications. Public health campaigns could be launched to raise awareness among higher SES individuals about the obesity risk associated with air pollutants and encourage them to adopt preventive measures such as using air purifiers and increasing physical activity.
Collapse
Affiliation(s)
- Yindi Peng
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, 199 Donggang West Road, 730000, Lanzhou City, Gansu Province, China
| | - Yamin Zhao
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, 199 Donggang West Road, 730000, Lanzhou City, Gansu Province, China
| | - Minzhen Wang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, 199 Donggang West Road, 730000, Lanzhou City, Gansu Province, China.
| | - Yingqian He
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, 199 Donggang West Road, 730000, Lanzhou City, Gansu Province, China
| | - Lulu Zhang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, 199 Donggang West Road, 730000, Lanzhou City, Gansu Province, China
| | - Yanan Zhao
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, 199 Donggang West Road, 730000, Lanzhou City, Gansu Province, China
| | - Jing Liu
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, 199 Donggang West Road, 730000, Lanzhou City, Gansu Province, China
| | - Shan Zheng
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, 199 Donggang West Road, 730000, Lanzhou City, Gansu Province, China.
| |
Collapse
|
3
|
Ma R, Wang P, Zhu Y, Zhang L, Yang D, Xu M, Shao Z, Zhu P. Prenatal exposure to PM 2.5 and its composition on child growth trajectories in the first two years: A prospective birth cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124896. [PMID: 39241954 DOI: 10.1016/j.envpol.2024.124896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The findings on the relationship between prenatal exposure to particulate matter with aerodynamic diameter ≤2.5 μm (PM2.5) and its constituent and children's growth trajectories are inconsistent. This association's sensitive exposure time window and possible gender differences remain unclear. Our aim was to determine the association between prenatal exposure to PM2.5 and its component and children's growth trajectories by the age of two. From 2015 to 2021, 6407 mother-infant pairs were enrolled in the study. The PM2.5 include sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), organic matter (OM), and black carbon (BC), from the ChinaHighAirPollutants (CHAP) datasets. Children were followed at birth, 1, 3, 6, 9, 12, 18, and 24 months. Population-based and individual-based methods were used to simulate child growth trajectories: slow growth, normal growth, and rapid growth. The distributed lags modeling was used to identify sensitive time windows for the effects of prenatal exposure to PM2.5 and its components on child growth. Sex-stratified analyses estimated sex differences. Median concentrations [interquartile ranges (IQRs)] were 57.46(17.3), 10.59(3.8), 14.26(4.4), 8.69(2.8), 13.05(3.4), and 2.53(0.7) μg/m3 for PM2.5, SO42-, NO3-, NH4+, OM, and BC, respectively. Compared with the normal growth trajectory group, exposure to PM2.5 was significantly associated with a higher risk of rapid growth trajectory in boys (ORs with 95% CI for the entire, first trimester, and second trimester of pregnancy, respectively: 1.016[1.006,1.025], 1.007[1.002,1.011], 1.007[1.002,1.011]). Exposure to PM2.5 was significantly associated with a higher risk of slow growth trajectory in girls (ORs with 95% CI for the entire, second trimester, and third trimester of pregnancy, respectively: 1.010 [1.001,1.018], 1.006 [1.001,1.011], 1.007 [1.002,1.012]). Prenatal PM2.5 and its composition exposure was positively associated with BMI peak in boys (βs with 95% CI for PM2.5, SO42-, NO3-, NH4+, OM, BC: 0.004[0.000,0.007], 0.025[0.006,0.044], 0.012[0.002,0.023], 0.022[0.004,0.039], 0.016[0.001,0.031], 0.082[0.005,0.159]), and not statistically significant in girls. We observed a more pronounced BC effect in our cohort. Prenatal exposure to PM2.5 and its component, especially at 10-22 weeks of gestation, is associated with a higher risk of rapid growth in boys and a risk of slow growth in girls.
Collapse
Affiliation(s)
- Ruirui Ma
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Center for Big Data and Population Health of IHM, Anhui MedicalUniversity, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenic, Anhui Medical University, Hefei, China
| | - Peng Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Center for Big Data and Population Health of IHM, Anhui MedicalUniversity, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenic, Anhui Medical University, Hefei, China
| | - Yuanyuan Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Center for Big Data and Population Health of IHM, Anhui MedicalUniversity, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenic, Anhui Medical University, Hefei, China
| | - Lei Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Center for Big Data and Population Health of IHM, Anhui MedicalUniversity, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenic, Anhui Medical University, Hefei, China
| | - Dongjian Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Center for Big Data and Population Health of IHM, Anhui MedicalUniversity, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenic, Anhui Medical University, Hefei, China
| | - Ziyu Shao
- Hefei City Maternal and Child Health Center, Hefei, China.
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Center for Big Data and Population Health of IHM, Anhui MedicalUniversity, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenic, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Li X, Yu B, Li Y, Meng H, Zhou Z, Liu S, Tian Y, Xing X, Lei Y, Yin L. Effect modifications of parents' age at childbirth on association between ambient particulate matter and children obesity. BMC Public Health 2024; 24:3081. [PMID: 39511542 PMCID: PMC11542234 DOI: 10.1186/s12889-024-20598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND There is limited evidence regarding the modifying effects of parents' age at childbirth on the relationship between air pollution and obesity in plateau areas. This study aimed to explore the association between particulate matter (PM) and child obesity, specifically investigating whether parents' age at childbirth could modify this relationship in the Tibetan plateau, China. METHODS Satellite-based random forest models were used to estimate the concentrations of PM2.5 (particulate matter with aerodynamic diameters ≤ 2.5 μm), PMc (particulate matter with aerodynamic diameters between 2.5 μm and 10 μm), and PM10 (particulate matter with aerodynamic diameters ≤ 10 μm). Linear and logistic regression models were employed to assess associations between PM exposure and obesity indicators, and effect estimates of PM across different particle sizes were compared. RESULTS The study comprised 2,015 children under five years old. Postnatal exposure to PM was positively associated with overweight and obesity (OWO), waist-to-hip ratio (WHR) and body mass index (BMI). Among these pollutants, PM10 exhibited the strongest association with BMI and OWO, whereas PMc showed the strongest association with WHR. An interquartile range (IQR) increase in PM2.5 (5.67 µg/m3), PMc (5.25 µg/m3), and PM10 (11.06 µg/m3) was positively associated with OWO (odd ratio [OR] for PM2.5 = 1.52, 95% confidence interval [CI] for PM2.5 = 1.24 to 1.85; OR for PMc = 1.50, 95% CI for PMc = 1.19 to 1.88; OR for PM10 = 1.56, 95% CI for PM10 = 1.25 to 1.96), respectively. Stratified analysis by parents' age at childbirth indicated that the effects of PM on obesity indicators were more pronounced in the advanced age group. CONCLUSIONS Long-term exposure to PM was positively associated with OWO, WHR, and BMI. Our findings also underscore the importance of examining the effects of ambient PM exposure on OWO, particularly in parents of advanced age at childbirth.
Collapse
Affiliation(s)
- Xianzhi Li
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Clinical Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Dali University, Dali, China
| | - Bin Yu
- Institute for Disaster Management and Reconstruction, Sichuan University - Hong Kong Polytechnic University, Chengdu, China
| | - Yajie Li
- Tibet Center for Disease Control and Prevention, Lhasa, China
| | - Haorong Meng
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Zonglei Zhou
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Shunjin Liu
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Clinical Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Dali University, Dali, China
| | - Yunyun Tian
- Clinical Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Dali University, Dali, China
| | - Xiangyi Xing
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China.
- Dali University, Dali, China.
- Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, China.
| | | | - Li Yin
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China.
- Clinical Medical Research Center, Panzhihua Central Hospital, Panzhihua, China.
- Dali University, Dali, China.
| |
Collapse
|
5
|
Lynch E, Bredin P, Weadick CS, Dorney N, Van Leeuwen RWF, O'Reilly S. Why We Should, and How We Can, Reduce the Climate Toxicity of Cancer Care. JCO Oncol Pract 2024:OP2400680. [PMID: 39486013 DOI: 10.1200/op-24-00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 11/03/2024] Open
Abstract
Climate change is like cancer, delayed action leads to more suffering for patients.
