1
|
Ghasempour Dabaghi G, Rabiee Rad M, Amani-Beni R, Darouei B. The role of p130Cas/BCAR1 adaptor protein in the pathogenesis of cardiovascular diseases: A literature review. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 44:100416. [PMID: 39036012 PMCID: PMC11259988 DOI: 10.1016/j.ahjo.2024.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/22/2024] [Accepted: 06/23/2024] [Indexed: 07/23/2024]
Abstract
Breast cancer anti-estrogen resistance-1 (p130Cas/BCAR1) is an adaptor protein of the cas(Cas) family. This protein regulates multiple complex pathways in different organs including bones, pancreas, and immune and cardiovascular systems. Although previous research well demonstrated the role of p130Cas/BCAR1 in different diseases especially cancers, a precise review study on the various effects of p130Cas/BCAR1 on cardiovascular diseases is missing. In this study, we reviewed mechanisms of action for p130Cas/BCAR1 impact, on cardiac embryonic development defects, hypertrophy and remodeling, pulmonary artery hypertension (PAH), and atherosclerosis. Also, we suggest feature direction for research and potential therapeutic implications. This study showed that p130Cas/BCAR1 can affect cardiovascular diseases in various mechanisms including actin stress fiber formation, attachment to focal adhesion kinase (FAK) and angiotensin II (Ang II), generation of reactive oxygen species (ROS), and growth factor signaling through amplifying receptor tyrosine kinase (RTKs).
Collapse
Affiliation(s)
- Ghazal Ghasempour Dabaghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Rabiee Rad
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Amani-Beni
- School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Bahar Darouei
- School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
2
|
Perry N, Braun R, Ben‐Hamo‐Arad A, Kanaan D, Arad T, Porat‐Kuperstein L, Toledano H. Integrin restriction by miR-34 protects germline progenitors from cell death during aging. Aging Cell 2024; 23:e14131. [PMID: 38450871 PMCID: PMC11166360 DOI: 10.1111/acel.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 03/08/2024] Open
Abstract
During aging, regenerative tissues must dynamically balance the two opposing processes of proliferation and cell death. While many microRNAs are differentially expressed during aging, their roles as dynamic regulators of tissue regeneration have yet to be described. We show that in the highly regenerative Drosophila testis, miR-34 levels are significantly elevated during aging. miR-34 modulates germ cell death and protects the progenitor germ cells from accelerated aging. However, miR-34 is not expressed in the progenitors themselves but rather in neighboring cyst cells that kill the progenitors. Transcriptomics followed by functional analysis revealed that during aging, miR-34 modifies integrin signaling by limiting the levels of the heterodimeric integrin receptor αPS2 and βPS subunits. In addition, we found that in cyst cells, this heterodimer is essential for inducing phagoptosis and degradation of the progenitor germ cells. Together, these data suggest that the miR-34-integrin signaling axis acts as a sensor of progenitor germ cell death to extend progenitor functionality during aging.
Collapse
Affiliation(s)
- Noam Perry
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Racheli Braun
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
- Biomedical Engineering FacultyTechnion IITsHaifaIsrael
| | - Aya Ben‐Hamo‐Arad
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Diana Kanaan
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Tal Arad
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | | | - Hila Toledano
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| |
Collapse
|
3
|
Wang Z, Chen X, Chen N, Yan H, Wu K, Li J, Ru Q, Deng R, Liu X, Kang R. Mechanical Factors Regulate Annulus Fibrosus (AF) Injury Repair and Remodeling: A Review. ACS Biomater Sci Eng 2024; 10:219-233. [PMID: 38149967 DOI: 10.1021/acsbiomaterials.3c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Low back pain is a common chronic disease that can severely affect the patient's work and daily life. The breakdown of spinal mechanical homeostasis caused by intervertebral disc (IVD) degeneration is a leading cause of low back pain. Annulus fibrosus (AF), as the outer layer structure of the IVD, is often the first affected part. AF injury caused by consistent stress overload will further accelerate IVD degeneration. Therefore, regulating AF injury repair and remodeling should be the primary goal of the IVD repair strategy. Mechanical stimulation has been shown to promote AF regeneration and repair, but most studies only focus on the effect of single stress on AF, and lack realistic models and methods that can mimic the actual mechanical environment of AF. In this article, we review the effects of different types of stress stimulation on AF injury repair and remodeling, suggest possible beneficial load combinations, and explore the underlying molecular mechanisms. It will provide the theoretical basis for designing better tissue engineering therapy using mechanical factors to regulate AF injury repair and remodeling in the future.
Collapse
Affiliation(s)
- Zihan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Xin Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Nan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Hongjie Yan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Ke Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Jitao Li
- School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou, Henan Province 466001, P.R. China
| | - Qingyuan Ru
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| |
Collapse
|
4
|
Kumar S, Stainer A, Dubrulle J, Simpkins C, Cooper JA. Cas phosphorylation regulates focal adhesion assembly. eLife 2023; 12:e90234. [PMID: 37489578 PMCID: PMC10435235 DOI: 10.7554/elife.90234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023] Open
Abstract
Integrin-mediated cell attachment rapidly induces tyrosine kinase signaling. Despite years of research, the role of this signaling in integrin activation and focal adhesion assembly is unclear. We provide evidence that the Src-family kinase (SFK) substrate Cas (Crk-associated substrate, p130Cas, BCAR1) is phosphorylated and associated with its Crk/CrkL effectors in clusters that are precursors of focal adhesions. The initial phospho-Cas clusters contain integrin β1 in its inactive, bent closed, conformation. Later, phospho-Cas and total Cas levels decrease as integrin β1 is activated and core focal adhesion proteins including vinculin, talin, kindlin, and paxillin are recruited. Cas is required for cell spreading and focal adhesion assembly in epithelial and fibroblast cells on collagen and fibronectin. Cas cluster formation requires Cas, Crk/CrkL, SFKs, and Rac1 but not vinculin. Rac1 provides positive feedback onto Cas through reactive oxygen, opposed by negative feedback from the ubiquitin proteasome system. The results suggest a two-step model for focal adhesion assembly in which clusters of phospho-Cas, effectors and inactive integrin β1 grow through positive feedback prior to integrin activation and recruitment of core focal adhesion proteins.
