1
|
De Marco A, Sicard P, Feng Z, Agathokleous E, Alonso R, Araminiene V, Augustatis A, Badea O, Beasley JC, Branquinho C, Bruckman VJ, Collalti A, David‐Schwartz R, Domingos M, Du E, Garcia Gomez H, Hashimoto S, Hoshika Y, Jakovljevic T, McNulty S, Oksanen E, Omidi Khaniabadi Y, Prescher A, Saitanis CJ, Sase H, Schmitz A, Voigt G, Watanabe M, Wood MD, Kozlov MV, Paoletti E. Strategic roadmap to assess forest vulnerability under air pollution and climate change. GLOBAL CHANGE BIOLOGY 2022; 28:5062-5085. [PMID: 35642454 PMCID: PMC9541114 DOI: 10.1111/gcb.16278] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/02/2022] [Accepted: 05/18/2022] [Indexed: 05/13/2023]
Abstract
Although it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux-based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long-term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the ~73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long-term monitoring programs.
Collapse
Affiliation(s)
| | | | - Zhaozhong Feng
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Evgenios Agathokleous
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Rocio Alonso
- Ecotoxicology of Air Pollution, CIEMATMadridSpain
| | - Valda Araminiene
- Lithuanian Research Centre for Agriculture and ForestryKaunasLithuania
| | - Algirdas Augustatis
- Faculty of Forest Sciences and EcologyVytautas Magnus UniversityKaunasLithuania
| | - Ovidiu Badea
- “Marin Drăcea” National Institute for Research and Development in ForestryVoluntariRomania
- Faculty of Silviculture and Forest Engineering“Transilvania” UniversityBraşovRomania
| | - James C. Beasley
- Savannah River Ecology Laboratory and Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
| | - Viktor J. Bruckman
- Commission for Interdisciplinary Ecological StudiesAustrian Academy of SciencesViennaAustria
| | | | | | - Marisa Domingos
- Instituto de BotanicaNucleo de Pesquisa em EcologiaSao PauloBrazil
| | - Enzai Du
- Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | | | - Shoji Hashimoto
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| | | | | | | | - Elina Oksanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Yusef Omidi Khaniabadi
- Department of Environmental Health EngineeringIndustrial Medial and Health, Petroleum Industry Health Organization (PIHO)AhvazIran
| | | | - Costas J. Saitanis
- Lab of Ecology and Environmental ScienceAgricultural University of AthensAthensGreece
| | - Hiroyuki Sase
- Ecological Impact Research DepartmentAsia Center for Air Pollution Research (ACAP)NiigataJapan
| | - Andreas Schmitz
- State Agency for Nature, Environment and Consumer Protection of North Rhine‐WestphaliaRecklinghausenGermany
| | | | - Makoto Watanabe
- Institute of AgricultureTokyo University of Agriculture and Technology (TUAT)FuchuJapan
| | - Michael D. Wood
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
| | | | - Elena Paoletti
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| |
Collapse
|
2
|
Kasper K, Abreu IN, Feussner K, Zienkiewicz K, Herrfurth C, Ischebeck T, Janz D, Majcherczyk A, Schmitt K, Valerius O, Braus GH, Feussner I, Polle A. Multi-omics analysis of xylem sap uncovers dynamic modulation of poplar defenses by ammonium and nitrate. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:282-303. [PMID: 35535561 DOI: 10.1111/tpj.15802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 06/14/2023]
Abstract
Xylem sap is the major transport route for nutrients from roots to shoots. In the present study, we investigated how variations in nitrogen (N) nutrition affected the metabolome and proteome of xylem sap and the growth of the xylem endophyte Brennaria salicis, and we also report transcriptional re-wiring of leaf defenses in poplar (Populus × canescens). We supplied poplars with high, intermediate or low concentrations of ammonium or nitrate. We identified 288 unique proteins in xylem sap. Approximately 85% of the xylem sap proteins were shared among ammonium- and nitrate-supplied plants. The number of proteins increased with increasing N supply but the major functional categories (catabolic processes, cell wall-related enzymes, defense) were unaffected. Ammonium nutrition caused higher abundances of amino acids and carbohydrates, whereas nitrate caused higher malate levels in xylem sap. Pipecolic acid and N-hydroxy-pipecolic acid increased, whereas salicylic acid and jasmonoyl-isoleucine decreased, with increasing N nutrition. Untargeted metabolome analyses revealed 2179 features in xylem sap, of which 863 were differentially affected by N treatments. We identified 124 metabolites, mainly from specialized metabolism of the groups of salicinoids, phenylpropanoids, phenolics, flavonoids, and benzoates. Their abundances increased with decreasing N, except coumarins. Brennaria salicis growth was reduced in nutrient-supplemented xylem sap of low- and high- NO3- -fed plants compared to that of NH4+ -fed plants. The drastic changes in xylem sap composition caused massive changes in the transcriptional landscape of leaves and recruited defenses related to systemic acquired and induced systemic resistance. Our study uncovers unexpected complexity and variability of xylem composition with consequences for plant defenses.
