1
|
Mo Y, Han Y, Chen Y, Fu C, Li Q, Liu Z, Xiao M, Xu B. ZDHHC20 mediated S-palmitoylation of fatty acid synthase (FASN) promotes hepatocarcinogenesis. Mol Cancer 2024; 23:274. [PMID: 39696259 DOI: 10.1186/s12943-024-02195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Protein palmitoylation is a reversible fatty acyl modification that undertakes important functions in multiple physiological processes. Dysregulated palmitoylations are frequently associated with the formation of cancer. How palmitoyltransferases for S-palmitoylation are involved in the occurrence and development of hepatocellular carcinoma (HCC) is largely unknown. METHODS Chemical carcinogen diethylnitrosamine (DEN)-induced and DEN combined CCl4 HCC models were used in the zinc finger DHHC-type palmitoyltransferase 20 (ZDHHC20) knockout mice to investigate the role of ZDHHC20 in HCC tumourigenesis. Palmitoylation liquid chromatography-mass spectrometry analysis, acyl-biotin exchange assay, co-immunoprecipitation, ubiquitination assays, protein half-life assays and immunofluorescence microscopy were conducted to explore the downstream regulators and corresponding mechanisms of ZDHHC20 in HCC. RESULTS Knocking out of ZDHHC20 significantly reduced hepatocarcinogenesis induced by chemical agents in the two HCC mouse models in vivo. 97 proteins with 123 cysteine sites were found to be palmitoylated in a ZDHHC20-dependent manner. Among these, fatty acid synthase (FASN) was palmitoylated at cysteines 1471 and 1881 by ZDHHC20. The genetic knockout or pharmacological inhibition of ZDHHC20, as well as the mutation of the critical cysteine sites of FASN (C1471S/C1881S) accelerated the degradation of FASN. Furthermore, ZDHHC20-mediated FASN palmitoylation competed against the ubiquitin-proteasome pathway via the E3 ubiquitin ligase complex SNX8-TRIM28. CONCLUSIONS Our findings demonstrate the critical role of ZDHHC20 in promoting hepatocarcinogenesis, and a mechanism underlying a mutual restricting mode for protein palmitoylation and ubiquitination modifications.
Collapse
Affiliation(s)
- Yaqi Mo
- Center for Intelligent Oncology, Chongqing University Cancer Hospital and Chongqing University School of Medicine, and Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing, 400030, China
| | - Yamei Han
- Department of Biochemistry and Molecular Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yang Chen
- Department of Biochemistry and Molecular Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Radiation Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Chunling Fu
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Qing Li
- Center for Intelligent Oncology, Chongqing University Cancer Hospital and Chongqing University School of Medicine, and Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing, 400030, China
| | - Zhuang Liu
- Department of Biochemistry and Molecular Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Mingming Xiao
- Department of Biochemistry and Molecular Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Bo Xu
- Center for Intelligent Oncology, Chongqing University Cancer Hospital and Chongqing University School of Medicine, and Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing, 400030, China.
- Department of Biochemistry and Molecular Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| |
Collapse
|
2
|
Goździk P, Smolarz K, Hallmann A. Antidepressants as new endocrine disruptors? - transcriptomic profiling in gonads of Mytilus trossulus exposed to norfluoxetine. MARINE POLLUTION BULLETIN 2024; 208:117015. [PMID: 39305840 DOI: 10.1016/j.marpolbul.2024.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 09/15/2024] [Indexed: 10/23/2024]
Abstract
In this study an impact of norfluoxetine (NFLU) on Mytilus trossulus gonads was investigated focusing on sex-related differences in hormonal changes, gene expression, and transcriptomic profiling. Sex-specific differences in gonadal serotonin levels were found. NFLU stimulates serotonin synthesis and/or transport in female gonads, potentially accelerating oocyte maturation and gamete release. In males, NFLU decreases serotonin level what likely leads to impeding sperm maturation and thus spawning delay. Transcriptomic analyses highlighted the presence of NFLU-induced changes in gene expression related to gametogenesis and neurotransmission. In females, NFLU upregulated genes associated with oocyte development and downregulated those involved in sperm maturation. NFLU-treated males exhibited mixed effects in their genes in relation to spermatogenesis. Additionally, sex-related differences in the expression of the CYP450 genes responsible for detoxification were found. Overall, norfluoxetine acts as an endocrine-disrupting chemical and impacts gonadal serotonin levels and gene expression, potentially disrupting reproductive success of M. trossulus.
Collapse
Affiliation(s)
- Paulina Goździk
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Debinki 1, 80-211 Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystem Functioning, University of Gdańsk, Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Debinki 1, 80-211 Gdańsk, Poland.
| |
Collapse
|
3
|
Brown CR, Shetty M, Foster JD. Palmitoylation regulates norepinephrine transporter uptake, surface localization, and total expression with pathogenic implications in postural orthostatic tachycardia syndrome. J Neurochem 2024. [PMID: 39395208 DOI: 10.1111/jnc.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024]
Abstract
Postural orthostatic tachycardia syndrome (POTS) is an adrenergic signaling disorder characterized by excessive plasma norepinephrine, postural tachycardia, and syncope. The norepinephrine transporter (NET) modulates adrenergic homeostasis via the reuptake of extracellular catecholamines and is implicated in the pathogenesis of adrenergic and neurological disorders. In this study, we reveal NET is palmitoylated in male Sprague-Dawley rats and Lilly Laboratory Cell Porcine Kidney (LLC-PK1) cells. S-palmitoylation, or the addition of a 16-carbon saturated fatty acid, is a reversible post-translational modification responsible for the regulation of numerous biological mechanisms. We found that LLC-PK1 NET is dynamically palmitoylated, and that inhibition with the palmitoyl acyltransferase (DHHC) inhibitor, 2-bromopalmitate (2BP) results in decreased NET palmitoylation within 90 min of treatment. This result was followed closely by a reduction in transport capacity, cell surface, and total cellular NET expression after 120 min of treatment. Increasing 2BP concentrations and treatment time revealed a nearly complete loss of total NET protein. Co-expression with individual DHHCs revealed a single DHHC enzyme, DHHC1, promoted wild-type (WT) hNET palmitoylation and elevated NET protein levels. The POTS-associated NET mutant, A457P, exhibits dramatically decreased transport capacity and cell surface levels which we have confirmed in the current study. In an attempt to recover A457P NET expression, we co-expressed the A457P variant with DHHC1 to drive expression as seen with the WT protein but instead saw an increase in NET N-terminal immuno-detectable forms and fragments. Elimination of a potential palmitoylation site at cysteine 44 in the N-terminal tail of hNET resulted in a low expression phenotype mimicking the A457P hNET variant. Further investigation of A457P NET palmitoylation and surface expression is necessary, but our preliminary novel findings reveal palmitoylation as a mechanism of NET regulation and suggest that dysregulation of this process may contribute to the pathogenesis of adrenergic disorders like POTS.
Collapse
Affiliation(s)
- Christopher R Brown
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Madhur Shetty
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - James D Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
4
|
Wlodarczyk J, Bhattacharyya R, Dore K, Ho GPH, Martin DDO, Mejias R, Hochrainer K. Altered Protein Palmitoylation as Disease Mechanism in Neurodegenerative Disorders. J Neurosci 2024; 44:e1225242024. [PMID: 39358031 PMCID: PMC11450541 DOI: 10.1523/jneurosci.1225-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/04/2024] Open
Abstract
Palmitoylation, a lipid-based posttranslational protein modification, plays a crucial role in regulating various aspects of neuronal function through altering protein membrane-targeting, stabilities, and protein-protein interaction profiles. Disruption of palmitoylation has recently garnered attention as disease mechanism in neurodegeneration. Many proteins implicated in neurodegenerative diseases and associated neuronal dysfunction, including but not limited to amyloid precursor protein, β-secretase (BACE1), postsynaptic density protein 95, Fyn, synaptotagmin-11, mutant huntingtin, and mutant superoxide dismutase 1, undergo palmitoylation, and recent evidence suggests that altered palmitoylation contributes to the pathological characteristics of these proteins and associated disruption of cellular processes. In addition, dysfunction of enzymes that catalyze palmitoylation and depalmitoylation has been connected to the development of neurological disorders. This review highlights some of the latest advances in our understanding of palmitoylation regulation in neurodegenerative diseases and explores potential therapeutic implications.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Raja Bhattacharyya
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla, California 92093
| | - Gary P H Ho
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dale D O Martin
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Rebeca Mejias
- Department of Physiology, School of Biology, Universidad de Sevilla, Seville, 41012 Spain
- Instituto de Investigaciones Biomédicas de Sevilla, IBIS/Universidad de Sevilla/Hospital Universitario Virgen del Rocío/Junta de Andalucía/CSIC, Seville 41013, Spain
| | - Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
5
|
Koster KP, Green WN. Editorial: Role of protein palmitoylation in synaptic plasticity and neuronal differentiation, volume II. Front Synaptic Neurosci 2024; 16:1473989. [PMID: 39319198 PMCID: PMC11420002 DOI: 10.3389/fnsyn.2024.1473989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Affiliation(s)
- Kevin P. Koster
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
| | | |
Collapse
|
6
|
Li X, Yu T, Li X, He X, Zhang B, Yang Y. Role of novel protein acylation modifications in immunity and its related diseases. Immunology 2024; 173:53-75. [PMID: 38866391 DOI: 10.1111/imm.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
The cross-regulation of immunity and metabolism is currently a research hotspot in life sciences and immunology. Metabolic immunology plays an important role in cutting-edge fields such as metabolic regulatory mechanisms in immune cell development and function, and metabolic targets and immune-related disease pathways. Protein post-translational modification (PTM) is a key epigenetic mechanism that regulates various biological processes and highlights metabolite functions. Currently, more than 400 PTM types have been identified to affect the functions of several proteins. Among these, metabolic PTMs, particularly various newly identified histone or non-histone acylation modifications, can effectively regulate various functions, processes and diseases of the immune system, as well as immune-related diseases. Thus, drugs aimed at targeted acylation modification can have substantial therapeutic potential in regulating immunity, indicating a new direction for further clinical translational research. This review summarises the characteristics and functions of seven novel lysine acylation modifications, including succinylation, S-palmitoylation, lactylation, crotonylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation and malonylation, and their association with immunity, thereby providing valuable references for the diagnosis and treatment of immune disorders associated with new acylation modifications.
Collapse
Affiliation(s)
- Xiaoqian Li
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
7
|
Zhou B, Zhang M, Ma H, Wang Y, Qiu J, Liu Y, Lu L, Li T, Zhang L, Huang R, Gu Y, Kong E, Liang Y. Distinct palmitoylation of Foxp3 regulates the function of regulatory T cells via palmitoyltransferases. Cell Mol Immunol 2024; 21:787-789. [PMID: 38720064 PMCID: PMC11214613 DOI: 10.1038/s41423-024-01166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/18/2024] [Indexed: 07/01/2024] Open
Affiliation(s)
- Binhui Zhou
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China.