Collapse
Affiliation(s)
- Saurav Kumar
- Fred Hutchinson Cancer CenterSeattleUnited States
| | | | | | | | | |
Collapse
|
5
|
Ghuloum FI, Johnson CA, Riobo-Del Galdo NA, Amer MH. From mesenchymal niches to engineered in vitro model systems: Exploring and exploiting biomechanical regulation of vertebrate hedgehog signalling. Mater Today Bio 2022; 17:100502. [PMID: 36457847 PMCID: PMC9707069 DOI: 10.1016/j.mtbio.2022.100502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue patterning is the result of complex interactions between transcriptional programs and various mechanical cues that modulate cell behaviour and drive morphogenesis. Vertebrate Hedgehog signalling plays key roles in embryogenesis and adult tissue homeostasis, and is central to skeletal development and the osteogenic differentiation of mesenchymal stem cells. The expression of several components of the Hedgehog signalling pathway have been reported to be mechanically regulated in mesodermal tissue patterning and osteogenic differentiation in response to external stimulation. Since a number of bone developmental defects and skeletal diseases, such as osteoporosis, are directly linked to aberrant Hedgehog signalling, a better knowledge of the regulation of Hedgehog signalling in the mechanosensitive bone marrow-residing mesenchymal stromal cells will present novel avenues for modelling these diseases and uncover novel opportunities for extracellular matrix-targeted therapies. In this review, we present a brief overview of the key molecular players involved in Hedgehog signalling and the basic concepts of mechanobiology, with a focus on bone development and regeneration. We also highlight the correlation between the activation of the Hedgehog signalling pathway in response to mechanical cues and osteogenesis in bone marrow-derived mesenchymal stromal cells. Finally, we propose different tissue engineering strategies to apply the expanding knowledge of 3D material-cell interactions in the modulation of Hedgehog signalling in vitro for fundamental and translational research applications.
Collapse
Affiliation(s)
- Fatmah I. Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Colin A. Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Weaver SRC, Rendeiro C, Lucas RAI, Cable NT, Nightingale TE, McGettrick HM, Lucas SJE. Non-pharmacological interventions for vascular health and the role of the endothelium. Eur J Appl Physiol 2022; 122:2493-2514. [PMID: 36149520 PMCID: PMC9613570 DOI: 10.1007/s00421-022-05041-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/05/2022] [Indexed: 12/11/2022]
Abstract
The most common non-pharmacological intervention for both peripheral and cerebral vascular health is regular physical activity (e.g., exercise training), which improves function across a range of exercise intensities and modalities. Numerous non-exercising approaches have also been suggested to improved vascular function, including repeated ischemic preconditioning (IPC); heat therapy such as hot water bathing and sauna; and pneumatic compression. Chronic adaptive responses have been observed across a number of these approaches, yet the precise mechanisms that underlie these effects in humans are not fully understood. Acute increases in blood flow and circulating signalling factors that induce responses in endothelial function are likely to be key moderators driving these adaptations. While the impact on circulating factors and environmental mechanisms for adaptation may vary between approaches, in essence, they all centre around acutely elevating blood flow throughout the circulation and stimulating improved endothelium-dependent vascular function and ultimately vascular health. Here, we review our current understanding of the mechanisms driving endothelial adaptation to repeated exposure to elevated blood flow, and the interplay between this response and changes in circulating factors. In addition, we will consider the limitations in our current knowledge base and how these may be best addressed through the selection of more physiologically relevant experimental models and research. Ultimately, improving our understanding of the unique impact that non-pharmacological interventions have on the vasculature will allow us to develop superior strategies to tackle declining vascular function across the lifespan, prevent avoidable vascular-related disease, and alleviate dependency on drug-based interventions.
Collapse
Affiliation(s)
- Samuel R C Weaver
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Rebekah A I Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - N Timothy Cable
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Li J, Zhang X, Hou Z, Cai S, Guo Y, Sun L, Li A, Li Q, Wang E, Miao Y. P130cas-FAK interaction is essential for YAP-mediated radioresistance of non-small cell lung cancer. Cell Death Dis 2022; 13:783. [PMID: 36088346 PMCID: PMC9464229 DOI: 10.1038/s41419-022-05224-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 01/21/2023]
Abstract
Based on the RNA-sequencing data, previous studies revealed that extracellular matrix receptor interaction and focal adhesion signaling pathways were enriched in radioresistant non-small cell lung cancer (NSCLC) cell lines. As the principal members of these signaling pathways, recent studies showed that FAK controlled YAP's nuclear translocation and activation in response to mechanical activation. However, the underlying mechanisms are largely unknown. This study was designed to determine whether P130cas plays a role in FAK-YAP axis-mediated radioresistance. We found that P130cas promoted proliferation, altered the cell cycle profile, and enhanced tumor growth using cell lines and xenograft mouse models. After treating the cell lines and xenograft models with a single dose of 5 Gy irradiation, we observed that P130cas effectively induced radioresistance in vitro and in vivo. We confirmed that P130cas interacted with and promoted YAP stabilization, thereby facilitating YAP's activation and nuclear translocation and downregulating the radiosensitivity of NSCLC. Our data also revealed that P130cas and FAK directly interacted with each other and worked together to regulate YAP's activation and nuclear translocation. Furthermore, the present study identified that P130cas, FAK and YAP formed a triple complex to induce radioresistance. Using P130cas-ΔSH3, FAK- P712/715A mutant, YAP-ΔSH3bm and YAP-ΔWW mutant, our results showed that targeting P130cas-FAK interaction may be a more cost-effective way to overcome the YAP activation mediated radioresistance in NSCLC. Using the data of the public database and our clinical samples, the present study suggested that the expression of P130cas correlated with YAP expression and indicated a poor overall response rate of NSCLC patients who underwent radiation therapy. Overall, our study extends the knowledge of FAK-YAP interaction and provides new insight into understanding the underlying mechanisms to overcome the radioresistance of NSCLC.