Collapse
Affiliation(s)
- Karl Kasper
- Forest Botany and Tree Physiology, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Ilka N Abreu
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Andrzej Majcherczyk
- Molecular Wood Biotechnology and Technical Mycology, University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Kerstin Schmitt
- Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
- Service Unit for Proteomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
| | - Oliver Valerius
- Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
- Service Unit for Proteomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
| | - Gerhard H Braus
- Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
- Service Unit for Proteomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| |
Collapse
|
3
|
De Pauw K, Sanczuk P, Meeussen C, Depauw L, De Lombaerde E, Govaert S, Vanneste T, Brunet J, Cousins SAO, Gasperini C, Hedwall PO, Iacopetti G, Lenoir J, Plue J, Selvi F, Spicher F, Uria-Diez J, Verheyen K, Vangansbeke P, De Frenne P. Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming. THE NEW PHYTOLOGIST 2022; 233:219-235. [PMID: 34664731 DOI: 10.1111/nph.17803] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Forests harbour large spatiotemporal heterogeneity in canopy structure. This variation drives the microclimate and light availability at the forest floor. So far, we do not know how light availability and sub-canopy temperature interactively mediate the impact of macroclimate warming on understorey communities. We therefore assessed the functional response of understorey plant communities to warming and light addition in a full factorial experiment installed in temperate deciduous forests across Europe along natural microclimate, light and macroclimate gradients. Furthermore, we related these functional responses to the species' life-history syndromes and thermal niches. We found no significant community responses to the warming treatment. The light treatment, however, had a stronger impact on communities, mainly due to responses by fast-colonizing generalists and not by slow-colonizing forest specialists. The forest structure strongly mediated the response to light addition and also had a clear impact on functional traits and total plant cover. The effects of short-term experimental warming were small and suggest a time-lag in the response of understorey species to climate change. Canopy disturbance, for instance due to drought, pests or logging, has a strong and immediate impact and particularly favours generalists in the understorey in structurally complex forests.
