1
|
Ani AMMA, Darweesh A, Almashhadani MAA, Babiker I, Abdelrahman A. Lung adenocarcinoma presenting as miliary lung metastasis on imaging. Radiol Case Rep 2024; 19:4702-4707. [PMID: 39228931 PMCID: PMC11366862 DOI: 10.1016/j.radcr.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 09/05/2024] Open
Abstract
Intrapulmonary miliary metastasis is a rare presentation of adenocarcinoma of the lung, characterized by the dissemination of cancer cells throughout the lung parenchyma in different patterns. This case report highlights an unusual presentation of adenocarcinoma of the lung with intrapulmonary miliary metastasis, emphasizing the diagnostic challenges and management considerations. Here, we report a case of a 51-year-old female who presented to the emergency department (ED) with a 2-month history of dry cough, which started after a flu illness and was associated with mild shortness of breath, left-sided chest pain, and miliary nodules on chest imaging. During bronchoscopy, a transbronchial biopsy was taken for further pathological assessment. The results showed histopathological evidence of lung adenocarcinoma.
Collapse
Affiliation(s)
- Ahmed Mansour M. Al Ani
- Medical Imaging/Body Imaging, Hamad Medical Corporation, Alryan street, Post office Box 3050, Doha, Qatar
| | - Adham Darweesh
- Medical Imaging/Body Imaging, Hamad Medical Corporation, Alryan street, Post office Box 3050, Doha, Qatar
| | | | - Isra Babiker
- Hamad Medical Corporation, Alryan street, Post office Box 3050, Doha, Qatar
| | - Amro Abdelrahman
- Hamad Medical Corporation, Alryan street, Post office Box 3050, Doha, Qatar
| |
Collapse
|
2
|
Zhao F, Zhang X, Tian Y, Zhu H, Li S. Integrated machine learning survival framework to decipher diverse cell death patterns for predicting prognosis in lung adenocarcinoma. Genes Immun 2024; 25:409-422. [PMID: 39217182 DOI: 10.1038/s41435-024-00291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Various forms of programmed cell death (PCD) collectively regulate the occurrence, development and metastasis of tumors. Nevertheless, a comprehensive analysis of the diverse types of PCD in lung adenocarcinoma (LUAD) is currently lacking. The study encompassed a total of 1481 genes associated with the regulation of 13 distinct PCD patterns. Ten machine learning algorithms were amalgamated into 101 combinations, from which the optimal algorithm was chosen to formulate an artificial intelligence-derived prognostic signature based on the average C-index across four multicenter cohorts. The established optimal cell death index (CDI) model emerged as an independent risk factor for overall survival, demonstrating robust and consistent performance. Notably, CDI exhibited significantly higher accuracy compared to traditional clinical variables and molecular features. It exhibited superior performance than other published models. By integrating CDI with relevant clinical features, a nomogram with excellent predictive performance was developed. LUAD patients with low CDI score had a higher immune modulators, TIDE scores and immune scores, indicating a better immunotherapy benefit. More importantly, we found that the regulation of antigen presentation is the crucial mechanism of PCD. SCG2 is a key molecule that inhibits the malignant progression of LUAD. CDI holds great potential as a robust and promising tool for enhancing clinical outcomes in patients with LUAD.
Collapse
Affiliation(s)
- Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xu Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanhua Tian
- Second Department of Oncology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haiyong Zhu
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Arrieta O, Arroyo-Hernández M, Soberanis-Piña PD, Viola L, Del Re M, Russo A, de Miguel-Perez D, Cardona AF, Rolfo C. Facing an un-met need in lung cancer screening: The never smokers. Crit Rev Oncol Hematol 2024; 202:104436. [PMID: 38977146 DOI: 10.1016/j.critrevonc.2024.104436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths worldwide and the second most common cancer in both men and women. In addition to smoking, other risk factors, such as environmental tobacco smoke, air pollution, biomass combustion, radon gas, occupational exposure, lung disease, family history of cancer, geographic variability, and genetic factors, play an essential role in developing LC. Current screening guidelines and eligibility criteria have limited efficacy in identifying LC cases (50 %), as most screening programs primarily target subjects with a smoking history as the leading risk factor. Implementing LC screening programs in people who have never smoked (PNS) can significantly impact cancer-specific survival and early disease detection. However, the available evidence regarding the feasibility and effectiveness of such programs is limited. Therefore, further research on LC screening in PNS is warranted to determine the necessary techniques for accurately identifying individuals who should be included in screening programs.
Collapse
Affiliation(s)
- Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.
| | | | | | - Lucia Viola
- Thoracic Oncology Unit, Fundación Neumológica Colombiana, Bogotá, Colombia
| | - Marzia Del Re
- Center for Thoracic Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - Alessandro Russo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Diego de Miguel-Perez
- Center for Thoracic Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - Andrés F Cardona
- Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center 1/ Foundation for Clinical and Applied Cancer Research (FICMAC)/ Molecular Oncology and Biology Systems Research Group (Fox‑G), Universidad El Bosque, Bogotá, Colombia
| | - Christian Rolfo
- Center for Thoracic Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA.
| |
Collapse
|
4
|
Salimi B, Seifi S, Khosravi A, Shiari S, Moradi R, Daneshfard B, Mabani M. Histopathological Patterns of Lung Cancer in Iran: A Single-Center Study. ARCHIVES OF IRANIAN MEDICINE 2024; 27:501-507. [PMID: 39465525 PMCID: PMC11496601 DOI: 10.34172/aim.31133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/27/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Lung cancer (LC) is one of the leading causes of cancer-related deaths worldwide. In Iran, it is the second most common cause of cancer-related deaths for men and the third most common for women. This study aimed to examine the clinicopathological characteristics of Iranian patients with LC. METHODS Clinicopathological data of 1382 patients with primary LC diagnosed over 11 years (2012‒2023) at the "National Institute of Tuberculosis and Lung Disease" (NRITLD), Tehran, Iran, were retrospectively reviewed. RESULTS Adenocarcinoma was the most common type of cancer found in the patients (42.44%). The median age was 59.69 years (mean: 60.41 years) ranging 24-88 years. The mean male-to-female ratio was 3.65. Additionally, 65.84% of patients were smokers. The majority of patients (82.69 %) were diagnosed at an advanced stage (stage IV) of cancer. CONCLUSION Although some of our findings are consistent with those of previous LC studies, there are some discrepancies, especially concerning the smoking status and median age of the Iranian patients. Therefore, additional clinical and epidemiological studies are needed to determine the impact of non-smoking factors, such as environmental exposure and genetic predisposition, on the development of LC.
Collapse
Affiliation(s)
- Babak Salimi
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Sharareh Seifi
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Adnan Khosravi
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Sara Shiari
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Raana Moradi
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Babak Daneshfard
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Persian Medicine Network (PMN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Canadian College of Integrative Medicine, Montreal, Quebec, Canada
| | - Maryam Mabani
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
5
|
Rina A, Maffeo D, Minnai F, Esposito M, Palmieri M, Serio VB, Rosati D, Mari F, Frullanti E, Colombo F. The Genetic Analysis and Clinical Therapy in Lung Cancer: Current Advances and Future Directions. Cancers (Basel) 2024; 16:2882. [PMID: 39199653 PMCID: PMC11352260 DOI: 10.3390/cancers16162882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer, including both non-small cell lung cancer and small cell lung cancer, remains the leading cause of cancer-related mortality worldwide, representing 18% of the total cancer deaths in 2020. Many patients are identified already at an advanced stage with metastatic disease and have a worsening prognosis. Recent advances in the genetic understanding of lung cancer have opened new avenues for personalized treatments and targeted therapies. This review examines the latest discoveries in the genetics of lung cancer, discusses key biomarkers, and analyzes current clinical therapies based on this genetic information. It will conclude with a discussion of future prospects and potential research directions.
Collapse
Affiliation(s)
- Angela Rina
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
| | - Debora Maffeo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Minnai
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Martina Esposito
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Maria Palmieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Viola Bianca Serio
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Diletta Rosati
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Mari
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Colombo
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| |
Collapse
|
6
|
Garrido J, Bernal Y, González E, Blanco A, Sepúlveda-Hermosilla G, Freire M, Oróstica K, Rivas S, Marcelain K, Owen G, Ibañez C, Corvalan A, Garrido M, Assar R, Lizana R, Cáceres-Molina J, Ampuero D, Ramos L, Pérez P, Aren O, Chernilo S, Fernández C, Spencer ML, Aguila JF, Dossetto GB, Olea MA, Rasse G, Sánchez C, de Amorim MG, Bartelli TF, Nunes DN, Dias-Neto E, Freitas HC, Armisén R. Beyond tobacco: genomic disparities in lung cancer between smokers and never-smokers. BMC Cancer 2024; 24:951. [PMID: 39097719 PMCID: PMC11297669 DOI: 10.1186/s12885-024-12737-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Tobacco use is one of the main risk factors for Lung Cancer (LC) development. However, about 10-20% of those diagnosed with the disease are never-smokers. For Non-Small Cell Lung Cancer (NSCLC) there are clear differences in both the clinical presentation and the tumor genomic profiles between smokers and never-smokers. For example, the Lung Adenocarcinoma (LUAD) histological subtype in never-smokers is predominately found in young women of European, North American, and Asian descent. While the clinical presentation and tumor genomic profiles of smokers have been widely examined, never-smokers are usually underrepresented, especially those of a Latin American (LA) background. In this work, we characterize, for the first time, the difference in the genomic profiles between smokers and never-smokers LC patients from Chile. METHODS We conduct a comparison by smoking status in the frequencies of genomic alterations (GAs) including somatic mutations and structural variants (fusions) in a total of 10 clinically relevant genes, including the eight most common actionable genes for LC (EGFR, KRAS, ALK, MET, BRAF, RET, ERBB2, and ROS1) and two established driver genes for malignancies other than LC (PIK3CA and MAP2K1). Study participants were grouped as either smokers (current and former, n = 473) or never-smokers (n = 200) according to self-report tobacco use at enrollment. RESULTS Our findings indicate a higher overall GA frequency for never-smokers compared to smokers (58 vs. 45.7, p-value < 0.01) with the genes EGFR, KRAS, and PIK3CA displaying the highest prevalence while ERBB2, RET, and ROS1 the lowest. Never-smokers present higher frequencies in seven out of the 10 genes; however, smokers harbor a more complex genomic profile. The clearest differences between groups are seen for EGFR (15.6 vs. 21.5, p-value: < 0.01), PIK3CA (6.8 vs 9.5) and ALK (3.2 vs 7.5) in favor of never-smokers, and KRAS (16.3 vs. 11.5) and MAP2K1 (6.6 vs. 3.5) in favor of smokers. Alterations in these genes are comprised almost exclusively by somatic mutations in EGFR and mainly by fusions in ALK, and only by mutations in PIK3CA, KRAS and MAP2K1. CONCLUSIONS We found clear differences in the genomic landscape by smoking status in LUAD patients from Chile, with potential implications for clinical management in these limited-resource settings.
Collapse
Affiliation(s)
- Javiera Garrido
- Centro Genética y Genómica, Instituto de Ciencias E Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Yanara Bernal
- Centro Genética y Genómica, Instituto de Ciencias E Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Evelin González
- Centro Genética y Genómica, Instituto de Ciencias E Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Alejandro Blanco
- Centro Genética y Genómica, Instituto de Ciencias E Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Gonzalo Sepúlveda-Hermosilla
- Centro Genética y Genómica, Instituto de Ciencias E Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- CORFO Center of Excellence in Precision Medicine Pfizer, Santiago, Chile
| | - Matías Freire
- CORFO Center of Excellence in Precision Medicine Pfizer, Santiago, Chile
| | - Karen Oróstica
- Instituto de Investigación Interdisciplinario, Vicerrectoría Académica, Universidad de Talca, Talca, Chile
| | - Solange Rivas
- Centro Genética y Genómica, Instituto de Ciencias E Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Katherine Marcelain
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro Para La Prevención y el Control del Cáncer, Universidad de Chile, Santiago, Chile
| | - Gareth Owen
- Departamento de Hematología y Oncología and Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Immunology and Immunotherapy, Santiago, Chile
| | - Carolina Ibañez
- Departamento de Hematología y Oncología and Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro Corvalan
- Departamento de Hematología y Oncología and Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Garrido
- Centro de Oncología de Precisión, Universidad Mayor, Santiago, Chile
| | - Rodrigo Assar
- CORFO Center of Excellence in Precision Medicine Pfizer, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Lizana
- CORFO Center of Excellence in Precision Medicine Pfizer, Santiago, Chile
| | | | - Diego Ampuero
- CORFO Center of Excellence in Precision Medicine Pfizer, Santiago, Chile
| | - Liliana Ramos
- CORFO Center of Excellence in Precision Medicine Pfizer, Santiago, Chile
| | - Paola Pérez
- NIDCR, National Institute of Health, Bethesda, USA
| | - Osvaldo Aren
- Centro de Investigación Clínica Bradford Hill, Santiago, Chile
| | | | | | - María Loreto Spencer
- Departamento de Patología, Hospital Clínico Regional de Concepción Dr. Guillermo Grant Benavente Chile, Concepcion, Chile
| | - Jacqueline Flores Aguila
- Departamento de Salud Pública, Facultad de Medicina, Universidad Católica del Norte, La Serena, Chile
| | - Giuliano Bernal Dossetto
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, La Serena, Chile
| | - Mónica Ahumada Olea
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro Para La Prevención y el Control del Cáncer, Universidad de Chile, Santiago, Chile
- Departamento de Medicina Interna, Servicio de Oncología, Hospital Clínico de La Universidad de Chile, Santiago, Chile
| | | | - Carolina Sánchez
- Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | | | - Thais F Bartelli
- Laboratory of Medical Genomics, A. C. Camargo Cancer Center, Sao Paulo, Brazil
| | - Diana Noronha Nunes
- Laboratory of Medical Genomics, A. C. Camargo Cancer Center, Sao Paulo, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A. C. Camargo Cancer Center, Sao Paulo, Brazil
- Department of Radiation Oncology, Cancer Institute of New Jersey, Rutgers University, Newark, NJ, USA
| | - Helano C Freitas
- Laboratory of Medical Genomics, A. C. Camargo Cancer Center, Sao Paulo, Brazil
- Department of Clinical Oncology, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | - Ricardo Armisén
- Centro Genética y Genómica, Instituto de Ciencias E Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile.