Collapse
Affiliation(s)
- Jingduo Li
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| | - Xiupeng Zhang
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| | - Zaiyu Hou
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| | - Siqi Cai
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| | - Yingxue Guo
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| | - Limei Sun
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| | - Ailin Li
- grid.412467.20000 0004 1806 3501Department of Radiation Oncology, the Shengjing Hospital of China Medical University, Shenyang, China
| | - Qingchang Li
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| | - Enhua Wang
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| | - Yuan Miao
- grid.412636.40000 0004 1757 9485Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Nho RS, Ballinger MN, Rojas MM, Ghadiali SN, Horowitz JC. Biomechanical Force and Cellular Stiffness in Lung Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:750-761. [PMID: 35183510 PMCID: PMC9088200 DOI: 10.1016/j.ajpath.2022.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 01/10/2023]
Abstract
Lung fibrosis is characterized by the continuous accumulation of extracellular matrix (ECM) proteins produced by apoptosis-resistant (myo)fibroblasts. Lung epithelial injury promotes the recruitment and activation of fibroblasts, which are necessary for tissue repair and restoration of homeostasis. However, under pathologic conditions, a vicious cycle generated by profibrotic growth factors/cytokines, multicellular interactions, and matrix-associated signaling propagates the wound repair response and promotes lung fibrosis characterized not only by increased quantities of ECM proteins but also by changes in the biomechanical properties of the matrix. Importantly, changes in the biochemical and biomechanical properties of the matrix itself can serve to perpetuate fibroblast activity and propagate fibrosis, even in the absence of the initial stimulus of injury. The development of novel experimental models and methods increasingly facilitates our ability to interrogate fibrotic processes at the cellular and molecular levels. The goal of this review is to discuss the impact of ECM conditions in the development of lung fibrosis and to introduce new approaches to more accurately model the in vivo fibrotic microenvironment. This article highlights the pathologic roles of ECM in terms of mechanical force and the cellular interactions while reviewing in vitro and ex vivo models of lung fibrosis. The improved understanding of the fundamental mechanisms that contribute to lung fibrosis holds promise for identification of new therapeutic targets and improved outcomes.
Collapse
Affiliation(s)
- Richard S Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Megan N Ballinger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Mauricio M Rojas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Samir N Ghadiali
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
9
|
Costamagna A, Natalini D, Camacho Leal MDP, Simoni M, Gozzelino L, Cappello P, Novelli F, Ambrogio C, Defilippi P, Turco E, Giovannetti E, Hirsch E, Cabodi S, Martini M. Docking Protein p130Cas Regulates Acinar to Ductal Metaplasia During Pancreatic Adenocarcinoma Development and Pancreatitis. Gastroenterology 2022; 162:1242-1255.e11. [PMID: 34922945 DOI: 10.1053/j.gastro.2021.12.242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/18/2021] [Accepted: 12/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Acinar to ductal metaplasia is the prerequisite for the initiation of Kras-driven pancreatic ductal adenocarcinoma (PDAC), and candidate genes regulating this process are emerging from genome-wide association studies. The adaptor protein p130Cas emerged as a potential PDAC susceptibility gene and a Kras-synthetic lethal interactor in pancreatic cell lines; however, its role in PDAC development has remained largely unknown. METHODS Human PDAC samples and murine KrasG12D-dependent pancreatic cancer models of increasing aggressiveness were used. p130Cas was conditionally ablated in pancreatic cancer models to investigate its role during Kras-induced tumorigenesis. RESULTS We found that high expression of p130Cas is frequently detected in PDAC and correlates with higher histologic grade and poor prognosis. In a model of Kras-driven PDAC, loss of p130Cas inhibits tumor development and potently extends median survival. Deletion of p130Cas suppresses acinar-derived tumorigenesis and progression by means of repressing PI3K-AKT signaling, even in the presence of a worsening condition like pancreatitis. CONCLUSIONS Our observations finally demonstrated that p130Cas acts downstream of Kras to boost the PI3K activity required for acinar to ductal metaplasia and subsequent tumor initiation. This demonstrates an unexpected driving role of p130Cas downstream of Kras through PI3K/AKT, thus indicating a rational therapeutic strategy of targeting the PI3K pathway in tumors with high expression of p130Cas.
Collapse
Affiliation(s)
- Andrea Costamagna
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| | - Dora Natalini
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Maria Del Pilar Camacho Leal
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Matilde Simoni
- IRCCS Ospedale San Raffaele, Preclinical Models of Cancer Unit, Milan, Italy
| | - Luca Gozzelino
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Paola Cappello
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy; Laboratory of Tumor Immunology, Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Francesco Novelli
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy; Laboratory of Tumor Immunology, Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Chiara Ambrogio
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Paola Defilippi
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| | - Emilia Turco
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| | - Elisa Giovannetti
- Cancer Pharmacology Laboratory, AIRC-Start-Up, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy; Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Sara Cabodi
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| | - Miriam Martini
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| |
Collapse
|
10
|
Cell alignment modulated by surface nano-topography - Roles of cell-matrix and cell-cell interactions. Acta Biomater 2022; 142:149-159. [PMID: 35124266 DOI: 10.1016/j.actbio.2022.01.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/27/2022]
Abstract
The propensity of cells to align in particular directions is relevant to a number of areas, including tissue engineering and biohybrid robotics. Cell alignment is modulated through various extracellular conditions including surface topographies, mechanical cues from cell-matrix interactions, and cell-cell interactions. Understanding of these conditions provides guidance for desirable cellular structure constructions. In this study, we examine the roles of surface topographies and cell-cell interactions in inducing cell alignment. We employed wavy surface topographies at the nanometer scale as a model extracellular environment for cell culture. The results show that, within a certain range of wavelengths and amplitudes of the surface topographies, cell alignment is dependent on cell confluency. This dependence on both topology and confluency suggests interplay between cell-cell and cell-matrix interactions in inducing cell alignment. Images of sparsely distributed and confluent cells also demonstrated clear differences in the structures of their focal adhesion complexes. To understand this effect, we introduced anti-N-cadherin to cell culture to inhibit cell-cell interactions. The results show that, when anti-N-cadherin was applied, cells on wavy surfaces required greater confluency to achieve the same alignment compared to that in the absence of anti-N-cadherin. The understanding of the cell alignment mechanisms will be important in numerous potential applications such as scaffold design, tissue repair, and development of biohybrid robotic systems. STATEMENT OF SIGNIFICANCE: Cell alignment plays a critical role in numerous biological functions. Advances in tissue engineering utilizes cell alignment to restore, maintain, or even replace different types of biological tissues. The clinical impact that tissue engineering has made is facilitated by advancements in the understanding of interactions between scaffolds, biological factors, and cells. This work further elucidates the role of cell-cell interactions in promoting the organization of biological tissues.