Collapse
Affiliation(s)
- Karen De Pauw
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Pieter Sanczuk
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Camille Meeussen
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Leen Depauw
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Emiel De Lombaerde
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Sanne Govaert
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Thomas Vanneste
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Jörg Brunet
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22, Lomma, Sweden
| | - Sara A O Cousins
- Landscapes, Environment and Geomatics, Department of Physical Geography, Stockholm University, Svante Arrhenius väg 8, 106 91, Stockholm, Sweden
| | - Cristina Gasperini
- Department of Agriculture, Food, Environment and Forestry, University of Florence, P. le Cascine 28, 50144, Florence, Italy
| | - Per-Ola Hedwall
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22, Lomma, Sweden
| | - Giovanni Iacopetti
- Department of Agriculture, Food, Environment and Forestry, University of Florence, P. le Cascine 28, 50144, Florence, Italy
| | - Jonathan Lenoir
- UMR CNRS 7058 'Ecologie et Dynamique des Systèmes Anthropisés' (EDYSAN), Université de Picardie Jules Verne, 1 Rue des Louvels, 80000, Amiens, France
| | - Jan Plue
- IVL Swedish Environmental Institute, Valhallavägen 81, 114 28, Stockholm, Sweden
| | - Federico Selvi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, P. le Cascine 28, 50144, Florence, Italy
| | - Fabien Spicher
- UMR CNRS 7058 'Ecologie et Dynamique des Systèmes Anthropisés' (EDYSAN), Université de Picardie Jules Verne, 1 Rue des Louvels, 80000, Amiens, France
| | - Jaime Uria-Diez
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22, Lomma, Sweden
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Pieter Vangansbeke
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Pieter De Frenne
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| |
Collapse
|
4
|
Yin F, Zhang S, Cao B, Xu K. Low pH alleviated salinity stress of ginger seedlings by enhancing photosynthesis, fluorescence, and mineral element contents. PeerJ 2021; 9:e10832. [PMID: 33614287 PMCID: PMC7882138 DOI: 10.7717/peerj.10832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
We investigated the effects of low pH on the photosynthesis, chlorophyll fluorescence, and mineral contents of the leaves of ginger plants under salt stress. This experiment involved four treatments: T1 (pH 6, 0 salinity), T2 (pH 4, 0 salinity), T3 (pH 6, 100 mmol L−1 salinity) and T4 (pH 4, 100 mmol L−1 salinity). This study showed that photosynthesis (Pn, Gs, WUE and Tr) and chlorophyll fluorescence (qP, Φ PSII, and Fv/Fm) significantly decreased under salt stress; however, all the parameters of the ginger plants under the low-pH treatment and salt stress recovered. Moreover, low pH reduced the content of Na and enhanced the contents of K, Mg, Fe and Zn in the leaves of ginger plants under salt stress. Taken together, these results suggest that low pH improves photosynthesis efficiency and nutrient acquisition and reduces the absorption of Na, which could enhance the salt tolerance of ginger.
Collapse
Affiliation(s)
- Fengman Yin
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, P.R. China, Tai'an, China.,State Key Laboratory of Crop Biology, Tai'an, China
| | - Shanying Zhang
- College of Food Science, Hainan University, Haikou, Hainan, China
| | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, P.R. China, Tai'an, China.,State Key Laboratory of Crop Biology, Tai'an, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, P.R. China, Tai'an, China.,State Key Laboratory of Crop Biology, Tai'an, China
| |
Collapse
|
5
|
Beaulieu E, Pierret MC, Legout A, Chabaux F, Goddéris Y, Viville D, Herrmann A. Response of a forested catchment over the last 25 years to past acid deposition assessed by biogeochemical cycle modeling (Strengbach, France). Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Yin F, Liu X, Cao B, Xu K. Low pH altered salt stress in antioxidant metabolism and nitrogen assimilation in ginger (Zingiber officinale) seedlings. PHYSIOLOGIA PLANTARUM 2020; 168:648-659. [PMID: 31278755 DOI: 10.1111/ppl.13011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/07/2019] [Accepted: 07/03/2019] [Indexed: 05/21/2023]
Abstract
The effects of low pH on antioxidant metabolism and nitrogen (N) assimilation in ginger seedlings under salt stress were investigated. A two-way randomized block design was used: the main treatment consisted of two pH levels, normal and low pH (6.0 and 4.0, respectively), and the other treatment consisted of two salinity levels, 0 and 100 mmol l-1 Na+ (NaCl and Na2 SO4 ). The results showed that low pH decreased the malondialdehyde (MDA) and hydrogen peroxide contents of ginger seedling leaves under salt stress. Moreover, low pH and salt stress significantly decreased the contents of non-enzymatic antioxidants, including ascorbate (AsA) and glutathione (GSH), and increased the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR). In addition, salt stress inhibited the N assimilation process in ginger seedling leaves, but low pH improved N assimilation under salt stress. Our finding was that low pH alleviated oxidative damage and promoted N assimilation under salt stress.