Collapse
Affiliation(s)
- Emer Lynch
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland
| | - Philip Bredin
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland
| | | | - Niamh Dorney
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland
| | | | - Seamus O'Reilly
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland
- Cancer Research @UCC, University College Cork, Cork, Ireland
- Cancer Trials Ireland, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
6
|
Yu M, Xie J, Liu Y. How air pollution influences the difference between overweight and obesity: a comprehensive analysis of direct and indirect correlations. Front Public Health 2024; 12:1403197. [PMID: 39555028 PMCID: PMC11566261 DOI: 10.3389/fpubh.2024.1403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/16/2024] [Indexed: 11/19/2024] Open
Abstract
Background Obesity, characterized by excessive or abnormal fat accumulation, is a major public health concern. Air pollution is a significant potential obesogenic factor, but the clear direct and indirect correlations between air pollution and obesity remain unclear. This study aims to provide a comprehensive understanding of the relationship between air pollution and obesity by identifying both direct and indirect causal correlations. Methods We used nationally representative data from the China Family Panel Survey. Air pollution concentrations were quantified as the mass (μg) of air pollutants per cubic meter (m3) based on nationally representative statistical data. To minimize statistical bias inherent in traditional methods, the direct relationship between air pollution and obesity was estimated using a regression discontinuity model, while the potential underlying mechanisms were explored through structural equation modeling. Results Air pollution was generally positively associated with overweight/obesity ( O R O W A Q I = 1.109, [95%CI = 1.027:1.305], O R O B A Q I = 1.032, [95%CI = 1.006:1.217], O R SO A Q I = 1.069, [95%CI = 1.014:1.208], PM2.5 and PM10 positively affected overweight/obesity ( O R O W PM 2.5 = 1.173, [95%CI = 1.094:1.252], O R O B PM 2.5 = 1.022, [95%CI = 1.016:1.028], O R SO PM 2.5 = 1.035 [95%CI = 1.015:1.055], O R O W PM 10 = 1.053, [95%CI = 1.030:1.076], O R O B PM 10 = 1.008 [95%CI = 1.006:1.010], O R SO PM 10 = 1.013 [95%CI = 1.007:1.019]), and SO2 and CO posed negative impacts on overweight/obesity ( O R O W SO 2 = 0.972, [95%CI = 0.965:0.979], O R O B SO 2 = 0.997, [95%CI = 0.996:0.998], O R SO SO 2 = 0.994, [95%CI = 0.991:0.997], O R O W C O = 0.986, [95%CI = 0.980:0.992], O R O B C O = 0.998, [95%CI = 0.997:0.999], O R SO C O = 0.999, [95%CI = 0.998:0.999]). The impact of air pollution on overweight/obesity was more significant among men, older individuals, and rural populations compared to women, younger individuals, and urban populations. Furthermore, the relationship between air pollution and overweight/obesity was mediated by social behavior determinants, including physical activity (β = 0.18, [95%CI = 0.04:0.29]), sedentary behavior (β = 0.12, [95%CI = 0.04:0.16]), sleep (β = 0.06, [95%CI = 0.02:0.13], smoking (β = 0.07, [95%CI = 0.02:0.15]), alcohol consumption (β = 0.08, [95%CI = 0.04:0.11]), and mental health (β = 0.06, [95%CI = 0.01:0.09]). Conclusion Air pollution was generally associated with an increased risk of overweight and obesity, with PM2.5 and PM10 having a positive influence, while SO2 and CO had a negative impact. The effect of air pollution was more pronounced among men, older individuals, and rural populations compared to women, younger individuals, and urban populations. Additionally, social behavior factors, such as physical activity, sedentary behavior, sleep, smoking, alcohol consumption, and mental health, predominantly mediated the relationship between air pollution and obesity.
Collapse
Affiliation(s)
- Muchun Yu
- Department of Philosophy, School of Humanities and Social Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jinchen Xie
- Global Health Institute, School of Public Health, Xi’an Jiaotong University, Xi’an, China
| | - Yanyan Liu
- Department of Philosophy, School of Humanities and Social Sciences, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Georgakopoulou VE, Lempesis IG, Trakas N, Sklapani P, He Y, Spandidos DA. Lung cancer and obesity: A contentious relationship (Review). Oncol Rep 2024; 52:158. [PMID: 39497438 PMCID: PMC11462394 DOI: 10.3892/or.2024.8817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
The global obesity epidemic, attributed to sedentary lifestyles, unhealthy diets, genetics and environmental factors, has led to over 1.9 billion adults being classified as overweight and 650 million living with obesity. Despite advancements in early detection and treatment, lung cancer prognosis remains poor due to late diagnoses and limited therapies. The obesity paradox challenges conventional thinking by suggesting that individuals with obesity and certain diseases, including cancer, may have an improved prognosis compared with their counterparts of a normal weight. This observation has prompted investigations to understand protective mechanisms, including potentially favorable adipokine secretion and metabolic reserves that contribute to tolerating cancer treatments. However, understanding the association between obesity and lung cancer is complex. While smoking is the primary risk factor of lung cancer, obesity may independently impact lung cancer risk, particularly in non‑smokers. Adipose tissue dysfunction, including low‑grade chronic inflammation, and hormonal changes contribute to lung cancer development and progression. Obesity‑related factors may also influence treatment responses and survival outcomes in patients with lung cancer. The impact of obesity on treatment modalities such as chemotherapy, radiotherapy and surgery is still under investigation. Challenges in managing patients with obesity and cancer include increased surgical complexity, higher rates of postoperative complications and limited treatment options due to comorbidities. Targeted interventions aimed at reducing obesity prevalence and promoting healthy lifestyles are crucial for lung cancer prevention. The impact of obesity on lung cancer is multifaceted and requires further research to elucidate the underlying mechanisms and develop personalized interventions for prevention and treatment.
Collapse
Affiliation(s)
| | - Ioannis G. Lempesis
- Medical Chronobiology Program, Division of Sleep Medicine and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, Athens 15126, Greece
| | - Pagona Sklapani
- Department of Biochemistry, Sismanogleio Hospital, Athens 15126, Greece
| | - Yutong He
- Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050010, P.R. China
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
8
|
Radbel J, Rebuli ME, Kipen H, Brigham E. Indoor air pollution and airway health. J Allergy Clin Immunol 2024; 154:835-846. [PMID: 39182629 DOI: 10.1016/j.jaci.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Because of the disproportionate amount of time that people spend indoors and the complexities of air pollutant exposures found there, indoor air pollution is a growing concern for airway health. Both infiltration of outdoor air pollution into the indoor space and indoor sources (such as smoke from tobacco products, cooking or heating practices and combustion of associated fuels, and household materials) contribute to unique exposure mixtures. Although there is substantial literature on the chemistry of indoor air pollution, research focused on health effects is only beginning to emerge and remains an important area of need to protect public health. We provide a review of emerging literature spanning the past 3 years and relating indoor air exposures to airway health, with a specific focus on the impact of either individual pollutant exposures or common combustion sources on the lower airways. Factors defining susceptibility and/or vulnerability are reviewed with consideration for priority populations and modifiable risk factors that may be targeted to advance health equity.
Collapse
Affiliation(s)
- Jared Radbel
- Division of Pulmonary and Critical Care Medicine, Rutgers Robert Wood Johnson University, New Brunswick, NJ
| | - Meghan E Rebuli
- Department of Pediatrics and Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Howard Kipen
- Department of Environmental and Occupational Health and Justice, Rutgers University, Piscataway, NJ
| | - Emily Brigham
- Division of Respirology, University of British Columbia, Vancouver, British Columbia, Canada; Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
9
|
Siewert B, Kozajda A, Jaskulak M, Zorena K. Examining the Link between Air Quality (PM, SO 2, NO 2, PAHs) and Childhood Obesity: A Systematic Review. J Clin Med 2024; 13:5605. [PMID: 39337093 PMCID: PMC11432682 DOI: 10.3390/jcm13185605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Childhood obesity has emerged as a global health concern with profound implications for long-term health outcomes. In recent years, there has been increasing interest in the potential role of environmental factors in the development of childhood obesity. This comprehensive review aims to elucidate the intricate relationship between various components of air pollution and childhood obesity. Methods: We systematically analyze the existing literature from the past 5 years to explore the mechanistic pathways linking air pollution, including particulate matter (PM), nitrogen oxides (NOx), sulfur dioxide (SO2), and polycyclic aromatic hydrocarbons (PAHs), to childhood obesity. This systematic review examines 33 epidemiological studies on the link between air pollution and childhood obesity, published from 1 January 2018, to 31 January 2024. Results: Studies from counties with low overall air pollution noticed only low to no impact of the exposure to childhood obesity, unlike studies from countries with higher levels of pollution, suggesting that the mitigation of air pollutants can reduce the chance of it being a negative factor for the development of obesity. This relationship was noticed for PM2.5, PM1, PM10, NOx, and SO2 but not for PAHs, which showed a negative effect on children's health across 10 out of 11 studies. Conclusions: This review underscores the need for interdisciplinary approaches to address both environmental and socio-economic determinants of childhood obesity. Efforts aimed at reducing air pollution levels and promoting healthy lifestyle behaviors are essential for safeguarding the health and well-being of children worldwide.