Collapse
|
11
|
Singh S, Winkelstein BA. Inhibiting the β1integrin subunit increases the strain threshold for neuronal dysfunction under tensile loading in collagen gels mimicking innervated ligaments. Biomech Model Mechanobiol 2022; 21:885-898. [DOI: 10.1007/s10237-022-01565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
|
12
|
Liang C, Huang M, Li T, Li L, Sussman H, Dai Y, Siemann DW, Xie M, Tang X. Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces. SOFT MATTER 2022; 18:1112-1148. [PMID: 35089300 DOI: 10.1039/d1sm01618k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An increasing number of studies have demonstrated the significant roles of the interplay between microenvironmental mechanics in tissues and biochemical-genetic activities in resident tumor cells at different stages of tumor progression. Mediated by molecular mechano-sensors or -transducers, biomechanical cues in tissue microenvironments are transmitted into the tumor cells and regulate biochemical responses and gene expression through mechanotransduction processes. However, the molecular interplay between the mechanotransduction processes and intracellular biochemical signaling pathways remains elusive. This paper reviews the recent advances in understanding the crosstalk between biomechanical cues and three critical biochemical effectors during tumor progression: calcium ions (Ca2+), yes-associated protein (YAP), and microRNAs (miRNAs). We address the molecular mechanisms underpinning the interplay between the mechanotransduction pathways and each of the three effectors. Furthermore, we discuss the functional interactions among the three effectors in the context of soft matter and mechanobiology. We conclude by proposing future directions on studying the tumor mechanobiology that can employ Ca2+, YAP, and miRNAs as novel strategies for cancer mechanotheraputics. This framework has the potential to bring insights into the development of novel next-generation cancer therapies to suppress and treat tumors.
Collapse
Affiliation(s)
- Chenyu Liang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Miao Huang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Tianqi Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Lu Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Hayley Sussman
- Department of Radiation Oncology, COM, Gainesville, FL, 32611, USA
| | - Yao Dai
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Dietmar W Siemann
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Mingyi Xie
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
- Department of Biomedical Engineering, College of Engineering (COE), University of Delaware (UD), Newark, DE, 19716, USA
| | - Xin Tang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| |
Collapse
|
13
|
Liang Y, Li L, Chen Y, Zhang S, Li Z, Xiao J, Wei D. Research Progress on the Role of Intermediate Filament Vimentin in Atherosclerosis. DNA Cell Biol 2021; 40:1495-1502. [PMID: 34931866 DOI: 10.1089/dna.2021.0623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cytoskeleton is a biopolymer network composed of intermediate filaments, actin, and microtubules, which is the main mechanical structure of cells. Vimentin is an intermediate filament protein that regulates the mechanical and contractile properties of cells, thereby reflecting their mechanical properties. In recent years, the "nonmechanical function" of vimentin inside and outside of cells has attracted extensive attention. The content of vimentin in atherosclerotic plaques is increased, and the serum secretion of vimentin in patients with coronary heart disease is remarkably increased. In this review, the mechanistic and nonmechanistic roles of vimentin in atherosclerosis progression were summarized on the basis of current studies.
Collapse
Affiliation(s)
- Yamin Liang
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Lu Li
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Yanmei Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shulei Zhang
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhaozhi Li
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jinyan Xiao
- YueYang Maternal-Child Medicine Health Hospital Hunan Province Innovative Training Base for Medical Postgraduates, University of China South China and Yueyang Women and Children's Medical Center, Yueyang, Hunan, China
| | - Dangheng Wei
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Mechanics of neural tube morphogenesis. Semin Cell Dev Biol 2021; 130:56-69. [PMID: 34561169 DOI: 10.1016/j.semcdb.2021.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 01/07/2023]
Abstract
The neural tube is an important model system of morphogenesis representing the developmental module of out-of-plane epithelial deformation. As the embryonic precursor of the central nervous system, the neural tube also holds keys to many defects and diseases. Recent advances begin to reveal how genetic, cellular and environmental mechanisms work in concert to ensure correct neural tube shape. A physical model is emerging where these factors converge at the regulation of the mechanical forces and properties within and around the tissue that drive tube formation towards completion. Here we review the dynamics and mechanics of neural tube morphogenesis and discuss the underlying cellular behaviours from the viewpoint of tissue mechanics. We will also highlight some of the conceptual and technical next steps.
Collapse
|
15
|
Jimi E, Honda H, Nakamura I. The unique function of p130Cas in regulating the bone metabolism. Pharmacol Ther 2021; 230:107965. [PMID: 34391790 DOI: 10.1016/j.pharmthera.2021.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/20/2021] [Indexed: 11/19/2022]
Abstract
p130 Crk-associated substrate (Cas) functions as an adapter protein and plays important roles in certain cell functions, such as cell proliferation, spreading, migration, and invasion. Furthermore, it has recently been reported to have a new function as a mechanosensor. Since bone is a tissue that is constantly under gravity, it is exposed to mechanical stress. Mechanical unloading, such as in a microgravity environment in space or during bed rest, leads to a decrease in bone mass because of the suppression of bone formation and the stimulation of bone resorption. Osteoclasts are multinucleated bone-resorbing giant cells that recognize bone and then form a ruffled border in the resorption lacuna. p130Cas is a molecule located downstream of c-Src that is important for the formation of a ruffled border in osteoclasts. Indeed, osteoclast-specific p130Cas-deficient mice exhibit osteopetrosis due to osteoclast dysfunction, similar to c-Src-deficient mice. Osteoblasts subjected to mechanical stress induce both the phosphorylation of p130Cas and osteoblast differentiation. In osteocytes, mechanical stress regulates bone mass by shuttling p130Cas between the cytoplasm and nucleus. Oral squamous cell carcinoma (OSCC) cells express p130Cas more strongly than epithelial cells in normal tissues. The knockdown of p130Cas in OSCC cells suppressed the cell growth, the expression of receptor activator of NF-κB ligand, which induces osteoclast formation, and bone invasion by OSCC. Taken together, these findings suggest that p130Cas might be a novel therapeutic target molecule in bone diseases, such as osteoporosis, rheumatoid arthritis, bone loss due to bed rest, and bone invasion and metastasis of cancer.
Collapse
Affiliation(s)
- Eijiro Jimi
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Ichiro Nakamura
- Department of Rehabilitation, Yugawara Hospital, Japan Community Health Care Organization, 2-21-6 Chuo, Yugawara, Ashigara-shimo, Kanagawa 259-0396, Japan
| |
Collapse
|
16
|
Benoit B, Baillet A, Poüs C. Cytoskeleton and Associated Proteins: Pleiotropic JNK Substrates and Regulators. Int J Mol Sci 2021; 22:8375. [PMID: 34445080 PMCID: PMC8395060 DOI: 10.3390/ijms22168375] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
This review extensively reports data from the literature concerning the complex relationships between the stress-induced c-Jun N-terminal kinases (JNKs) and the four main cytoskeleton elements, which are actin filaments, microtubules, intermediate filaments, and septins. To a lesser extent, we also focused on the two membrane-associated cytoskeletons spectrin and ESCRT-III. We gather the mechanisms controlling cytoskeleton-associated JNK activation and the known cytoskeleton-related substrates directly phosphorylated by JNK. We also point out specific locations of the JNK upstream regulators at cytoskeletal components. We finally compile available techniques and tools that could allow a better characterization of the interplay between the different types of cytoskeleton filaments upon JNK-mediated stress and during development. This overview may bring new important information for applied medical research.