Collapse
Affiliation(s)
- Fengman Yin
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, 271018, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, 271018, China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Xuena Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, 271018, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, 271018, China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, 271018, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, 271018, China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, 271018, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, 271018, China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| |
Collapse
|
7
|
Holmberg M, Aherne J, Austnes K, Beloica J, De Marco A, Dirnböck T, Fornasier MF, Goergen K, Futter M, Lindroos AJ, Krám P, Neirynck J, Nieminen TM, Pecka T, Posch M, Pröll G, Rowe EC, Scheuschner T, Schlutow A, Valinia S, Forsius M. Modelling study of soil C, N and pH response to air pollution and climate change using European LTER site observations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:387-399. [PMID: 29860010 DOI: 10.1016/j.scitotenv.2018.05.299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 04/25/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Current climate warming is expected to continue in coming decades, whereas high N deposition may stabilize, in contrast to the clear decrease in S deposition. These pressures have distinctive regional patterns and their resulting impact on soil conditions is modified by local site characteristics. We have applied the VSD+ soil dynamic model to study impacts of deposition and climate change on soil properties, using MetHyd and GrowUp as pre-processors to provide input to VSD+. The single-layer soil model VSD+ accounts for processes of organic C and N turnover, as well as charge and mass balances of elements, cation exchange and base cation weathering. We calibrated VSD+ at 26 ecosystem study sites throughout Europe using observed conditions, and simulated key soil properties: soil solution pH (pH), soil base saturation (BS) and soil organic carbon and nitrogen ratio (C:N) under projected deposition of N and S, and climate warming until 2100. The sites are forested, located in the Mediterranean, forested alpine, Atlantic, continental and boreal regions. They represent the long-term ecological research (LTER) Europe network, including sites of the ICP Forests and ICP Integrated Monitoring (IM) programmes under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP), providing high quality long-term data on ecosystem response. Simulated future soil conditions improved under projected decrease in deposition and current climate conditions: higher pH, BS and C:N at 21, 16 and 12 of the sites, respectively. When climate change was included in the scenario analysis, the variability of the results increased. Climate warming resulted in higher simulated pH in most cases, and higher BS and C:N in roughly half of the cases. Especially the increase in C:N was more marked with climate warming. The study illustrates the value of LTER sites for applying models to predict soil responses to multiple environmental changes.
Collapse
Affiliation(s)
- Maria Holmberg
- Finnish Environment Institute (SYKE), Mechelininkatu 34a, FI-00251 Helsinki, Finland.
| | - Julian Aherne
- Environmental and Resource Studies, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | - Kari Austnes
- Norwegian Institute for Water Research NIVA, Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Jelena Beloica
- Faculty of Forestry, University of Belgrade, Kneza Viseslava 1, RS-11000 Belgrade, Serbia
| | - Alessandra De Marco
- ENEA - Casaccia Research Centre, Via Anguillarese 301, IT-00123 Santa Maria di Galeria, Rome, Italy
| | - Thomas Dirnböck
- Environment Agency Austria, Spittelauer Lände 5, A-1090, Vienna, Austria
| | | | - Klaus Goergen
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Research Centre Jülich, Jülich, Germany; Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany
| | - Martyn Futter
- Swedish University of Agricultural Sciences SLU, P.O. Box 7050, SE-75007 Uppsala, Sweden
| | - Antti-Jussi Lindroos