| |
Collapse
|
7
|
Pecci F, Nakazawa S, Ricciuti B, Harada G, Lee JK, Alessi JV, Barrichello A, Vaz VR, Lamberti G, Di Federico A, Gandhi MM, Gazgalis D, Feng WW, Jiang J, Baldacci S, Locquet MA, Gottlieb FH, Chen MF, Lee E, Haradon D, Smokovich A, Voligny E, Nguyen T, Goel VK, Zimmerman Z, Atwal S, Wang X, Bahcall M, Heist RS, Iqbal S, Gandhi N, Elliott A, Vanderwalde AM, Ma PC, Halmos B, Liu SV, Che J, Schrock AB, Drilon A, Jänne PA, Awad MM. Activating Point Mutations in the MET Kinase Domain Represent a Unique Molecular Subset of Lung Cancer and Other Malignancies Targetable with MET Inhibitors. Cancer Discov 2024; 14:1440-1456. [PMID: 38564707 PMCID: PMC11294820 DOI: 10.1158/2159-8290.cd-23-1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 04/04/2024]
Abstract
Activating point mutations in the MET tyrosine kinase domain (TKD) are oncogenic in a subset of papillary renal cell carcinomas. Here, using comprehensive genomic profiling among >600,000 patients, we identify activating MET TKD point mutations as putative oncogenic driver across diverse cancers, with a frequency of ∼0.5%. The most common mutations in the MET TKD defined as oncogenic or likely oncogenic according to OncoKB resulted in amino acid substitutions at positions H1094, L1195, F1200, D1228, Y1230, M1250, and others. Preclinical modeling of these alterations confirmed their oncogenic potential and also demonstrated differential patterns of sensitivity to type I and type II MET inhibitors. Two patients with metastatic lung adenocarcinoma harboring MET TKD mutations (H1094Y, F1200I) and no other known oncogenic drivers achieved confirmed partial responses to a type I MET inhibitor. Activating MET TKD mutations occur in multiple malignancies and may confer clinical sensitivity to currently available MET inhibitors. Significance: The identification of targetable genomic subsets of cancer has revolutionized precision oncology and offers patients treatments with more selective and effective agents. Here, we demonstrate that activating, oncogenic MET tyrosine kinase domain mutations are found across a diversity of cancer types and are responsive to MET tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Federica Pecci
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Seshiru Nakazawa
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Guilherme Harada
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | | | - Joao V Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Adriana Barrichello
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor R Vaz
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Giuseppe Lamberti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Malini M Gandhi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Dimitris Gazgalis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - William W Feng
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jie Jiang
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Simon Baldacci
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marie-Anaïs Locquet
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Felix H Gottlieb
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Monica F Chen
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Elinton Lee
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Danielle Haradon
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anna Smokovich
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Emma Voligny
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tom Nguyen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Vikas K Goel
- Turning Point Therapeutics, Bristol Myers Squibb Company, San Diego, California
| | - Zachary Zimmerman
- Turning Point Therapeutics, Bristol Myers Squibb Company, San Diego, California
| | - Sumandeep Atwal
- Turning Point Therapeutics, Bristol Myers Squibb Company, San Diego, California
| | - Xinan Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Magda Bahcall
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Sumaiya Iqbal
- The Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | - Patrick C Ma
- Penn State Cancer Institute, Penn State College of Medicine, Penn State University, Hershey, Pennsylvania
| | | | | | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Alexander Drilon
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
8
|
Nagelberg AL, Sihota TS, Chuang YC, Shi R, Chow JLM, English J, MacAulay C, Lam S, Lam WL, Lockwood WW. Integrative genomics identifies SHPRH as a tumor suppressor gene in lung adenocarcinoma that regulates DNA damage response. Br J Cancer 2024; 131:534-550. [PMID: 38890444 PMCID: PMC11300780 DOI: 10.1038/s41416-024-02755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Identification of driver mutations and development of targeted therapies has considerably improved outcomes for lung cancer patients. However, significant limitations remain with the lack of identified drivers in a large subset of patients. Here, we aimed to assess the genomic landscape of lung adenocarcinomas (LUADs) from individuals without a history of tobacco use to reveal new genetic drivers of lung cancer. METHODS Integrative genomic analyses combining whole-exome sequencing, copy number, and mutational information for 83 LUAD tumors was performed and validated using external datasets to identify genetic variants with a predicted functional consequence and assess association with clinical outcomes. LUAD cell lines with alteration of identified candidates were used to functionally characterize tumor suppressive potential using a conditional expression system both in vitro and in vivo. RESULTS We identified 21 genes with evidence of positive selection, including 12 novel candidates that have yet to be characterized in LUAD. In particular, SNF2 Histone Linker PHD RING Helicase (SHPRH) was identified due to its frequency of biallelic disruption and location within the familial susceptibility locus on chromosome arm 6q. We found that low SHPRH mRNA expression is associated with poor survival outcomes in LUAD patients. Furthermore, we showed that re-expression of SHPRH in LUAD cell lines with inactivating alterations for SHPRH reduces their in vitro colony formation and tumor burden in vivo. Finally, we explored the biological pathways associated SHPRH inactivation and found an association with the tolerance of LUAD cells to DNA damage. CONCLUSIONS These data suggest that SHPRH is a tumor suppressor gene in LUAD, whereby its expression is associated with more favorable patient outcomes, reduced tumor and mutational burden, and may serve as a predictor of response to DNA damage. Thus, further exploration into the role of SHPRH in LUAD development may make it a valuable biomarker for predicting LUAD risk and prognosis.
Collapse
Affiliation(s)
- Amy L Nagelberg
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tianna S Sihota
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yu-Chi Chuang
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Justine L M Chow
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - John English
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Calum MacAulay
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Lam
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Wan L Lam
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - William W Lockwood
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Hwang J, Jo S, Cheon E, Kang H, Cho SI. Dose-response risks of all-cause, cancer, and cardiovascular disease mortality according to sex-specific cigarette smoking pack-year quantiles. Tob Induc Dis 2024; 22:TID-22-127. [PMID: 38988742 PMCID: PMC11234345 DOI: 10.18332/tid/189952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
INTRODUCTION This study investigated the risks for all-cause death and death from cancer or cardiovascular diseases due to smoking status and behavior, focusing on differences in smoking duration and amount stratified by sex. METHODS The integrated Korean Genome and Epidemiology Study provided data for 209770 individuals who were classified as never, former, or current smokers, based on their current smoking status. Pack-years were computed using daily average smoking amount and total smoking duration, and were categorized into quantiles separately for men and women. Based on the number of deaths in 2018, hazard ratios (HRs) were estimated for all-cause mortality, as well as for death caused by all cancers, lung cancer, and cardiovascular diseases according to pack-years adjusted for age, household income, marital status, body mass index, physical activity, and alcohol consumption. RESULTS A significant increase in the risk of all-cause mortality was observed for current smokers (men HR=1.90; 95% CI: 1.69-2.14; women HR=2.25; 95% CI: 1.68-2.99) and former smokers (men HR=1.31; 95% CI: 1.17-1.47; women HR=2.35; 95% CI: 1.63-3.39) compared with that for those who had never smoked. Among men, HR for death from lung cancer was 3.13 (95% CI: 2.06-4.75) in former smokers and tended to increase with each pack-year quantile (range HR: 5.72-17.11). Among women, the HR was estimated to be 17.20 (95% CI: 6.22-47.57) only for >3rd quantile. CONCLUSIONS Smoking increases the risks of all-cause death. Considering the persistent risks post-smoking cessation, it is vital to focus on preventing smoking initiation and providing proactive support for successful smoking cessation and maintenance of a smoke-free lifestyle.
Collapse
Affiliation(s)
- Jieun Hwang
- Department of Health Administration, College of Health Science, Dankook University, Cheonan, Republic of Korea
- Institute of Convergence Healthcare, Dankook University, Cheonan, Republic of Korea
| | - Suyoung Jo
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Eunsil Cheon
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Heewon Kang
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Sung-Il Cho
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Dewarajan V, Elsayed N, Foo JB, Tor YS, Low SS, Chai WS. Immunomodulatory gene polymorphisms in non-small cell lung carcinoma susceptibility and survival. Heliyon 2024; 10:e33003. [PMID: 39021960 PMCID: PMC11252712 DOI: 10.1016/j.heliyon.2024.e33003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality and non-small cell lung carcinoma (NSCLC) constitutes 85 % of all lung cancer cases. This malignancy is characterized by multifactorial risk factors, poor prognosis, and deplorable clinical outcome. Considerable evidence indicates that there is inter-individual variability in the lung cancer predisposition and survival due to genetic variations introduced by genetic polymorphisms between individuals, indirectly affecting the lung cancer susceptibility and the patient survival. In the past decades, immune landscape in the tumour environment and host immune response are constantly implicated as determining factor in NSCLC development and patients' survival. With the change of paradigm in NSCLC treatment to immunotherapy and increasing recognition of the role of the immune system in cancer development and survival, the inspection of single nucleotide polymorphisms (SNPs) in immunomodulated markers associated with the risk and prognosis for NSCLC is crucial. Despite extensive studies reported the implication of SNPs in predicting the risk and survival of NSCLC. SNPs in the genes that modulate immune response in NSCLC have not been reviewed before. Hence, this review uncovers the evidence on the genetic polymorphisms of immunomodulatory markers which include immune checkpoints, immune checkpoint inhibitors, chemokines, interleukins, human leukocyte antigen and its receptors, and antigen presenting machinery genes, and their significance in the susceptibility, prognosis and survival in NSCLC. The identification of genetic factors associated with NSCLC risk and survival provides invaluable information for a greater comprehension of the pathogenesis and progression of the disease, also to refine prognosis and personalize clinical care in early and advanced-stages disease.
Collapse
Affiliation(s)
- Vithiya Dewarajan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Nourhan Elsayed
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Yin Sim Tor
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Sze Shin Low
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, PR China
| | - Wai Siong Chai
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, PR China
| |
Collapse
|
11
|
Cho IY, Chang Y, Sung E, Park B, Kang JH, Shin H, Wild SH, Byrne CD, Ryu S. Glycemic status, insulin resistance, and mortality from lung cancer among individuals with and without diabetes. Cancer Metab 2024; 12:17. [PMID: 38902745 PMCID: PMC11188269 DOI: 10.1186/s40170-024-00344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND The effects of glycemic status and insulin resistance on lung cancer remain unclear. We investigated the associations between both glycemic status and insulin resistance, and lung cancer mortality, in a young and middle-aged population with and without diabetes. METHODS This cohort study involved individuals who participated in routine health examinations. Lung cancer mortality was identified using national death records. Cox proportional hazards models were used to calculate hazard ratios (HRs) with 95% CIs for lung cancer mortality risk. RESULTS Among 666,888 individuals (mean age 39.9 ± 10.9 years) followed for 8.3 years (interquartile range, 4.6-12.7), 602 lung cancer deaths occurred. Among individuals without diabetes, the multivariable-adjusted HRs (95% CI) for lung cancer mortality comparing hemoglobin A1c categories (5.7-5.9, 6.0-6.4, and ≥ 6.5% or 39-41, 42-46, and ≥ 48 mmol/mol, respectively) with the reference (< 5.7% or < 39 mmol/mol) were 1.39 (1.13-1.71), 1.72 (1.33-2.20), and 2.22 (1.56-3.17), respectively. Lung cancer mortality was associated with fasting blood glucose categories in a dose-response manner (P for trend = 0.001) and with previously diagnosed diabetes. Insulin resistance (HOMA-IR ≥ 2.5) in individuals without diabetes was also associated with lung cancer mortality (multivariable-adjusted HR, 1.41; 95% CI, 1.13-1.75). These associations remained after adjusting for changing status in glucose, hemoglobin A1c, insulin resistance, smoking status, and other confounders during follow-up as time-varying covariates. CONCLUSIONS Glycemic status within both diabetes and prediabetes ranges and insulin resistance were independently associated with an increased risk of lung cancer mortality.
Collapse
Affiliation(s)
- In Young Cho
- Department of Family Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-Ro, Jongno-Gu, Seoul, 03181, Republic of Korea
- Department of Family Medicine & Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 04514, Republic of Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Samsung Main Building B2, 250 Taepyung-Ro 2Ga, Jung-Gu, Seoul, 04514, Republic of Korea
- Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Eunju Sung
- Department of Family Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-Ro, Jongno-Gu, Seoul, 03181, Republic of Korea.
| | - Boyoung Park
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jae-Heon Kang
- Department of Family Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-Ro, Jongno-Gu, Seoul, 03181, Republic of Korea
| | - Hocheol Shin
- Department of Family Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-Ro, Jongno-Gu, Seoul, 03181, Republic of Korea
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 04514, Republic of Korea
| | - Sarah H Wild
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 04514, Republic of Korea.
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Samsung Main Building B2, 250 Taepyung-Ro 2Ga, Jung-Gu, Seoul, 04514, Republic of Korea.
- Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
| |
Collapse
|
12
|
Park SJ, Ju S, Goh SH, Yoon BH, Park JL, Kim JH, Lee S, Lee SJ, Kwon Y, Lee W, Park KC, Lee GK, Park SY, Kim S, Kim SY, Han JY, Lee C. Proteogenomic Characterization Reveals Estrogen Signaling as a Target for Never-Smoker Lung Adenocarcinoma Patients without EGFR or ALK Alterations. Cancer Res 2024; 84:1491-1503. [PMID: 38607364 DOI: 10.1158/0008-5472.can-23-1551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/24/2023] [Accepted: 01/18/2024] [Indexed: 04/13/2024]
Abstract
Never-smoker lung adenocarcinoma (NSLA) is prevalent in Asian populations, particularly in women. EGFR mutations and anaplastic lymphoma kinase (ALK) fusions are major genetic alterations observed in NSLA, and NSLA with these alterations have been well studied and can be treated with targeted therapies. To provide insights into the molecular profile of NSLA without EGFR and ALK alterations (NENA), we selected 141 NSLA tissues and performed proteogenomic characterization, including whole genome sequencing (WGS), transcriptomic, methylation EPIC array, total proteomic, and phosphoproteomic analyses. Forty patients with NSLA harboring EGFR and ALK alterations and seven patients with NENA with microsatellite instability were excluded. Genome analysis revealed that TP53 (25%), KRAS (22%), and SETD2 (11%) mutations and ROS1 fusions (14%) were the most frequent genetic alterations in NENA patients. Proteogenomic impact analysis revealed that STK11 and ERBB2 somatic mutations had broad effects on cancer-associated genes in NENA. DNA copy number alteration analysis identified 22 prognostic proteins that influenced transcriptomic and proteomic changes. Gene set enrichment analysis revealed estrogen signaling as the key pathway activated in NENA. Increased estrogen signaling was associated with proteogenomic alterations, such as copy number deletions in chromosomes 14 and 21, STK11 mutation, and DNA hypomethylation of LLGL2 and ST14. Finally, saracatinib, an Src inhibitor, was identified as a potential drug for targeting activated estrogen signaling in NENA and was experimentally validated in vitro. Collectively, this study enhanced our understanding of NENA NSLA by elucidating the proteogenomic landscape and proposed saracatinib as a potential treatment for this patient population that lacks effective targeted therapies. SIGNIFICANCE The proteogenomic landscape in never-smoker lung cancer without known driver mutations reveals prognostic proteins and enhanced estrogen signaling that can be targeted as a potential therapeutic strategy to improve patient outcomes.
Collapse
Affiliation(s)
- Seung-Jin Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Shinyeong Ju
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Sung-Ho Goh
- National Cancer Center, Goyang, Republic of Korea
| | - Byoung-Ha Yoon
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jong-Lyul Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jeong-Hwan Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seonjeong Lee
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
| | - Sang-Jin Lee
- National Cancer Center, Goyang, Republic of Korea
| | - Yumi Kwon
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Wonyeop Lee
- National Cancer Center, Goyang, Republic of Korea
| | - Kyung Chan Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | | | | | - Sunshin Kim
- National Cancer Center, Goyang, Republic of Korea
| | - Seon-Young Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji-Youn Han
- National Cancer Center, Goyang, Republic of Korea
| | - Cheolju Lee
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
13
|
Tsai SCS, Wu TC, Lin FCF. Optimizing Precision: A Trajectory Tract Reference Approach to Minimize Complications in CT-Guided Transthoracic Core Biopsy. Diagnostics (Basel) 2024; 14:796. [PMID: 38667442 PMCID: PMC11048995 DOI: 10.3390/diagnostics14080796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The advent of computed tomography (CT)-guided transthoracic needle biopsy has significantly advanced the diagnosis of lung lesions, offering a minimally invasive approach to obtaining tissue samples. However, the technique is not without risks, including pneumothorax and hemorrhage, and it demands high precision to ensure diagnostic accuracy while minimizing complications. This study introduces the Laser Angle Guide Assembly (LAGA), a novel device designed to enhance the accuracy and safety of CT-guided lung biopsies. We retrospectively analyzed 322 CT-guided lung biopsy cases performed with LAGA at a single center over seven years, aiming to evaluate its effectiveness in improving diagnostic yield and reducing procedural risks. The study achieved a diagnostic success rate of 94.3%, with a significant reduction in the need for multiple needle passes, demonstrating a majority of biopsies successfully completed with a single pass. The incidence of pneumothorax stood at 11.1%, which is markedly lower than the reported averages, and only 0.3% of cases necessitated chest tube placement, underscoring the safety benefits of the LAGA system. These findings underscore the potential of LAGA to revolutionize CT-guided lung biopsies by enhancing procedural precision and safety, making it a valuable addition to the diagnostic arsenal against pulmonary lesions.