Collapse
Affiliation(s)
- Béatrice Benoit
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
| | - Anita Baillet
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
| | - Christian Poüs
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
- Biochimie-Hormonologie, AP-HP Université Paris-Saclay, Site Antoine Béclère, 157 Rue de la Porte de Trivaux, 92141 Clamart, France
| |
Collapse
|
17
|
Mishra YG, Manavathi B. Focal adhesion dynamics in cellular function and disease. Cell Signal 2021; 85:110046. [PMID: 34004332 DOI: 10.1016/j.cellsig.2021.110046] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Acting as a bridge between the cytoskeleton of the cell and the extra cellular matrix (ECM), the cell-ECM adhesions with integrins at their core, play a major role in cell signalling to direct mechanotransduction, cell migration, cell cycle progression, proliferation, differentiation, growth and repair. Biochemically, these adhesions are composed of diverse, yet an organised group of structural proteins, receptors, adaptors, various enzymes including protein kinases, phosphatases, GTPases, proteases, etc. as well as scaffolding molecules. The major integrin adhesion complexes (IACs) characterised are focal adhesions (FAs), invadosomes (podosomes and invadopodia), hemidesmosomes (HDs) and reticular adhesions (RAs). The varied composition and regulation of the IACs and their signalling, apart from being an integral part of normal cell survival, has been shown to be of paramount importance in various developmental and pathological processes. This review per-illustrates the recent advancements in the research of IACs, their crucial roles in normal as well as diseased states. We have also touched on few of the various methods that have been developed over the years to visualise IACs, measure the forces they exert and study their signalling and molecular composition. Having such pertinent roles in the context of various pathologies, these IACs need to be understood and studied to develop therapeutical targets. We have given an update to the studies done in recent years and described various techniques which have been applied to study these structures, thereby, providing context in furthering research with respect to IAC targeted therapeutics.
Collapse
Affiliation(s)
- Yasaswi Gayatri Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
18
|
Espina JA, Marchant CL, Barriga EH. Durotaxis: the mechanical control of directed cell migration. FEBS J 2021; 289:2736-2754. [PMID: 33811732 PMCID: PMC9292038 DOI: 10.1111/febs.15862] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022]
Abstract
Directed cell migration is essential for cells to efficiently migrate in physiological and pathological processes. While migrating in their native environment, cells interact with multiple types of cues, such as mechanical and chemical signals. The role of chemical guidance via chemotaxis has been studied in the past, the understanding of mechanical guidance of cell migration via durotaxis remained unclear until very recently. Nonetheless, durotaxis has become a topic of intensive research and several advances have been made in the study of mechanically guided cell migration across multiple fields. Thus, in this article we provide a state of the art about durotaxis by discussing in silico, in vitro and in vivo data. We also present insights on the general mechanisms by which cells sense, transduce and respond to environmental mechanics, to then contextualize these mechanisms in the process of durotaxis and explain how cells bias their migration in anisotropic substrates. Furthermore, we discuss what is known about durotaxis in vivo and we comment on how haptotaxis could arise from integrating durotaxis and chemotaxis in native environments.
Collapse
Affiliation(s)
- Jaime A Espina
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Cristian L Marchant
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Elias H Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| |
Collapse
|
19
|
Virdi JK, Pethe P. Biomaterials Regulate Mechanosensors YAP/TAZ in Stem Cell Growth and Differentiation. Tissue Eng Regen Med 2021; 18:199-215. [PMID: 33230800 PMCID: PMC8012461 DOI: 10.1007/s13770-020-00301-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/15/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue-resident stem cells are surrounded by a microenvironment known as 'stem cell niche' which is specific for each stem cell type. This niche comprises of cell-intrinsic and -extrinsic factors like biochemical and biophysical signals, which regulate stem cell characteristics and differentiation. Biochemical signals have been thoroughly studied however, the effect of biophysical signals on stem cell regulation is yet to be completely understood. Biomaterials have aided in addressing this issue since they can provide a defined and tuneable microenvironment resembling in vivo conditions. We review various biomaterials used in many studies which have shown a connection between biomaterial-generated mechanical signals and alteration in stem cell behaviour. Researchers probed to understand the mechanism of mechanotransduction and reported that the signals from the extracellular matrix regulate a transcription factor yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ), which is a downstream-regulator of the Hippo pathway and it transduces the mechanical signals inside the nucleus. We highlight the role of the YAP/TAZ as mechanotransducers in stem cell self-renewal and differentiation in response to substrate stiffness, also the possibility of mechanobiology as the emerging field of regenerative medicines and three-dimensional tissue printing.
Collapse
Affiliation(s)
- Jasmeet Kaur Virdi
- Department of Biological Science, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to-be) University, Mumbai, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Lavale, Mulshi, Pune, 412115, India.
| |
Collapse
|
20
|
Cohesive cancer invasion of the biophysical barrier of smooth muscle. Cancer Metastasis Rev 2021; 40:205-219. [PMID: 33398621 DOI: 10.1007/s10555-020-09950-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023]
Abstract
Smooth muscle is found around organs in the digestive, respiratory, and reproductive tracts. Cancers arising in the bladder, prostate, stomach, colon, and other sites progress from low-risk disease to high-risk, lethal metastatic disease characterized by tumor invasion into, within, and through the biophysical barrier of smooth muscle. We consider here the unique biophysical properties of smooth muscle and how cohesive clusters of tumor use mechanosensing cell-cell and cell-ECM (extracellular matrix) adhesion receptors to move through a structured muscle and withstand the biophysical forces to reach distant sites. Understanding integrated mechanosensing features within tumor cluster and smooth muscle and potential triggers within adjacent adipose tissue, such as the unique damage-associated molecular pattern protein (DAMP), eNAMPT (extracellular nicotinamide phosphoribosyltransferase), or visfatin, offers an opportunity to prevent the first steps of invasion and metastasis through the structured muscle.