Collapse
Affiliation(s)
- Barbara Siewert
- Environment and Health Scientific Circle, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (B.S.); (A.K.)
| | - Agata Kozajda
- Environment and Health Scientific Circle, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (B.S.); (A.K.)
| | - Marta Jaskulak
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| |
Collapse
|
10
|
Teixeira J, Delerue-Matos C, Morais S, Oliveira M. Environmental contamination with polycyclic aromatic hydrocarbons and contribution from biomonitoring studies to the surveillance of global health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54339-54362. [PMID: 39207613 DOI: 10.1007/s11356-024-34727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This work presents an integrated overview of polycyclic aromatic hydrocarbons' (PAHs) ubiquity comprising environmental contamination in the air, aquatic ecosystems, and soils; characterizes the contamination in biota; and identifies main biomonitors and human exposure to PAHs and associated health risks. Urban centers and industrial areas present increased concentrations in the air (1344.4-12,300 versus 0.03-0.60 ng/m3 in industrial/urban and rural zones) and soils (0.14-1.77 × 106 versus 2.00-9.04 × 103 versus 1.59-5.87 × 103 ng/g in urban, forest, and rural soils), respectively. Increased concentrations were found in coastal zones and superficial waters as well as in sediments (7.00 × 104-1.00 × 109 ng/g). Benzo(a)pyrene, a carcinogenic PAH, was found in all environmental media. Mosses, lichens, tree leaves, bivalves, cephalopods, terrestrials' snails, and honeybees are good biomonitors of biota contamination. More studies are needed to improve characterization of PAHs' levels, distribution, and bioaccumulation in the environmental media and assess the associated risks for biota and human health. Actions and strategies to mitigate and prevent the bioaccumulation of PAHs in the environment and trophic chains toward the WHO's One-Health Perspective to promote the health of all ecosystems and human life are urgently needed.
Collapse
Affiliation(s)
- Joana Teixeira
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| |
Collapse
|
11
|
Lane JM, Zhang X, Alcala CS, Midya V, Nagdeo K, Li R, Wright RO. Tweeting environmental pollution: Analyzing twitter language to uncover its correlation with county-level obesity rates in the United States. Prev Med 2024; 186:108081. [PMID: 39038770 DOI: 10.1016/j.ypmed.2024.108081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Environmental pollution has been linked to obesogenic tendencies. Using environmental-related posts from Twitter (now known as X) from U.S. counties, we aim to uncover the association between Twitter linguistic data and U.S. county-level obesity rates. METHODS Analyzing nearly 300 thousand tweets from January 2020 to December 2020 across 207 U.S. counties, using an innovative Differential Language Analysis technique and drawing county-level obesity data from the 2020 Food Environment Atlas to identify distinct linguistic features in Twitter relating to environmental-related posts correlated with socioeconomic status (SES) index indicators, obesity rates, and obesity rates controlled for SES index indicators. We also employed predictive modeling to estimate Twitter language's predictive capacity for obesity rates. RESULTS Results revealed a negative correlation between environmental-related tweets and obesity rates, both before and after adjusting for SES. Contrarily, non-environmental-related tweets showed a positive association with higher county-level obesity rates, indicating that individuals living in counties with lower obesity rates tend to tweet environmental-related language more frequently than those living in counties with higher obesity rates. The findings suggest that linguistic patterns and expressions employed in discussing environmental-related themes on Twitter can offer unique insights into the prevailing cross-sectional patterns of obesity rates. CONCLUSIONS Although Twitter users are a subset of the general population, incorporating environmental-related tweets and county-level obesity rates and using a novel language analysis technique make this study unique. Our results indicated that Twitter users engaging in more active dialog about environmental concerns might exhibit healthier lifestyle practices, contributing to reduced obesity rates.
Collapse
Affiliation(s)
- Jamil M Lane
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Xupin Zhang
- School of Economics and Management, East China Normal University, Shanghai, China
| | - Cecilia S Alcala
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vishal Midya
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiran Nagdeo
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rui Li
- School of Economics and Management, East China Normal University, Shanghai, China
| | - Robert O Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Mota-Bertran A, Coenders G, Plaja P, Saez M, Barceló MA. Air pollution and children's mental health in rural areas: compositional spatio-temporal model. Sci Rep 2024; 14:19363. [PMID: 39169039 PMCID: PMC11339296 DOI: 10.1038/s41598-024-70024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Air pollution stands as an environmental risk to child mental health, with proven relationships hitherto observed only in urban areas. Understanding the impact of pollution in rural settings is equally crucial. The novelty of this article lies in the study of the relationship between air pollution and behavioural and developmental disorders, attention deficit hyperactivity disorder (ADHD), anxiety, and eating disorders in children below 15 living in a rural area. The methodology combines spatio-temporal models, Bayesian inference and Compositional Data (CoDa), that make it possible to study areas with few pollution monitoring stations. Exposure to nitrogen dioxide (NO2), ozone (O3), and sulphur dioxide (SO2) is related to behavioural and development disorders, anxiety is related to particulate matter (PM10), O3 and SO2, and overall pollution is associated to ADHD and eating disorders. To sum up, like their urban counterparts, rural children are also subject to mental health risks related to air pollution, and the combination of spatio-temporal models, Bayesian inference and CoDa make it possible to relate mental health problems to pollutant concentrations in rural settings with few monitoring stations. Certain limitations persist related to misclassification of exposure to air pollutants and to the covariables available in the data sources used.
Collapse
Affiliation(s)
- Anna Mota-Bertran
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Carrer de la Universitat de Girona 10, Campus de Montilivi, 17003, Girona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III., Madrid, Spain
| | - Germà Coenders
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Carrer de la Universitat de Girona 10, Campus de Montilivi, 17003, Girona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III., Madrid, Spain
| | - Pere Plaja
- Fundació Salut Empordà., Figueres, Spain
| | - Marc Saez
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Carrer de la Universitat de Girona 10, Campus de Montilivi, 17003, Girona, Spain.
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III., Madrid, Spain.
| | - Maria Antònia Barceló
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Carrer de la Universitat de Girona 10, Campus de Montilivi, 17003, Girona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III., Madrid, Spain
| |
Collapse
|
13
|
Cuschieri S, Cuschieri A, Grech E, Coleiro AM, Carabott A, Tonna A, Borg D, Sant D, Sultana E, Ellul K, Scerri KM, Psaila K, Magro G, Attard N, Borg Y. Exploring the diabesity characteristics and associated all-cause mortality at a population level: results from a small European island state. J Public Health (Oxf) 2024. [DOI: 10.1007/s10389-024-02334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/01/2024] [Indexed: 01/03/2025] Open
Abstract
Abstract
Aim
Diabesity, the co-occurrence of diabetes and obesity, presents a global health crisis. Understanding its prevalence, associated risk factors, and mortality outcomes is crucial for effective public health interventions. This study aims to investigate the prevalence of diabesity and diabetes, assess associated risk factors, and analyze mortality outcomes over a 7-year period in the diabetogenic country of Malta.
Subject and methods
A nationwide health examination survey (2014–16) was conducted involving 3947 adults aged 18–70 years. Sociodemographic data, anthropometric measurements, and blood samples were collected. Relationships between different adiposity indices were explored. Mortality data was obtained by cross-referencing with the national mortality register. Statistical analyses included chi-square tests, logistic regression, and Cox proportional hazard models.
Results
Prevalence of obesity was 34.08%, diabetes 10.31%, and diabesity 5.78%. Sociodemographic characteristics were similar across all three cohorts. Multivariable regression identified increasing age (OR 1.10 CI95% 1.07–1.12; p≤ 0.001), male gender (OR 0.53 CI95% 0.30–0.93; p = 0.03), and low educational level (OR 2.19 CI95% 1.39–3.45; p = 0.001) as significant predictors of diabesity. Only diabetes showed a significant increase in mortality risk (HR 3.15 CI95% 1.31–7.62; p = 0.02) after adjustment, with gender (HR 3.17 CI95% 1.20–8.37) and body adiposity index (HR 1.08 CI95% 1.01–1.16) also significant (p ≤ 0.05).