Collapse
Affiliation(s)
- Stella Chin-Shaw Tsai
- Superintendent Office, Taichung MetroHarbor Hospital, Taichung 43503, Taiwan;
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Tzu-Chin Wu
- Department of Pulmonary Medicine, Chung Shan University Hospital, Taichung 40201, Taiwan;
| | - Frank Cheau-Feng Lin
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Thoracic Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
14
|
Thakkar AB, Subramanian RB, Thakkar SS, Thakkar VR, Thakor P. Biochanin A - A G6PD inhibitor: In silico and in vitro studies in non-small cell lung cancer cells (A549). Toxicol In Vitro 2024; 96:105785. [PMID: 38266663 DOI: 10.1016/j.tiv.2024.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Secondary metabolites from medicinal plants have a well-established therapeutic potential, with many of these chemicals having specialized medical uses. Isoflavonoids, a type of secondary metabolite, have little cytotoxicity against healthy human cells, making them interesting candidates for cancer treatment. Extensive research has been conducted to investigate the chemo-preventive benefits of flavonoids in treating various cancers. Biochanin A (BA), an isoflavonoid abundant in plants such as red clover, soy, peanuts, and chickpeas, was the subject of our present study. This study aimed to determine how BA affected glucose-6-phosphate dehydrogenase (G6PD) in human lung cancer cells. The study provides meaningful insight and a significant impact of BA on the association between metastasis, inflammation, and G6PD inhibition in A549 cells. Comprehensive in vitro tests revealed that BA has anti-inflammatory effects. Molecular docking experiments shed light on BA's high binding affinity for the G6PD receptor. BA substantially decreased the expression of G6PD and other inflammatory and metastasis-related markers. In conclusion, our findings highlight the potential of BA as a therapeutic agent in cancer treatment, specifically by targeting G6PD and related pathways. BA's varied effects, which range from anti-inflammatory capabilities to metastasis reduction, make it an appealing option for future investigation in the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Anjali B Thakkar
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India; P. G. Department of Applied and Interdisciplinary Sciences (IICISST), Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Ramalingam B Subramanian
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India
| | - Sampark S Thakkar
- AKASHGANGA, Shree Kamdhenu Electronics Pvt. Ltd., Vallabh Vidyanagar, Gujarat, India
| | - Vasudev R Thakkar
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India
| | - Parth Thakor
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, Changa, Gujarat, India.
| |
Collapse
|
15
|
Sun Y, Sun J, Ying K, Chen J, Chen T, Tao L, Bian W, Qiu L. EP300 regulates the SLC16A1-AS1-AS1/TCF3 axis to promote lung cancer malignancies through the Wnt signaling pathway. Heliyon 2024; 10:e27727. [PMID: 38515708 PMCID: PMC10955305 DOI: 10.1016/j.heliyon.2024.e27727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Objective To investigate the regulatory mechanism of EP300 in the interaction between SLC16A1-AS1 and TCF3 to activate the Wnt pathway, thereby promoting malignant progression in lung cancer. Methods In lung cancer cell lines, SLC16A1-AS1 was knocked down, and the impact of this knockdown on the malignant progression of lung cancer cells was assessed through clonogenic assays, Transwell assays, and apoptosis experiments. The regulatory relationship between EP300 and SLC16A1-AS1 was investigated through bioinformatic analysis and ChIP experiments. The expression of SLC16A1-AS1 and TCF3 in 56 paired lung cancer tissues was examined using RT-qPCR, and their correlation was analyzed. The interaction between TCF3 and SLC16A1-AS1 was explored through bioinformatic analysis and CoIP experiments. Activation of the Wnt/β-catenin pathway was assessed by detecting the accumulation of β-catenin in the nucleus through Western blotting. The role of EP300 in regulating the effect of SLC16A1-AS1/TCF3-mediated Wnt/β-catenin signaling on lung cancer malignant progression was validated through in vitro and in vivo experiments. Results SLC16A1-AS1 is highly expressed in lung cancer and regulates its malignant progression. EP300 mediates histone modifications on the SLC16A1-AS1 promoter, thus controlling its expression. SLC16A1-AS1 exhibits specific interactions with TCF3, and the SLC16A1-AS1/TCF3 complex activates the Wnt/β-catenin pathway. EP300 plays a critical role in regulating the impact of SLC16A1-AS1/TCF3-mediated Wnt/β-catenin signaling on lung cancer malignant progression. Conclusion EP300 regulates the SLC16A1-AS1/TCF3-mediated Wnt/β-catenin signaling pathway, influencing the malignant progression of lung cancer.
Collapse
Affiliation(s)
- Yunhao Sun
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Jian Sun
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Kaijun Ying
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Jinjin Chen
- Oncology Department, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Tingting Chen
- Department of Emergency, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Leilei Tao
- Oncology Department, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Weigang Bian
- Oncology Department, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Limin Qiu
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| |
Collapse
|
16
|
Pluchart H, Chanoine S, Moro-Sibilot D, Chouaid C, Frey G, Villa J, Degano B, Giaj Levra M, Bedouch P, Toffart AC. Lung cancer, comorbidities, and medication: the infernal trio. Front Pharmacol 2024; 14:1016976. [PMID: 38450055 PMCID: PMC10916800 DOI: 10.3389/fphar.2023.1016976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/25/2023] [Indexed: 03/08/2024] Open
Abstract
Most patients with lung cancer are smokers and are of advanced age. They are therefore at high risk of having age- and lifestyle-related comorbidities. These comorbidities are subject to treatment or even polypharmacy. There is growing evidence of a link between lung cancer, comorbidities and medications. The relationships between these entities are complex. The presence of comorbidities and their treatments influence the time of cancer diagnosis, as well as the diagnostic and treatment strategy. On the other hand, cancer treatment may have an impact on the patient's comorbidities such as renal failure, pneumonitis or endocrinopathies. This review highlights how some comorbidities may have an impact on lung cancer presentation and may require treatment adjustments. Reciprocal influences between the treatment of comorbidities and anticancer therapy will also be discussed.
Collapse
Affiliation(s)
- Hélène Pluchart
- Pôle Pharmacie, Centre Hospitalier Universitaire Grenoble Alpes, La Tronche, France
- Université Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC UMR5525, Grenoble, France
| | - Sébastien Chanoine
- Pôle Pharmacie, Centre Hospitalier Universitaire Grenoble Alpes, La Tronche, France
- Université Grenoble Alpes, Grenoble, France
- Institut pour l’Avancée des Biosciences, UGA/INSERM U1209/CNRS 5309, Université Grenoble Alpes, La Tronche, France
| | - Denis Moro-Sibilot
- Université Grenoble Alpes, Grenoble, France
- Institut pour l’Avancée des Biosciences, UGA/INSERM U1209/CNRS 5309, Université Grenoble Alpes, La Tronche, France
- Service Hospitalier Universitaire de Pneumologie Physiologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Christos Chouaid
- Service de Pneumologie, Centre Hospitalier Intercommunal de Créteil, Créteil, France
- Inserm U955, UPEC, IMRB, équipe CEpiA, CréteilFrance
| | - Gil Frey
- Service de Chirurgie Thoracique, Vasculaire et Endocrinienne, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Julie Villa
- Service de Radiothérapie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Bruno Degano
- Université Grenoble Alpes, Grenoble, France
- Service Hospitalier Universitaire de Pneumologie Physiologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Laboratoire HP2, INSERM U1042, Université Grenoble Alpes, Grenoble, France
| | - Matteo Giaj Levra
- Institut pour l’Avancée des Biosciences, UGA/INSERM U1209/CNRS 5309, Université Grenoble Alpes, La Tronche, France
- Service Hospitalier Universitaire de Pneumologie Physiologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Pierrick Bedouch
- Pôle Pharmacie, Centre Hospitalier Universitaire Grenoble Alpes, La Tronche, France
- Université Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC UMR5525, Grenoble, France
| | - Anne-Claire Toffart
- Université Grenoble Alpes, Grenoble, France
- Institut pour l’Avancée des Biosciences, UGA/INSERM U1209/CNRS 5309, Université Grenoble Alpes, La Tronche, France
- Service Hospitalier Universitaire de Pneumologie Physiologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| |
Collapse
|
17
|
Lee H, Hanson HA, Logan J, Maguire D, Kapadia A, Dewji S, Agasthya G. Evaluating county-level lung cancer incidence from environmental radiation exposure, PM 2.5, and other exposures with regression and machine learning models. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:82. [PMID: 38367080 PMCID: PMC10874317 DOI: 10.1007/s10653-023-01820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024]
Abstract
Characterizing the interplay between exposures shaping the human exposome is vital for uncovering the etiology of complex diseases. For example, cancer risk is modified by a range of multifactorial external environmental exposures. Environmental, socioeconomic, and lifestyle factors all shape lung cancer risk. However, epidemiological studies of radon aimed at identifying populations at high risk for lung cancer often fail to consider multiple exposures simultaneously. For example, moderating factors, such as PM2.5, may affect the transport of radon progeny to lung tissue. This ecological analysis leveraged a population-level dataset from the National Cancer Institute's Surveillance, Epidemiology, and End-Results data (2013-17) to simultaneously investigate the effect of multiple sources of low-dose radiation (gross [Formula: see text] activity and indoor radon) and PM2.5 on lung cancer incidence rates in the USA. County-level factors (environmental, sociodemographic, lifestyle) were controlled for, and Poisson regression and random forest models were used to assess the association between radon exposure and lung and bronchus cancer incidence rates. Tree-based machine learning (ML) method perform better than traditional regression: Poisson regression: 6.29/7.13 (mean absolute percentage error, MAPE), 12.70/12.77 (root mean square error, RMSE); Poisson random forest regression: 1.22/1.16 (MAPE), 8.01/8.15 (RMSE). The effect of PM2.5 increased with the concentration of environmental radon, thereby confirming findings from previous studies that investigated the possible synergistic effect of radon and PM2.5 on health outcomes. In summary, the results demonstrated (1) a need to consider multiple environmental exposures when assessing radon exposure's association with lung cancer risk, thereby highlighting (1) the importance of an exposomics framework and (2) that employing ML models may capture the complex interplay between environmental exposures and health, as in the case of indoor radon exposure and lung cancer incidence.
Collapse
Affiliation(s)
- Heechan Lee
- Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, Atlanta, GA, 30332, USA
- Advanced Computing for Health Sciences Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Heidi A Hanson
- Advanced Computing for Health Sciences Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Jeremy Logan
- Data Engineering Group, Data and AI Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Dakotah Maguire
- Advanced Computing for Health Sciences Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Anuj Kapadia
- Advanced Computing for Health Sciences Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Shaheen Dewji
- Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, Atlanta, GA, 30332, USA
| | - Greeshma Agasthya
- Advanced Computing for Health Sciences Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| |
Collapse
|
18
|
Zhao F, Su L, Wang X, Luan J, Zhang X, Li Y, Li S, Hu L. Molecular map of disulfidptosis-related genes in lung adenocarcinoma: the perspective toward immune microenvironment and prognosis. Clin Epigenetics 2024; 16:26. [PMID: 38342890 PMCID: PMC10860275 DOI: 10.1186/s13148-024-01632-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/18/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Disulfidptosis is a recently discovered form of programmed cell death that could impact cancer development. Nevertheless, the prognostic significance of disulfidptosis-related genes (DRGs) in lung adenocarcinoma (LUAD) requires further clarification. METHODS This study systematically explores the genetic and transcriptional variability, prognostic relevance, and expression profiles of DRGs. Clusters related to disulfidptosis were identified through consensus clustering. We used single-sample gene set enrichment analysis and ESTIMATE to assess the tumor microenvironment (TME) in different subgroups. We conducted a functional analysis of differentially expressed genes between subgroups, which involved gene ontology, the Kyoto encyclopedia of genes and genomes, and gene set variation analysis, in order to elucidate their functional status. Prognostic risk models were developed using univariate Cox regression and the least absolute shrinkage and selection operator regression. Additionally, single-cell clustering and cell communication analysis were conducted to enhance the understanding of the importance of signature genes. Lastly, qRT-PCR was employed to validate the prognostic model. RESULTS Two clearly defined DRG clusters were identified through a consensus-based, unsupervised clustering analysis. Observations were made concerning the correlation between changes in multilayer DRG and various clinical characteristics, prognosis, and the infiltration of TME cells. A well-executed risk assessment model, known as the DRG score, was developed to predict the prognosis of LUAD patients. A high DRG score indicates increased TME cell infiltration, a higher mutation burden, elevated TME scores, and a poorer prognosis. Additionally, the DRG score showed a significant correlation with the tumor mutation burden score and the tumor immune dysfunction and exclusion score. Subsequently, a nomogram was established for facilitating the clinical application of the DRG score, showing good predictive ability and calibration. Additionally, crucial DRGs were further validated by single-cell sequencing data. Finally, crucial DRGs were further validated by qRT-PCR and immunohistochemistry. CONCLUSION Our new DRG signature risk score can predict the immune landscape and prognosis of LUAD. It also serves as a reference for LUAD's immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Lei Su
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, People's Republic of China
| | - Xuefeng Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, People's Republic of China
| | - Jiusong Luan
- Pulmonary and Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, People's Republic of China
| | - Xin Zhang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, People's Republic of China
| | - Yishuai Li
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang, 050000, Hebei, People's Republic of China.
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.
| | - Ling Hu
- Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, People's Republic of China.
| |
Collapse
|
19
|
Qian S, Liu J, Liao W, Wang F. METTL14 drives growth and metastasis of non-small cell lung cancer by regulating pri-miR-93-5p maturation and TXNIP expression. Genes Genomics 2024; 46:213-229. [PMID: 37594665 DOI: 10.1007/s13258-023-01436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a prevalent and aggressive malignancy responsible for a significant number of cancer-related deaths worldwide. Unraveling the molecular mechanisms governing NSCLC growth and metastasis is crucial for the identification of novel therapeutic targets and the development of effective anti-cancer strategies. One such mechanism of interest is the involvement of METTL14, an RNA methyltransferase implicated in various cellular processes, in NSCLC progression. OBJECTIVE The objective of this study was to investigate the role of METTL14 in NSCLC development and metastasis and to elucidate the underlying molecular mechanisms. By understanding the impact of METTL14 on NSCLC pathogenesis, the study aimed to identify potential avenues for targeted therapies in NSCLC treatment. METHODS We used bioinformatics and high-throughput transcriptome sequencing analyses to screen regulatory mechanisms affecting NSCLC. The Kaplan-Meier method assessed the correlation between METTL14 expression and the prognosis of NSCLC patients. The effects of manipulated METTL14 on malignant phenotypes of NSCLC cells were examined by colony formation assay, flow cytometry, scratch assay, and Transwell assay. The tumorigenic capacity and metastatic potential of NSCLC cells in vivo were evaluated in nude mice. RESULTS METTL14 was overexpressed in NSCLC tissues and cell lines. Its high expression indicated a poor prognosis for NSCLC patients. METTL14 silencing promoted apoptosis and repressed proliferation, migration, and invasion of NSCLC cells. miR-93-5p targeted and inhibited TXNIP. METTL14 increased miR-93-5p expression and matured pri-miR-93-5p through m6A alteration to inhibit TXNIP, thereby inhibiting NSCLC cell apoptosis. By controlling the miR-93-5p/TXNIP axis, METTL14 increased the tumorigenic potential and lung metastasis of NSCLC cells in nude mice. CONCLUSION This study revealed a role for METTL14 in the contribution to NSCLC development and metastasis and identified METTL14 as a potential target for NSCLC treatment.