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Mengjie Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Haoyuan Ma
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ying Wang
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Juanjuan Qiu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yang Liu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liaoxun Lu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tianhan Li
- Basic Medical College, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Rong Huang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yanrong Gu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Eryan Kong
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China.
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Yinming Liang
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China.
- Center of Disease Model and Immunology, Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
8
|
S Mesquita F, Abrami L, Linder ME, Bamji SX, Dickinson BC, van der Goot FG. Mechanisms and functions of protein S-acylation. Nat Rev Mol Cell Biol 2024; 25:488-509. [PMID: 38355760 DOI: 10.1038/s41580-024-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty acid to a protein. Maintenance of the equilibrium between protein S-acylation and deacylation has demonstrated profound effects on various cellular processes, including innate immunity, inflammation, glucose metabolism and fat metabolism, as well as on brain and heart function. This Review provides an overview of current understanding of S-acylation and deacylation enzymes, their spatiotemporal regulation by sophisticated multilayered mechanisms, and their influence on protein function, cellular processes and physiological pathways. Furthermore, we examine how disruptions in protein S-acylation are associated with a broad spectrum of diseases from cancer to autoinflammatory disorders and neurological conditions.
Collapse
Affiliation(s)
- Francisco S Mesquita
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maurine E Linder
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - F Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
9
|
Dai T, Zhao Z, Zhu T, Fei C, Nie L, Chen J. The anti-inflammatory role of zDHHC23 through the promotion of macrophage M2 polarization and macrophage necroptosis in large yellow croaker ( Larimichthys crocea). Front Immunol 2024; 15:1401626. [PMID: 38868779 PMCID: PMC11167447 DOI: 10.3389/fimmu.2024.1401626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024] Open
Abstract
Zinc finger Asp-His-His-Cys motif-containing (zDHHC) proteins, known for their palmitoyltransferase (PAT) activity, play crucial roles in diverse cellular processes, including immune regulation. However, their non-palmitoyltransferase immunomodulatory functions and involvement in teleost immune responses remain underexplored. In this study, we systematically characterized the zDHHC family in the large yellow croaker (Larimichthys crocea), identifying 22 members. Phylogenetic analysis unveiled that each of the 22 LczDHHCs formed distinct clusters with their orthologues from other teleost species. Furthermore, all LczDHHCs exhibited a highly conserved DHHC domain, as confirmed by tertiary structure prediction. Notably, LczDHHC23 exhibited the most pronounced upregulation following Pseudomonas plecoglossicida (P. plecoglossicida) infection of macrophage/monocyte cells (MO/MΦ). Silencing LczDHHC23 led to heightened pro-inflammatory cytokine expression and diminished anti-inflammatory cytokine levels in MO/MΦ during infection, indicating its anti-inflammatory role. Functionally, LczDHHC23 facilitated M2-type macrophage polarization, as evidenced by a significant skewing of MO/MΦ towards the pro-inflammatory M1 phenotype upon LczDHHC23 knockdown, along with the inhibition of MO/MΦ necroptosis induced by P. plecoglossicida infection. These findings highlight the non-PAT immunomodulatory function of LczDHHC23 in teleost immune regulation, broadening our understanding of zDHHC proteins in host-pathogen interactions, suggesting LczDHHC23 as a potential therapeutic target for immune modulation in aquatic species.
Collapse
Affiliation(s)
- Ting Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Ziyue Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Tingfang Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Tomić G, Sheridan C, Refermat AY, Baggelaar MP, Sipthorp J, Sudarshan B, Ocasio CA, Suárez-Bonnet A, Priestnall SL, Herbert E, Tate EW, Downward J. Palmitoyl transferase ZDHHC20 promotes pancreatic cancer metastasis. Cell Rep 2024; 43:114224. [PMID: 38733589 DOI: 10.1016/j.celrep.2024.114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/04/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Metastasis is one of the defining features of pancreatic ductal adenocarcinoma (PDAC) that contributes to poor prognosis. In this study, the palmitoyl transferase ZDHHC20 was identified in an in vivo short hairpin RNA (shRNA) screen as critical for metastatic outgrowth, with no effect on proliferation and migration in vitro or primary PDAC growth in mice. This phenotype is abrogated in immunocompromised animals and animals with depleted natural killer (NK) cells, indicating that ZDHHC20 affects the interaction of tumor cells and the innate immune system. Using a chemical genetics platform for ZDHHC20-specific substrate profiling, a number of substrates of this enzyme were identified. These results describe a role for palmitoylation in enabling distant metastasis that could not have been detected using in vitro screening approaches and identify potential effectors through which ZDHHC20 promotes metastasis of PDAC.
Collapse
Affiliation(s)
- Goran Tomić
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Clare Sheridan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Marc P Baggelaar
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK
| | - James Sipthorp
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK
| | | | - Cory A Ocasio
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alejandro Suárez-Bonnet
- The Royal Veterinary College, Department of Pathobiology & Population Sciences, Hawkshead Lane, Hatfield AL9 7TA, UK; Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Simon L Priestnall
- The Royal Veterinary College, Department of Pathobiology & Population Sciences, Hawkshead Lane, Hatfield AL9 7TA, UK; Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eleanor Herbert
- The Royal Veterinary College, Department of Pathobiology & Population Sciences, Hawkshead Lane, Hatfield AL9 7TA, UK; Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Edward W Tate
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Julian Downward
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
11
|
Brown CR, Foster JD. Palmitoylation regulates norepinephrine transporter trafficking and expression and is potentially involved in the pathogenesis of postural orthostatic tachycardia syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586171. [PMID: 38585862 PMCID: PMC10996475 DOI: 10.1101/2024.03.22.586171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Postural orthostatic tachycardia syndrome (POTS) is an adrenergic signaling disorder characterized by excessive plasma norepinephrine, postural tachycardia, and syncope. The norepinephrine transporter (NET) modulates adrenergic homeostasis via reuptake of extracellular catecholamines and is implicated in the pathogenesis of adrenergic and neurological disorders. Previous research has outlined that NET activity and trafficking is modulated via reversible post-translational modifications like phosphorylation and ubiquitylation. S-palmitoylation, or the addition of a 16-carbon saturated fatty acid, is another post-translational modification responsible for numerous biological mechanisms. In this study, we reveal that NET is dynamically palmitoylated and inhibition of this modification with the palmitoyl acyltransferase (DHHC) inhibitor, 2-bromopalmitate (2BP), results in decreased NET palmitoylation within 90 min of treatment. This result was followed closely with a reduction in transport capacity, cell surface, and total cellular NET expression after 120 min of treatment. Increasing 2BP concentrations and treatment time revealed a nearly complete loss of total NET protein. Co-expression with individual DHHCs revealed a single DHHC enzyme, DHHC1, promoted WT hNET palmitoylation and elevated NET protein levels. The POTS associated NET mutant, A457P, exhibits dramatically decreased transport capacity and cell surface levels which we have confirmed in the current study. In an attempt to recover A457P NET expression we co-expressed the A457P variant with DHHC1 to drive expression as seen with the WT protein but instead saw an increase in NET N-terminal immuno-detectable fragments. Further investigation of A457P NET palmitoylation and surface expression is necessary, but our preliminary novel findings reveal palmitoylation as a mechanism of NET regulation and suggest that dysregulation of this process may contribute to the pathogenesis of POTS.
Collapse
|
12
|
Chen Y, Li Y, Wu L. Protein S-palmitoylation modification: implications in tumor and tumor immune microenvironment. Front Immunol 2024; 15:1337478. [PMID: 38415253 PMCID: PMC10896991 DOI: 10.3389/fimmu.2024.1337478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Protein S-palmitoylation is a reversible post-translational lipid modification that involves the addition of a 16-carbon palmitoyl group to a protein cysteine residue via a thioester linkage. This modification plays a crucial role in the regulation protein localization, accumulation, secretion, stability, and function. Dysregulation of protein S-palmitoylation can disrupt cellular pathways and contribute to the development of various diseases, particularly cancers. Aberrant S-palmitoylation has been extensively studied and proven to be involved in tumor initiation and growth, metastasis, and apoptosis. In addition, emerging evidence suggests that protein S-palmitoylation may also have a potential role in immune modulation. Therefore, a comprehensive understanding of the regulatory mechanisms of S-palmitoylation in tumor cells and the tumor immune microenvironment is essential to improve our understanding of this process. In this review, we summarize the recent progress of S-palmitoylation in tumors and the tumor immune microenvironment, focusing on the S-palmitoylation modification of various proteins. Furthermore, we propose new ideas for immunotherapeutic strategies through S-palmitoylation intervention.
Collapse
Affiliation(s)
- Yijiao Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
13
|
Baldwin TA, Teuber JP, Kuwabara Y, Subramani A, Lin SCJ, Kanisicak O, Vagnozzi RJ, Zhang W, Brody MJ, Molkentin JD. Palmitoylation-dependent regulation of cardiomyocyte Rac1 signaling activity and minor effects on cardiac hypertrophy. J Biol Chem 2023; 299:105426. [PMID: 37926281 PMCID: PMC10716590 DOI: 10.1016/j.jbc.2023.105426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
S-palmitoylation is a reversible lipid modification catalyzed by 23 S-acyltransferases with a conserved zinc finger aspartate-histidine-histidine-cysteine (zDHHC) domain that facilitates targeting of proteins to specific intracellular membranes. Here we performed a gain-of-function screen in the mouse and identified the Golgi-localized enzymes zDHHC3 and zDHHC7 as regulators of cardiac hypertrophy. Cardiomyocyte-specific transgenic mice overexpressing zDHHC3 show cardiac disease, and S-acyl proteomics identified the small GTPase Rac1 as a novel substrate of zDHHC3. Notably, cardiomyopathy and congestive heart failure in zDHHC3 transgenic mice is preceded by enhanced Rac1 S-palmitoylation, membrane localization, activity, downstream hypertrophic signaling, and concomitant induction of all Rho family small GTPases whereas mice overexpressing an enzymatically dead zDHHC3 mutant show no discernible effect. However, loss of Rac1 or other identified zDHHC3 targets Gαq/11 or galectin-1 does not diminish zDHHC3-induced cardiomyopathy, suggesting multiple effectors and pathways promoting decompensation with sustained zDHHC3 activity. Genetic deletion of Zdhhc3 in combination with Zdhhc7 reduces cardiac hypertrophy during the early response to pressure overload stimulation but not over longer time periods. Indeed, cardiac hypertrophy in response to 2 weeks of angiotensin-II infusion is not diminished by Zdhhc3/7 deletion, again suggesting other S-acyltransferases or signaling mechanisms compensate to promote hypertrophic signaling. Taken together, these data indicate that the activity of zDHHC3 and zDHHC7 at the cardiomyocyte Golgi promote Rac1 signaling and maladaptive cardiac remodeling, but redundant signaling effectors compensate to maintain cardiac hypertrophy with sustained pathological stimulation in the absence of zDHHC3/7.