- Natural Resources Institute Finland LUKE, Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Pavel Krám
- Czech Geological Survey, Klárov 3, CZ 11821 Prague, Czech Republic
| | - Johan Neirynck
- Research Institute for Nature and Forest (INBO), Gaverstraat 35, BE-9500 Geraardsbergen, Belgium
| | | | - Tomasz Pecka
- Institute of Env. Protection - National Research Institute (IOS-PIB), ul. Kolektorska 4, PL-01692 Warsaw, Poland
| | - Maximilian Posch
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria
| | - Gisela Pröll
- Environment Agency Austria, Spittelauer Lände 5, A-1090, Vienna, Austria
| | - Ed C Rowe
- Centre for Ecology and Hydrology (CEH), ECW, Bangor, LL57 3EU, UK
| | | | | | - Salar Valinia
- Norwegian Institute for Water Research NIVA, Gaustadalléen 21, NO-0349 Oslo, Norway; Swedish Environmental Protection Agency, SE-10648 Stockholm, Sweden
| | - Martin Forsius
- Finnish Environment Institute (SYKE), Mechelininkatu 34a, FI-00251 Helsinki, Finland
| |
Collapse
|
8
|
Impact of nitrogen additions on soil microbial respiration and temperature sensitivity in native and agricultural ecosystems in the Brazilian Cerrado. J Therm Biol 2018; 75:120-127. [DOI: 10.1016/j.jtherbio.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/06/2018] [Accepted: 06/13/2018] [Indexed: 11/21/2022]
|
9
|
McDonnell TC, Reinds GJ, Sullivan TJ, Clark CM, Bonten LTC, Mol-Dijkstra JP, Wamelink GWW, Dovciak M. Feasibility of coupled empirical and dynamic modeling to assess climate change and air pollution impacts on temperate forest vegetation of the eastern United States. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:902-914. [PMID: 29253831 DOI: 10.1016/j.envpol.2017.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 10/20/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
Changes in climate and atmospheric nitrogen (N) deposition caused pronounced changes in soil conditions and habitat suitability for many plant species over the latter half of the previous century. Such changes are expected to continue in the future with anticipated further changing air temperature and precipitation that will likely influence the effects of N deposition. To investigate the potential long-term impacts of atmospheric N deposition on hardwood forest ecosystems in the eastern United States in the context of climate change, application of the coupled biogeochemical and vegetation community model VSD+PROPS was explored at three sites in New Hampshire, Virginia, and Tennessee. This represents the first application of VSD+PROPS to forest ecosystems in the United States. Climate change and elevated (above mid-19th century) N deposition were simulated to be important factors for determining habitat suitability. Although simulation results suggested that the suitability of these forests to support the continued presence of their characteristic understory plant species might decline by the year 2100, low data availability for building vegetation response models with PROPS resulted in uncertain results at the extremes of simulated N deposition. Future PROPS model development in the United States should focus on inclusion of additional foundational data or alternate candidate predictor variables to reduce these uncertainties.
Collapse
Affiliation(s)
- T C McDonnell
- E&S Environmental Chemistry, Inc., PO Box 609, Corvallis OR 97339, USA.
| | - G J Reinds
- Wageningen University and Research, Environmental Research (Alterra), P.O. Box 47, 6700 AA, Wageningen, The Netherlands.
| | - T J Sullivan
- E&S Environmental Chemistry, Inc., PO Box 609, Corvallis OR 97339, USA.
| | - C M Clark
- US EPA, Office of Research and Development, National Center for Environmental Assessment, Washington DC, 20460, USA.
| | - L T C Bonten
- Wageningen University and Research, Environmental Research (Alterra), P.O. Box 47, 6700 AA, Wageningen, The Netherlands.
| | - J P Mol-Dijkstra
- Wageningen University and Research, Environmental Research (Alterra), P.O. Box 47, 6700 AA, Wageningen, The Netherlands.
| | - G W W Wamelink
- Wageningen University and Research, Environmental Research (Alterra), P.O. Box 47, 6700 AA, Wageningen, The Netherlands.
| | - M Dovciak
- State University of New York, College of Environmental Science & Forestry, Syracuse NY, USA.