Collapse
Affiliation(s)
- Shuai Qian
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100, Minjiang Avenue, Kecheng District, Quzhou, 324000, Zhejiang, People's Republic of China
| | - Jun Liu
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100, Minjiang Avenue, Kecheng District, Quzhou, 324000, Zhejiang, People's Republic of China
| | - Wenliang Liao
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100, Minjiang Avenue, Kecheng District, Quzhou, 324000, Zhejiang, People's Republic of China
| | - Fengping Wang
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100, Minjiang Avenue, Kecheng District, Quzhou, 324000, Zhejiang, People's Republic of China.
| |
Collapse
|
20
|
Zhang S, Liu L, Shi S, He H, Shen Q, Wang H, Qin S, Chang J, Zhong R. Bidirectional Association Between Cardiovascular Disease and Lung Cancer in a Prospective Cohort Study. J Thorac Oncol 2024; 19:80-93. [PMID: 37703998 DOI: 10.1016/j.jtho.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION The study aimed to prospectively investigate the bidirectional association between cardiovascular disease (CVD) and lung cancer, and whether this association differs across genetic risk levels. METHODS This study prospectively followed 455,804 participants from the United Kingdom Biobank cohort who were free of lung cancer at baseline. Cox proportional hazard models were used to estimate the hazard ratio (HR) for incident lung cancer according to CVD status. In parallel, similar approaches were used to assess the risk of incident CVD according to lung cancer status among 478,756 participants free of CVD at baseline. The bidirectional causal relations between these conditions were assessed using Mendelian randomization analysis. Besides, polygenic risk scores were estimated by integrating genome-wide association studies identified risk variants. RESULTS During 4,007,477 person-years of follow-up, 2006 incident lung cancer cases were documented. Compared with participants without CVD, those with CVD had HRs (95% confidence interval [CI]) of 1.49 (1.30-1.71) for NSCLC, 1.80 (1.39-2.34) for lung squamous cell carcinoma (LUSC), and 1.25 (1.01-1.56) for lung adenocarcinoma (LUAD). After stratification by smoking status, significant associations of CVD with lung cancer risk were observed in former smokers (HR = 1.44, 95% CI: 1.20-1.74) and current smokers (HR = 1.38, 95% CI: 1.13-1.69), but not in never-smokers (HR = 0.98, 95% CI: 0.60-1.61). In addition, CVD was associated with lung cancer risk across each genetic risk level (pheterogeneity = 0.336). In the second analysis, 32,974 incident CVD cases were recorded. Compared with those without lung cancer, the HRs (95% CI) for CVD were 2.33 (1.29-4.21) in NSCLC, 3.66 (1.65-8.14) in LUAD, and 1.98 (0.64-6.14) in LUSC. In particular, participants with lung cancer had a high risk of incident CVD at a high genetic risk level (HR = 3.79, 95% CI: 1.57-9.13). No causal relations between these conditions were observed in Mendelian randomization analysis. CONCLUSIONS CVD is associated with an increased risk of NSCLC including LUSC and LUAD. NSCLC, particularly LUAD, is associated with a higher CVD risk. Awareness of this bidirectional association may improve prevention and treatment strategies for both diseases. Future clinical demands will require a greater focus on cardiac oncology.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lei Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shanshan Shi
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Heng He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, People's Republic of China
| | - Qian Shen
- Department of Epidemiology and Biostatistics and Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Haoxue Wang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shifan Qin
- Department of Epidemiology and Biostatistics and Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
21
|
Yang Y, Yuan S, Yan S, Dong K, Yang Y. Missense variants in CYP4B1 associated with increased risk of lung cancer among Chinese Han population. World J Surg Oncol 2023; 21:352. [PMID: 37950293 PMCID: PMC10638751 DOI: 10.1186/s12957-023-03223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/14/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION Understanding the etiology and risk factors of lung cancer (LC) is the key to developing scientific and effective prevention and control strategies for LC. CYP4B1 genetic polymorphism has been reported to be associated with susceptibility to various diseases. We aimed to explore the association between CYP4B1 genetic variants and LC susceptibility. METHODS One thousand three hundred thirty-nine participants were recruited to perform an association analysis through SNPStats online software. Statistical analysis of this study was mainly completed by SPSS 22.0 software. False-positive report probability analysis (FPRP) to detect whether the positive findings were noteworthy. Finally, the interaction of SNP-SNP in LC risk was evaluated by multi-factor dimensionality reduction. RESULTS We found evidence that missense variants in CYP4B1 (rs2297810, rs4646491, and rs2297809) are associated with LC susceptibility. In particular, genotype GA of CYP4B1-rs2297810 was significantly associated with an increased risk of LC in both overall and stratified analyses (genotype GA: OR (95% CI) = 1.35 (1.08-1.69), p = 0.010). CYP4B1-rs4646491 (overdominant: OR (95% CI) = 1.30 (1.04-1.62), p = 0.023) and CYP4B1-rs2297809 (genotype CT: OR (95% CI) = 1.26 (1.01-1.59), p = 0.046) are also associated with an increased risk of LC. FPRP analysis showed that all positive results in this study are noteworthy findings CONCLUSION: Three missense variants in CYP4B1 (rs2297810, rs4646491, and rs2297809) are associated with increasing risk of LC.
Collapse
Affiliation(s)
- Yongqin Yang
- Department of General Surgery, Xi'an Yanliang 630 Hospital, Shaan Xi, China
| | - Shan Yuan
- Department of Laboratory, Xi'an Yanliang 630 Hospital, East Renmin Road, Yanliang District, Xi'an City, 710000, Shaanxi Province, China
| | - Shouchun Yan
- Department of Emergency Medicine, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaan Xi, China
| | - Kuaini Dong
- Department of Laboratory, Xi'an Yanliang 630 Hospital, East Renmin Road, Yanliang District, Xi'an City, 710000, Shaanxi Province, China.
| | - Yonghui Yang
- Department of Laboratory, Xi'an Yanliang 630 Hospital, East Renmin Road, Yanliang District, Xi'an City, 710000, Shaanxi Province, China
| |
Collapse
|
22
|
Chen G, Wei RS, Ma J, Li XH, Feng L, Yu JR. FOXA1 prolongs S phase and promotes cancer progression in non-small cell lung cancer through upregulation of CDC5L and activation of the ERK1/2 and JAK2 pathways. Kaohsiung J Med Sci 2023; 39:1077-1086. [PMID: 37658700 DOI: 10.1002/kjm2.12737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 09/03/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) causes high mortality worldwide; however, its molecular pathways have not been fully investigated. The relationship between FOXA1 and CDC5L as well as their roles in NSCLC have not been comprehensively studied. Clinical tissues were collected from 78 NSCLC patients for clinical studies. The BEAS-2B human normal lung epithelial cell line and the A549, Calu-3, H526 and H2170 human NSCLC cell lines were used for in vitro studies. sh-FOXA1 and oe-CDC5L constructs were used to generate knockdown and overexpression models, respectively. The CCK-8 assay was used to analyze cell viability. The cell cycle and apoptosis were evaluated by flow cytometry analysis. The relationship between FOXA1 and CDC5L was demonstrated using dual-luciferase and ChIP assays. Gene levels were examined via immunohistochemistry, qRT-PCR and western blot analysis. FOXA1 levels were increased in NSCLC clinical tissues and cell lines. Depletion of FOXA1 increased the apoptosis rate and increased the proportion of cells in G2/M phase. In addition, we demonstrated that FOXA1 was directly bound to the promoter of CDC5L and that depletion of FOXA1 inhibited CDC5L expression. Overexpression of CDC5L induced ERK1/2 phosphorylation, induced JAK2 phosphorylation, inhibited cell apoptosis, prolonged S phase, and significantly reversed the effects of FOXA1 knockdown on the progression of NSCLC. The present study demonstrated that FOXA1 prolongs S phase and promotes NSCLC progression through upregulation of CDC5L and activation of the ERK1/2 and JAK2 pathways.
Collapse
Affiliation(s)
- Gang Chen
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Rui-Shi Wei
- Department of Thoracic Surgery, Changzhou City Fourth People's Hospital/Changzhou Cancer Hospital, Changzhou, Jiangsu, People's Republic of China
| | - Jie Ma
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Xin-Hua Li
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Li Feng
- Department of Thoracic Surgery, Changzhou City Fourth People's Hospital/Changzhou Cancer Hospital, Changzhou, Jiangsu, People's Republic of China
| | - Jian-Rong Yu
- Department of Thoracic Surgery, Changzhou City Fourth People's Hospital/Changzhou Cancer Hospital, Changzhou, Jiangsu, People's Republic of China
| |
Collapse
|
23
|
Chien LH, Jiang HF, Tsai FY, Chang HY, Freedman ND, Rothman N, Lan Q, Hsiung CA, Chang IS. Incidence of Lung Adenocarcinoma by Age, Sex, and Smoking Status in Taiwan. JAMA Netw Open 2023; 6:e2340704. [PMID: 37910104 PMCID: PMC10620613 DOI: 10.1001/jamanetworkopen.2023.40704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023] Open
Abstract
Importance Knowing whether the effects of smoking and other risk factors with lung adenocarcinoma (ADC) incidence varies by sex would provide information on lung cancer prevention strategies. Objective To evaluate whether women in Taiwan have higher age- and tumor stage-specific lung ADC incidence rates than men irrespective of smoking status (ie, ever smoker or never smoker). Design, Setting, and Participants This population-based cohort study used data sets synthesized from the Taiwan Cancer Registry (TCR) from 1979 to 2019; the TCR Long Form (TCRLF) from 2011 to 2019, which provides individual-level smoking and tumor stage information; the Taiwan Cause of Death Database (TCOD) from 1985 to 2019; the National Health Insurance Research Database (NHIRD) from 2000 to 2020; the Monthly Bulletin of Interior Statistics (MBIS) from 2011 to 2019; the National Health Interview Survey from 2001, 2005, 2009, 2013, and 2017; and Taiwan Biobank data from 2008 to 2021. Included patients were aged 40 to 84 years and had any invasive lung cancer from January 1, 2011, to December 31, 2019. Exposure Smoking status. Main Outcomes and Measures The main outcomes were age-specific female-to-male incidence rate ratios (IRRs) of lung ADC by smoking status and tumor stage. Linked data from the TCR, TCOD, NHIRD, Taiwan National Health Interview Survey, and MBIS were used to estimate the age- and sex-specific numbers of cancer-free individuals at midyears from 2011 to 2019 by smoking status. Using the TCR and TCRLF, age-, sex-, tumor stage-, and diagnosis year-specific numbers of patients with lung ADC from 2011 to 2019 by smoking status were estimated. Results A total of 61 285 patients (32 599 women [53.2%]) aged 40 to 84 years (mean [SD] age, 64.66 [10.79] years) in the Taiwanese population of approximately 23 million were diagnosed with invasive lung ADC as their first lifetime cancer between 2011 and 2019. Among smokers, men had higher tobacco use by almost all examined metrics, including nearly twice the mean (SD) number of pack-years smoked (eg, 7.87 [8.30] for men aged 30-34 years vs 4.38 [5.27] for women aged 30-34 years). For 5-year age bands between 40 and 84 years, incidence of lung ADC was significantly higher among females than males for nearly all age groups irrespective of tumor stage and smoking status (eg, for the age group 70-74 years, the female-to-male IRR for late-stage lung ADC among never smokers was 1.38 [95% CI, 1.30-1.50]). Conclusions and Relevance In this cohort study, women had higher age- and stage-specific lung ADC incidence rates than men in Taiwan for both never and ever smokers, suggesting the possibility of differential exposures between sexes to risk factors other than smoking and the potential modification of ADC risk factors by sex. Further work is needed to determine whether this pattern replicates in other populations, discover the causes of lung ADC, and put preventive measures in place.
Collapse
Affiliation(s)
- Li-Hsin Chien
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
- Department of Applied Mathematics, Chung-Yuan Christian University, Chung-Li, Taiwan
| | - Hsin-Fang Jiang
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Hsing-Yi Chang
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Chao A. Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
24
|
Choi E, Su CC, Wu JT, Aredo JV, Neal JW, Leung AN, Backhus LM, Lui NS, Le Marchand L, Stram DO, Liang SY, Cheng I, Wakelee HA, Han SS. Second Primary Lung Cancer Among Lung Cancer Survivors Who Never Smoked. JAMA Netw Open 2023; 6:e2343278. [PMID: 37966839 PMCID: PMC10652150 DOI: 10.1001/jamanetworkopen.2023.43278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
Importance Lung cancer among never-smokers accounts for 25% of all lung cancers in the US; recent therapeutic advances have improved survival among patients with initial primary lung cancer (IPLC), who are now at high risk of developing second primary lung cancer (SPLC). As smoking rates continue to decline in the US, it is critical to examine more closely the epidemiology of lung cancer among patients who never smoked, including their risk for SPLC. Objective To estimate and compare the cumulative SPLC incidence among lung cancer survivors who have never smoked vs those who have ever smoked. Design, Setting, and Participants This population-based prospective cohort study used data from the Multiethnic Cohort Study (MEC), which enrolled participants between April 18, 1993, and December 31, 1996, with follow-up through July 1, 2017. Eligible individuals for this study were aged 45 to 75 years and had complete smoking data at baseline. These participants were followed up for IPLC and further SPLC development through the Surveillance, Epidemiology, and End Results registry. The data were analyzed from July 1, 2022, to January 31, 2023. Exposures Never-smoking vs ever-smoking exposure at MEC enrollment. Main Outcomes and Measures The study had 2 primary outcomes: (1) 10-year cumulative incidence of IPLC in the entire study cohort and 10-year cumulative incidence of SPLC among patients with IPLC and (2) standardized incidence ratio (SIR) (calculated as the SPLC incidence divided by the IPLC incidence) by smoking history. Results Among 211 414 MEC participants, 7161 (3.96%) developed IPLC over 4 038 007 person-years, and 163 (2.28%) developed SPLC over 16 470 person-years. Of the participants with IPLC, the mean (SD) age at cohort enrollment was 63.6 (7.7) years, 4031 (56.3%) were male, and 3131 (43.7%) were female. The 10-year cumulative IPLC incidence was 2.40% (95% CI, 2.31%-2.49%) among ever-smokers, which was 7 times higher than never-smokers (0.34%; 95% CI, 0.30%-0.37%). However, the 10-year cumulative SPLC incidence following IPLC was as high among never-smokers (2.84%; 95% CI, 1.50%-4.18%) as ever-smokers (2.72%; 95% CI, 2.24%-3.20%), which led to a substantially higher SIR for never-smokers (14.50; 95% CI, 8.73-22.65) vs ever-smokers (3.50; 95% CI, 2.95-4.12). Conclusions and Relevance The findings indicate that SPLC risk among lung cancer survivors who never smoked is as high as among those with IPLC who ever-smoked, highlighting the need to identify risk factors for SPLC among patients who never smoked and to develop a targeted surveillance strategy.
Collapse
Affiliation(s)
- Eunji Choi
- Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, California
| | - Chloe C. Su
- Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, California
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California
| | - Julie T. Wu
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Joel W. Neal
- Department of Medicine, Stanford University School of Medicine, Stanford, California
- Stanford Cancer Institute, Stanford, California
| | - Ann N. Leung
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Leah M. Backhus
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Natalie S. Lui
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Loïc Le Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu
| | - Daniel O. Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Su-Ying Liang
- Sutter Health, Palo Alto Medical Foundation Research Institute, Palo Alto, California
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Heather A. Wakelee
- Department of Medicine, Stanford University School of Medicine, Stanford, California
- Stanford Cancer Institute, Stanford, California
| | - Summer S. Han
- Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, California
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California
- Stanford Cancer Institute, Stanford, California
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
25
|
Léonce C, Guerriau C, Chalabreysse L, Duruisseaux M, Couraud S, Brevet M, Bringuier PP, Poncet DA. Comparison and Validation of Rapid Molecular Testing Methods for Theranostic Epidermal Growth Factor Receptor Alterations in Lung Cancer: Idylla versus Digital Droplet PCR. Int J Mol Sci 2023; 24:15684. [PMID: 37958668 PMCID: PMC10648419 DOI: 10.3390/ijms242115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Targeting EGFR alterations, particularly the L858R (Exon 21) mutation and Exon 19 deletion (del19), has significantly improved the survival of lung cancer patients. From now on, the issue is to shorten the time to treatment. Here, we challenge two well-known rapid strategies for EGFR testing: the cartridge-based platform Idylla™ (Biocartis) and a digital droplet PCR (ddPCR) approach (ID_Solution). To thoroughly investigate each testing performance, we selected a highly comprehensive cohort of 39 unique del19 (in comparison, the cbioportal contains 40 unique del19), and 9 samples bearing unique polymorphisms in exon 19. Additional L858R (N = 24), L861Q (N = 1), del19 (N = 63), and WT samples (N = 34) were used to determine clear technical and biological cutoffs. A total of 122 DNA samples extracted from formaldehyde-fixed samples was used as input. No false positive results were reported for either of the technologies, as long as careful droplet selection (ddPCR) was ensured for two polymorphisms. ddPCR demonstrated higher sensitivity in detecting unique del19 (92.3%, 36/39) compared to Idylla (67.7%, 21/31). However, considering the prevalence of del19 and L858R in the lung cancer population, the adjusted theranostic values were similar (96.51% and 95.26%, respectively). ddPCR performs better for small specimens and low tumoral content, but in other situations, Idylla is an alternative (especially if a molecular platform is absent).