Collapse
Affiliation(s)
- Tanya A Baldwin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James P Teuber
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yasuhide Kuwabara
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Araskumar Subramani
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Suh-Chin J Lin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Onur Kanisicak
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ronald J Vagnozzi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Cardiology, Department of Medicine, Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Weiqi Zhang
- Laboratory of Molecular Psychiatry, Department of Mental Health, University of Münster, Münster, Germany
| | - Matthew J Brody
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
14
|
Das T, Hang HC. Discovery and Characterization of IFITM S-Palmitoylation. Viruses 2023; 15:2329. [PMID: 38140570 PMCID: PMC10747768 DOI: 10.3390/v15122329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Interferon-induced transmembrane proteins (IFITM1, 2 and 3) are important host antiviral defense factors. They are active against viruses like the influenza A virus (IAV), dengue virus (DENV), Ebola virus (EBOV), Zika virus (ZIKV) and severe acute respiratory syndrome coronavirus (SARS-CoV). In this review, we focus on IFITM3 S-palmitoylation, a reversible lipid modification, and describe its role in modulating IFITM3 antiviral activity. Our laboratory discovered S-palmitoylation of IFITMs using chemical proteomics and demonstrated the importance of highly conserved fatty acid-modified Cys residues in IFITM3 antiviral activity. Further studies showed that site-specific S-palmitoylation at Cys72 is important for IFITM3 trafficking to restricted viruses (IAV and EBOV) and membrane-sterol interactions. Thus, site-specific lipid modification of IFITM3 directly regulates its antiviral activity, cellular trafficking, and membrane-lipid interactions.
Collapse
Affiliation(s)
- Tandrila Das
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Howard C. Hang
- Departments of Immunology and Microbiology and Chemistry, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Jeong DW, Park JW, Kim KS, Kim J, Huh J, Seo J, Kim YL, Cho JY, Lee KW, Fukuda J, Chun YS. Palmitoylation-driven PHF2 ubiquitination remodels lipid metabolism through the SREBP1c axis in hepatocellular carcinoma. Nat Commun 2023; 14:6370. [PMID: 37828054 PMCID: PMC10570296 DOI: 10.1038/s41467-023-42170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Palmitic acid (PA) is the most common fatty acid in humans and mediates palmitoylation through its conversion into palmitoyl coenzyme A. Although palmitoylation affects many proteins, its pathophysiological functions are only partially understood. Here we demonstrate that PA acts as a molecular checkpoint of lipid reprogramming in HepG2 and Hep3B cells. The zinc finger DHHC-type palmitoyltransferase 23 (ZDHHC23) mediates the palmitoylation of plant homeodomain finger protein 2 (PHF2), subsequently enhancing ubiquitin-dependent degradation of PHF2. This study also reveals that PHF2 functions as a tumor suppressor by acting as an E3 ubiquitin ligase of sterol regulatory element-binding protein 1c (SREBP1c), a master transcription factor of lipogenesis. PHF2 directly destabilizes SREBP1c and reduces SREBP1c-dependent lipogenesis. Notably, SREBP1c increases free fatty acids in hepatocellular carcinoma (HCC) cells, and the consequent PA induction triggers the PHF2/SREBP1c axis. Since PA seems central to activating this axis, we suggest that levels of dietary PA should be carefully monitored in patients with HCC.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jong-Wan Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Kyeong Seog Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080, Korea
| | - Jiyoung Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - June Huh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Korea
| | - Jieun Seo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Ye Lee Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Joo-Youn Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080, Korea
| | - Kwang-Woong Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
16
|
Dutta H, Jain N. Post-translational modifications and their implications in cancer. Front Oncol 2023; 13:1240115. [PMID: 37795435 PMCID: PMC10546021 DOI: 10.3389/fonc.2023.1240115] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
Post-translational modifications (PTMs) are crucial regulatory mechanisms that alter the properties of a protein by covalently attaching a modified chemical group to some of its amino acid residues. PTMs modulate essential physiological processes such as signal transduction, metabolism, protein localization, and turnover and have clinical relevance in cancer and age-related pathologies. Majority of proteins undergo post-translational modifications, irrespective of their occurrence in or after protein biosynthesis. Post-translational modifications link to amino acid termini or side chains, causing the protein backbone to get cleaved, spliced, or cyclized, to name a few. These chemical modifications expand the diversity of the proteome and regulate protein activity, structure, locations, functions, and protein-protein interactions (PPIs). This ability to modify the physical and chemical properties and functions of proteins render PTMs vital. To date, over 200 different protein modifications have been reported, owing to advanced detection technologies. Some of these modifications include phosphorylation, glycosylation, methylation, acetylation, and ubiquitination. Here, we discuss about the existing as well as some novel post-translational protein modifications, with their implications in aberrant states, which will help us better understand the modified sites in different proteins and the effect of PTMs on protein functions in core biological processes and progression in cancer.
Collapse
Affiliation(s)
- Hashnu Dutta
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
17
|
He Q, Qu M, Shen T, Su J, Xu Y, Xu C, Barkat MQ, Cai J, Zhu H, Zeng LH, Wu X. Control of mitochondria-associated endoplasmic reticulum membranes by protein S-palmitoylation: Novel therapeutic targets for neurodegenerative diseases. Ageing Res Rev 2023; 87:101920. [PMID: 37004843 DOI: 10.1016/j.arr.2023.101920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic coupling structures between mitochondria and the endoplasmic reticulum (ER). As a new subcellular structure, MAMs combine the two critical organelle functions. Mitochondria and the ER could regulate each other via MAMs. MAMs are involved in calcium (Ca2+) homeostasis, autophagy, ER stress, lipid metabolism, etc. Researchers have found that MAMs are closely related to metabolic syndrome and neurodegenerative diseases (NDs). The formation of MAMs and their functions depend on specific proteins. Numerous protein enrichments, such as the IP3R-Grp75-VDAC complex, constitute MAMs. The changes in these proteins govern the interaction between mitochondria and the ER; they also affect the biological functions of MAMs. S-palmitoylation is a reversible protein post-translational modification (PTM) that mainly occurs on protein cysteine residues. More and more studies have shown that the S-palmitoylation of proteins is closely related to their membrane localization. Here, we first briefly describe the composition and function of MAMs, reviewing the component and biological roles of MAMs mediated by S-palmitoylation, elaborating on S-palmitoylated proteins in Ca2+ flux, lipid rafts, and so on. We try to provide new insight into the molecular basis of MAMs-related diseases, mainly NDs. Finally, we propose potential drug compounds targeting S-palmitoylation.
Collapse
Affiliation(s)
- Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China
| | - Meiyu Qu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiakun Su
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jibao Cai
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Haibin Zhu
- Department of Gynecology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
18
|
Song J, Gao T, Li W, Yuan C, Hao J, Xia X. The Palmitoylation/Depalmitoylation Cycle is Involved in the Inhibition of AMPA Receptor Trafficking Induced by Aluminum In Vitro. Biol Trace Elem Res 2023; 201:1398-1406. [PMID: 35415819 DOI: 10.1007/s12011-022-03234-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
To study the effect of the palmitoylation/depalmitoylation cycle on the inhibition of ɑ-amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid (AMPA) receptor trafficking induced by aluminum (Al) in vitro. Five different doses of aluminum-maltolate complex (Al(mal)3) were administered to rat adrenal pheochromocytoma cells (PC12 cells) for three exposure time durations, and the cell activity was measured by the CCK-8 method to obtain the optimal doses and time of Al(mal)3 exposure. Following Al(mal)3 exposure, membrane protein (M) and total protein (T) were extracted. The expression levels of GluR1 and GluR2, which are AMPA receptor subunits, were determined by Western blot analysis, and the levels with respect to membrane and total protein were calculated. The ratio of membrane protein to total protein (M/T) was used to measure the rate of AMPA receptor transport. The palmitoylation levels of GluR1 and GluR2 were detected by immunoprecipitation-acyl-biotin exchange (IP-ABE) assay. Western blotting was performed to detect the protein expression of acyltransferase (zDHHC3) and palmitoyl protein thioesterase 1 (PPT1). Following depalmitoylation inhibitor (palmostatin B) treatment of PC12 cells, the effect of aluminum on AMPA receptor trafficking was detected through the aforementioned methods. With increasing Al(mal)3 doses administered to PC12 cells, a gradual decrease in the trafficking of AMPA receptor subunits GluR1 and GluR2 and in the palmitoylation levels of GluR1 and GluR2 was found; the expression of zDHHC3 was decreased; and the expression of PPT1 was increased. In addition, palmostatin B reduced the effects of Al(mal)3 on AMPA receptor palmitoylation and trafficking. Al can inhibit the trafficking of the AMPA receptor in vitro, and a decrease in the palmitoylation level of the AMPA receptor may be a mechanism of Al action. The palmitoylation/depalmitoylation cycle of the AMPA receptor is influenced by Al through the actions of zDHHC3 and PPT1.
Collapse
Affiliation(s)
- Jing Song
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China.
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China.
| | - Ting Gao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Wenjing Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Chunman Yuan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jiarui Hao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xinyu Xia
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
19
|
Niki Y, Adachi N, Fukata M, Fukata Y, Oku S, Makino-Okamura C, Takeuchi S, Wakamatsu K, Ito S, Declercq L, Yarosh DB, Mammone T, Nishigori C, Saito N, Ueyama T. S-Palmitoylation of Tyrosinase at Cysteine 500 Regulates Melanogenesis. J Invest Dermatol 2023; 143:317-327.e6. [PMID: 36063887 DOI: 10.1016/j.jid.2022.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023]
Abstract
Palmitoylation is a lipid modification involving the attachment of palmitic acid to a cysteine residue, thereby affecting protein function. We investigated the effect of palmitoylation of tyrosinase, the rate-limiting enzyme in melanin synthesis, using a human three-dimensional skin model system and melanocyte culture. The palmitoylation inhibitor, 2-bromopalmitate, increased melanin content and tyrosinase protein levels in melanogenic cells by suppressing tyrosinase degradation. The palmitoylation site was Cysteine500 in the C-terminal cytoplasmic tail of tyrosinase. The nonpalmitoylatable mutant, tyrosinase (C500A), was slowly degraded and less ubiquitinated than wild-type tyrosinase. Screening for the Asp-His-His-Cys (DHHC) family of proteins for tyrosinase palmitoylation suggested that DHHC2, 3, 7, and 15 are involved in tyrosinase palmitoylation. Knockdown of DHHC2, 3, or 15 increased tyrosinase protein levels and melanin content. Determination of their subcellular localization in primary melanocytes revealed that DHHC2, 3, and 15 were localized in the endoplasmic reticulum, Golgi apparatus, and/or melanosomes, whereas only DHHC2 was localized in the melanosomes. Immunoprecipitation showed that DHHC2 and DHHC3 predominantly bind to mature and immature tyrosinase, respectively. Taken together, tyrosinase palmitoylation at Cysteine500 by DHHC2, 3, and/or 15, especially DHHC2 in trans-Golgi apparatus and melanosomes and DHHC3 in the endoplasmic reticulum and cis-Golgi apparatus, regulate melanogenesis by modulating tyrosinase protein levels.