| |
Collapse
|
10
|
Dirnböck T, Djukic I, Kitzler B, Kobler J, Mol-Dijkstra JP, Posch M, Reinds GJ, Schlutow A, Starlinger F, Wamelink WGW. Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems. PLoS One 2017; 12:e0184194. [PMID: 28898262 PMCID: PMC5595319 DOI: 10.1371/journal.pone.0184194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/18/2017] [Indexed: 11/19/2022] Open
Abstract
Climate change and excess deposition of airborne nitrogen (N) are among the main stressors to floristic biodiversity. One particular concern is the deterioration of valuable habitats such as those protected under the European Habitat Directive. In future, climate-driven shifts (and losses) in the species potential distribution, but also N driven nutrient enrichment may threaten these habitats. We applied a dynamic geochemical soil model (VSD+) together with a novel niche-based plant response model (PROPS) to 5 forest habitat types (18 forest sites) protected under the EU Directive in Austria. We assessed how future climate change and N deposition might affect habitat suitability, defined as the capacity of a site to host its typical plant species. Our evaluation indicates that climate change will be the main driver of a decrease in habitat suitability in the future in Austria. The expected climate change will increase the occurrence of thermophilic plant species while decreasing cold-tolerant species. In addition to these direct impacts, climate change scenarios caused an increase of the occurrence probability of oligotrophic species due to a higher N immobilisation in woody biomass leading to soil N depletion. As a consequence, climate change did offset eutrophication from N deposition, even when no further reduction in N emissions was assumed. Our results show that climate change may have positive side-effects in forest habitats when multiple drivers of change are considered.
Collapse
Affiliation(s)
- Thomas Dirnböck
- Department for Ecosystem Research and Environmental Information Management, Environment Agency Austria, Spittelauer Lände 5, Vienna, Austria
- * E-mail:
| | - Ika Djukic
- Department for Ecosystem Research and Environmental Information Management, Environment Agency Austria, Spittelauer Lände 5, Vienna, Austria
| | | | - Johannes Kobler
- Department for Ecosystem Research and Environmental Information Management, Environment Agency Austria, Spittelauer Lände 5, Vienna, Austria
| | | | - Max Posch
- Coordination Centre for Effects (CCE), RIVM, Bilthoven, the Netherlands
| | | | - Angela Schlutow
- OEKO-DATA—Ecosystem Analysis and Environmental Data Management, Strausberg, Germany
| | | | | |
Collapse
|
11
|
Rizzetto S, Belyazid S, Gégout JC, Nicolas M, Alard D, Corcket E, Gaudio N, Sverdrup H, Probst A. Modelling the impact of climate change and atmospheric N deposition on French forests biodiversity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:1016-1027. [PMID: 26809502 DOI: 10.1016/j.envpol.2015.12.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
A dynamic coupled biogeochemical-ecological model was used to simulate the effects of nitrogen deposition and climate change on plant communities at three forest sites in France. The three sites had different forest covers (sessile oak, Norway spruce and silver fir), three nitrogen loads ranging from relatively low to high, different climatic regions and different soil types. Both the availability of vegetation time series and the environmental niches of the understory species allowed to evaluate the model for predicting the composition of the three plant communities. The calibration of the environmental niches was successful, with a model performance consistently reasonably high throughout the three sites. The model simulations of two climatic and two deposition scenarios showed that climate change may entirely compromise the eventual recovery from eutrophication of the simulated plant communities in response to the reductions in nitrogen deposition. The interplay between climate and deposition was strongly governed by site characteristics and histories in the long term, while forest management remained the main driver of change in the short term.
Collapse
Affiliation(s)
| | - Salim Belyazid
- Institute of Ecology, CEC Group, Lund University, SE-221 00 Lund, Sweden
| | - Jean-Claude Gégout
- AgroParisTech, UMR 1092 LERFOB, F-54000 Nancy, France; INRA, UMR 1092 LERFOB, F-54280 Champenoux, France
| | - Manuel Nicolas
- Office National des Forêts, Direction Forêts et Risques Naturels, Département R&D Boulevard de Constance F-77300 Fontainebleau
| | - Didier Alard
- Université de Bordeaux - INRA, UMR 1202 BioGeco, Allée Geoffroy Saint-Hilaire, F-33615 Pessac, France
| | - Emmanuel Corcket
- Université de Bordeaux - INRA, UMR 1202 BioGeco, Allée Geoffroy Saint-Hilaire, F-33615 Pessac, France
| | - Noémie Gaudio
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, France
| | - Harald Sverdrup
- Industrial Engineering, VR-II, Hjardarhagi 2-6, University of Iceland, IS-107 Reykjavik, Iceland
| | - Anne Probst
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, France.