Collapse
Affiliation(s)
- Camille Léonce
- Department of Pathology, Tumor Molecular Biology Unit, Groupement Hospitalier Est, Hospices Civils de Lyon, 69394 Bron, France; (C.L.); (C.G.); (L.C.); (M.B.); (P.-P.B.)
- University of Lyon, Université Claude Bernard Lyon 1, 69100 Lyon, France; (M.D.); (S.C.)
- Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, 69008 Lyon, France
| | - Clémence Guerriau
- Department of Pathology, Tumor Molecular Biology Unit, Groupement Hospitalier Est, Hospices Civils de Lyon, 69394 Bron, France; (C.L.); (C.G.); (L.C.); (M.B.); (P.-P.B.)
- CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) Laboratory, Team Chromatin Dynamics, Nuclear Domains, Virus, 69008 Lyon, France
| | - Lara Chalabreysse
- Department of Pathology, Tumor Molecular Biology Unit, Groupement Hospitalier Est, Hospices Civils de Lyon, 69394 Bron, France; (C.L.); (C.G.); (L.C.); (M.B.); (P.-P.B.)
- University of Lyon, Université Claude Bernard Lyon 1, 69100 Lyon, France; (M.D.); (S.C.)
| | - Michaël Duruisseaux
- University of Lyon, Université Claude Bernard Lyon 1, 69100 Lyon, France; (M.D.); (S.C.)
- Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, 69008 Lyon, France
- Respiratory Department and Early Phase, Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, 69100 Lyon, France
| | - Sébastien Couraud
- University of Lyon, Université Claude Bernard Lyon 1, 69100 Lyon, France; (M.D.); (S.C.)
- Department of Pulmonology and Thoracic Oncology, Lyon Sud Hospital, 69495 Pierre Bénite, France
| | - Marie Brevet
- Department of Pathology, Tumor Molecular Biology Unit, Groupement Hospitalier Est, Hospices Civils de Lyon, 69394 Bron, France; (C.L.); (C.G.); (L.C.); (M.B.); (P.-P.B.)
- University of Lyon, Université Claude Bernard Lyon 1, 69100 Lyon, France; (M.D.); (S.C.)
| | - Pierre-Paul Bringuier
- Department of Pathology, Tumor Molecular Biology Unit, Groupement Hospitalier Est, Hospices Civils de Lyon, 69394 Bron, France; (C.L.); (C.G.); (L.C.); (M.B.); (P.-P.B.)
- University of Lyon, Université Claude Bernard Lyon 1, 69100 Lyon, France; (M.D.); (S.C.)
| | - Delphine Aude Poncet
- Department of Pathology, Tumor Molecular Biology Unit, Groupement Hospitalier Est, Hospices Civils de Lyon, 69394 Bron, France; (C.L.); (C.G.); (L.C.); (M.B.); (P.-P.B.)
- University of Lyon, Université Claude Bernard Lyon 1, 69100 Lyon, France; (M.D.); (S.C.)
- CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) Laboratory, Team Chromatin Dynamics, Nuclear Domains, Virus, 69008 Lyon, France
| |
Collapse
|
26
|
Richenberg G, Francis A, Owen CN, Gray V, Robinson T, Gabriel AAG, Lawrenson K, Crosbie EJ, Schildkraut JM, Mckay JD, Gaunt TR, Relton CL, Vincent EE, Kar SP. The tumor multi-omic landscape of endometrial cancers developed on a germline genetic background of adiposity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.09.23296765. [PMID: 37873386 PMCID: PMC10592984 DOI: 10.1101/2023.10.09.23296765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
High body mass index (BMI) is a causal risk factor for endometrial cancer but the tumor molecular mechanisms affected by adiposity and their therapeutic relevance remain poorly understood. Here we characterize the tumor multi-omic landscape of endometrial cancers that have developed on a background of lifelong germline genetic exposure to elevated BMI. We built a polygenic score (PGS) for BMI in women using data on independent, genome-wide significant variants associated with adult BMI in 434,794 women. We performed germline (blood) genotype quality control and imputation on data from 354 endometrial cancer cases from The Cancer Genome Atlas (TCGA). We assigned each case in this TCGA cohort their genetically predicted life-course BMI based on the BMI PGS. Multivariable generalized linear models adjusted for age, stage, microsatellite status and genetic principal components were used to test for associations between the BMI germline PGS and endometrial cancer tumor genome-wide genomic, transcriptomic, proteomic, epigenomic and immune traits in TCGA. High BMI germline PGS was associated with (i) upregulated tumor gene expression in the IL6-JAK-STAT3 pathway (FDR=4.2×10-7); (ii) increased estimated intra-tumor activated mast cell infiltration (FDR=0.008); (iii) increased single base substitution (SBS) mutational signatures 1 (FDR=0.03) and 5 (FDR=0.09) and decreased SBS13 (FDR=0.09), implicating age-related and APOBEC mutagenesis, respectively; and (iv) decreased tumor EGFR protein expression (FDR=0.07). Alterations in IL6-JAK-STAT3 signaling gene and EGFR protein expression were, in turn, significantly associated with both overall survival and progression-free interval. Thus, we integrated germline and somatic data using a novel study design to identify associations between genetically predicted lifelong exposure to higher BMI and potentially actionable endometrial cancer tumor molecular features. These associations inform our understanding of how high BMI may influence the development and progression of this cancer, impacting endometrial tumor biology and clinical outcomes.
Collapse
Affiliation(s)
- George Richenberg
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Amy Francis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Carina N. Owen
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Cancer Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Victoria Gray
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Timothy Robinson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Cancer Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Aurélie AG Gabriel
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Kate Lawrenson
- Women’s Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Emma J. Crosbie
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, St. Mary’s Hospital, Manchester, UK
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - James D. Mckay
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Tom R. Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Caroline L. Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emma E. Vincent
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Siddhartha P. Kar
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Early Cancer Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
27
|
Chandwani R, Brokamp C, Salfity H, Starnes SL, Van Haren RM. Impact of Environmental Exposures on Lung Cancer in Patients Who Never Smoked. World J Surg 2023; 47:2578-2586. [PMID: 37402836 DOI: 10.1007/s00268-023-07085-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Despite the rising incidence of lung cancer in patients who never smoked, environmental risk factors such as ambient air pollution in this group are poorly described. Our objective was to identify the relationship of environmental exposures with lung cancer in patients who never smoked. METHODS A prospectively collected database was reviewed for all patients with non-small cell lung carcinoma (NSCLC) who underwent resection from 2006 to 2021. Environmental exposures were estimated using the geocoded home address of patients. Logistic regression was used to determine the association of clinical and environmental variables with smoking status. Kaplan-Meier and Cox proportional hazards analyses were used to assess survival. RESULTS A total of 665 patients underwent resection for NSCLC, of which 67 (10.1%) were patients who never smoked and 598 (89.9%) were current/former smokers. Patients who never smoked were more likely of white race (p = 0.001) and had well-differentiated tumors with carcinoid or adenocarcinoma histology (p < 0.001). Environmental exposures were similar between groups, but patients who never smoked had less community material deprivation (p = 0.002) measured by household income, education, health insurance, and vacancies. They had improved overall survival (p = 0.012) but equivalent cancer recurrence (p = 0.818) as those who smoked. In univariable Cox analyses, fine particulate matter (HR: 1.447 [95% CI 1.197-1.750], p < 0.001), distance to nearest major roadway (HR: 1.067 [1.024-1.111], p = 0.002), and greenspace (HR: 0.253 [0.087-0.737], p = 0.012) were associated with overall survival in patients who never smoked. CONCLUSIONS Lung cancer patients who never smoked have unique clinical and pathologic characteristics, including higher socioeconomic status. Interventions to reduce environmental exposures may improve lung cancer survival in this population.
Collapse
Affiliation(s)
- Rahul Chandwani
- Division of Thoracic Surgery, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML-0558, Cincinnati, OH, 45267-0558, USA
| | - Cole Brokamp
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hai Salfity
- Division of Thoracic Surgery, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML-0558, Cincinnati, OH, 45267-0558, USA
| | - Sandra L Starnes
- Division of Thoracic Surgery, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML-0558, Cincinnati, OH, 45267-0558, USA
| | - Robert M Van Haren
- Division of Thoracic Surgery, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML-0558, Cincinnati, OH, 45267-0558, USA.
| |
Collapse
|
28
|
Carroll NM, Burnett-Hartman AN, Rendle KA, Neslund-Dudas CM, Greenlee RT, Honda SA, Vachani A, Ritzwoller DP. Smoking status and the association between patient-level factors and survival among lung cancer patients. J Natl Cancer Inst 2023; 115:937-948. [PMID: 37228018 PMCID: PMC10407692 DOI: 10.1093/jnci/djad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Declines in the prevalence of cigarette smoking, advances in targeted therapies, and implementation of lung cancer screening have changed the clinical landscape for lung cancer. The proportion of lung cancer deaths is increasing in those who have never smoked cigarettes. To better understand contemporary patterns in survival among patients with lung cancer, a comprehensive evaluation of factors associated with survival, including differential associations by smoking status, is needed. METHODS Patients diagnosed with lung cancer between January 1, 2010, and September 30, 2019, were identified. We estimated all-cause and lung cancer-specific median, 5-year, and multivariable restricted mean survival time (RMST) to identify demographic, socioeconomic, and clinical factors associated with survival, overall and stratified by smoking status (never, former, and current). RESULTS Analyses included 6813 patients with lung cancer: 13.9% never smoked, 54.2% formerly smoked, and 31.9% currently smoked. All-cause RMST through 5 years for those who never, formerly, and currently smoked was 32.1, 25.9, and 23.3 months, respectively. Lung cancer-specific RMST was 36.3 months, 30.3 months, and 26.0 months, respectively. Across most models, female sex, younger age, higher socioeconomic measures, first-course surgery, histology, and body mass index were positively associated, and higher stage was inversely associated with survival. Relative to White patients, Black patients had increased survival among those who formerly smoked. CONCLUSIONS We identify actionable factors associated with survival between those who never, formerly, and currently smoked cigarettes. These findings illuminate opportunities to address underlying mechanisms driving lung cancer progression, including use of first-course treatment, and enhanced implementation of tailored smoking cessation interventions for individuals diagnosed with cancer.
Collapse
Affiliation(s)
- Nikki M Carroll
- Institute for Health Research, Kaiser Permanente Colorado, Denver, CO, USA
| | - Andrea N Burnett-Hartman
- Institute for Health Research, Kaiser Permanente Colorado, Denver, CO, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | - Katharine A Rendle
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Stacey A Honda
- Hawaii Permanente Medical Group, Center for Integrated Healthcare Research, Kaiser Permanente Hawaii, Honolulu, HI, USA
| | - Anil Vachani
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Debra P Ritzwoller
- Institute for Health Research, Kaiser Permanente Colorado, Denver, CO, USA
| |
Collapse
|
29
|
Wang TW, Hsu MS, Lin YH, Chiu HY, Chao HS, Liao CY, Lu CF, Wu YT, Huang JW, Chen YM. Application of Radiomics in Prognosing Lung Cancer Treated with Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:3542. [PMID: 37509204 PMCID: PMC10377421 DOI: 10.3390/cancers15143542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
In the context of non-small cell lung cancer (NSCLC) patients treated with EGFR tyrosine kinase inhibitors (TKIs), this research evaluated the prognostic value of CT-based radiomics. A comprehensive systematic review and meta-analysis of studies up to April 2023, which included 3111 patients, was conducted. We utilized the Quality in Prognosis Studies (QUIPS) tool and radiomics quality scoring (RQS) system to assess the quality of the included studies. Our analysis revealed a pooled hazard ratio for progression-free survival of 2.80 (95% confidence interval: 1.87-4.19), suggesting that patients with certain radiomics features had a significantly higher risk of disease progression. Additionally, we calculated the pooled Harrell's concordance index and area under the curve (AUC) values of 0.71 and 0.73, respectively, indicating good predictive performance of radiomics. Despite these promising results, further studies with consistent and robust protocols are needed to confirm the prognostic role of radiomics in NSCLC.
Collapse
Affiliation(s)
- Ting-Wei Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ming-Sheng Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yi-Hui Lin
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Hwa-Yen Chiu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Heng-Sheng Chao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chien-Yi Liao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Jing-Wen Huang
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Yuh-Min Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| |
Collapse
|
30
|
Tabassum G, Singh P, Gurung R, Hakami MA, Alkhorayef N, Alsaiari AA, Alqahtani LS, Hasan MR, Rashid S, Kumar A, Dev K, Dohare R. Investigating the role of Kinesin family in lung adenocarcinoma via integrated bioinformatics approach. Sci Rep 2023; 13:9859. [PMID: 37330525 PMCID: PMC10276827 DOI: 10.1038/s41598-023-36842-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023] Open
Abstract
Lung cancer is the leading cause of mortality from cancer worldwide. Lung adenocarcinoma (LUAD) is a type of non-small cell lung cancer (NSCLC) with highest prevalence. Kinesins a class of motor proteins are shown to be involved in carcinogenesis. We conducted expression, stage plot and survival analyses on kinesin superfamily (KIF) and scrutinized the key prognostic kinesins. Genomic alterations of these kinesins were studied thereafter via cBioPortal. A protein-protein interaction network (PPIN) of selected kinesins and 50 closest altering genes was constructed followed by gene ontology (GO) term and pathway enrichment analyses. Multivariate survival analysis based on CpG methylation of selected kinesins was performed. Lastly, we conducted tumor immune infiltration analysis. Our results found KIF11/15/18B/20A/2C/4A/C1 to be significantly upregulated and correlated with poor survival in LUAD patients. These genes also showed to be highly associated with cell cycle. Out of our seven selected kinesins, KIFC1 showed the highest genomic alteration with highest number of CpG methylation. Also, CpG island (CGI) cg24827036 was discovered to be linked to LUAD prognosis. Therefore, we deduced that reducing the expression of KIFC1 could be a feasible treatment strategy and that it can be a wonderful individual prognostic biomarker. CGI cg24827036 can also be used as a therapy site in addition to being a great prognostic biomarker.
Collapse
Affiliation(s)
- Gulnaz Tabassum
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Rishabh Gurung
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, 13343, Saudi Arabia
| | - Nada Alkhorayef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, 13343, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, 13343, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 16278, Saudi Arabia
| | - Atul Kumar
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Kapil Dev
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
31
|
Zhang Z, Gao Y, Liu S, Ding B, Zhang X, Wu IXY. Initial low-dose computed tomography screening results and summary of participant characteristics: based on the latest Chinese guideline. Front Oncol 2023; 13:1085434. [PMID: 37293585 PMCID: PMC10247136 DOI: 10.3389/fonc.2023.1085434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Background Low-dose computed tomography (LDCT) has been promoted as a promising screening strategy for early detection of lung cancer. China released the latest lung cancer screening guideline in 2021. The compliance of the individuals who received LDCT for lung cancer screening with the guideline is unknown yet. It is necessary to summarize the distribution of guideline-defined lung cancer-related risk factors in the Chinese population so as to inform the selection of target population for the future lung cancer screening. Methods A single-center, cross-sectional study design was adopted. All participants were individuals who underwent LDCT at a tertiary teaching hospital in Hunan, China, between 1 January and 31 December 2021. LDCT results were derived along with guideline-based characteristics for descriptive analysis. Results A total of 5,486 participants were included. Over one-quarter (1,426, 26.0%) of the participants who received screening did not meet the guideline-defined high-risk population, even among non-smokers (36.4%). Most of the participants (4,622, 84.3%) were found to have lung nodules, while no clinical intervention was required basically. The detection rate of positive nodules varied from 46.8% to 71.2% when using different cut-off values for positive nodules. Among non-smoking women, ground glass opacity appeared to be more significantly common compared with non-smoking men (26.7% vs. 21.8%). Conclusion Over one-quarter of individuals who received LDCT screening did not meet the guideline-defined high-risk populations. Appropriate cut-off values for positive nodules need to be continuously explored. More precise and localized criteria for high-risk individuals are needed, especially for non-smoking women.