Collapse
Affiliation(s)
- Yoko Niki
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Naoko Adachi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Shinichiro Oku
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Chieko Makino-Okamura
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Seiji Takeuchi
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Aichi, Japan
| | - Lieve Declercq
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Daniel B Yarosh
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Tomas Mammone
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Naoaki Saito
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.
| |
Collapse
|
20
|
Gal J, Bondada V, Mashburn CB, Rodgers DW, Croall DE, Geddes JW. S-acylation regulates the membrane association and activity of Calpain-5. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119298. [PMID: 35643222 DOI: 10.1016/j.bbamcr.2022.119298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Calpain-5 (CAPN5) is a member of the calpain family of calcium-activated neutral thiol proteases. CAPN5 is partly membrane associated, despite its lack of a transmembrane domain. Unlike classical calpains, CAPN5 contains a C-terminal C2 domain. C2 domains often have affinity to lipids, mediating membrane association. We recently reported that the C2 domain of CAPN5 was essential for its membrane association and the activation of its autolytic activity. However, despite the removal of the C2 domain by autolysis, the N-terminal fragment of CAPN5 remained membrane associated. S-acylation, also referred to as S-palmitoylation, is a reversible post-translational lipid modification of cysteine residues that promotes membrane association of soluble proteins. In the present study several S-acylated cysteine residues were identified in CAPN5 with the acyl-PEG exchange method. Data reported here demonstrate that CAPN5 is S-acylated on up to three cysteine residues including Cys-4 and Cys-512, and likely Cys-507. The D589N mutation in a potential calcium binding loop within the C2 domain interfered with the S-acylation of CAPN5, likely preventing initial membrane association. Mutating specific cysteine residues of CAPN5 interfered with both its membrane association and the activation of CAPN5 autolysis. Taken together, our results suggest that the S-acylation of CAPN5 is critical for its membrane localization which appears to favor its enzymatic activity.
Collapse
Affiliation(s)
- Jozsef Gal
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| | - Vimala Bondada
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA
| | - Charles B Mashburn
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Dorothy E Croall
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - James W Geddes
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
21
|
Abstract
The association of AMP-activated protein kinase (AMPK) with membranes plays a critical role in the regulation of AMPK activation and function. Protein lipid modification, including palmitoylation, myristoylation, and farnesyation, constitutes a crucial mechanism in the regulation of protein dynamic interactions with membranes. Among the three subunits of the AMPK heterotrimeric complex, the structural subunit AMPKβ is myristoylated and the catalytic subunit AMPKα is palmitoylated. Here, we report the characterization of AMPKα palmitoylation. We found that AMKPα was palmitoylated at Cys209 and Cys543, and this was required for AMPK activation and subcellular membrane compartmentalization. To understand the regulation of AMPKα palmitoylation, we have identified DHHC17 as a candidate palmitoyltransferase for AMPKα and found that DHHC17, by palmitoylating AMPKα, modulated AMPK membrane association and activation in response to energy stress. To determine the role of DHHC17 in cell function, we generated DHHC17 liver-specific knockout mice and found that inactivation of DHHC17 in the mouse liver impaired AMPK activation and hepatic autophagy and caused a type 2 diabetes-like syndrome. Overall, our studies demonstrate that AMPKα palmitoylation plays a critical role in AMPK activation and that DHHC17, through its modulation of AMPK signaling, constitutes a new regulator of hepatic metabolism.
Collapse
|
22
|
Tang M, Xia Y, Xiao T, Cao R, Cao Y, Ouyang B. Structural Exploration on Palmitoyltransferase DHHC3 from Homo sapiens. Polymers (Basel) 2022; 14:3013. [PMID: 35893977 PMCID: PMC9332573 DOI: 10.3390/polym14153013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
DHHC3 belongs to a family of DHHC palmitoyltransferase, which catalyzes the S-palmitoylation of target proteins by attaching a fatty acyl group to a cysteine. Recently, DHHC3 has been demonstrated to be a promising antitumor target in cancer therapeutics. However, the detailed structure and catalysis mechanism of DHHC3 remain elusive, considering its sequence diversity from the DHHC homologues with known crystal structures. Here, we described the expression and purification of human DHHC3 (hDHHC3) and truncated hDHHC3 with the flexible N-terminal domain (NTD) removed. Purified hDHHC3 proteins were used under various conditions for protein crystallization. LAMTOR1, one of the interacting proteins of hDHHC3 to facilitate the crystallization, was further identified by mass spectrometry and co-immunoprecipitation assay. The structural exploration using cryogenic electronic microscopy (cryo-EM) on the inactive hDHHS3 mutant showed a typical sideview of membrane proteins. These results provide a preliminary guidance for the structural determination of DHHC3.
Collapse
Affiliation(s)
- Meng Tang
- State Key Laboratory of Molecular Biology, Centre for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; (M.T.); (T.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Xia
- Institute of Precision Medicine, The Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China;
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Taoran Xiao
- State Key Laboratory of Molecular Biology, Centre for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; (M.T.); (T.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyu Cao
- State Key Laboratory of Molecular Biology, Centre for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; (M.T.); (T.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cao
- Institute of Precision Medicine, The Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China;
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bo Ouyang
- State Key Laboratory of Molecular Biology, Centre for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; (M.T.); (T.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Chen X, Niu W, Fan X, Yang H, Zhao C, Fan J, Yao X, Fang Z. Oct4A palmitoylation modulates tumorigenicity and stemness in human glioblastoma cells. Neuro Oncol 2022; 25:82-96. [PMID: 35727735 PMCID: PMC9825352 DOI: 10.1093/neuonc/noac157] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme and other solid malignancies are heterogeneous, containing subpopulations of tumor cells that exhibit stem characteristics. Oct4, also known as POU5F1, is a key transcription factor in the self-renewal, proliferation, and differentiation of stem cells. Although it has been detected in advanced gliomas, the biological function of Oct4, and transcriptional machinery maintained by the stemness of Oct4 protein-mediated glioma stem cells (GSC), has not been fully determined. METHODS The expression of Oct4 variants was evaluated in brain cancer cell lines, and in brain tumor tissues, by quantitative real-time PCR, western blotting, and immunohistochemical analysis. The palmitoylation level of Oct4A was determined by the acyl-biotin exchange method, and the effects of palmitoylation Oct4A on GSCs were investigated by a series of in vitro (neuro-sphere formation assay, double immunofluorescence, pharmacological treatment, luciferase assay, and coimmunoprecipitation) and in vivo (xenograft model) experiments. RESULTS Here, we report that all three variants of Oct4 are expressed in different types of cerebral cancer, while Oct4A is important for maintaining tumorigenicity in GSCs. Palmitoylation mediated by ZDHHC17 was indispensable for preserving Oct4A from lysosome degradation to maintain its protein stability. Oct4A palmitoylation also helped to integrate Sox4 and Oct4A in the SOX2 enhancement subregion to maintain the stem performance of GSCs. We also designed Oct4A palmitoylation competitive inhibitors, inhibiting the self-renewal ability and tumorigenicity of GSCs. CONCLUSIONS These findings indicate that Oct4A acts on the tumorigenic activity of glioblastoma, and Oct4A palmitoylation is a candidate therapeutic target.
Collapse
Affiliation(s)
- Xueran Chen
- Corresponding Authors: Xueran Chen, PhD, Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China (); Xuebiao Yao, PhD, MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China, No.96, Jin Zhai Road, Hefei, Anhui 230027, China (); Zhiyou Fang, PhD, Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China ()
| | - Wanxiang Niu
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China,Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
| | - Xiaoqing Fan
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China,Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China,Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Haoran Yang
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China,Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China,Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
| | - Junqi Fan
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China,Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
| | - Xuebiao Yao
- Corresponding Authors: Xueran Chen, PhD, Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China (); Xuebiao Yao, PhD, MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China, No.96, Jin Zhai Road, Hefei, Anhui 230027, China (); Zhiyou Fang, PhD, Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China ()
| | - Zhiyou Fang
- Corresponding Authors: Xueran Chen, PhD, Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China (); Xuebiao Yao, PhD, MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China, No.96, Jin Zhai Road, Hefei, Anhui 230027, China (); Zhiyou Fang, PhD, Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China ()
| |
Collapse
|
24
|
Rapid Regulation of Glutamate Transport: Where Do We Go from Here? Neurochem Res 2022; 47:61-84. [PMID: 33893911 PMCID: PMC8542062 DOI: 10.1007/s11064-021-03329-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 01/03/2023]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system (CNS). A family of five Na+-dependent transporters maintain low levels of extracellular glutamate and shape excitatory signaling. Shortly after the research group of the person being honored in this special issue (Dr. Baruch Kanner) cloned one of these transporters, his group and several others showed that their activity can be acutely (within minutes to hours) regulated. Since this time, several different signals and post-translational modifications have been implicated in the regulation of these transporters. In this review, we will provide a brief introduction to the distribution and function of this family of glutamate transporters. This will be followed by a discussion of the signals that rapidly control the activity and/or localization of these transporters, including protein kinase C, ubiquitination, glutamate transporter substrates, nitrosylation, and palmitoylation. We also include the results of our attempts to define the role of palmitoylation in the regulation of GLT-1 in crude synaptosomes. In some cases, the mechanisms have been fairly well-defined, but in others, the mechanisms are not understood. In several cases, contradictory phenomena have been observed by more than one group; we describe these studies with the goal of identifying the opportunities for advancing the field. Abnormal glutamatergic signaling has been implicated in a wide variety of psychiatric and neurologic disorders. Although recent studies have begun to link regulation of glutamate transporters to the pathogenesis of these disorders, it will be difficult to determine how regulation influences signaling or pathophysiology of glutamate without a better understanding of the mechanisms involved.