| |
Collapse
|
12
|
Sicard P, Augustaitis A, Belyazid S, Calfapietra C, de Marco A, Fenn M, Bytnerowicz A, Grulke N, He S, Matyssek R, Serengil Y, Wieser G, Paoletti E. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:977-987. [PMID: 26873061 DOI: 10.1016/j.envpol.2016.01.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 05/16/2023]
Abstract
Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii) Linking genetic control with physiological whole-tree activity; (iii) Epigenetic responses to climate change and air pollution; (iv) Embedding individual tree performance into the multi-factorial stand-level interaction network; (v) Interactions of biogenic and anthropogenic volatile compounds (molecular, functional and ecological bases); (vi) Estimating the potential for carbon/pollution mitigation and cost effectiveness of urban and peri-urban forests; (vii) Selection of trees adapted to the urban environment; (viii) Trophic, competitive and host/parasite relationships under changing pollution and climate; (ix) Atmosphere-biosphere-pedosphere interactions as affected by anthropospheric changes; (x) Statistical analyses for epidemiological investigations; (xi) Use of monitoring for the validation of models; (xii) Holistic view for linking the climate, carbon, N and O3 modelling; (xiii) Inclusion of multiple environmental stresses (biotic and abiotic) in critical load determinations; (xiv) Ecological impacts of N deposition in the under-investigated areas; (xv) Empirical models for mechanistic effects at the local scale; (xvi) Broad-scale N and sulphur deposition input and their effects on forest ecosystem services; (xvii) Measurements of dry deposition of N; (xviii) Assessment of evapotranspiration; (xix) Remote sensing assessment of hydrological parameters; and (xx) Forest management for maximizing water provision and overall forest ecosystem services. Ground-level O3 is still the phytotoxic air pollutant of major concern to forest health. Specific issues about O3 are: (xxi) Developing dose-response relationships and stomatal O3 flux parameterizations for risk assessment, especially, in under-investigated regions; (xxii) Defining biologically based O3 standards for protection thresholds and critical levels; (xxiii) Use of free-air exposure facilities; (xxiv) Assessing O3 impacts on forest ecosystem services.
Collapse
Affiliation(s)
- Pierre Sicard
- ACRI-HE, 260 Route Du Pin Montard BP234, 06904 Sophia-Antipolis Cedex, France.
| | - Algirdas Augustaitis
- Aleksandras Stulginskis University, Studentu 13, Kaunas Dstr., LT-53362 Lithuania.
| | | | | | | | - Mark Fenn
- USDA, Forest Service, PSW Research Station, 4955 Canyon Crest Dr., Riverside, CA 92507, USA.
| | - Andrzej Bytnerowicz
- USDA, Forest Service, PSW Research Station, 4955 Canyon Crest Dr., Riverside, CA 92507, USA.
| | | | - Shang He
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China.
| | - Rainer Matyssek
- Ecophysiology of Plants, Technische Universität München, von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | | | - Gerhard Wieser
- Division of Alpine Timberline Ecophysiology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Rennweg 1, 6020 Innsbruck, Austria.
| | - Elena Paoletti
- IPSP-CNR, Via Madonna Del Piano 10, 50019 Sesto Fiorentino Firenze, Italy.
| |
Collapse
|
13
|
A Hydrological Concept including Lateral Water Flow Compatible with the Biogeochemical Model ForSAFE. HYDROLOGY 2016. [DOI: 10.3390/hydrology3010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Park YS, Baehr C, Larocque GR, Sánchez-Pérez JM, Sauvage S. Ecological Modelling for Ecosystem Sustainability. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2015.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|