Collapse
|
21
|
Koudelková L, Brábek J, Rosel D. Src kinase: Key effector in mechanosignalling. Int J Biochem Cell Biol 2020; 131:105908. [PMID: 33359015 DOI: 10.1016/j.biocel.2020.105908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Cells have developed a unique set of molecular mechanisms that allows them to probe mechanical properties of the surrounding environment. These systems are based on deformable primary mechanosensors coupled to tension transmitting proteins and enzymes generating biochemical signals. This modular setup enables to transform a mechanical load into more versatile biochemical information. Src kinase appears to be one of the central components of the mechanotransduction network mediating force-induced signalling across multiple cellular contexts. In tight cooperation with primary sensors and the cytoskeleton, Src functions as an effector molecule necessary for transformation of mechanical stimuli into biochemical outputs executing cellular response and adaptation to mechanical cues.
Collapse
Affiliation(s)
- Lenka Koudelková
- Department of Cell Biology, Charles University, 12800, Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25250, Vestec, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University, 12800, Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25250, Vestec, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Charles University, 12800, Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25250, Vestec, Czech Republic.
| |
Collapse
|
22
|
Strauss RE, Gourdie RG. Cx43 and the Actin Cytoskeleton: Novel Roles and Implications for Cell-Cell Junction-Based Barrier Function Regulation. Biomolecules 2020; 10:E1656. [PMID: 33321985 PMCID: PMC7764618 DOI: 10.3390/biom10121656] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Barrier function is a vital homeostatic mechanism employed by epithelial and endothelial tissue. Diseases across a wide range of tissue types involve dynamic changes in transcellular junctional complexes and the actin cytoskeleton in the regulation of substance exchange across tissue compartments. In this review, we focus on the contribution of the gap junction protein, Cx43, to the biophysical and biochemical regulation of barrier function. First, we introduce the structure and canonical channel-dependent functions of Cx43. Second, we define barrier function and examine the key molecular structures fundamental to its regulation. Third, we survey the literature on the channel-dependent roles of connexins in barrier function, with an emphasis on the role of Cx43 and the actin cytoskeleton. Lastly, we discuss findings on the channel-independent roles of Cx43 in its associations with the actin cytoskeleton and focal adhesion structures highlighted by PI3K signaling, in the potential modulation of cellular barriers. Mounting evidence of crosstalk between connexins, the cytoskeleton, focal adhesion complexes, and junctional structures has led to a growing appreciation of how barrier-modulating mechanisms may work together to effect solute and cellular flux across tissue boundaries. This new understanding could translate into improved therapeutic outcomes in the treatment of barrier-associated diseases.
Collapse
Affiliation(s)
- Randy E. Strauss
- Virginia Tech, Translational Biology Medicine and Health (TBMH) Program, Roanoke, VA 24016, USA
| | - Robert G. Gourdie
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
23
|
Zhang M, Tian J, Wang R, Song M, Zhao R, Chen H, Liu K, Shim JH, Zhu F, Dong Z, Lee MH. Dasatinib Inhibits Lung Cancer Cell Growth and Patient Derived Tumor Growth in Mice by Targeting LIMK1. Front Cell Dev Biol 2020; 8:556532. [PMID: 33344441 PMCID: PMC7746816 DOI: 10.3389/fcell.2020.556532] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a leading cause cancer-related death with diversity. A promising approach to meet the need for improved cancer treatment is drug repurposing. Dasatinib, a second generation of tyrosine kinase inhibitors (TKIs), is a potent treatment agent for chronic myeloid leukemia (CML) approved by FDA, however, its off-targets and the underlying mechanisms in lung cancer have not been elucidated yet. LIM kinase 1 (LIMK1) is a serine/threonine kinase, which is highly upregulated in human cancers. Herein, we demonstrated that dasatinib dose-dependently blocked lung cancer cell proliferation and repressed LIMK1 activities by directly targeting LIMK1. It was confirmed that knockdown of LIMK1 expression suppressed lung cancer cell proliferation. From the in silico screening results, dasatinib may target to LIMK1. Indeed, dasatinib significantly inhibited the LIMK1 activity as evidenced by kinase and binding assay, and computational docking model analysis. Dasatinib inhibited lung cancer cell growth, while induced cell apoptosis as well as cell cycle arrest at the G1 phase. Meanwhile, dasatinib also suppressed the expression of markers relating cell cycle, cyclin D1, D3, and CDK2, and increased the levels of markers involved in cell apoptosis, cleaved caspase-3 and caspase-7 by downregulating phosphorylated LIMK1 (p-LIMK1) and cofilin (p-cofilin). Furthermore, in patient-derived xenografts (PDXs), dasatinib (30 mg/kg) significantly inhibited the growth of tumors in SCID mice which highly expressed LIMK1 without changing the bodyweight. In summary, our results indicate that dasatinib acts as a novel LIMK1 inhibitor to suppress the lung cancer cell proliferation in vitro and tumor growth in vivo, which suggests evidence for the application of dasatinib in lung cancer therapy.
Collapse
Affiliation(s)
- Man Zhang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Jie Tian
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Rui Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mengqiu Song
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ran Zhao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Minneapolis, MN, United States
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jung-Hyun Shim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, South Korea
| | - Feng Zhu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,College of Korean Medicine, Dongshin University, Naju, South Korea
| |
Collapse
|
24
|
Barkovskaya A, Buffone A, Žídek M, Weaver VM. Proteoglycans as Mediators of Cancer Tissue Mechanics. Front Cell Dev Biol 2020; 8:569377. [PMID: 33330449 PMCID: PMC7734320 DOI: 10.3389/fcell.2020.569377] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Proteoglycans are a diverse group of molecules which are characterized by a central protein backbone that is decorated with a variety of linear sulfated glycosaminoglycan side chains. Proteoglycans contribute significantly to the biochemical and mechanical properties of the interstitial extracellular matrix where they modulate cellular behavior by engaging transmembrane receptors. Proteoglycans also comprise a major component of the cellular glycocalyx to influence transmembrane receptor structure/function and mechanosignaling. Through their ability to initiate biochemical and mechanosignaling in cells, proteoglycans elicit profound effects on proliferation, adhesion and migration. Pathologies including cancer and cardiovascular disease are characterized by perturbed expression of proteoglycans where they compromise cell and tissue behavior by stiffening the extracellular matrix and increasing the bulkiness of the glycocalyx. Increasing evidence indicates that a bulky glycocalyx and proteoglycan-enriched extracellular matrix promote malignant transformation, increase cancer aggression and alter anti-tumor therapy response. In this review, we focus on the contribution of proteoglycans to mechanobiology in the context of normal and transformed tissues. We discuss the significance of proteoglycans for therapy response, and the current experimental strategies that target proteoglycans to sensitize cancer cells to treatment.