Collapse
|
25
|
Hovde MJ, Bolland DE, Armand A, Pitsch E, Bakker C, Kooiker AJ, Provost JJ, Vaughan RA, Wallert MA, Foster JD. Sodium hydrogen exchanger (NHE1) palmitoylation and potential functional regulation. Life Sci 2022; 288:120142. [PMID: 34774621 PMCID: PMC8692447 DOI: 10.1016/j.lfs.2021.120142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
AIMS Determine the effect of palmitoylation on the sodium hydrogen exchanger isoform 1 (NHE1), a member of the SLC9 family. MAIN METHODS NHE1 expressed in native rat tissues or in heterologous cells was assessed for palmitoylation by acyl-biotinyl exchange (ABE) and metabolic labeling with [3H]palmitate. Cellular palmitoylation was inhibited using 2-bromopalmitate (2BP) followed by determination of NHE1 palmitoylation status, intracellular pH, stress fiber formation, and cell migration. In addition, NHE1 was activated with LPA treatment followed by determination of NHE1 palmitoylation status and LPA-induced change in intracellular pH was determined in the presence and absence of preincubation with 2BP. KEY FINDINGS In this study we demonstrate for the first time that NHE1 is palmitoylated in both cells and rat tissue, and that processes controlled by NHE1 including intracellular pH (pHi), stress fiber formation, and cell migration, are regulated in concert with NHE1 palmitoylation status. Importantly, LPA stimulates NHE1 palmitoylation, and 2BP pretreatment dampens LPA-induced increased pHi which is dependent on the presence of NHE1. SIGNIFICANCE Palmitoylation is a reversible lipid modification that regulates an array of critical protein functions including activity, trafficking, membrane microlocalization and protein-protein interactions. Our results suggest that palmitoylation of NHE1 and other control/signaling proteins play a major role in NHE1 regulation that could significantly impact multiple critical cellular functions.
Collapse
Affiliation(s)
- Moriah J Hovde
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, United States of America.
| | - Danielle E Bolland
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, United States of America.
| | - Aryna Armand
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, United States of America.
| | - Emily Pitsch
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, United States of America
| | - Clare Bakker
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, United States of America.
| | - Amanda J Kooiker
- Biology Department, Bemidji State University, Bemidji, MN 56601, United States of America.
| | - Joseph J Provost
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, United States of America.
| | - Roxanne A Vaughan
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, United States of America.
| | - Mark A Wallert
- Biology Department, Bemidji State University, Bemidji, MN 56601, United States of America.
| | - James D Foster
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, United States of America.
| |
Collapse
|
26
|
Wu Y, Zhang X, Zhang X, Liu S, Zhang J, Sun S, Zhao S, Wang Z, Cui Y, Huang X, Liu M. ZDHHC19 localizes to the cell membrane of spermatids and is involved in spermatogenesis. Biol Reprod 2021; 106:477-486. [PMID: 34897408 DOI: 10.1093/biolre/ioab224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/19/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Sperm is the ultimate executor of male reproductive function. Normal morphology, quantity, and motility of sperm ensure the normal reproductive process. Palmitoylation is a posttranslational modification mediated by palmitoyltransferases whereby palmitoyl is added to proteins. Seven palmitoyltransferases have been identified in Saccharomyces cerevisiae and 23 in humans (including ZDHHC1-9 and ZDHHC11-24), with corresponding homologs in mice. We identified two testis-specific palmitoyltransferases ZDHHC11 and ZDHHC19 in mice. The Zdhhc11 and Zdhhc19-knockout mouse models were constructed, and it was found that the Zdhhc11 knockout males were fertile, while Zdhhc19 knockout males were sterile. ZDHHC19 is located in the cell membrane of step 4-9 spermatids in the mouse testis, and phenotypic analysis showed that the testicular weight ratio in the Zdhhc19-/- mice decreased along with the number and motility of the sperm decreased, while sperm abnormalities increased, mainly due to the "folded" abnormal sperm caused by sperm membrane fusion, suggesting the involvement of ZDHHC19 in maintaining membrane stability in the male reproductive system. In addition, Zdhhc19-/- mice showed abnormal sperm morphologies and apoptosis during spermatogenesis, suggesting that spermatogenesis in the Zdhhc19-/- mice was abnormal. These results indicate that ZDHHC19 promotes membrane stability in male germ cells. Summary sentence: ZDHHC19 is located in the cell membrane of Step4-9 spermatids in mouse testis; Zdhhc19 knockout mice showed male infertility, abnormal spermatogenesis, sperm morphology and motility.
Collapse
Affiliation(s)
- Yangyang Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xi Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Siyu Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jintao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Shuya Sun
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Shuqin Zhao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zerui Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
27
|
Hayashi T. Evolutionarily Established Palmitoylation-Dependent Regulatory Mechanisms of the Vertebrate Glutamatergic Synapse and Diseases Caused by Their Disruption. Front Mol Neurosci 2021; 14:796912. [PMID: 34867194 PMCID: PMC8634674 DOI: 10.3389/fnmol.2021.796912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate brain and various modifications have been established in the glutamatergic synapses. Generally, many neuronal receptors and ion channels are regulated by S-palmitoylation, a reversible post-translational protein modification. Genome sequence databases show the evolutionary acquisition and conservation concerning vertebrate-specific palmitoylation of synaptic proteins including glutamate receptors. Moreover, palmitoylation of some glutamate receptor-binding proteins is subsequently acquired only in some mammalian lineages. Recent progress in genome studies has revealed that some palmitoylation-catalyzing enzymes are the causative genes of neuropsychiatric disorders. In this review, I will summarize the evolutionary development of palmitoylation-dependent regulation of glutamatergic synapses and their dysfunctions which are caused by the disruption of palmitoylation mechanism.
Collapse
Affiliation(s)
- Takashi Hayashi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
28
|
Fan X, Fan J, Yang H, Zhao C, Niu W, Fang Z, Chen X. Heterogeneity of subsets in glioblastoma mediated by Smad3 palmitoylation. Oncogenesis 2021; 10:72. [PMID: 34707087 PMCID: PMC8551152 DOI: 10.1038/s41389-021-00361-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most common and deadly of the primary intracranial tumors and is comprised of subsets that show plasticity and marked heterogeneity, contributing to the lack of success in genomic profiling to guide development of precision medicine for these tumors. In this study, a mutation in isocitrate dehydrogenase 1 was found to suppress the transforming growth factor-beta signaling pathway and E2F4 interacted with Smad3 to inhibit expression of mesenchymal markers. However, palmitoylation of Smad3 mediated by palmitoyltransferase ZDHHC19 promoted activation of the transforming growth factor-beta signaling pathway, and its interaction with EP300 promoted expression of mesenchymal markers in the mesenchymal subtype of GBM. Smad3 and hypoxia-inducible factor 1-alpha may be important molecular targets for treatment of glioma because they appear to coordinate the basic aspects of cancer stem cell biology.
Collapse
Affiliation(s)
- Xiaoqing Fan
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China. MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230027, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230031, China.,Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), No. 17, Lu Jiang Road, Hefei, Anhui, 230001, China
| | - Junqi Fan
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China. MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230027, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230031, China
| | - Haoran Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China. MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230027, China.,Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), No. 17, Lu Jiang Road, Hefei, Anhui, 230001, China.,Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China. MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230027, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230031, China
| | - Wanxiang Niu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China. MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230027, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230031, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China. MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230027, China. .,Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, China.
| | - Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China. MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, No. 96, Jin Zhai Road, Hefei, Anhui, 230027, China. .,Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, China.
| |
Collapse
|
29
|
Ko H, Kim S, Kim K, Jung SH, Shim I, Cha S, Lee H, Kim B, Yoon J, Ha TH, Kwak S, Kang JM, Lee JY, Kim J, Park WY, Nho K, Kim DK, Myung W, Won HH. Genome-wide association study of occupational attainment as a proxy for cognitive reserve. Brain 2021; 145:1436-1448. [PMID: 34613391 DOI: 10.1093/brain/awab351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Occupational attainment, which represents middle-age cognitive activities, is a known proxy marker of cognitive reserve for Alzheimer's disease. Previous genome-wide association studies (GWAS) have identified numerous genetic variants and revealed the genetic architecture of educational attainment, another marker of cognitive reserve. However, the genetic architecture and heritability for occupational attainment remain elusive. We performed a large-scale GWAS of occupational attainment with 248,847 European individuals from the UK Biobank using the proportional odds logistic mixed model method. In this analysis, we defined occupational attainment using the classified job levels formulated in the UK Standard Occupational Classification system considering the individual professional skill and academic level. We identified 30 significant loci (P < 5 × 10-8); 12 were novel variants, unassociated with other traits. Among them, four lead variants were associated with genes expressed in brain tissues by expression quantitative trait loci mapping from 10 brain regions: rs13002946, rs3741368, rs11654986, and rs1627527. The single nucleotide polymorphism (SNP)-based heritability was estimated to be 8.5% (s.e. = 0.004) and partitioned heritability was enriched in the central nervous system and brain tissues. Genetic correlation analysis showed shared genetic backgrounds between occupational attainment and multiple traits, including education, intelligence, leisure activities, life satisfaction, and neuropsychiatric disorders. In two-sample Mendelian randomization (MR) analysis, we demonstrated that high occupation levels were associated with reduced risk for Alzheimer's disease (OR = 0.78, 95% CI = 0.65-0.92 in inverse variance weighted (IVW) method; OR = 0.73, 95% CI = 0.57-0.92 in the weighted median (WM) method). This causal relationship between occupational attainment and Alzheimer's disease was robust in additional sensitivity analysis that excluded potentially pleiotropic SNPs (OR = 0.72, 95% CI = 0.57-0.91 in the IVW method; OR = 0.72, 95% CI = 0.53-0.97 in the WM method). Multivariable MR confirmed that occupational attainment had an independent effect on the risk for Alzheimer's disease even after taking educational attainment into account (OR = 0.72, 95% CI = 0.54-0.95 in the IVW method; OR = 0.68, 95% CI = 0.48-0.97 in the WM method). Overall, our analyses provide insights into the genetic architecture of occupational attainment and demonstrate that occupational attainment is a potential causal protective factor for Alzheimer's disease as a proxy marker of cognitive reserve.
Collapse
Affiliation(s)
- Hyunwoong Ko
- Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul, South Korea.,Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea.,Dental Research Institute, Seoul National University School of Dentistry, Seoul, South Korea
| | - Soyeon Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea.,Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiwon Kim
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Sang-Hyuk Jung
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Injeong Shim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Soojin Cha
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Hyewon Lee
- Department of Health Administration and Management, College of Medical Sciences, Soonchunhyang University, Asan, South Korea
| | - Beomsu Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Joohyun Yoon
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Tae Hyon Ha
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seyul Kwak
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae Myeong Kang
- Department of Psychiatry, Gil Medical Center, Gachon University, Incheon, South Korea
| | - Jun-Young Lee
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Jinho Kim
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kwangsik Nho
- Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Doh Kwan Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea.,Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
30
|
Liu E, Sun J, Yang J, Li L, Yang Q, Zeng J, Zhang J, Chen D, Sun Q. ZDHHC11 Positively Regulates NF-κB Activation by Enhancing TRAF6 Oligomerization. Front Cell Dev Biol 2021; 9:710967. [PMID: 34490261 PMCID: PMC8417235 DOI: 10.3389/fcell.2021.710967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a RING domain ubiquitin ligase that plays an important role in nuclear factor-κB (NF-κB) signaling by regulating activation of the TAK1 and IKK complexes. However, the molecular mechanisms that regulate TRAF6 E3 activity remain unclear. Here, we found that ZDHHC11, a member of the DHHC palmitoyl transferase family, functions as a positive modulator in NF-κB signaling. ZDHHC11 overexpression activated NF-κB, whereas ZDHHC11 deficiency impaired NF-κB activity stimulated by IL-1β, LPS, and DNA virus infection. Furthermore, Zdhhc11 knockout mice had a lower level of serum IL6 upon treatment with LPS and D-galactosamine or HSV-1 infection than control mice. Mechanistically, ZDHHC11 interacted with TRAF6 and then enhanced TRAF6 oligomerization, which increased E3 activity of TRAF6 for synthesis of K63-linked ubiquitination chains. Collectively, our study indicates that ZDHHC11 positively regulates NF-κB signaling by promoting TRAF6 oligomerization and ligase activity, subsequently activating TAK1 and IKK complexes.