Conclusion
Diabesity represents a substantial public health challenge in Malta, with implications for mortality outcomes. Targeted interventions addressing sociodemographic disparities and promoting healthy lifestyles are essential to mitigate its impact. The findings underscore the need for comprehensive healthcare strategies and policy initiatives to combat diabesity and reduce associated mortality rates.
Collapse
|
14
|
Di Renzo L, Gualtieri P, Frank G, Cianci R, Caldarelli M, Leggeri G, Raffaelli G, Pizzocaro E, Cirillo M, De Lorenzo A. Exploring the Exposome Spectrum: Unveiling Endogenous and Exogenous Factors in Non-Communicable Chronic Diseases. Diseases 2024; 12:176. [PMID: 39195175 DOI: 10.3390/diseases12080176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
The exposome encompasses all endogenous and exogenous exposure individuals encounter throughout their lives, including biological, chemical, physical, psychological, relational, and socioeconomic factors. It examines the duration and intensity of these types of exposure and their complex interactions over time. This interdisciplinary approach involves various scientific disciplines, particularly toxicology, to understand the long-term effects of toxic exposure on health. Factors like air pollution, racial background, and socioeconomic status significantly contribute to diseases such as metabolic, cardiovascular, neurodegenerative diseases, infertility, and cancer. Advanced analytical methods measure contaminants in biofluids, food, air, water, and soil, but often overlook the cumulative risk of multiple chemicals. An exposome analysis necessitates sophisticated tools and methodologies to understand health interactions and integrate findings into precision medicine for better disease diagnosis and treatment. Chronic exposure to environmental and biological stimuli can lead to persistent low-grade inflammation, which is a key factor in chronic non-communicable diseases (NCDs), such as obesity, cardiometabolic disorders, cancer, respiratory diseases, autoimmune conditions, and depression. These NCDs are influenced by smoking, unhealthy diets, physical inactivity, and alcohol abuse, all shaped by genetic, environmental, and social factors. Dietary patterns, especially ultra-processed foods, can exacerbate inflammation and alter gut microbiota. This study investigates the exposome's role in the prevention, development, and progression of NCDs, focusing on endogenous and exogenous factors.
Collapse
Affiliation(s)
- Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giulia Frank
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Giulia Leggeri
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Glauco Raffaelli
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Erica Pizzocaro
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Michela Cirillo
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
15
|
Altug H, Ogurtsova K, Breyer-Kohansal R, Schiffers C, Ofenheimer A, Tzivian L, Hartl S, Hoffmann B, Lucht S, Breyer MK. Associations of long-term exposure to air pollution and noise with body composition in children and adults: Results from the LEAD general population study. ENVIRONMENT INTERNATIONAL 2024; 189:108799. [PMID: 38865830 DOI: 10.1016/j.envint.2024.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/30/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND While long-term air pollution and noise exposure has been linked to increasing cardiometabolic disease risk, potential effects on body composition remains unclear. This study aimed to investigate the associations of long-term air pollution, noise and body composition. METHODS We used repeated data from the LEAD (Lung, hEart, sociAl, boDy) study conducted in Vienna, Austria. Body mass index (BMI; kg/m2), fat mass index (FMI; z-score), and lean mass index (LMI; z-score) were measured using dual-energy x-ray absorptiometry at the first (t0; 2011-ongoing) and second (t1; 2017-ongoing) examinations. Annual particulate matter (PM10) and nitrogen dioxide (NO2) concentrations were estimated with the GRAMM/GRAL model (2015-2021). Day-evening-night (Lden) and night-time (Lnight) noise levels from transportation were modeled for 2017 following the European Union Directive 2002/49/EC. Exposures were assigned to residential addresses. We performed analyses separately in children/adolescents and adults, using linear mixed-effects models with random participant intercepts and linear regression models for cross-sectional and longitudinal associations, respectively. Models were adjusted for co-exposure, lifestyle and sociodemographics. RESULTS A total of 19,202 observations (nt0 = 12,717, nt1 = 6,485) from participants aged 6-86 years (mean age at t0 = 41.0 years; 52.9 % female; mean PM10 = 21 µg/m3; mean follow-up time = 4.1 years) were analyzed. Among children and adolescents (age ≤ 18 years at first visit), higher PM10exposure was cross-sectionally associated with higher FMI z-scores (0.09 [95 % Confidence Interval (CI): 0.03, 0.16]) and lower LMI z-scores (-0.05 [95 % CI: -0.10, -0.002]) per 1.8 µg/m3. Adults showed similar trends in cross-sectional associations as children, though not reaching statistical significance. We observed no associations for noise exposures. Longitudinal analyses on body composition changes over time yielded positive associations for PM10, but not for other exposures. CONCLUSION Air pollution exposure, mainly PM10, was cross-sectionally and longitudinally associated with body composition in children/adolescents and adults. Railway/road-traffic noise exposures showed no associations in both cross-sectional and longitudinal analyses.
Collapse
Affiliation(s)
- Hicran Altug
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany.
| | - Katherine Ogurtsova
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Robab Breyer-Kohansal
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; Department of Respiratory and Pulmonary Diseases, Vienna Healthcare Group, Clinic Hietzing, Vienna, Austria
| | | | - Alina Ofenheimer
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Lilian Tzivian
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Sylvia Hartl
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; Sigmund Freud University, Faculty of Medicine, Vienna, Austria
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Sarah Lucht
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; Cardinal Health, Dublin, OH, USA
| | - Marie-Kathrin Breyer
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; Department of Respiratory and Pulmonary Diseases, Vienna Healthcare Group, Clinic Penzing, Vienna, Austria
| |
Collapse
|
16
|
Zhu W, Al-Kindi SG, Rajagopalan S, Rao X. Air Pollution in Cardio-Oncology and Unraveling the Environmental Nexus: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:347-362. [PMID: 38983383 PMCID: PMC11229557 DOI: 10.1016/j.jaccao.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 07/11/2024] Open
Abstract
Although recent advancements in cancer therapies have extended the lifespan of patients with cancer, they have also introduced new challenges, including chronic health issues such as cardiovascular disease arising from pre-existing risk factors or cancer therapies. Consequently, cardiovascular disease has become a leading cause of non-cancer-related death among cancer patients, driving the rapid evolution of the cardio-oncology field. Environmental factors, particularly air pollution, significantly contribute to deaths associated with cardiovascular disease and specific cancers, such as lung cancer. Despite these statistics, the health impact of air pollution in the context of cardio-oncology has been largely overlooked in patient care and research. Notably, the impact of air pollution varies widely across geographic areas and among individuals, leading to diverse exposure consequences. This review aims to consolidate epidemiologic and preclinical evidence linking air pollution to cardio-oncology while also exploring associated health disparities and environmental justice issues.
Collapse
Affiliation(s)
- Wenqiang Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sadeer G Al-Kindi
- Division of Cardiovascular Prevention and Wellness, Houston Methodist DeBakey Heart and Vascular Center, Houston, Texas, USA
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Roche IV, Ubalde-Lopez M, Daher C, Nieuwenhuijsen M, Gascon M. The Health-Related and Learning Performance Effects of Air Pollution and Other Urban-Related Environmental Factors on School-Age Children and Adolescents-A Scoping Review of Systematic Reviews. Curr Environ Health Rep 2024; 11:300-316. [PMID: 38369581 PMCID: PMC11082043 DOI: 10.1007/s40572-024-00431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Abstract
PURPOSE OF REVIEW This scoping review aims to assess the impact of air pollution, traffic noise, heat, and green and blue space exposures on the physical and cognitive development of school-age children and adolescents. While existing evidence indicates adverse effects of transport-related exposures on their health, a comprehensive scoping review is necessary to consolidate findings on various urban environmental exposures' effects on children's development. RECENT FINDINGS There is consistent evidence on how air pollution negatively affects children's cognitive and respiratory health and learning performance, increasing their susceptibility to diseases in their adult life. Scientific evidence on heat and traffic noise, while less researched, indicates that they negatively affect children's health. On the contrary, green space exposure seems to benefit or mitigate these adverse effects, suggesting a potential strategy to promote children's cognitive and physical development in urban settings. This review underscores the substantial impact of urban exposures on the physical and mental development of children and adolescents. It highlights adverse health effects that can extend into adulthood, affecting academic opportunities and well-being beyond health. While acknowledging the necessity for more research on the mechanisms of air pollution effects and associations with heat and noise exposure, the review advocates prioritizing policy changes and urban planning interventions. This includes minimizing air pollution and traffic noise while enhancing urban vegetation, particularly in school environments, to ensure the healthy development of children and promote lifelong health.