Collapse
Affiliation(s)
- Zixuan Zhang
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Yinyan Gao
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Shaohui Liu
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Binrong Ding
- Department of Geriatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuewei Zhang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Irene X. Y. Wu
- Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, China
| |
Collapse
|
32
|
Grodzka A, Knopik-Skrocka A, Kowalska K, Kurzawa P, Krzyzaniak M, Stencel K, Bryl M. Molecular alterations of driver genes in non-small cell lung cancer: from diagnostics to targeted therapy. EXCLI JOURNAL 2023; 22:415-432. [PMID: 37346803 PMCID: PMC10279966 DOI: 10.17179/excli2023-6122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
Lung cancer is the leading cause of cancer death all over the world. The majority (80-85 %) of lung cancer cases are classified as non-small cell lung cancer (NSCLC). Within NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SCC) are the most often recognized. The histological and immunohistochemical examination of NSCLC is a basic diagnostic tool, but insufficient for comprehensive therapeutic decisions. In some NSCLC patients, mainly adenocarcinoma, molecular alterations in driver genes, like EGFR, KRAS, HER2, ALK, MET, BRAF, RET, ROS1, and NTRK are recognized. The frequency of some of those changes is different depending on race, and between smokers and non-smokers. The molecular diagnostics of NSCLC using modern methods, like next-generation sequencing, is essential in estimating targeted, personalized therapy. In recent years, a breakthrough in understanding the importance of molecular studies for the precise treatment of NSCLC has been observed. Many new drugs were approved, including tyrosine kinase and immune checkpoint inhibitors. Clinical trials testing novel molecules like miRNAs and trials with CAR-T cells (chimeric antigen receptor - T cells) dedicated to NSCLC patients are ongoing.
Collapse
Affiliation(s)
- Anna Grodzka
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University of Poznan, Poland
| | | | - Katarzyna Kowalska
- Department of Oncological Pathology, University Clinical Hospital in Poznan, Poznan University of Medical Sciences, Poland
| | - Pawel Kurzawa
- Department of Oncological Pathology, University Clinical Hospital in Poznan, Poznan University of Medical Sciences, Poland
- Department of Clinical Pathology and Immunology, Poznan University of Medical Sciences, Poland
| | - Monika Krzyzaniak
- Department of Oncological Pathology, University Clinical Hospital in Poznan, Poznan University of Medical Sciences, Poland
| | - Katarzyna Stencel
- Department of Clinical Oncology with the Subdepartment of Diurnal Chemotherapy, E. J. Zeyland Wielkopolska Center of Pulmonology and Thoracic Surgery, Poznan, Poland
| | - Maciej Bryl
- Department of Clinical Oncology with the Subdepartment of Diurnal Chemotherapy, E. J. Zeyland Wielkopolska Center of Pulmonology and Thoracic Surgery, Poznan, Poland
| |
Collapse
|
33
|
Shen HY, Zhang J, Xu D, Xu Z, Liang MX, Chen WQ, Tang JH, Xia WJ. Construction of an m6A-related lncRNA model for predicting prognosis and immunotherapy in patients with lung adenocarcinoma. Medicine (Baltimore) 2023; 102:e33530. [PMID: 37058053 PMCID: PMC10101303 DOI: 10.1097/md.0000000000033530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
N6-methyladenosine (m6A)-related lncRNAs could be involved in the development of multiple tumors with an unknown role in lung adenocarcinoma (LUAD). Hence, gene expression data and clinical data of LUAD patients were acquired from The Cancer Genome Atlas Database. The prognostic m6A-related lncRNAs were identified through differential lncRNA expression analysis and Spearman's correlation analysis. The least absolute shrinkage and selection operator regression was used to establish the prognostic risk model, so as to evaluate and validate the predictive performance with survival analysis and receiver operating characteristic curve analysis. The expression of immune checkpoints, immune cell infiltration and drug sensitivity of patients in different risk groups were analyzed separately. A total of 19 prognostic m6A-related lncRNAs were identified to set up the prognostic risk model. The patients were divided into high- and low-risk groups based on the median value of the risk scores. Compared with the patients in the low-risk group, the prognosis of the patients in the high-risk group was relatively worse. The receiver operating characteristic curves indicated that this model had excellent sensitivity and specificity. Multivariate Cox regression analysis demonstrated that the risk score could be supposed as an independent prognostic risk factor. We highlighted that the risk scores were correlated with immune cell infiltration and drug sensitivity for constructing a prognostic risk model in LUAD patients based on m6A-related lncRNAs.
Collapse
Affiliation(s)
- Hong-Yu Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Gusu School, Nanjing Medical University, Nanjing, China
| | - Jin Zhang
- Department of General Practice, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Di Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming-Xing Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Quan Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Gusu School, Nanjing Medical University, Nanjing, China
| | - Wen-Jia Xia
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Hanif A, Ibrahim AH, Ismail S, Al-Rawi SS, Ahmad JN, Hameed M, Mustufa G, Tanwir S. Cytotoxicity against A549 Human Lung Cancer Cell Line via the Mitochondrial Membrane Potential and Nuclear Condensation Effects of Nepeta paulsenii Briq., a Perennial Herb. Molecules 2023; 28:molecules28062812. [PMID: 36985784 PMCID: PMC10054104 DOI: 10.3390/molecules28062812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The genus Nepeta belongs to the largest Lamiaceae family, with 300 species, which are distributed throughout the various regions of Africa, Asia, India, and America. Along with other plant families distinguished by their medicinal and therapeutic values, the Nepeta genus of Lameaceae remains relatively valuable. Hence, the phytochemicals of N. paulsenii Briq. were extracted using different plant parts, i.e., leaves, stem, roots, flowers, and the whole plant by using various solvents (ethanol, water, and ethyl acetate), obtaining 15 fractions. Each extract of dried plant material was analyzed by FT-IR and GC-MS to identify the chemical constituents. The cytotoxicity of each fraction was analyzed by MTT assay and mitochondrial membrane potential and nuclear condensation assays against lung cancer cells. Among the ethyl acetate and ethanolic extracts, the flowers showed the best results, with IC50 values of 51.57 μg/mL and 50.58 μg/mL, respectively. In contrast, among the water extracts of the various plant segments, the stem showed the best results, with an IC50 value of 123.80 μg/mL. 5-flourouracil was used as the standard drug, providing an IC50 value of 83.62 μg/mL. The Hoechst 33342 stain results indicated apoptotic features, i.e., chromatin dissolution and broken down, fragmented, and crescent-shaped nuclei. The ethanolic extracts of the flowers showed more pronounced apoptotic effects on the cells. The mitochondrial membrane potential indicated that rhodamine 123 fluorescence signals suppressed mitochondrial potential due to the treatment with the extracts. Again, the apoptotic index of the ethanolic extract of the flowers remained the highest. Hence it can be concluded that the flower part of N. paulsenii Briq. was found to be the most active against the A459 human lung cancer cell line.
Collapse
Affiliation(s)
- Aqsa Hanif
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Ahmad H Ibrahim
- Pharmacy Department, Faculty of Pharmacy, Tishk International University, 100mt. St., Near Baz Interaction, Erbil 44001, KRG, Iraq
| | - Sidra Ismail
- Incharge Health Officer, BHU 418 GB, Faisalabad 37150, Pakistan
| | - Sawsan S Al-Rawi
- Biology Education Department, Faculty of Education, Tishk International University, 100mt. St., Near Baz Interaction, Erbil 44001, KRG, Iraq
| | - Jam Nazeer Ahmad
- Department of Entomology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Mansoor Hameed
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Ghulam Mustufa
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Samina Tanwir
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
35
|
Zhu Q, Chen G, Liu Y, Zhou Y. Neoadjuvant immunotherapy versus chemoimmunotherapy in non-small cell lung cancer: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e33166. [PMID: 36862876 PMCID: PMC9981425 DOI: 10.1097/md.0000000000033166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Worldwide, lung cancer is the most common cause of cancer morbidity and mortality. Non-small cell lung cancer (NSCLC) accounts for approximately 80 to 85% of all lung cancers. Recently, a few studies have reported the use of neoadjuvant immunotherapy or chemoimmunotherapy in NSCLC. However, no meta-analysis comparing neoadjuvant immunotherapy with chemoimmunotherapy has yet been reported. We perform a protocol for systematic review and meta-analysis to compare the efficacy and safety of neoadjuvant immunotherapy and chemoimmunotherapy in NSCLC. METHODS The statement of preferred reporting items for systematic review and meta-analysis protocols will be used as guidelines for reporting the present review protocol. Original clinical randomized controlled trials assessing the beneficial effects and safety of neoadjuvant immunotherapy and chemoimmunotherapy in NSCLC will be included. Databases searched include China National Knowledge Infrastructure, Chinese Scientific Journals Database, Wanfang Database, China Biological Medicine Database, PubMed, EMBASE Database, and Cochrane Central Register of Controlled Trials. Cochrane Collaboration's tool is used to assess the risk of bias in included randomized controlled trials. All calculations are carried out with Stata 11.0 (The Cochrane Collaboration, Oxford, UK). RESULTS The results of this systematic review and meta-analysis will be publicly available and published in a peer-reviewed journal. CONCLUSION This evidence will be useful to practitioners, patients, and health policy-makers regarding the use of neoadjuvant chemoimmunotherapy in NSCLC.
Collapse
Affiliation(s)
- Qunying Zhu
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Guini Chen
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Yunzhong Liu
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Yu Zhou
- Department of General Surgery, the First Affiliated Hospital of Hainan Medical University, Hainan, China
- * Correspondence: Yu Zhou, Department of Cardiothoracic Surgery, the First Affiliated Hospital of Hainan Medical University, Hainan 570102, China (e-mail: )
| |
Collapse
|
36
|
Alduais Y, Zhang H, Fan F, Chen J, Chen B. Non-small cell lung cancer (NSCLC): A review of risk factors, diagnosis, and treatment. Medicine (Baltimore) 2023; 102:e32899. [PMID: 36827002 PMCID: PMC11309591 DOI: 10.1097/md.0000000000032899] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 02/25/2023] Open
Abstract
Lung cancer remains the leading cause of cancer deaths. Non-small cell lung cancer (NSCLC) is the most frequent subtype of lung cancer. Surgery, radiation, chemotherapy, immunotherapy, or molecularly targeted therapy is used to treat NSCLC. Nevertheless, many patients who accept surgery likely develop distant metastases or local recurrence. In recent years, targeted treatments and immunotherapy have achieved improvement at a breakneck pace. Therapy must be customized for each patient based on the specific medical condition, as well as other variables. It is critical to have an accurate NSCLC sub-classification for tailored treatment, according to the latest World Health Organization standards.
Collapse
Affiliation(s)
- Yaser Alduais
- Department of Hematology and Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Haijun Zhang
- Department of Hematology and Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Fan Fan
- Department of Hematology and Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Baoan Chen
- Department of Hematology and Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
37
|
Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, Mukherjee A, Paul MK. Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer 2023; 22:40. [PMID: 36810079 PMCID: PMC9942077 DOI: 10.1186/s12943-023-01740-y] [Citation(s) in RCA: 259] [Impact Index Per Article: 259.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/22/2022] [Indexed: 02/23/2023] Open
Abstract
Lung cancer is the primary cause of mortality in the United States and around the globe. Therapeutic options for lung cancer treatment include surgery, radiation therapy, chemotherapy, and targeted drug therapy. Medical management is often associated with the development of treatment resistance leading to relapse. Immunotherapy is profoundly altering the approach to cancer treatment owing to its tolerable safety profile, sustained therapeutic response due to immunological memory generation, and effectiveness across a broad patient population. Different tumor-specific vaccination strategies are gaining ground in the treatment of lung cancer. Recent advances in adoptive cell therapy (CAR T, TCR, TIL), the associated clinical trials on lung cancer, and associated hurdles are discussed in this review. Recent trials on lung cancer patients (without a targetable oncogenic driver alteration) reveal significant and sustained responses when treated with programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint blockade immunotherapies. Accumulating evidence indicates that a loss of effective anti-tumor immunity is associated with lung tumor evolution. Therapeutic cancer vaccines combined with immune checkpoint inhibitors (ICI) can achieve better therapeutic effects. To this end, the present article encompasses a detailed overview of the recent developments in the immunotherapeutic landscape in targeting small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Additionally, the review also explores the implication of nanomedicine in lung cancer immunotherapy as well as the combinatorial application of traditional therapy along with immunotherapy regimens. Finally, ongoing clinical trials, significant obstacles, and the future outlook of this treatment strategy are also highlighted to boost further research in the field.
Collapse
Affiliation(s)
- Aritraa Lahiri
- grid.417960.d0000 0004 0614 7855Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246 India
| | - Avik Maji
- grid.416241.4Department of Radiation Oncology, N. R. S. Medical College & Hospital, 138 A.J.C. Bose Road, Kolkata, 700014 India
| | - Pravin D. Potdar
- grid.414939.20000 0004 1766 8488Department of Molecular Medicine and Stem Cell Biology, Jaslok Hospital and Research Centre, Mumbai, 400026 India
| | - Navneet Singh
- grid.415131.30000 0004 1767 2903Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Purvish Parikh
- Department of Clinical Hematology, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan 302022 India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra 400012 India
| | - Bharti Bisht
- grid.19006.3e0000 0000 9632 6718Division of Thoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Anubhab Mukherjee
- Esperer Onco Nutrition Pvt Ltd, 4BA, 4Th Floor, B Wing, Gundecha Onclave, Khairani Road, Sakinaka, Andheri East, Mumbai, Maharashtra, 400072, India.
| | - Manash K. Paul
- grid.19006.3e0000 0000 9632 6718Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA ,grid.411639.80000 0001 0571 5193Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
38
|
Isoflavone and soy food intake and risk of lung cancer in never smokers: report from prospective studies in Japan and China. Eur J Nutr 2023; 62:125-137. [PMID: 35913505 DOI: 10.1007/s00394-022-02968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Evidence from several cohorts has suggested that a higher intake of isoflavone is associated with lower risk of lung cancer in never smokers, but the association has not been investigated by histologic type of lung cancer. Adenocarcinoma is a common histologic type found in never smokers. We hypothesized that a higher intake of isoflavone is associated with a lower risk of lung adenocarcinoma among never smokers. Here, we examined the associations of isoflavone and soy food intake with lung cancer and its histologic types in never smokers. METHODS We performed a pooled analysis using data from the Japan Public Health Center-based Prospective Study, Shanghai Women's Health Study and Shanghai Men's Study with 147,296 never smokers aged 40-74 years with no history of cancer. During 1,990,040 person-years of follow-up, 1247 lung cancer cases were documented. Dietary isoflavone and soy food intake were assessed using a food-frequency questionnaire. Multivariable Cox proportional hazards models assessed the associations between isoflavone and soy intake with incidence of lung cancer by histologic type. RESULTS A higher intake of dietary isoflavone and soy food were associated with reduced risk of lung adenocarcinoma. The multivariable hazard ratios (HRs) (95% CI) of risk of lung adenocarcinoma for the highest versus lowest intakes of isoflavone and soy food were 0.74 (0.60-0.92) and 0.78 (0.63-0.96), respectively. The multivariable HRs of risk of lung adenocarcinoma associated with each 10 mg/day increase in isoflavone and each 50 g/day increase in soy food intake were 0.81 (0.70-0.94) and 0.84 (0.73-0.96), respectively. CONCLUSION Higher intake of isoflavone and soy food was associated with lower risk of lung adenocarcinoma in never smokers.