Collapse
Affiliation(s)
- Enping Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiawei Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Lin Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qili Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiuqin Zeng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Chen JJ, Fan Y, Boehning D. Regulation of Dynamic Protein S-Acylation. Front Mol Biosci 2021; 8:656440. [PMID: 33981723 PMCID: PMC8107437 DOI: 10.3389/fmolb.2021.656440] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Protein S-acylation is the reversible addition of fatty acids to the cysteine residues of target proteins. It regulates multiple aspects of protein function, including the localization to membranes, intracellular trafficking, protein interactions, protein stability, and protein conformation. This process is regulated by palmitoyl acyltransferases that have the conserved amino acid sequence DHHC at their active site. Although they have conserved catalytic cores, DHHC enzymes vary in their protein substrate selection, lipid substrate preference, and regulatory mechanisms. Alterations in DHHC enzyme function are associated with many human diseases, including cancers and neurological conditions. The removal of fatty acids from acylated cysteine residues is catalyzed by acyl protein thioesterases. Notably, S-acylation is now known to be a highly dynamic process, and plays crucial roles in signaling transduction in various cell types. In this review, we will explore the recent findings on protein S-acylation, the enzymatic regulation of this process, and discuss examples of dynamic S-acylation.
Collapse
|
32
|
Abstract
S-palmitoylation is a reversible posttranslational lipid modification of proteins. It controls protein activity, stability, trafficking and protein–protein interactions. Recent global profiling of immune cells and targeted analysis have identified many S-palmitoylated immunity-associated proteins. Here, we review S-palmitoylated immune receptors and effectors, and their dynamic regulation at cellular membranes to generate specific and balanced immune responses. We also highlight how this understanding can drive therapeutic advances to pharmacologically modulate immune responses.
Collapse
Affiliation(s)
- Tandrila Das
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA.,Departments of Immunology and Microbiology, Chemistry, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
33
|
Main A, Fuller W. Protein S-Palmitoylation: advances and challenges in studying a therapeutically important lipid modification. FEBS J 2021; 289:861-882. [PMID: 33624421 DOI: 10.1111/febs.15781] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
The lipid post-translational modification S-palmitoylation is a vast developing field, with the modification itself and the enzymes that catalyse the reversible reaction implicated in a number of diseases. In this review, we discuss the past and recent advances in the experimental tools used in this field, including pharmacological tools, animal models and techniques to understand how palmitoylation controls protein localisation and function. Additionally, we discuss the obstacles to overcome in order to advance the field, particularly to the point at which modulating palmitoylation may be achieved as a therapeutic strategy.
Collapse
Affiliation(s)
- Alice Main
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - William Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| |
Collapse
|
34
|
Fan X, Yang H, Zhao C, Hu L, Wang D, Wang R, Fang Z, Chen X. Local anesthetics impair the growth and self-renewal of glioblastoma stem cells by inhibiting ZDHHC15-mediated GP130 palmitoylation. Stem Cell Res Ther 2021; 12:107. [PMID: 33541421 PMCID: PMC7863430 DOI: 10.1186/s13287-021-02175-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND A large number of preclinical studies have shown that local anesthetics have a direct inhibitory effect on tumor biological activities, including cell survival, proliferation, migration, and invasion. There are few studies on the role of local anesthetics in cancer stem cells. This study aimed to determine the possible role of local anesthetics in glioblastoma stem cell (GSC) self-renewal and the underlying molecular mechanisms. METHODS The effects of local anesthetics in GSCs were investigated through in vitro and in vivo assays (i.e., Cell Counting Kit 8, spheroidal formation assay, double immunofluorescence, western blot, and xenograft model). The acyl-biotin exchange method (ABE) assay was identified proteins that are S-acylated by zinc finger Asp-His-His-Cys-type palmitoyltransferase 15 (ZDHHC15). Western blot, co-immunoprecipitation, and liquid chromatograph mass spectrometer-mass spectrometry assays were used to explore the mechanisms of ZDHHC15 in effects of local anesthetics in GSCs. RESULTS In this study, we identified a novel mechanism through which local anesthetics can damage the malignant phenotype of glioma. We found that local anesthetics prilocaine, lidocaine, procaine, and ropivacaine can impair the survival and self-renewal of GSCs, especially the classic glioblastoma subtype. These findings suggest that local anesthetics may weaken ZDHHC15 transcripts and decrease GP130 palmitoylation levels and membrane localization, thus inhibiting the activation of IL-6/STAT3 signaling. CONCLUSIONS In conclusion, our work emphasizes that ZDHHC15 is a candidate therapeutic target, and local anesthetics are potential therapeutic options for glioblastoma.
Collapse
Affiliation(s)
- Xiaoqing Fan
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Haoran Yang
- Department of Medical Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Lizhu Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Delong Wang
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Ruiting Wang
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Zhiyou Fang
- Department of Medical Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Xueran Chen
- Department of Medical Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China. .,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| |
Collapse
|
35
|
Woodley KT, Collins MO. Regulation and function of the palmitoyl-acyltransferase ZDHHC5. FEBS J 2021; 288:6623-6634. [PMID: 33415776 DOI: 10.1111/febs.15709] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023]
Abstract
Protein palmitoylation (S-acylation) has emerged as an important player in a range of cellular processes, and as a result, the palmitoyl-acyltransferase (PAT) enzymes which mediate this modification have entered into the spotlight. Palmitoyltransferase ZDHHC5 (ZDHHC5) is among the more unique members of the PAT family as it is mainly localised to the plasma membrane and contains an extended cytoplasmic domain with several regulatory features. ZDHHC5 plays a vital role in a wide range of processes in different cell types. In this review, we offer a summary of the functions of ZDHHC5 in synaptic plasticity, cardiac function, cell adhesion and fatty acid uptake, among other processes. We also explore recent work has revealed several mechanisms to control the activity, localisation and function of ZDHHC5.
Collapse
Affiliation(s)
- Keith T Woodley
- Department of Biomedical Science & Centre for Membrane Interactions and Dynamics (CMIAD), Firth Court, Western Bank, University of Sheffield, UK.,Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, UK
| | - Mark O Collins
- Department of Biomedical Science & Centre for Membrane Interactions and Dynamics (CMIAD), Firth Court, Western Bank, University of Sheffield, UK
| |
Collapse
|
36
|
Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev 2021; 73:120-151. [PMID: 33268549 PMCID: PMC7736832 DOI: 10.1124/pharmrev.120.000082] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family comprising >800 signaling receptors that regulate numerous cellular and physiologic responses. GPCRs have been implicated in numerous diseases and represent the largest class of drug targets. Although advances in GPCR structure and pharmacology have improved drug discovery, the regulation of GPCR function by diverse post-translational modifications (PTMs) has received minimal attention. Over 200 PTMs are known to exist in mammalian cells, yet only a few have been reported for GPCRs. Early studies revealed phosphorylation as a major regulator of GPCR signaling, whereas later reports implicated a function for ubiquitination, glycosylation, and palmitoylation in GPCR biology. Although our knowledge of GPCR phosphorylation is extensive, our knowledge of the modifying enzymes, regulation, and function of other GPCR PTMs is limited. In this review we provide a comprehensive overview of GPCR post-translational modifications with a greater focus on new discoveries. We discuss the subcellular location and regulatory mechanisms that control post-translational modifications of GPCRs. The functional implications of newly discovered GPCR PTMs on receptor folding, biosynthesis, endocytic trafficking, dimerization, compartmentalized signaling, and biased signaling are also provided. Methods to detect and study GPCR PTMs as well as PTM crosstalk are further highlighted. Finally, we conclude with a discussion of the implications of GPCR PTMs in human disease and their importance for drug discovery. SIGNIFICANCE STATEMENT: Post-translational modification of G protein-coupled receptors (GPCRs) controls all aspects of receptor function; however, the detection and study of diverse types of GPCR modifications are limited. A thorough understanding of the role and mechanisms by which diverse post-translational modifications regulate GPCR signaling and trafficking is essential for understanding dysregulated mechanisms in disease and for improving and refining drug development for GPCRs.
Collapse
Affiliation(s)
- Anand Patwardhan
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - Norton Cheng
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - JoAnn Trejo
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
37
|
Diskin C, Ryan TAJ, O'Neill LAJ. Modification of Proteins by Metabolites in Immunity. Immunity 2020; 54:19-31. [PMID: 33220233 DOI: 10.1016/j.immuni.2020.09.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/31/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
Immunometabolism has emerged as a key focus for immunologists, with metabolic change in immune cells becoming as important a determinant for specific immune effector responses as discrete signaling pathways. A key output for these changes involves post-translational modification (PTM) of proteins by metabolites. Products of glycolysis and Krebs cycle pathways can mediate these events, as can lipids, amino acids, and polyamines. A rich and diverse set of PTMs in macrophages and T cells has been uncovered, altering phenotype and modulating immunity and inflammation in different contexts. We review the recent findings in this area and speculate whether they could be of use in the effort to develop therapeutics for immune-related diseases.
Collapse
Affiliation(s)
- C Diskin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - T A J Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - L A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
38
|
Yang X, Chatterjee V, Ma Y, Zheng E, Yuan SY. Protein Palmitoylation in Leukocyte Signaling and Function. Front Cell Dev Biol 2020; 8:600368. [PMID: 33195285 PMCID: PMC7655920 DOI: 10.3389/fcell.2020.600368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Palmitoylation is a post-translational modification (PTM) based on thioester-linkage between palmitic acid and the cysteine residue of a protein. This covalent attachment of palmitate is reversibly and dynamically regulated by two opposing sets of enzymes: palmitoyl acyltransferases containing a zinc finger aspartate-histidine-histidine-cysteine motif (PAT-DHHCs) and thioesterases. The reversible nature of palmitoylation enables fine-tuned regulation of protein conformation, stability, and ability to interact with other proteins. More importantly, the proper function of many surface receptors and signaling proteins requires palmitoylation-meditated partitioning into lipid rafts. A growing number of leukocyte proteins have been reported to undergo palmitoylation, including cytokine/chemokine receptors, adhesion molecules, pattern recognition receptors, scavenger receptors, T cell co-receptors, transmembrane adaptor proteins, and signaling effectors including the Src family of protein kinases. This review provides the latest findings of palmitoylated proteins in leukocytes and focuses on the functional impact of palmitoylation in leukocyte function related to adhesion, transmigration, chemotaxis, phagocytosis, pathogen recognition, signaling activation, cytotoxicity, and cytokine production.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
39
|
Yi L, Zheng C. The emerging roles of ZDHHCs-mediated protein palmitoylation in the antiviral innate immune responses. Crit Rev Microbiol 2020; 47:34-43. [PMID: 33100085 DOI: 10.1080/1040841x.2020.1835821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Post-translational modifications (PTMs) play a pivotal role in expanding functional protein diversity. During viral infection, pathogen-associated molecular patterns derived from viruses are recognized by pattern recognition receptors present in the membrane surface and the cytoplasm of infected cells, which subsequently induces the antiviral innate immunity to protect the host from the invading viruses. Fatty acylation modification is identified as a post-translation lipid modification process. Mounting evidence is presented that lipid modification functions as a novel regulatory mechanism of antiviral innate immunity. In mammalian cells, DHHC (Asp-His-His-Cys) domain is indispensable for most of the palmitoylation modification, which belongs to fatty acylation. ZDHHC family proteins are composed of 23 members in human cells. In this review, we will summarize the recent findings of the regulatory mechanism of the palmitoylation in the process of host antiviral innate immunity against viruses.