Collapse
Affiliation(s)
- Inés Valls Roche
- ISGlobal, Parc de Recerca Biomèdica de Barcelona-PRBB, C/ Doctor Aiguader, 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Mònica Ubalde-Lopez
- ISGlobal, Parc de Recerca Biomèdica de Barcelona-PRBB, C/ Doctor Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carolyn Daher
- ISGlobal, Parc de Recerca Biomèdica de Barcelona-PRBB, C/ Doctor Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mark Nieuwenhuijsen
- ISGlobal, Parc de Recerca Biomèdica de Barcelona-PRBB, C/ Doctor Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mireia Gascon
- ISGlobal, Parc de Recerca Biomèdica de Barcelona-PRBB, C/ Doctor Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
18
|
Chen M, Strodl E, Yang W, Yin X, Wen G, Sun D, Xian D, Zhao Y, Chen W. Independent and Joint Effects of Prenatal Incense-Burning Smoke Exposure and Children's Early Outdoor Activity on Preschoolers' Obesity. TOXICS 2024; 12:329. [PMID: 38787109 PMCID: PMC11126066 DOI: 10.3390/toxics12050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Incense burning is a significant source of indoor air pollution in many Asian regions. There is emerging evidence that maternal prenatal exposure to incense-burning smoke may be a risk factor for childhood obesity. We aimed to extend this new line of research by investigating the independent and joint effect of incense-burning smoke exposure, and children's outdoor activity in early life, on preschoolers' obesity. A total of 69,637 mother-child dyads were recruited from all kindergartens in the Longhua District of Shenzhen, China. Information on sociodemographic characteristics, maternal exposure to incense-burning smoke (IBS) during pregnancy, and frequency and duration of outdoor activity at the age of 1-3 years was collected by a self-administered questionnaire. In addition, the heights and weights of the children were measured by the research team. Logistic regression models and cross-over analyses were conducted to investigate the independent and combined effects of maternal exposure to incense-burning smoke during pregnancy and children's early outdoor activity on obesity in preschoolers. We found that prenatal exposure to incense-burning smoke increased the risk of the presence of obesity in preschoolers' (AOR = 1.13, 95% CI = 1.03-1.23). Additionally, lower frequencies (<3 times/week) or shorter durations (<60 min/time) of outdoor activity from the age of 1-3 years were significantly associated with the presence of obesity, with AORs of 1.24 (95% CI =1.18-1.32) and 1.11 (95% CI = 1.05-1.17), respectively. Furthermore, the cross-over analysis showed that prenatal exposure to IBS combined with a lower frequency of early outdoor activity (AOR = 1.47, 95% CI = 1.31-1.66) or a shorter duration of outdoor activity during ages of 1-3 years (AOR = 1.22, 95% CI = 1.07-1.39) increased the risk of obesity in preschoolers. Finally, additive interactions between prenatal exposure to IBS and postnatal outdoor activity on obesity were identified. Our study indicates that maternal exposure to incense-burning smoke during pregnancy and early lower postanal outdoor activity may independently and jointly increase the risk of obesity among preschoolers.
Collapse
Affiliation(s)
- Meimei Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;
| | - Esben Strodl
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia;
| | - Weikang Yang
- Women’s and Children’s Hospital of Longhua District of Shenzhen, Shenzhen 518110, China
| | - Xiaona Yin
- Women’s and Children’s Hospital of Longhua District of Shenzhen, Shenzhen 518110, China
| | - Guomin Wen
- Women’s and Children’s Hospital of Longhua District of Shenzhen, Shenzhen 518110, China
| | - Dengli Sun
- Women’s and Children’s Hospital of Longhua District of Shenzhen, Shenzhen 518110, China
| | - Danxia Xian
- Women’s and Children’s Hospital of Longhua District of Shenzhen, Shenzhen 518110, China
| | - Yafen Zhao
- Women’s and Children’s Hospital of Longhua District of Shenzhen, Shenzhen 518110, China
| | - Weiqing Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;
- School of Health Management, Xinhua College of Guangzhou, Guangzhou 510080, China
| |
Collapse
|
19
|
Cipryan L, Litschmannova M, Barot T, Dostal T, Sindler D, Kutac P, Jandacka D, Hofmann P. Air pollution, cardiorespiratory fitness and biomarkers of oxidative status and inflammation in the 4HAIE study. Sci Rep 2024; 14:9620. [PMID: 38671019 PMCID: PMC11053001 DOI: 10.1038/s41598-024-60388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to investigate the associations between cardiorespiratory fitness (CRF), long-term air pollution exposure and biochemical markers of oxidative status and inflammation. This is a cross-sectional investigation focusing on biochemical markers of oxidative status and inflammation. Participants were Caucasian (N = 1188; age 18-65 years) who lived for at least 5 years in a high air-polluted (Moravian-Silesian; MS) or low air-polluted (South Bohemia; SB) region of the Czech Republic. Healthy runners and inactive individuals were recruited. A multiple regression analysis was used to explain the relationship between multiple independent variables (CRF, trunk fat mass, sex, socioeconomic status, and region (MS region vs. SB region) and dependent variables (oxidative status, inflammation). CRF, trunk fat mass, age and sex significantly predicted almost all selected markers of oxidative status and inflammation (except GSSG, GSH/GSSG and BDNF). Participants living in the MS region presented significantly higher GPx (by 3.1%) and lower BDNF values (by 4.5%). All other investigated biochemical markers were not significantly influenced by region. We did not find meaningful interactions between long-term air-pollution exposure versus markers of oxidative status and inflammation. However, we showed various significant interactions with sex, age, CRF and body composition. The significant association of living in the high air polluted MS region with the BDNF level warrants further attention.
Collapse
Affiliation(s)
- Lukas Cipryan
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic.
| | - Martina Litschmannova
- Department of Applied Mathematics, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava, Czech Republic
| | - Tomas Barot
- Department of Mathematics with Didactics, The University of Ostrava, Ostrava, Czech Republic
| | - Tomas Dostal
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Dominik Sindler
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Petr Kutac
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Daniel Jandacka
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Peter Hofmann
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| |
Collapse
|
20
|
Zhang X, Li Z. Assessing chronic gestational exposure to environmental chemicals in pregnant women: Advancing the co-PBK model. ENVIRONMENTAL RESEARCH 2024; 247:118160. [PMID: 38199464 DOI: 10.1016/j.envres.2024.118160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/07/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
Vulnerable populations, such as pregnant women and their fetuses, confront potential health risks due to exposure to environmental toxic compounds. Computational methods have been popular in assessing chemical exposure to populations, contrasting with traditional cohort studies for human biomonitoring. This study proposes a screening-level approach based on physiologically based kinetic (PBK) modeling to evaluate the steady-state exposure of pregnant women to environmental chemicals throughout pregnancy. To exemplify the modeling application, naphthalene was chosen. Simulation results indicated that maternal fat exhibited significant bioaccumulation potential, with the log-transformed BTF of naphthalene at 0.51 mg kg-1 per mg d-1 in the steady state. The placenta was primarily exposed to 0.83 mg/d naphthalene for a 75.2 kg pregnant woman, considering all exposure routes. In the fetal structure, single-organ fetal PBK modeling estimated a naphthalene exposure of 123.64 mg/d to the entire fetus, while multiple-organ fetal PBK modeling further revealed the bioaccumulation highest in fat tissue. The liver identified as the vital organ for metabolism, kBioT,LiverM was demonstrated with the highest sensitivity among rate constants in the maternal body. Furthermore, the first-order kinetic rate constants related to the placenta and blood were found to impact the distribution process of naphthalene in the fetus, influencing gestational exposure. In conclusion, urgent attention is needed to develop a computational biomonitoring tool for assessing toxic chemical exposure in vulnerable populations.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
21
|
Nsabimana P, Sombié OO, Pauwels NS, Boynito WG, Tariku EZ, Vasanthakaalam H, De Henauw S, Abbeddou S. Association between urbanization and metabolic syndrome in low- and middle-income countries: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2024; 34:235-250. [PMID: 38182494 DOI: 10.1016/j.numecd.2023.07.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 01/07/2024]
Abstract
AIMS The prevalence of metabolic syndrome (MetS) is on the rise in an increasingly urbanized world. The study aimed to review the association between urbanization and MetS in low- and middle-income countries (LMICs). DATA SYNTHESIS A comprehensive search of five databases (MEDLINE, Web of Science, Scopus, EMBASE, and CENTRAL) was performed in January 2022 and updated in October 2022. Peer-reviewed studies that met the eligibility selection criteria were included. Search terms were used for the main concepts which are MetS, dietary patterns, and urbanization in LMICs. Study selection was done in two stages and in duplicate. Random effects models were used to calculate the overall pooled prevalence and main study-level characteristics. Out of 9,773 identified studies, nineteen were included in the systematic review and meta-analysis. The studies were done on 313,644 participants (149,616 urban and 164,028 rural). The pooled risk ratio (RR, 95% confidence interval) of MetS between urban and rural dwellers was RR = 1.24; 95%CI [1.15, 1.34] (I2 = 96.0%, P < 0.0001). A relatively higher prevalence of MetS among urban than rural residents has been observed, especially with the International Diabetes Federation criteria (RR = 1.54; 95%CI [1.21, 1.96]; I2 = 65.0%), and in the population in India (RR = 2.19; 95%CI = 1.24, 3.88, I2 = 85%). Overall, the role of dietary patterns in the development of MetS was inconsistent, and few studies showed a lower risk of MetS with adherence to recommended healthy dietary patterns. CONCLUSIONS There was an association between urbanization and the high prevalence of MetS. Interventions and policies to reduce the risk of MetS are needed.