Collapse
Affiliation(s)
- Anna Barkovskaya
- Center for Bioengineering & Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Alexander Buffone
- Center for Bioengineering & Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Martin Žídek
- Center for Bioengineering & Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Valerie M. Weaver
- Center for Bioengineering & Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Bioengineering, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
25
|
Integrin-mediated adhesion and mechanosensing in the mammary gland. Semin Cell Dev Biol 2020; 114:113-125. [PMID: 33187835 DOI: 10.1016/j.semcdb.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
The mammary gland is dynamically remodelled during its postnatal development and the reproductive cycles. This inherent plasticity has been suggested to increase the susceptibility of the organ to carcinogenesis. Morphological changes in the mammary epithelium involve cell proliferation, differentiation, apoptosis, and migration which, in turn, are affected by cell adhesion to the extracellular matrix (ECM). Integrin adhesion receptors function in the sensing of the biochemical composition, patterning and mechanical properties of the ECM surrounding the cells, and strongly influence cell fate. This review aims to summarize the existing literature on how different aspects of integrin-mediated adhesion and mechanosensing, including ECM composition; stiffness and topography; integrin expression patterns; focal adhesion assembly; dynamic regulation of the actin cytoskeleton; and nuclear mechanotransduction affect mammary gland development, function and homeostasis. As the mechanical properties of a complex tissue environment are challenging to replicate in vitro, emphasis has been placed on studies conducted in vivo or using organoid models. Outright, these studies indicate that mechanosensing also contributes to the regulation of mammary gland morphogenesis in multiple ways.
Collapse
|
26
|
Cui X, Tong J, Yau J, Bajpai A, Yang J, Peng Y, Singh M, Qian W, Ma X, Chen W. Mechanical Forces Regulate Asymmetric Vascular Cell Alignment. Biophys J 2020; 119:1771-1780. [PMID: 33086046 PMCID: PMC7677134 DOI: 10.1016/j.bpj.2020.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022] Open
Abstract
Mechanical forces between cells and their microenvironment critically regulate the asymmetric morphogenesis and physiological functions in vascular systems. Here, we investigated the asymmetric cell alignment and cellular forces simultaneously in micropatterned endothelial cell ring-shaped sheets and studied how the traction and intercellular forces are involved in the asymmetric vascular morphogenesis. Tuning the traction and intercellular forces using different topographic geometries of symmetric and asymmetric ring-shaped patterns regulated the vascular asymmetric morphogenesis in vitro. Moreover, pharmacologically suppressing the cell traction force and intercellular force disturbed the force-dependent asymmetric cell alignment. We further studied this phenomenon by modeling the vascular sheets with a mechanical force-propelled active particle model and confirmed that mechanical forces synergistically drive the asymmetric endothelial cell alignments in different tissue geometries. Further study using mouse diabetic aortic endothelial cells indicated that diseased endothelial cells exhibited abnormal cell alignments, traction, and intercellular forces, indicating the importance of mechanical forces in physiological vascular morphogenesis and functions. Overall, we have established a controllable micromechanical platform to study the force-dependent vascular asymmetric morphogenesis and thus provide a direct link between single-cell mechanical processes and collective behaviors in a multicellular environment.
Collapse
Affiliation(s)
- Xin Cui
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York; Department of Biomedical Engineering, New York University, Brooklyn, New York; Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Jie Tong
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York; Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Jimmy Yau
- Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Apratim Bajpai
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York
| | - Jing Yang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York
| | - Yansong Peng
- Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Mrinalini Singh
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York
| | - Xiao Ma
- Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York; Department of Biomedical Engineering, New York University, Brooklyn, New York.
| |
Collapse
|
27
|
Khan AA, Huat TJ, Al Mutery A, El-Serafi AT, Kacem HH, Abdallah SH, Reza MF, Abdullah JM, Jaafar H. Significant transcriptomic changes are associated with differentiation of bone marrow-derived mesenchymal stem cells into neural progenitor-like cells in the presence of bFGF and EGF. Cell Biosci 2020; 10:126. [PMID: 33133516 PMCID: PMC7594431 DOI: 10.1186/s13578-020-00487-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) isolated from bone marrow have different developmental origins, including neural crest. MSCs can differentiate into neural progenitor-like cells (NPCs) under the influence of bFGF and EGF. NPCs can terminally differentiate into neurons that express beta-III-tubulin and elicit action potential. The main aim of the study was to identify key genetic markers involved in differentiation of MSCs into NPCs through transcriptomic analysis. METHOD Total RNA was isolated from MSCs and MSCs-derived NPCs followed by cDNA library construction for transcriptomic analysis. Sample libraries that passed the quality and quantity assessments were subjected to high throughput mRNA sequencing using NextSeq®500. Differential gene expression analysis was performed using the DESeq2 R package with MSC samples being a reference group. The expression of eight differentially regulated genes was counter validated using real-time PCR. RESULTS In total, of the 3,252 differentially regulated genes between MSCs and NPCs with two or more folds, 1,771 were upregulated genes, whereas 1,481 were downregulated in NPCs. Amongst these differential genes, 104 transcription factors were upregulated, and 45 were downregulated in NPCs. Neurogenesis related genes were upregulated in NPCs and the main non-redundant gene ontology (GO) terms enriched in NPCs were the autonomic nervous system, cell surface receptor signalling pathways), extracellular structure organisation, and programmed cell death. The main non-redundant GO terms enriched in MSCs included cytoskeleton organisation cytoskeleton structural constituent, mitotic cell cycle), and the mitotic cell cycle process Gene set enrichment analysis also confirmed cell cycle regulated pathways as well as Biocarta integrin pathway were upregulated in MSCs. Transcription factors enrichment analysis by ChEA3 revealed Foxs1 and HEYL, amongst the top five transcription factors, inhibits and enhances, respectively, the NPCs differentiation of MSCs. CONCLUSIONS The vast differences in the transcriptomic profiles between NPCs and MSCs revealed a set of markers that can identify the differentiation stage of NPCs as well as provide new targets to enhance MSCs differentiation into NPCs.