Collapse
Affiliation(s)
- Li Yi
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Yuan M, Chen X, Sun Y, Jiang L, Xia Z, Ye K, Jiang H, Yang B, Ying M, Cao J, He Q. ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression. Acta Pharm Sin B 2020; 10:1426-1439. [PMID: 32963941 PMCID: PMC7488353 DOI: 10.1016/j.apsb.2020.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
The membrane protein claudin-3 (CLDN3) is critical for the formation and maintenance of tight junction and its high expression has been implicated in dictating malignant progression in various cancers. However, the post-translational modification of CLDN3 and its biological function remains poorly understood. Here, we report that CLDN3 is positively correlated with ovarian cancer progression both in vitro and in vivo. Of interest, CLDN3 undergoes S-palmitoylation on three juxtamembrane cysteine residues, which contribute to the accurate plasma membrane localization and protein stability of CLDN3. Moreover, the deprivation of S-palmitoylation in CLDN3 significantly abolishes its tumorigenic promotion effect in ovarian cancer cells. By utilizing the co-immunoprecipitation assay, we further identify ZDHHC12 as a CLDN3-targating palmitoyltransferase from 23 ZDHHC family proteins. Furthermore, the knockdown of ZDHHC12 also significantly inhibits CLDN3 accurate membrane localization, protein stability and ovarian cancer cells tumorigenesis. Thus, our work reveals S-palmitoylation as a novel regulatory mechanism that modulates CLDN3 function, which implies that targeting ZDHHC12-mediated CLDN3 S-palmitoylation might be a potential strategy for ovarian cancer therapy.
Collapse
Affiliation(s)
- Meng Yuan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaobing Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yitang Sun
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Li Jiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhongni Xia
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Hong Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 100098, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
41
|
Morrison E, Wegner T, Zucchetti AE, Álvaro-Benito M, Zheng A, Kliche S, Krause E, Brügger B, Hivroz C, Freund C. Dynamic palmitoylation events following T-cell receptor signaling. Commun Biol 2020; 3:368. [PMID: 32651440 PMCID: PMC7351954 DOI: 10.1038/s42003-020-1063-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Palmitoylation is the reversible addition of palmitate to cysteine via a thioester linkage. The reversible nature of this modification makes it a prime candidate as a mechanism for regulating signal transduction in T-cell receptor signaling. Following stimulation of the T-cell receptor we find a number of proteins are newly palmitoylated, including those involved in vesicle-mediated transport and Ras signal transduction. Among these stimulation-dependent palmitoylation targets are the v-SNARE VAMP7, important for docking of vesicular LAT during TCR signaling, and the largely undescribed palmitoyl acyltransferase DHHC18 that is expressed in two isoforms in T cells. Using our newly developed On-Plate Palmitoylation Assay (OPPA), we show DHHC18 is capable of palmitoylating VAMP7 at Cys183. Cellular imaging shows that the palmitoylation-deficient protein fails to be retained at the Golgi and to localize to the immune synapse upon T cell activation.
Collapse
Affiliation(s)
- Eliot Morrison
- Freie Universität Berlin, Institute for Chemistry & Biochemistry, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Tatjana Wegner
- Freie Universität Berlin, Institute for Chemistry & Biochemistry, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Andres Ernesto Zucchetti
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Miguel Álvaro-Benito
- Freie Universität Berlin, Institute for Chemistry & Biochemistry, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Ashley Zheng
- Freie Universität Berlin, Institute for Chemistry & Biochemistry, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Stefanie Kliche
- Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Eberhard Krause
- Leibniz Institute for Molecular Pharmacology, Mass Spectrometry Unit, Robert-Rössle-Str 10, 13125, Berlin, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Claire Hivroz
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Christian Freund
- Freie Universität Berlin, Institute for Chemistry & Biochemistry, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany.
| |
Collapse
|
42
|
Stix R, Lee CJ, Faraldo-Gómez JD, Banerjee A. Structure and Mechanism of DHHC Protein Acyltransferases. J Mol Biol 2020; 432:4983-4998. [PMID: 32522557 DOI: 10.1016/j.jmb.2020.05.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 01/01/2023]
Abstract
S-acylation, whereby a fatty acid chain is covalently linked to a cysteine residue by a thioester linkage, is the most prevalent kind of lipid modification of proteins. Thousands of proteins are targets of this post-translational modification, which is catalyzed by a family of eukaryotic integral membrane enzymes known as DHHC protein acyltransferases (DHHC-PATs). Our knowledge of the repertoire of S-acylated proteins has been rapidly expanding owing to development of the chemoproteomic techniques. There has also been an increasing number of reports in the literature documenting the importance of S-acylation in human physiology and disease. Recently, the first atomic structures of two different DHHC-PATs were determined using X-ray crystallography. This review will focus on the insights gained into the molecular mechanism of DHHC-PATs from these structures and highlight representative data from the biochemical literature that they help explain.
Collapse
Affiliation(s)
- Robyn Stix
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chul-Jin Lee
- Unit on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anirban Banerjee
- Unit on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Chen X, Li H, Fan X, Zhao C, Ye K, Zhao Z, Hu L, Ma H, Wang H, Fang Z. Protein Palmitoylation Regulates Cell Survival by Modulating XBP1 Activity in Glioblastoma Multiforme. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:518-530. [PMID: 33024813 PMCID: PMC7525067 DOI: 10.1016/j.omto.2020.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/20/2020] [Indexed: 01/22/2023]
Abstract
Glioblastoma multiforme (GBM) almost invariably acquires an invasive phenotype, resulting in limited therapeutic options. Protein palmitoylation markedly affects tumorigenesis and malignant progression in GBM. The role of protein palmitoylation in GBM, however, has not been systematically reported. This study aimed to investigate the effect of protein palmitoylation on GBM cell survival and the cell cycle. In this study, most palmitoyltransferases were upregulated in GBM and its cell lines, and protein palmitoylation participated in signaling pathways controlling cell survival and the GBM cell cycle. Inhibition of protein palmitoylation with substrate-analog inhibitors, that is, 2-bromopalmitate, cerulenin, and tunicamycin, induced G2 cell cycle arrest and cell death in GBM cells through enhanced endoplasmic reticulum (ER) stress. These effects are primarily attributed to the palmitoylation inhibitors activating pro-apoptotic pathways and ER stress signals. Further analysis revealed was the accumulation of SUMOylated XBP1 (X-box binding protein 1) and its transcriptional repression, along with a reduction in XBP1 palmitoylation. Taken together, the present results indicate that protein palmitoylation plays an important role in the survival of GBM cells, further providing a potential therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, ShuShan Hu Road, Hefei, Anhui 230031, China
- Corresponding author: Xueran Chen, Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China.
| | - Hao Li
- School of Life Sciences, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Xiaoqing Fan
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, Anhui 230001, China
- Department of Anesthesiology, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei, Anhui 230001, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- School of Life Sciences, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Kaiqin Ye
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, ShuShan Hu Road, Hefei, Anhui 230031, China
| | - Zhiyang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- School of Life Sciences, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Lizhu Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- School of Life Sciences, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Huihui Ma
- Department of Radiation Oncology, First Affiliated Hospital, Anhui Medical University, No. 218, JiXi Road, Hefei, Anhui 230031, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, ShuShan Hu Road, Hefei, Anhui 230031, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, ShuShan Hu Road, Hefei, Anhui 230031, China
- Corresponding author: Zhiyou Fang, Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China.
| |
Collapse
|
44
|
Hu L, Chen M, Chen X, Zhao C, Fang Z, Wang H, Dai H. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis 2020; 11:281. [PMID: 32332857 PMCID: PMC7181755 DOI: 10.1038/s41419-020-2476-2] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
Many chemotherapy treatments induce apoptosis or pyroptosis through BAK/BAX-dependent mitochondrial pathway. BAK/BAX activation causes the mitochondrial outer membrane permeabilization (MOMP), which induces the activation of pro-apoptotic caspase cascade. GSDME cleavage by the pro-apoptotic caspases determines whether chemotherapy drug treatments induce apoptosis or pyroptosis, however, its regulation mechanisms are not clear. In this study, we showed that TNFα+CHX and navitoclax-induced cancer cell pyroptosis through a BAK/BAX-caspase-3-GSDME signaling pathway. GSDME knockdown inhibited the pyroptosis, suggesting the essential role of GSDME in this process. Interestingly, GSDME was found to be palmitoylated on its C-terminal (GSDME-C) during chemotherapy-induced pyroptosis, while 2-bromopalmitate (2-BP) could inhibit the GSDME-C palmitoylation and chemotherapy-induced pyroptosis. Mutation of palmitoylation sites on GSDME also diminished the pyroptosis induced by chemotherapy drugs. Moreover, 2-BP treatment increased the interaction between GSDME-C and GSDME-N, providing a potential mechanism of this function. Further studies indicated several ZDHHC proteins including ZDHHC-2,7,11,15 could interact with and palmitoylate GSDME. Our findings offered new targets to achieve the transformation between chemotherapy-induced pyroptosis and apoptosis.