Collapse
Affiliation(s)
- Phenias Nsabimana
- School of Agriculture and Food Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, P.O Box 210 Musanze, Rwanda; Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Gent, Belgium.
| | - Olivier O Sombié
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Gent, Belgium; Unité Nutrition et Maladies Métaboliques, Institut de Recherche en Sciences de la Santé/ Direction Régionale de l'Ouest (IRSS-DRO), 01 P.O Box 545, Bobo Dioulasso, Burkina Faso
| | - Nele S Pauwels
- Knowledge Centre for Health, Ghent University Hospital, B-9000 Ghent, Belgium
| | - Wanzahun Godana Boynito
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Gent, Belgium; School of Public Health, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Eshetu Zerihun Tariku
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Gent, Belgium; School of Public Health, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Hilda Vasanthakaalam
- School of Agriculture and Food Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, P.O Box 210 Musanze, Rwanda
| | - Stefaan De Henauw
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Gent, Belgium
| | - Souheila Abbeddou
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Gent, Belgium
| |
Collapse
|
22
|
Verde L, Barrea L, Bowman-Busato J, Yumuk VD, Colao A, Muscogiuri G. Obesogenic environments as major determinants of a disease: It is time to re-shape our cities. Diabetes Metab Res Rev 2024; 40:e3748. [PMID: 38287716 DOI: 10.1002/dmrr.3748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Obesity rates are increasing in almost all high- and low-income countries, and population-based approaches are necessary to reverse this trend. The current global efforts are focused on identifying the root causes of obesity and developing effective methods for early diagnosis, screening, treatment, and long-term management, both at an individual and health system level. However, there is a relative lack of effective options for early diagnosis, treatment, and long-term management, which means that population-based strategies are also needed. These strategies involve conceptual shifts towards community- and environment-focused approaches. This review aimed to provide evidence on how environmental factors contribute to the risk of obesity and how reshaping cities can help slow down obesity prevalence rates and improve long-term management.
Collapse
Affiliation(s)
- Ludovica Verde
- Department of Public Health, University of Naples Federico II, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Luigi Barrea
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Naples, Italy
- Dipartimento di Scienze Umanistiche, U-niversità Telematica Pegaso, Napoli, Italy
| | | | - Volkan Demirhan Yumuk
- Division of Endocrinology, Metabolism and Diabetes, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
23
|
Guo LH, Zeeshan M, Huang GF, Chen DH, Xie M, Liu J, Dong GH. Influence of Air Pollution Exposures on Cardiometabolic Risk Factors: a Review. Curr Environ Health Rep 2023; 10:501-507. [PMID: 38030873 DOI: 10.1007/s40572-023-00423-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE OF REVIEW The increasing prevalence of cardiometabolic risk factors (CRFs) contributes to the rise in cardiovascular disease. Previous research has established a connection between air pollution and both the development and severity of CRFs. Given the ongoing impact of air pollution on human health, this review aims to summarize the latest research findings and provide an overview of the relationship between different types of air pollutants and CRFs. RECENT FINDINGS CRFs include health conditions like diabetes, obesity, hypertension etc. Air pollution poses significant health risks and encompasses a wide range of pollutant types, air pollutants, such as particulate matter (PM), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O2). More and more population epidemiological studies have shown a positive correlation between air pollution and CRFs. Although various pollutants have diverse effects on specific cellular molecular pathways, their main influence is on oxidative stress, inflammation response, and impairment of endothelial function. More and more studies have proved that air pollution can promote the occurrence and development of cardiovascular and metabolic risk factors, and the research on the relationship between air pollution and CRFs has grown intensively. An increasing number of studies are using new biological monitoring indicators to assess the occurrence and development of CRFs resulting from exposure to air pollution. Abnormalities in some important biomarkers in the population (such as homocysteine, uric acid, and C-reactive protein) caused by air pollution deserve more attention. Further research is warranted to more fully understand the link between air pollution and novel CRF biomarkers and to investigate potential prevention and interventions that leverage the mechanistic link between air pollution and CRFs.
Collapse
Affiliation(s)
- Li-Hao Guo
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Guo-Feng Huang
- Guangdong Ecological Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Duo-Hong Chen
- Guangdong Ecological Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Min Xie
- Guangdong Ecological Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Jun Liu
- Guangdong Ecological Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
24
|
Rossini-Oliva S, Montiel de La Cruz JM, Fernández-Espinosa AJ, Fernández-Cañero R, Fernández-Cabanás VM, Pérez Urrestarazu L. Potentially toxic elements capture by an active living wall in indoor environments: Effect of species in air phytoremediation. CHEMOSPHERE 2023; 340:139799. [PMID: 37574085 DOI: 10.1016/j.chemosphere.2023.139799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Indoor air pollution is a serious health problem throughout the world. Plants are known to be able to reduce the effect of air pollution and improve indoor air quality (IAQ). The aim of the present study was to compare the effectiveness of four plant species (Tradescantia zebrina hort. ex Bosse, Philodendron scandens K. Koch & Sello, Ficus pumila L. and Chlorophtytum comosum (Thunb.) Jacques) planted in an active living wall (ALW) for capturing particle pollutants. The ALW was introduced in a glass chamber and exposed to large (10-40 μm) and fine (1.2-10 μm) airborne particles containing a fixed concentration of potentially toxic elements (Al, B, Cd, Co, Cr, Cu, Ni and Pb). The surface particle deposition (sPM) was estimated in the leaves from the four species and the potentially toxic element concentration in the particulate matter (PM) was measured in plants, medium culture and in the ALW support system. The distribution of different particle size fractions differed between species. The capacity to trap particles on leaf surfaces was similar among the species (4.7-13 ng cm-2) except when comparing Tradescantia and Chlorophytum with Ficus, being higher in the latter species. Differences in toxic elements accumulation capacity were observed between species depending on the elements considered. The percentage of reduction in indoor pollution using an ALW was in a range of 65-79% being similar between species. Plants were the most important component of the ALW in terms of accumulation of indoor potentially toxic elements. The data presented here could be used to model the effectiveness of ALW systems schemes in improving IAQ.