Collapse
|
39
|
Rashidian H, Hadji M, Gholipour M, Naghibzadeh-Tahami A, Marzban M, Mohebbi E, Safari-Faramani R, Bakhshi M, Sadat Seyyedsalehi M, Hosseini B, Alizadeh-Navaei R, Emami H, Haghdoost AA, Rezaianzadeh A, Moradi A, Ansari-Moghaddam A, Nejatizadeh A, ShahidSales S, Rezvani A, Larizadeh MH, Najafi F, Poustchi H, Mohagheghi MA, Brennan P, Weiderpass E, Schüz J, Pukkala E, Freedman ND, Boffetta P, Malekzadeh R, Etemadi A, Rahimi-Movaghar A, Kamangar F, Zendehdel K. Opium use and risk of lung cancer: A multicenter case-control study in Iran. Int J Cancer 2023; 152:203-213. [PMID: 36043555 DOI: 10.1002/ijc.34244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022]
Abstract
Opium use was recently classified as a human carcinogen for lung cancer by the International Agency for Research on Cancer. We conducted a large, multicenter case-control study evaluating the association between opium use and the risk of lung cancer. We recruited 627 cases and 3477 controls from May 2017 to July 2020. We used unconditional logistic regression analyses to estimate the odds ratios (OR) and 95% confidence intervals (CI) and measured the association between opium use and the risk of lung cancer. The ORs were adjusted for the residential place, age, gender, socioeconomic status, cigarettes, and water pipe smoking. We found a 3.6-fold risk of lung cancer for regular opium users compared to never users (95% CI: 2.9, 4.6). There was a strong dose-response association between a cumulative count of opium use and lung cancer risk. The OR for regular opium use was higher for small cell carcinoma than in other histology (8.3, 95% CI: 4.8, 14.4). The OR of developing lung cancer among opium users was higher in females (7.4, 95% CI: 3.8, 14.5) than in males (3.3, 95% CI: 2.6, 4.2). The OR for users of both opium and tobacco was 13.4 (95% CI: 10.2, 17.7) compared to nonusers of anything. The risk of developing lung cancer is higher in regular opium users, and these results strengthen the conclusions on the carcinogenicity of opium. The association is stronger for small cell carcinoma cases than in other histology.
Collapse
Affiliation(s)
- Hamideh Rashidian
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hadji
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Health Sciences Unit, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Mahin Gholipour
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahmad Naghibzadeh-Tahami
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Marzban
- Clinical Research Development Center, The Persian Gulf Martyrs, Bushehr University of Medical Science, Bushehr, Iran
- Department of Public Health, School of Public Health, Bushehr University of Medical Science, Bushehr, Iran
| | - Elham Mohebbi
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Roya Safari-Faramani
- Social Development and Health Promotion Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdieh Bakhshi
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Monireh Sadat Seyyedsalehi
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Bayan Hosseini
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- International Agency for Research on Cancer, Lyon, France
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Habib Emami
- National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Haghdoost
- Social Determinants of Health Research Center, Institute for Futures Studies in Health, Kerman, Iran
- Regional Knowledge HUB for HIV/AIDS Surveillance, Research Centre for Modelling in Health, Institute for Future Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Rezaianzadeh
- Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolvahab Moradi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Azim Nejatizadeh
- Tobacco and Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Alireza Rezvani
- Hematology Research Center, Shiraz University of Medical Science, Fars, Iran
| | - Mohammad Hasan Larizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farid Najafi
- Social Development and Health Promotion Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Environmental Determinants of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Poustchi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Mohagheghi
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | | | - Joachim Schüz
- International Agency for Research on Cancer, Lyon, France
| | - Eero Pukkala
- Health Sciences Unit, Faculty of Social Sciences, Tampere University, Tampere, Finland
- Finnish Cancer Registry-Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland
| | - Neal D Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Reza Malekzadeh
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Etemadi
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Afarin Rahimi-Movaghar
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Farin Kamangar
- Department of Biology, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, Maryland, USA
| | - Kazem Zendehdel
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Biology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Guo L, Meng Q, Zheng L, Chen Q, Liu Y, Xu H, Kang R, Zhang L, Liu S, Sun X, Zhang S. Lung Cancer Risk Prediction Nomogram in Nonsmoking Chinese Women: Retrospective Cross-sectional Cohort Study. JMIR Public Health Surveill 2023; 9:e41640. [PMID: 36607729 PMCID: PMC9862335 DOI: 10.2196/41640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND It is believed that smoking is not the cause of approximately 53% of lung cancers diagnosed in women globally. OBJECTIVE The study aimed to develop and validate a simple and noninvasive model that could assess and stratify lung cancer risk in nonsmoking Chinese women. METHODS Based on the population-based Cancer Screening Program in Urban China, this retrospective, cross-sectional cohort study was carried out with a vast population base and an immense number of participants. The training set and the validation set were both constructed using a random distribution of the data. Following the identification of associated risk factors by multivariable Cox regression analysis, a predictive nomogram was developed. Discrimination (area under the curve) and calibration were further performed to assess the validation of risk prediction nomogram in the training set, which was then validated in the validation set. RESULTS In sum, 151,834 individuals signed up to take part in the survey. Both the training set (n=75,917) and the validation set (n=75,917) were comprised of randomly selected participants. Potential predictors for lung cancer included age, history of chronic respiratory disease, first-degree family history of lung cancer, menopause, and history of benign breast disease. We displayed 1-year, 3-year, and 5-year lung cancer risk-predicting nomograms using these 5 factors. In the training set, the 1-year, 3-year, and 5-year lung cancer risk areas under the curve were 0.762, 0.718, and 0.703, respectively. In the validation set, the model showed a moderate predictive discrimination. CONCLUSIONS We designed and validated a simple and noninvasive lung cancer risk model for nonsmoking women. This model can be applied to identify and triage people at high risk for developing lung cancers among nonsmoking women.
Collapse
Affiliation(s)
- Lanwei Guo
- Department of Cancer Epidemiology and Prevention, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Qingcheng Meng
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Liyang Zheng
- Department of Cancer Epidemiology and Prevention, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Qiong Chen
- Department of Cancer Epidemiology and Prevention, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yin Liu
- Department of Cancer Epidemiology and Prevention, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Huifang Xu
- Department of Cancer Epidemiology and Prevention, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ruihua Kang
- Department of Cancer Epidemiology and Prevention, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Luyao Zhang
- Department of Cancer Epidemiology and Prevention, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shuzheng Liu
- Department of Cancer Epidemiology and Prevention, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xibin Sun
- Department of Cancer Epidemiology and Prevention, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shaokai Zhang
- Department of Cancer Epidemiology and Prevention, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
41
|
Verma AK, Naseeb MA, Basaqr RO, Albajri EA, Khan MI, Dev K, Beg MMA. Cell-free SLC30A10 messenger ribonucleic acid (mRNA) expression and their association with vitamin-D level among non-small cell lung cancer (NSCLC) patients. J Cancer Res Ther 2023; 19:S764-S769. [PMID: 38384053 DOI: 10.4103/jcrt.jcrt_281_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/14/2022] [Indexed: 02/23/2024]
Abstract
BACKGROUND Lung cancer has been major cause of cancer related death and day by day Non-small cell lung cancer (NSCLC) cases are increasing globally. Present study explored the link between SLC30A10 mRNA expression with vitamin-D level among the NSCLC patients. METHODS Present study included newly diagnosed 100 NSCLC patients and 100 healthy controls. Quantitative real time PCR was performed to check the SLC30A10 mRNA expression after cDNA synthesis from extracted total RNA from serum sample. Vitamin-D level was also analyzed in all the NSCLC patients by electrochemiluminscence based immunoassay method. RESULTS Present research work observed decreased SLC30A10 mRNA expression (0.16 fold) among the NSCLC patients, decreased SLC30A10 mRNA expression was linked with advanced stage (0.15 fold, P < 00001) of disease and distant organ metastases (0.11 fold, P < 00001) compared to its contrast. Decreased level of vitamin-D was also observed with advanced stage (17.98 ng/ml, P < 00001) of disease and distant organ metastases (16.23 ng/ml, P < 00001) compared to its contrast. Positive correlation was observed between SLC30A10 mRNA expression with vitamin-D level among the NSCLC patients suggesting decrease or increase in SLC30A10 mRNA expression mau decreases or increase the vitamin-D level. NSCLC patients with vitamin-D deficiency had 0.14 reduced SCL30A10 mRNA expression while insufficient (P = 0 .06) and sufficient (P = 0.03) showed comparatively high SCL30A10 mRNA expression. CONCLUSION Study concluded that down regulation of SLC30A10 mRNA and vitamin-D deficiency may involve in advancement of disease and distant organ metastases. It was also suggested that the decrease of increase in SLC30A10 expression may cause the decrease of increase in vitamin-D level among the NSCLC patients may be involved in disease severity and worseness of NSCLC disease.
Collapse
Affiliation(s)
- Amit K Verma
- Department of Medical Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Manal A Naseeb
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem O Basaqr
- Clinical Nutrition Department, College of Applied Medical Sciences -Jeddah, King Saud Bin Abdulaziz University for Health Sciences-Jeddah, Saudi Arabia (KSAU-HS), King Abdullah International Medical Research Center-Ministry of the National Guard - Health Affairs, Jeddah, Saudi Arabia
| | - Eram A Albajri
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Kapil Dev
- Department of Medical Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mirza Masroor Ali Beg
- Centre for Promotion of Medical Research, Alatoo International University, Bishkek, Kyrgyzstan
- Faculty of Medicine, Alatoo International University, Bishkek, Kyrgyzstan
| |
Collapse
|
42
|
Kuśnierczyk P. Genetic differences between smokers and never-smokers with lung cancer. Front Immunol 2023; 14:1063716. [PMID: 36817482 PMCID: PMC9932279 DOI: 10.3389/fimmu.2023.1063716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Smoking is a major risk factor for lung cancer, therefore lung cancer epidemiological trends reflect the past trends of cigarette smoking to a great extent. The geographic patterns in mortality closely follow those in incidence. Although lung cancer is strongly associated with cigarette smoking, only about 15% of smokers get lung cancer, and also some never-smokers develop this malignancy. Although less frequent, lung cancer in never smokers is the seventh leading cause of cancer deaths in both sexes worldwide. Lung cancer in smokers and never-smokers differs in many aspects: in histological types, environmental factors representing a risk, and in genes associated with this disease. In this review, we will focus on the genetic differences between lung cancer in smokers versus never-smokers: gene expression, germ-line polymorphisms, gene mutations, as well as ethnic and gender differences. Finally, treatment options for smokers and never-smokers will be briefly reviewed.
Collapse
Affiliation(s)
- Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
43
|
Faghani A, Guo L, Wright ME, Hughes MC, Vaezi M. Construction and case study of a novel lung cancer risk index. BMC Cancer 2022; 22:1275. [PMID: 36474178 PMCID: PMC9724373 DOI: 10.1186/s12885-022-10370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE This study constructs a lung cancer risk index (LCRI) that incorporates many modifiable risk factors using an easily reproducible and adaptable method that relies on publicly available data. METHODS We used meta-analysis followed by Analytic Hierarchy Process (AHP) to generate a lung cancer risk index (LCRI) that incorporates seven modifiable risk factors (active smoking, indoor air pollution, occupational exposure, alcohol consumption, secondhand smoke exposure, outdoor air pollution, and radon exposure) for lung cancer. Using county-level population data, we then performed a case study in which we tailored the LCRI for use in the state of Illinois (LCRIIL). RESULTS For both the LCRI and the LCRIIL, active smoking had the highest weights (46.1% and 70%, respectively), whereas radon had the lowest weights (3.0% and 5.7%, respectively). The weights for alcohol consumption were 7.8% and 14.7% for the LCRI and the LCRIIL, respectively, and were 3.8% and 0.95% for outdoor air pollution. Three variables were only included in the LCRI: indoor air pollution (18.5%), occupational exposure (13.2%), and secondhand smoke exposure (7.6%). The Consistency Ratio (CR) was well below the 0.1 cut point. The LCRIIL was moderate though significantly correlated with age-adjusted lung cancer incidence (r = 0.449, P < 0.05) and mortality rates (r = 0.495, P < 0.05). CONCLUSION This study presents an index that incorporates multiple modifiable risk factors for lung cancer into one composite score. Since the LCRI allows data comprising the composite score to vary based on the location of interest, this measurement tool can be used for any geographic location where population-based data for individual risk factors exist. Researchers, policymakers, and public health professionals may utilize this framework to determine areas that are most in need of lung cancer-related interventions and resources.
Collapse
Affiliation(s)
- Ali Faghani
- grid.261128.e0000 0000 9003 8934College of Engineering and Engineering Technology, Northern Illinois University, DeKalb, IL USA
| | - Lei Guo
- grid.261128.e0000 0000 9003 8934School of Interdisciplinary Health Professions, Northern Illinois University, DeKalb, IL USA
| | - Margaret E. Wright
- grid.185648.60000 0001 2175 0319University of Illinois Cancer Center, Chicago, IL USA
| | - M. Courtney Hughes
- grid.261128.e0000 0000 9003 8934School of Health Studies, Northern Illinois University, DeKalb, IL USA
| | - Mahdi Vaezi
- grid.261128.e0000 0000 9003 8934College of Engineering and Engineering Technology, Northern Illinois University, DeKalb, IL USA
| |
Collapse
|
44
|
Zou K, Sun P, Huang H, Zhuo H, Qie R, Xie Y, Luo J, Li N, Li J, He J, Aschebrook-Kilfoy B, Zhang Y. Etiology of lung cancer: Evidence from epidemiologic studies. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:216-225. [PMID: 39036545 PMCID: PMC11256564 DOI: 10.1016/j.jncc.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 12/05/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer incidence and mortality worldwide. While smoking, radon, air pollution, as well as occupational exposure to asbestos, diesel fumes, arsenic, beryllium, cadmium, chromium, nickel, and silica are well-established risk factors, many lung cancer cases cannot be explained by these known risk factors. Over the last two decades the incidence of adenocarcinoma has risen, and it now surpasses squamous cell carcinoma as the most common histologic subtype. This increase warrants new efforts to identify additional risk factors for specific lung cancer subtypes as well as a comprehensive review of current evidence from epidemiologic studies to inform future studies. Given the myriad exposures individuals experience in real-world settings, it is essential to investigate mixture effects from complex exposures and gene-environment interactions in relation to lung cancer and its subtypes.
Collapse
Affiliation(s)
- Kaiyong Zou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiyuan Sun
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huang Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haoran Zhuo
- Yale School of Public Health, New Haven, United States of America
| | - Ranran Qie
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuting Xie
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiajun Luo
- Department of Public Health Sciences, the University of Chicago, Chicago, United States of America
| | - Ni Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
45
|
Muacevic A, Adler JR, Mehta A. Lung Cancer in Non-Smokers: Clinicopathological and Survival Differences from Smokers. Cureus 2022; 14:e32417. [PMID: 36644085 PMCID: PMC9833623 DOI: 10.7759/cureus.32417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Background Lung cancer in non-smokers is a clinically distinct entity based on unique epidemiology, clinicopathology, genetics, treatment response, and outcome. Data from Indian centres are scarce. The objective of this study was to compare the frequency, clinical characteristics, driver mutations, and survival of non-smoking and smoking lung cancer patients treated at a tertiary cancer centre in North India. Methodology Two years of data on 724 consecutive lung cancer patients were assessed. Clinical, demographics, smoking history, and EGFR and ALK mutation test results were collected. Descriptive and inferential statistics were applied. Survival analysis was performed using the Kaplan-Meier method. Results Non-smokers comprised 40.9% of the study sample. Non-smokers were more likely than smokers to experience disease onset at a younger age (P = 0.004) and metastasis (P < 0.001). The tumor histology showed significant differences (P < 0.001), with non-smokers more likely to be diagnosed with adenocarcinoma (77.4%), while squamous and small cell histologies were commonly found among smokers (37.6% and 13.8%, respectively). The EGFR mutation and ALK rearrangement rates in the cohort were 23.3% and 10.1%, respectively, and were more frequent in non-smoking patients. Overall, 10-year survival was 7%, with a significantly better survival rate of non-smokers than smokers (median survival time of 15.13 vs 10.17 months; P = 0.012). Conclusions About four out of 10 patients diagnosed with lung cancer at our centre were non-smokers. They were more often young, diagnosed at an advanced stage, with predominantly adenocarcinoma histology, and had a threefold higher frequency of EGFR mutations than smokers. In our cohort, non-smokers appear to be a targetable group with better survival than smokers.