Collapse
Affiliation(s)
- Lei Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China
- University of Science and Technology of China, 230026, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, 230031, Hefei, China
| | - Meng Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China
- University of Science and Technology of China, 230026, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, 230031, Hefei, China
| | - Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, 230031, Hefei, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China
- University of Science and Technology of China, 230026, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, 230031, Hefei, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, 230031, Hefei, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, 230031, Hefei, China
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, 230031, Hefei, China.
| |
Collapse
|
45
|
Hayashi T. Post-translational palmitoylation of ionotropic glutamate receptors in excitatory synaptic functions. Br J Pharmacol 2020; 178:784-797. [PMID: 32159240 DOI: 10.1111/bph.15050] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/07/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
In the mammalian CNS, glutamate is the major excitatory neurotransmitter. Ionotropic glutamate receptors (iGluRs) are responsible for the glutamate-mediated postsynaptic excitation of neurons. Regulation of glutamatergic synapses is critical for higher brain functions including neural communication, memory formation, learning, emotion, and behaviour. Many previous studies have shown that post-translational protein S-palmitoylation, the only reversible covalent attachment of lipid to protein, regulates synaptic expression, intracellular localization, and membrane trafficking of iGluRs and their scaffolding proteins in neurons. This modification mechanism is extremely conserved in the vertebrate lineages. The failure of appropriate palmitoylation-dependent regulation of iGluRs leads to hyperexcitability that reduces the maintenance of network stability, resulting in brain disorders, such as epileptic seizures. This review summarizes advances in the study of palmitoylation of iGluRs, especially AMPA receptors and NMDA receptors, and describes the current understanding of palmitoylation-dependent regulation of excitatory glutamatergic synapses. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Takashi Hayashi
- Section of Cellular Biochemistry, Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| |
Collapse
|
46
|
Essandoh K, Philippe JM, Jenkins PM, Brody MJ. Palmitoylation: A Fatty Regulator of Myocardial Electrophysiology. Front Physiol 2020; 11:108. [PMID: 32140110 PMCID: PMC7042378 DOI: 10.3389/fphys.2020.00108] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/30/2020] [Indexed: 01/02/2023] Open
Abstract
Regulation of cardiac physiology is well known to occur through the action of kinases that reversibly phosphorylate ion channels, calcium handling machinery, and signaling effectors. However, it is becoming increasingly apparent that palmitoylation or S-acylation, the post-translational modification of cysteines with saturated fatty acids, plays instrumental roles in regulating the localization, activity, stability, sorting, and function of numerous proteins, including proteins known to have essential functions in cardiomyocytes. However, the impact of this modification on cardiac physiology requires further investigation. S-acylation is catalyzed by the zDHHC family of S-acyl transferases that localize to intracellular organelle membranes or the sarcolemma. Recent work has begun to uncover functions of S-acylation in the heart, particularly in the regulation of cardiac electrophysiology, including modification of the sodium-calcium exchanger, phospholemman and the cardiac sodium pump, as well as the voltage-gated sodium channel. Elucidating the regulatory functions of zDHHC enzymes in cardiomyocytes and determination of how S-acylation is altered in the diseased heart will shed light on how these modifications participate in cardiac pathogenesis and potentially identify novel targets for the treatment of cardiovascular disease. Indeed, proteins with critical signaling roles in the heart are also S-acylated, including receptors and G-proteins, yet the dynamics and functions of these modifications in myocardial physiology have not been interrogated. Here, we will review what is known about zDHHC enzymes and substrate S-acylation in myocardial physiology and highlight future areas of investigation that will uncover novel functions of S-acylation in cardiac homeostasis and pathophysiology.
Collapse
Affiliation(s)
- Kobina Essandoh
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Julie M Philippe
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States.,Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Matthew J Brody
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
47
|
Ticho AL, Malhotra P, Manzella CR, Dudeja PK, Saksena S, Gill RK, Alrefai WA. S-acylation modulates the function of the apical sodium-dependent bile acid transporter in human cells. J Biol Chem 2020; 295:4488-4497. [PMID: 32071081 DOI: 10.1074/jbc.ra119.011032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/06/2020] [Indexed: 01/16/2023] Open
Abstract
The ileal apical sodium-dependent bile acid transporter (ASBT) is crucial for the enterohepatic circulation of bile acids. ASBT function is rapidly regulated by several posttranslational modifications. One reversible posttranslational modification is S-acylation, involving the covalent attachment of fatty acids to cysteine residues in proteins. However, whether S-acylation affects ASBT function and membrane expression has not been determined. Using the acyl resin-assisted capture method, we found that the majority of ASBT (∼80%) was S-acylated in ileal brush border membrane vesicles from human organ donors, as well as in HEK293 cells stably transfected with ASBT (2BT cells). Metabolic labeling with alkyne-palmitic acid (100 μm for 15 h) also showed that ASBT is S-acylated in 2BT cells. Incubation with the acyltransferase inhibitor 2-bromopalmitate (25 μm for 15 h) significantly reduced ASBT S-acylation, function, and levels on the plasma membrane. Treatment of 2BT cells with saturated palmitic acid (100 μm for 15 h) increased ASBT function, whereas treatment with unsaturated oleic acid significantly reduced ASBT function. Metabolic labeling with alkyne-oleic acid (100 μm for 15 h) revealed that oleic acid attaches to ASBT, suggesting that unsaturated fatty acids may decrease ASBT's function via a direct covalent interaction with ASBT. We also identified Cys-314 as a potential S-acylation site. In conclusion, these results provide evidence that S-acylation is involved in the modulation of ASBT function. These findings underscore the potential for unsaturated fatty acids to reduce ASBT function, which may be useful in disorders in which bile acid toxicity is implicated.
Collapse
Affiliation(s)
- Alexander L Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332
| | - Pooja Malhotra
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332
| | - Christopher R Manzella
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332
| | - Waddah A Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332 .,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| |
Collapse
|
48
|
Chen X, Hao A, Li X, Ye K, Zhao C, Yang H, Ma H, Hu L, Zhao Z, Hu L, Ye F, Sun Q, Zhang H, Wang H, Yao X, Fang Z. Activation of JNK and p38 MAPK Mediated by ZDHHC17 Drives Glioblastoma Multiforme Development and Malignant Progression. Theranostics 2020; 10:998-1015. [PMID: 31938047 PMCID: PMC6956818 DOI: 10.7150/thno.40076] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023] Open
Abstract
Rationale: Glioblastoma multiforme (GBM) almost invariably gain invasive phenotype with limited therapeutic strategy and ill-defined mechanism. By studying the aberrant expression landscape of gliomas, we find significant up-regulation of p-MAPK level in GBM and a potent independent prognostic marker for overall survival. DHHC family was generally expressed in glioma and closely related to the activation of MAPK signaling pathway, but its role and clinical significance in GBM development and malignant progression are yet to be determined. Method: Bioinformatics analysis, western blotting and immunohistochemistry (IHC) were performed to detect the expression of ZDHHC17 in GBM. The biological function of ZDHHC17 was demonstrated by a series of in vitro and in vivo experiments. Pharmacological treatment, flow cytometry, Transwell migration assay, Co- Immunoprecipitation and GST pulldown were carried out to demonstrate the potential mechanisms of ZDHHC17. Results: ZDHHC17 is up-regulated and coordinated with MAPK activation in GBM. Mechanistically, ZDHHC17 interacts with MAP2K4 and p38/JNK to build a signaling module for MAPK activation and malignant progression. Notably, the ZDHHC17-MAP2K4-JNK/p38 signaling module contributes to GBM development and malignant progression by promoting GBM cell tumorigenicity and glioma stem cell (GSC) self-renewal. Moreover, we identify a small molecule, genistein, as a specific inhibitor to disrupt ZDHHC17-MAP2K4 complex formation for GBM cell proliferation and GSC self-renewal. Moreover, genistein, identified herein as a lead candidate for ZDHHC17-MAP2K4 inhibition, demonstrated potential therapeutic effect in patients with ZDHHC17-expressing GBM. Conclusions: Our study identified disruption of a previously unrecognized signaling module as a target strategy for GBM treatment, and provided direct evidence of the efficacy of its inhibition in glioma using a specific inhibitor.
Collapse
|
49
|
Stix R, Song J, Banerjee A, Faraldo-Gómez JD. DHHC20 Palmitoyl-Transferase Reshapes the Membrane to Foster Catalysis. Biophys J 2019; 118:980-988. [PMID: 31858978 DOI: 10.1016/j.bpj.2019.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/22/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
Cysteine palmitoylation, a form of S-acylation, is a key posttranslational modification in cellular signaling. This type of reversible lipidation occurs in both plasma and organellar membranes, and is catalyzed by a family of integral membrane proteins known as DHHC acyltransferases. The first step in the S-acylation process is the recognition of free acyl coenzyme A (acyl-CoA) from the lipid bilayer. The DHHC enzyme then becomes autoacylated at a site defined by a conserved Asp-His-His-Cys motif. This reaction entails ionization of the catalytic Cys. Intriguingly, in known DHHC structures, this catalytic Cys appears to be exposed to the hydrophobic interior of the lipid membrane, which would be highly unfavorable for a negatively charged nucleophile, thus hindering autoacylation. Here, we use biochemical and computational methods to reconcile these seemingly contradictory facts. First, we experimentally demonstrate that human DHHC20 is active when reconstituted in POPC nanodiscs. Microsecond-long all-atom molecular dynamics simulations are then calculated for human DHHC20 and for different acyl-CoA forms, also in a POPC membrane. Strikingly, we observe that human DHHC20 induces a drastic deformation in the membrane, particularly on the cytoplasmic side, where autoacylation occurs. As a result, the catalytic Cys becomes hydrated and optimally positioned to encounter the cleavage site in acyl-CoA. In summary, we hypothesize that DHHC enzymes locally reshape the membrane to foster a morphology that is specifically adapted for acyl-CoA recognition and autoacylation.
Collapse
Affiliation(s)
- Robyn Stix
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; Unit on Structural and Chemical Biology of Membrane Proteins, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - James Song
- Unit on Structural and Chemical Biology of Membrane Proteins, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Anirban Banerjee
- Unit on Structural and Chemical Biology of Membrane Proteins, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
50
|
Kordyukova LV, Serebryakova MV, Khrustalev VV, Veit M. Differential S-Acylation of Enveloped Viruses. Protein Pept Lett 2019; 26:588-600. [PMID: 31161979 DOI: 10.2174/0929866526666190603082521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
Post-translational modifications often regulate protein functioning. Covalent attachment of long chain fatty acids to cysteine residues via a thioester linkage (known as protein palmitoylation or S-acylation) affects protein trafficking, protein-protein and protein-membrane interactions. This post-translational modification is coupled to membrane fusion or virus assembly and may affect viral replication in vitro and thus also virus pathogenesis in vivo. In this review we outline modern methods to study S-acylation of viral proteins and to characterize palmitoylproteomes of virus infected cells. The palmitoylation site predictor CSS-palm is critically tested against the Class I enveloped virus proteins. We further focus on identifying the S-acylation sites directly within acyl-peptides and the specific fatty acid (e.g, palmitate, stearate) bound to them using MALDI-TOF MS-based approaches. The fatty acid heterogeneity/ selectivity issue attracts now more attention since the recently published 3D-structures of two DHHC-acyl-transferases gave a hint how this might be achieved.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Vladislav V Khrustalev
- Department of General Chemistry, Belarusian State Medical University, Minsk 220116, Belarus
| | - Michael Veit
- Institut für Virologie, Vet.-Med. Faculty, Free University Berlin, Berlin 14163, Germany
| |
Collapse
|