Collapse
Affiliation(s)
- S Rossini-Oliva
- Department of Plant Biology and Ecology, University of Seville, Avda. Reina Mercedes S/n, Apartado de Correos, 1095, 41012, Sevilla, Spain; Environmental Analytical Chemistry Research Group, Faculty of Chemistry, University of Seville, 41012, Sevilla, Spain.
| | - J M Montiel de La Cruz
- Urban Greening and Biosystems Engineering Research Group, ETSIA, Departamento de Agronomía, University of Seville, 410133, Sevilla, Spain
| | - A J Fernández-Espinosa
- Department of Analytical Chemistry, University of Seville, Profesor García González 1, 41012, Sevilla, Spain; Environmental Analytical Chemistry Research Group, Faculty of Chemistry, University of Seville, 41012, Sevilla, Spain
| | - R Fernández-Cañero
- Urban Greening and Biosystems Engineering Research Group, ETSIA, Departamento de Agronomía, University of Seville, 410133, Sevilla, Spain
| | - V M Fernández-Cabanás
- Urban Greening and Biosystems Engineering Research Group, ETSIA, Departamento de Agronomía, University of Seville, 410133, Sevilla, Spain
| | - L Pérez Urrestarazu
- Urban Greening and Biosystems Engineering Research Group, ETSIA, University of Seville, 41013, Sevilla, Spain
| |
Collapse
|
25
|
Wang P, Li K, Xu C, Fan Z, Wang Z. Spatial analysis of overweight prevalence in China: exploring the association with air pollution. BMC Public Health 2023; 23:1595. [PMID: 37608324 PMCID: PMC10463435 DOI: 10.1186/s12889-023-16518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Overweight is a known risk factor for various chronic diseases and poses a significant threat to middle-aged and elderly adults. Previous studies have reported a strong association between overweight and air pollution. However, the spatial relationship between the two remains unclear due to the confounding effects of spatial heterogeneity. METHODS We gathered height and weight data from the 2015 China Health and Retirement Long-term Survey (CHARLS), comprising 16,171 middle-aged and elderly individuals. We also collected regional air pollution data. We then analyzed the spatial pattern of overweight prevalence using Moran's I and Getis-Ord Gi* statistics. To quantify the explanatory power of distinct air pollutants for spatial differences in overweight prevalence across Southern and Northern China, as well as across different age groups, we utilized Geodetector's q-statistic. RESULTS The average prevalence of overweight among middle-aged and elderly individuals in each city was 67.27% and 57.39%, respectively. In general, the q-statistic in southern China was higher than that in northern China. In the north, the prevalence was significantly higher at 54.86% compared to the prevalence of 38.75% in the south. SO2 exhibited a relatively higher q-statistic in middle-aged individuals in both the north and south, while for the elderly in the south, NO2 was the most crucial factor (q = 0.24, p < 0.01). Moreover, fine particulate matter (PM2.5 and PM10) also demonstrated an important effect on overweight. Furthermore, we found that the pairwise interaction between various risk factors improved the explanatory power of the prevalence of overweight, with different effects for different age groups and regions. In northern China, the strongest interaction was found between NO2 and SO2 (q = 0.55) for middle-aged individuals and PM2.5 and SO2 (q = 0.27) for the elderly. Conversely, in southern China, middle-aged individuals demonstrated the strongest interaction between SO2 and PM10 (q = 0.60), while the elderly showed the highest interaction between NO2 and O3 (q = 0.42). CONCLUSION Significant spatial heterogeneity was observed in the effects of air pollution on overweight. Specifically, air pollution in southern China was found to have a greater impact on overweight than that in northern China. And, the impact of air pollution on middle-aged individuals was more pronounced than on the elderly, with distinct pollutants demonstrating significant variation in their impact. Moreover, we found that SO2 had a greater impact on overweight prevalence among middle-aged individuals, while NO2 had a greater impact on the elderly. Additionally, we identified significant statistically interactions between O3 and other pollutants.
Collapse
Affiliation(s)
- Peihan Wang
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Kexin Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Chengdong Xu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Zixuan Fan
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, P.R. China.
- School of Health Policy and Management, Peking Union Medical College, Beijing, 100730, P.R. China.
| | - Zhenbo Wang
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
26
|
Tharrey M, Malisoux L, Klein O, Bohn T, Perchoux C. Urban densification over 9 years and change in the metabolic syndrome: A nationwide investigation from the ORISCAV-LUX cohort study. Soc Sci Med 2023; 331:116002. [PMID: 37478660 DOI: 10.1016/j.socscimed.2023.116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 07/23/2023]
Abstract
A growing body of evidence suggests that urban densification may be protective against obesity, type 2 diabetes, and cardiometabolic diseases, yet studies on how built environmental features relate to metabolic syndrome (MetS) and its components are scarce. This longitudinal study examines the associations of baseline urban density and densification over 9 years with MetS and MetS components, among 510 participants enrolled in both waves of the ORISCAV-LUX study (2007-2017) in Luxembourg. A continuous MetS score (siMS) was calculated for each participant. Six features of residential built environments were computed around participants' home address: street connectivity, population density, density of amenities, street network distance to the nearest bus station, density of public transport stations, and land use mix. A composite index of urban densification (UDI) was calculated by averaging the six standardized built environment variables. Using adjusted generalized estimating equation (GEE) models, one-SD increase in UDI was associated with a worsening of the siMS score (β = 0.07, 95% CI: 0.02, 0.13), higher triglyceride levels (β = 0.05, 95% CI: 0.02, 0.09), and lower HDL-c levels (β = -1.29, 95% CI: -2.20, -0.38). The detrimental effect of UDI on lipid levels was significant only for participants living in dense areas at baseline. Higher baseline UDI, as well as increased UDI over time among movers, were also associated with greater waist circumference. There were no associations between UDI, fasting plasma glucose and systolic blood pressure. Sex and neighborhood socio-economic status did not moderate the associations between UDI and the cardiometabolic outcomes. Overall, we found limited evidence for an effect of urban densification on MetS and its components. Understanding urban dynamics remains a challenge, and more research investigating the independent and joint health effect of built environment features is needed to support urban planning and design that promote cardiometabolic health.
Collapse
Affiliation(s)
- Marion Tharrey
- Department of Urban Development and Mobility, Luxembourg Institute of Socio-Economic Research, Esch/Alzette, Luxembourg; Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg.
| | - Laurent Malisoux
- Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Olivier Klein
- Department of Urban Development and Mobility, Luxembourg Institute of Socio-Economic Research, Esch/Alzette, Luxembourg
| | - Torsten Bohn
- Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Camille Perchoux
- Department of Urban Development and Mobility, Luxembourg Institute of Socio-Economic Research, Esch/Alzette, Luxembourg
| |
Collapse
|
27
|
Dzhambov AM, Dimitrova V, Germanova N, Burov A, Brezov D, Hlebarov I, Dimitrova R. Joint associations and pathways from greenspace, traffic-related air pollution, and noise to poor self-rated general health: A population-based study in Sofia, Bulgaria. ENVIRONMENTAL RESEARCH 2023; 231:116087. [PMID: 37169139 DOI: 10.1016/j.envres.2023.116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Little is still known of how multiple urban exposures interact as health determinants. This study investigated various ways in which greenspace, traffic-related air pollution, and noise could operate together, influencing general health status. METHODS In 2022, a cross-sectional population-based survey was conducted in Sofia, Bulgaria. Included were 917 long-term adult residents who completed questionnaires on poor self-rated health (PSRH), total time spent in physical activity (PA), home garden presence, time spent in urban greenspace and nature, and sociodemographics. Residential greenspace was operationalized using the normalized difference vegetation index (NDVI), tree cover density, number of trees, and access to local greenspace and parks. Nitrogen dioxide (NO2) was modeled for the study area. Road traffic, railway, and aircraft day-evening-night sound levels (Lden) were extracted from EU noise maps. Area-level income and urbanicity were considered. Analyses included multivariate ordinal regressions, interactions, and structural equation modeling (SEM). RESULTS Associations with PSRH were per 0.10 NDVI 300 m: OR = 0.65 (0.42-1.01), home garden: OR = 0.72 (0.49-1.07), per 5 μg/m3 NO2: OR = 1.57 (1.00-2.48), per 5 dB(A) Lden road traffic: OR = 1.06 (0.91-1.23), railway: OR = 1.11 (1.03-1.20), and aircraft: OR = 1.22 (1.11-1.34). Spending >30 min/week in nature related to better health. In multi-exposure models, only associations with aircraft and railway Lden persisted. People with lower education and financial difficulties or living in poorer districts experienced some exposures stronger. In SEM, time spent in nature and PA mediated the effect of greenspace. CONCLUSIONS Greenspace was associated with better general health, with time spent in nature and PA emerging as intermediate pathways. NO2, railway, and aircraft noise were associated with poorer general health. These results could inform decision-makers, urban planners, and civil society organizations facing urban development problems. Mitigation and abatement policies and measures should target socioeconomically disadvantaged citizens.