Collapse
|
46
|
Liang J, Jin W, Xu H. An efficient five-lncRNA signature for lung adenocarcinoma prognosis, with AL606489.1 showing sexual dimorphism. Front Genet 2022; 13:1052092. [PMID: 36531243 PMCID: PMC9748423 DOI: 10.3389/fgene.2022.1052092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is a sex-biased and easily metastatic malignant disease. A signature based on 5 long non-coding RNAs (lncRNAs) has been established to promote the overall survival (OS) prediction effect on LUAD.Methods: The RNA expression profiles of LUAD patients were obtained from The Cancer Genome Atlas. OS-associated lncRNAs were identified based on the differential expression analysis between LUAD and normal samples followed by survival analysis, univariate and multivariate Cox proportional hazards regression analyses. OS-associated lncRNA with sex dimorphism was determined based on the analysis of expression between males and females. Functional enrichment analysis of the Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was performed to explore the possible mechanisms of 5-lncRNA signatures.Results: A 5-lncRNA signature (composed of AC068228.1, SATB2-AS1, LINC01843, AC026355.1, and AL606489.1) was found to be effective in predicting high-risk LUAD patients as well as applicable to female and male subgroups and <65-year and ≥65-year age subgroups. The forecasted effect of the 5-lncRNA signature was more efficient and stable than the TNM stage and other clinical risk factors (such as sex and age). Functional enrichment analysis revealed that the mRNA co-expressed with these five OS-related lncRNAs was associated with RNA regulation within the nucleus. AL606489.1 demonstrated a sexual dimorphism that may be associated with microtubule activity.Conclusion: Our 5-lncRNA signature could efficaciously predict the OS of LUAD patients. AL606489.1 demonstrated gender dimorphism, which provides a new direction for mechanistic studies on sexual dimorphism.
Collapse
Affiliation(s)
- Jiali Liang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huaping Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Huaping Xu,
| |
Collapse
|
47
|
Grolleau E, de Bermont J, Devun F, Pérol D, Lacoste V, Delastre L, Fleurisson F, Devouassoux G, Mornex JF, Cotton F, Darrason M, Tammemagi M, Couraud S. Eligibility to lung cancer screening among staffs of a university hospital: A large cross-sectional survey. Respir Med Res 2022; 83:100970. [PMID: 36724677 DOI: 10.1016/j.resmer.2022.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/26/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Implementation of Lung cancer screening (LCS) programs is challenging. The ILYAD study objectives is to evaluate communication methods to improve participation rate among the Lyon University Hospital employees. In this first part of the study, we aimed to determinate the number of eligible individuals among our population of employees. METHOD In November 2020, we conducted a questionnaire based cross sectional survey among the Lyon University Hospital employees (N = 26,954). We evaluated the PLCO m2012 risk prediction model and the eligibility criteria recommended by French guidelines. We assessed the proportion of eligible individuals among the responders and calculated the total eligible individuals in our hospital. RESULTS Overall, 4,526 questionnaires were available for analysis. 16.0% were current smokers, and 28.2% were former smokers. Among the 50-75yo ever-smoker employees, 27% were eligible according to the French guidelines, 2.7% of all eversmokers according to a PLCO m2012 score ≥ 1.51%, and thus, 3.8% of the surveyed population were eligible to the combined criteria. The factors associated with higher eligibility among 50-75yo ever-smokers were educational level, feeling symptoms related to tobacco smoking, personal history of COPD and family history of lung cancer. Using the French guidelines criteria only, we estimated the total number of eligible individuals in the hospital at 838. CONCLUSION In this study, we determined a theoretical number of eligible employees to LCS in our institution and the factors associated to eligibility. Secondly, we will propose LCS to all eligible employees of Lyon University Hospital with incremented information actions.
Collapse
Affiliation(s)
- Emmanuel Grolleau
- Service de pneumologie aigue et cancérologie thoracique, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310, Pierre Bénite, France; Centre d'Innovation en Cancérologie de Lyon EA 3738, Faculté de médecine Lyon-Sud, Université Lyon 1, 69600, Oullins, France
| | - Julie de Bermont
- Service de pneumologie aigue et cancérologie thoracique, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310, Pierre Bénite, France.
| | - Flavien Devun
- Unité de Recherche Commune en Oncologie Thoracique, Hospices Civils de Lyon, Lyon, France
| | - David Pérol
- Bureau d'études cliniques, Centre Léon Bérard, Lyon, France
| | - Véronique Lacoste
- Applied Linguistics Research Center, Lyon 2 university, Lyon, France
| | - Loïc Delastre
- Medical Management Department, Hospices Civils de Lyon, Lyon, France
| | - Fanny Fleurisson
- Medical Management Department, Hospices Civils de Lyon, Lyon, France
| | - Gilles Devouassoux
- Service de Pneumologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Jean-François Mornex
- Service de Pneumologie, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - François Cotton
- Service d'Imagerie Médicale, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Marie Darrason
- Service de pneumologie aigue et cancérologie thoracique, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310, Pierre Bénite, France; Institut de Recherche en Philosophie, Lyon 3 University, Lyon, France
| | | | - Sébastien Couraud
- Service de pneumologie aigue et cancérologie thoracique, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310, Pierre Bénite, France; Centre d'Innovation en Cancérologie de Lyon EA 3738, Faculté de médecine Lyon-Sud, Université Lyon 1, 69600, Oullins, France; Unité de Recherche Commune en Oncologie Thoracique, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
48
|
Alpert O, Siddiqui B, Shabbir Z, Soudan M, Garren P. The role of psychiatry in quality of life in young patients with non-small cell lung cancer. Brain Behav Immun Health 2022; 25:100507. [PMID: 36133954 PMCID: PMC9483727 DOI: 10.1016/j.bbih.2022.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Background Lung cancer is often seen in geriatric patients, with an age of onset of approximately 60 years. Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related mortality in the United States and around the world. Young patients are rarely diagnosed with lung cancer, with less than 3.5% of patients presenting with this tumor at an age less than 45. In this paper, we examine NSCLC in young patients, between 18 and 35 years of age, which most commonly occurs in non-smokers and is characterized by a higher proportion of adenocarcinoma histology and advanced disease at presentation. These patients often present with metastasis involving one organ and they test positive for driver gene mutations including, but not limited to, epidermal growth factor receptor (EGFR), tyrosine kinase inhibitor (TKI) sensitive mutation and anaplastic lymphoma kinase (ALK). We addressed depression and anxiety and their effect on quality of life (QOL) and attempted to examine how improvement in QOL in these young patients could affect their course of illness and prognosis. Methods We conducted a literature review using PubMed, Cochrane, and Google search. We concentrated our search on two elements, reviewing approximately 50 articles focusing on the driver mutations EGFR and ALK as well as genetic mapping of lung adenocarcinoma in patients aged 18–35 years old. We also conducted a review of approximately 30 articles focusing on quality of life in the context of anxiety and depression within this patient population. Results We have described a case of a 28-year-old male with new-onset metastatic lung adenocarcinoma that we had treated in our hospital. He was found to have mutations in EGFR and ALK rearrangement. We aimed to address his depression, anxiety, and poor QOL in the context of his diagnosis. Due to his presenting symptoms leading to the diagnosis of adjustment disorder, he was treated with pharmacotherapy as well as conventional therapy to improve his QOL. Due to the time required to identify mutations, our patient passed away before a more targeted treatment could be offered. Conclusion It is important to fully explore the nature of the cancer, including mutation types. Our case demonstrates that the detection of the driver gene mutation EGFR and/or ALK rearrangement could affect treatment and prognosis in this patient population. There are many studies available that highlight targeted therapies for these mutations as well as chemotherapy and radiation. Psychiatry has a significant role in improving quality of life in these patients, which could enhance their response to treatment and survival. Involving psychiatry early in the course results in lower rates of depression, anxiety and premature death. Detection of the driver gene mutation EGFR and or ALK rearrangement could affect treatment within the young adult population. Early psychiatric intervention can improve quality of life. Early psychiatric intervention can lower rates of depression, anxiety, and suicidal ideation.
Collapse
Affiliation(s)
- Orna Alpert
- Nuvance Health, Department of Psychiatry, United States
- Corresponding author.
| | | | - Zed Shabbir
- Nuvance Health, Department of Psychiatry, United States
| | - Majd Soudan
- Nuvance Health, Department of Psychiatry, United States
| | - Patrik Garren
- University of Pennsylvania, Department of Biobehavioral and Health Sciences, United States
| |
Collapse
|
49
|
Cheng ES, Chan KH, Weber M, Steinberg J, Young J, Canfell K, Yu XQ. Solid Fuel, Secondhand Smoke, and Lung Cancer Mortality: A Prospective Cohort of 323,794 Chinese Never-Smokers. Am J Respir Crit Care Med 2022; 206:1153-1162. [PMID: 35616543 PMCID: PMC9704832 DOI: 10.1164/rccm.202201-0114oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Household air pollution and secondhand tobacco smoke are known carcinogens for lung cancer, but large-scale estimates of the relationship with lung cancer mortality are lacking. Objectives: Using the large-scale cohort China Kadoorie Biobank, we prospectively investigated associations between these two risk factors and lung cancer death among never-smokers. Methods: The Biobank recruited 512,715 adults aged 30-79 years from 10 regions in China during 2004-2008. Self-reported never-smoking participants were followed up to December 31, 2016, with linkage to mortality data. Total duration of exposure to household air pollution was calculated from self-reported domestic solid fuel use. Exposure to secondhand tobacco smoke was ascertained using exposure at home and/or other places. Hazard ratios and 95% confidence intervals for associations between these two exposures and lung cancer death were estimated using Cox regression, adjusting for key confounders. Measurements and Main Results: There were 979 lung cancer deaths among 323,794 never-smoking participants without a previous cancer diagnosis during 10.2 years of follow-up. There was a log-linear positive association between exposure to household air pollution and lung cancer death, with a 4% increased risk per 5-year increment of exposure (hazard ratio = 1.04; 95% confidence interval = 1.01-1.06; P trend = 0.0034), and participants with 40.1-50.0 years of exposure had the highest risk compared with the never-exposed (hazard ratio = 1.53; 95% confidence interval = 1.13-2.07). The association was largely consistent across various subgroups. No significant association was found between secondhand smoke and lung cancer death. Conclusions: This cohort study provides new prospective evidence suggesting that domestic solid fuel use is associated with lung cancer death among never-smokers.
Collapse
Affiliation(s)
- Elvin S. Cheng
- Sydney School of Public Health and
- the Daffodil Centre, the University of Sydney, Sydney, New South Wales, Australia
| | - Ka Hung Chan
- Oxford British Heart Foundation Centre of Research Excellence and
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; and
| | - Marianne Weber
- the Daffodil Centre, the University of Sydney, Sydney, New South Wales, Australia
| | - Julia Steinberg
- the Daffodil Centre, the University of Sydney, Sydney, New South Wales, Australia
| | - Jane Young
- Sydney School of Public Health and
- the Daffodil Centre, the University of Sydney, Sydney, New South Wales, Australia
| | - Karen Canfell
- the Daffodil Centre, the University of Sydney, Sydney, New South Wales, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Xue Qin Yu
- the Daffodil Centre, the University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
50
|
Debieuvre D, Molinier O, Falchero L, Locher C, Templement-Grangerat D, Meyer N, Morel H, Duval Y, Asselain B, Letierce A, Trédaniel J, Auliac JB, Bylicki O, Moreau L, Fore M, Corre R, Couraud S, Cortot A. Lung cancer trends and tumor characteristic changes over 20 years (2000–2020): Results of three French consecutive nationwide prospective cohorts’ studies. Lancet Reg Health Eur 2022; 22:100492. [PMID: 36108315 PMCID: PMC9445429 DOI: 10.1016/j.lanepe.2022.100492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Long-term changes in lung cancer (LC) patients are difficult to evaluate. We report results from the French KBP-2020 real-life cohort. Methods KBP-2020 was a prospective cohort that included all patients diagnosed with LC in 2020, in nonacademic public hospital in France. Patient and tumour characteristics were described and compared with similarly designed cohorts in 2000 and 2010. Findings In 2020, 82 centers included 8,999 patients diagnosed with LC. The proportion of women increased: 34·6% (3114/8999) compared to, 24·3% (1711/7051) and 16·0% (904/5667) in 2010 and 2000 (p<0·0001). The proportion of non-smokers was higher in 2020 (12·6%, 1129/8983) than in previous cohorts (10·9% (762/7008) in 2010; 7·2% (402/5586) in 2000, p<0·0001). In 2020, at diagnosis, 57·6% (4405/7648) of patients had a metastatic/disseminated stage non-small-cell lung cancer (NSCLC) (58·3% (3522/6046) in 2010; 42·6% (1879/4411) in 2000, p<0·0001). Compared with 2000 and 2010 data, early survival improved slightly. In 2020, 3-month mortality of NSCLC varied from 3·0% [2·2 – 3·8] for localized to 9·6% [8·1 – 11·0] for locally advanced to 29·2% [27·8 – 30·6] for metastatic and was 24·8% [22·3 – 27·3] for SCLC. Interpretation To our knowledge KBP cohorts have been the largest, prospective, real-world cohort studies involving LC patients conducted in worldwide. The trend found in our study shows an increase in LC in women and still a large proportion of patients diagnosed at metastatic or disseminated stage. Funding The study was promoted by the French College of General Hospital Pulmonologists with financial support of industrials laboratories.
Collapse
Affiliation(s)
- Didier Debieuvre
- Respiratory Medicine Department, Groupe Hospitalier de la Région Mulhouse Sud-Alsace, Hôpital Emile Muller, Mulhouse, France
- Corresponding author at: Service de Pneumologie, GHRMSA, Hôpital Emile Muller, 20 rue du Dr Laënnec, BP 1370, 68070 Mulhouse CEDEX, France.
| | - Olivier Molinier
- Respiratory Medicine Department, Centre Hospitalier Le Mans, Le Mans, France
| | - Lionel Falchero
- Respiratory Medicine Department, L'Hôpital Nord-Ouest, Villefranche-Sur-Saône, France
| | - Chrystèle Locher
- Respiratory Medicine Department, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | | | - Nicolas Meyer
- Biostatistician, Public Health Department, CHU de Strasbourg, GMRC, Strasbourg, France
| | - Hugues Morel
- Respiratory Medicine Department, Centre Hospitalier Régional D'Orléans Hôpital de La Source, Orléans, France
| | - Yannick Duval
- Respiratory Medicine Department, Hôpital de Cannes Simone Veil, Cannes, France
| | - Bernard Asselain
- Methodologist, Groupe Statistique, ARCAGY - GINECO, Paris, France
| | | | - Jean Trédaniel
- Department of Thoracic Oncology, Groupe hospitalier Paris-Saint Joseph, Paris, France
| | - Jean-Bernard Auliac
- Respiratory Medicine Department, Centre Hospitalier Intercommunal Créteil, Créteil, France
| | - Olivier Bylicki
- Respiratory Medicine Department, Hôpital d'Instruction des Armées Sainte-Anne, Toulon, France
| | - Lionel Moreau
- Respiratory Medicine Department, Centre Hospitalier de Colmar, Colmar, France
| | - Mathieu Fore
- Respiratory Medicine Department, Groupe Hospitalier de la Région Mulhouse Sud-Alsace, Hôpital Emile Muller, Mulhouse, France
| | - Romain Corre
- Respiratory Medicine Department, Centre Hospitalier de Cornouaille, Quimper, France
| | - Sébastien Couraud
- Respiratory Medicine Department, Centre Hospitalier de Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Alexis Cortot
- Department of Thoracic Oncology, CHU de Lille, CNRS, Inserm, Institut Pasteur de Lille, UMR9020-U1277-CANTHER, Lille, France
| | | |
Collapse
|