Collapse
Affiliation(s)
- Angel M Dzhambov
- Department of Hygiene, Faculty of Public Health, Medical University of Plovdiv, Bulgaria; Research Group "Health and Quality of Life in a Green and Sustainable Environment", SRIPD, Medical University of Plovdiv, Plovdiv, Bulgaria; Institute of Highway Engineering and Transport Planning, Graz University of Technology, Graz, Austria.
| | - Veronika Dimitrova
- Department of Sociology, Faculty of Philosophy, Sofia University "St. Kliment Ohridski", Bulgaria
| | - Nevena Germanova
- Department of Spatial and Strategic Planning of Sofia Municipality - Sofiaplan, Bulgaria
| | - Angel Burov
- Research Group "Health and Quality of Life in a Green and Sustainable Environment", SRIPD, Medical University of Plovdiv, Plovdiv, Bulgaria; Department of Urban Planning, Faculty of Architecture, University of Architecture, Civil Engineering and Geodesy, Bulgaria
| | - Danail Brezov
- Department of Mathematics, Faculty of Transportation Engineering, University of Architecture, Civil Engineering and Geodesy, Bulgaria
| | - Ivaylo Hlebarov
- Clean Air Team, Environmental Association Za Zemiata, Bulgaria
| | - Reneta Dimitrova
- Department of Meteorology and Geophysics, Faculty of Physics, Sofia University "St. Kliment Ohridski", Bulgaria; National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Bulgaria
| |
Collapse
|
28
|
Lavezzi AM, Ramos-Molina B. Environmental Exposure Science and Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105764. [PMID: 37239493 DOI: 10.3390/ijerph20105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Human health and environmental exposure form an inseparable binomial [...].
Collapse
Affiliation(s)
- Anna M Lavezzi
- "Lino Rossi" Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| |
Collapse
|
29
|
Wang Y, Tan H, Zheng H, Ma Z, Zhan Y, Hu K, Yang Z, Yao Y, Zhang Y. Exposure to air pollution and gains in body weight and waist circumference among middle-aged and older adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161895. [PMID: 36709892 DOI: 10.1016/j.scitotenv.2023.161895] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Emerging research suggested a nexus between air pollution exposure and risks of overweight and obesity, while existing longitudinal evidence was extensively sparse, particularly in densely populated regions. This study aimed to quantify concentration-response associations of changes in weight and waist circumference (WC) related to air pollution in Chinese adults. METHODS We conceived a nationally representative longitudinal study from 2011 to 2015, by collecting 34,854 observations from 13,757 middle-aged and older adults in 28 provincial regions of China. Participants' height, weight and WC were measured by interviewers using standardized devices. Concentrations of major air pollutants including fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ozone (O3) predicted by well-validated spatiotemporal models were assigned to participants according to their residential cities. Possible exposure biases were checked through 1000 random simulated exposure at individual level, using a Monte Carlo simulation approach. Linear mixed-effects models were applied to estimate the relationships of air pollution with weight and WC changes, and restricted cubic spline functions were adopted to smooth concentration-response (C-R) curves. RESULTS Each 10-μg/m3 rise in PM2.5, NO2 and O3 was associated with an increase of 0.825 (95% confidence interval: 0.740, 0.910), 0.921 (0.811, 1.032) and 1.379 (1.141, 1.616) kg in weight, respectively, corresponding to WC gains of 0.688 (0.592, 0.784), 1.189 (1.040, 1.337) and 0.740 (0.478, 1.002) cm. Non-significant violation for linear C-R relationships was observed with exception of NO2-weight and PM2.5/NO2-WC associations. Sex-stratified analyses revealed elevated vulnerability in women to gain of weight in exposure to PM2.5 and NO2. Sensitive analyses largely supported our primary findings via assessing exposure estimates from 1000 random simulations, and performing reanalysis based on non-imputed covariates and non-obese participants, as well as alternative indicators (i.e., body mass index and waist-to-height ratio). CONCLUSIONS We found positively robust associations of later-life exposure to air pollutants with gains in weight and WC based on a national sample of Chinese adult men and women. Our findings suggested that mitigation of air pollution may be an efficient intervention to relieve obesity burden.
Collapse
Affiliation(s)
- Yaqi Wang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huiyue Tan
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; Healthcare Associated Infection Control Department, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Zongwei Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Kejia Hu
- Institute of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Zhiming Yang
- School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
| | - Yao Yao
- China Center for Health Development Studies, Peking University, Beijing 100871, China
| | - Yunquan Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
30
|
Wang W, Chai L, Chen X, Li Z, Feng L, Hu W, Li H, Yang G. Imaging changes in the polarity of lipid droplets during NAFLD-Induced ferroptosis via a red-emitting fluorescent probe with a large Stokes shift. Biosens Bioelectron 2023; 231:115289. [PMID: 37031507 DOI: 10.1016/j.bios.2023.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
Cell death resulting from ferroptosis is a consequence of the accumulation of lipid peroxides that are produced when lipids and reactive oxygen species (ROS) interact. This process is dependent on iron and alters the structure and polarity of lipid droplets (LDs). Unlike reactive fluorescent probes, environment-sensitive fluorescent probes can accurately monitor metabolic activities by sensing the intracellular environment of living organisms. To this end, we developed a polarity-sensitive fluorescent probe LIP-Ser that anchors to LDs and can be used to monitor changes in the polarity of LDs during ferroptosis by in situ imaging. LIP-Ser has a red-emitting (λem = 634 nm) and a large Stokes shift (Δλ = 161 nm in 1,4-dioxane), which avoids it from autofluorescence interference and crosstalk between excitation and emission spectra, thereby preventing low signal-to-noise ratio and severe fluorescence self-quenching during imaging. Additionally, LIP-Ser is used in this study to demonstrate that non-alcoholic fatty liver disease (NAFLD) promotes ferroptosis at the cellular and in vivo levels, and that inhibition of cellular ferroptosis effectively reduces the damage caused by NAFLD to cells and mouse liver tissue.
Collapse
Affiliation(s)
- Weibo Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Li Chai
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, PR China
| | - Xin Chen
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, PR China
| | - Zhiying Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, PR China
| | - Linyan Feng
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, PR China
| | - Wei Hu
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, PR China.
| | - Haibing Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| | - Guangfu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
31
|
Zordão OP, Campolim CM, Yariwake VY, Castro G, Ferreira CKDO, Santos A, Norberto S, Veras MM, Saad MJA, Saldiva PHN, Kim YB, Prada PO. Maternal exposure to air pollution alters energy balance transiently according to gender and changes gut microbiota. Front Endocrinol (Lausanne) 2023; 14:1069243. [PMID: 37082122 PMCID: PMC10112381 DOI: 10.3389/fendo.2023.1069243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/07/2023] [Indexed: 04/22/2023] Open
Abstract
Introduction The timing of maternal exposure to air pollution is crucial to define metabolic changes in the offspring. Here we aimed to determine the most critical period of maternal exposure to particulate matter (PM2.5) that impairs offspring's energy metabolism and gut microbiota composition. Methods Unexposed female and male C57BL/6J mice were mated. PM2.5 or filtered air (FA) exposure occurred only in gestation (PM2.5/FA) or lactation (FA/PM2.5). We studied the offspring of both genders. Results PM2.5 exposure during gestation increased body weight (BW) at birth and from weaning to young in male adulthood. Leptin levels, food intake, Agrp, and Npy levels in the hypothalamus were also increased in young male offspring. Ikbke, Tnf increased in male PM2.5/FA. Males from FA/PM2.5 group were protected from these phenotypes showing higher O2 consumption and Ucp1 in the brown adipose tissue. In female offspring, we did not see changes in BW at weaning. However, adult females from PM2.5/FA displayed higher BW and leptin levels, despite increased energy expenditure and thermogenesis. This group showed a slight increase in food intake. In female offspring from FA/PM2.5, BW, and leptin levels were elevated. This group displayed higher energy expenditure and a mild increase in food intake. To determine if maternal exposure to PM2.5 could affect the offspring's gut microbiota, we analyzed alpha diversity by Shannon and Simpson indexes and beta diversity by the Linear Discriminant Analysis (LDA) in offspring at 30 weeks. Unlike males, exposure during gestation led to higher adiposity and leptin maintenance in female offspring at this age. Gestation exposure was associated with decreased alpha diversity in the gut microbiota in both genders. Discussion Our data support that exposure to air pollution during gestation is more harmful to metabolism than exposure during lactation. Male offspring had an unfavorable metabolic phenotype at a young age. However, at an older age, only females kept more adiposity. Ultimately, our data highlight the importance of controlling air pollution, especially during gestation.
Collapse
Affiliation(s)
- Olivia Pizetta Zordão
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Clara Machado Campolim
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Victor Yuji Yariwake
- Laboratory of Environmental and Experimental Pathology, Department of Pathology, University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | - Gisele Castro
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Andrey Santos
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sónia Norberto
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mariana Matera Veras
- Laboratory of Environmental and Experimental Pathology, Department of Pathology, University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratory of Environmental and Experimental Pathology, Department of Pathology, University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Patricia Oliveira Prada
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, SP, Brazil
- *Correspondence: Patricia Oliveira Prada, ;
| |
Collapse
|