Collapse
Affiliation(s)
- Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
- Research Institute of Science and Engineering, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
| | - Tee Jong Huat
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543 Singapore
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan Malaysia
| | - Abdullah Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
| | - Ahmed Taher El-Serafi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, P.O. Box 581 83, Linköping, Sweden
| | - Hassen Hadj Kacem
- Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
- Research Institute of Science and Engineering, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
| | - Sallam Hasan Abdallah
- Research Institute of Science and Engineering, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
| | - Muhammed Faruque Reza
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan Malaysia
| | - Jafri Malin Abdullah
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan Malaysia
| | - Hasnan Jaafar
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan Malaysia
| |
Collapse
|
28
|
Revach OY, Grosheva I, Geiger B. Biomechanical regulation of focal adhesion and invadopodia formation. J Cell Sci 2020; 133:133/20/jcs244848. [DOI: 10.1242/jcs.244848] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Integrin adhesions are a structurally and functionally diverse family of transmembrane, multi-protein complexes that link the intracellular cytoskeleton to the extracellular matrix (ECM). The different members of this family, including focal adhesions (FAs), focal complexes, fibrillar adhesions, podosomes and invadopodia, contain many shared scaffolding and signaling ‘adhesome’ components, as well as distinct molecules that perform specific functions, unique to each adhesion form. In this Hypothesis, we address the pivotal roles of mechanical forces, generated by local actin polymerization or actomyosin-based contractility, in the formation, maturation and functionality of two members of the integrin adhesions family, namely FAs and invadopodia, which display distinct structures and functional properties. FAs are robust and stable ECM contacts, associated with contractile stress fibers, while invadopodia are invasive adhesions that degrade the underlying matrix and penetrate into it. We discuss here the mechanisms, whereby these two types of adhesion utilize a similar molecular machinery to drive very different – often opposing cellular activities, and hypothesize that early stages of FAs and invadopodia assembly use similar biomechanical principles, whereas maturation of the two structures, and their ‘adhesive’ and ‘invasive’ functionalities require distinct sources of biomechanical reinforcement.
Collapse
Affiliation(s)
- Or-Yam Revach
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inna Grosheva
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Geiger
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
29
|
Alexandrova AY, Chikina AS, Svitkina TM. Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:197-256. [PMID: 33066874 DOI: 10.1016/bs.ircmb.2020.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development of metastasis, tumor cells migrate through different tissues and encounter different extracellular matrices. An ability of cells to adapt mechanisms of their migration to these diverse environmental conditions, called migration plasticity, gives tumor cells an advantage over normal cells for long distant dissemination. Different modes of individual cell motility-mesenchymal and amoeboid-are driven by different molecular mechanisms, which largely depend on functions of the actin cytoskeleton that can be modulated in a wide range by cellular signaling mechanisms in response to environmental conditions. Various triggers can switch one motility mode to another, but regulations of these transitions are incompletely understood. However, understanding of the mechanisms driving migration plasticity is instrumental for finding anti-cancer treatment capable to stop cancer metastasis. In this review, we discuss cytoskeletal features, which allow the individually migrating cells to switch between mesenchymal and amoeboid migrating modes, called mesenchymal-to-amoeboid transition (MAT). We briefly describe main characteristics of different cell migration modes, and then discuss the triggering factors that initiate MAT with special attention to cytoskeletal features essential for migration plasticity.
Collapse
Affiliation(s)
- Antonina Y Alexandrova
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.
| | - Aleksandra S Chikina
- Cell Migration and Invasion and Spatio-Temporal Regulation of Antigen Presentation teams, UMR144/U932 Institut Curie, Paris, France
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
30
|
Hopkins AA, Murphy R, Irnaten M, Wallace DM, Quill B, O'Brien C. The role of lamina cribrosa tissue stiffness and fibrosis as fundamental biomechanical drivers of pathological glaucoma cupping. Am J Physiol Cell Physiol 2020; 319:C611-C623. [PMID: 32667866 DOI: 10.1152/ajpcell.00054.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The primary biomechanical driver of pathological glaucomatous cupping remains unknown. Finite element modeling indicates that stress and strain play key roles. In this article, primarily a review, we utilize known biomechanical data and currently unpublished results from our lab to propose a three-stage, tissue stiffness-based model to explain glaucomatous cupping occurring at variable levels of translaminar pressure (TLP). In stage 1, a short-term increase in TLP gradient induces a transient increase in lamina cribrosa (LC) strain. Beyond a critical level of strain, the tissue stiffness rises steeply provoking cellular responses via integrin-mediated mechanotransduction. This early mechanoprotective cellular contraction reduces strain, which reduces tissue stiffness by return of the posteriorly deflected LC to baseline. In stage 2 a prolonged period of TLP increase elicits extracellular matrix (ECM) production leading to fibrosis, increasing baseline tissue stiffness and strain and diminishing the contractile ability/ability to return to the baseline LC position. This is supported by our three-dimensional collagen contraction assays, which show significantly reduced capacity to contract in glaucoma compared with normal LC cells. Second, 15% cyclic strain in LC cells over 24 h elicits a typical increase in ECM profibrotic genes in normal LC cells but a highly blunted response in glaucoma LC cells. Stage 3 is characterized by persistent fibrosis causing further stiffening and inducing a feed-forward ECM production cycle. Repeated cycles of increased strain and stiffness with profibrotic ECM deposition prevent optic nerve head (ONH) recoil from the new deflected position. This incremental maladaptive modeling leads to pathological ONH cupping.
Collapse
Affiliation(s)
- Alan A Hopkins
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Rory Murphy
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Mustapha Irnaten
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Deborah M Wallace
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Barry Quill
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Colm O'Brien
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
Actin polymerization downstream of integrins: signaling pathways and mechanotransduction. Biochem J 2020; 477:1-21. [PMID: 31913455 DOI: 10.1042/bcj20170719] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/17/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
A cell constantly adapts to its environment. Cell decisions to survive, to proliferate or to migrate are dictated not only by soluble growth factors, but also through the direct interaction of the cell with the surrounding extracellular matrix (ECM). Integrins and their connections to the actin cytoskeleton are crucial for monitoring cell attachment and the physical properties of the substratum. Cell adhesion dynamics are modulated in complex ways by the polymerization of branched and linear actin arrays, which in turn reinforce ECM-cytoskeleton connection. This review describes the major actin regulators, Ena/VASP proteins, formins and Arp2/3 complexes, in the context of signaling pathways downstream of integrins. We focus on the specific signaling pathways that transduce the rigidity of the substrate and which control durotaxis, i.e. directed migration of cells towards increased ECM rigidity. By doing so, we highlight several recent findings on mechanotransduction and put them into a broad integrative perspective that is the result of decades of intense research on the actin cytoskeleton and its regulation.
Collapse
|
32
|
Poirier MB, Fiorino C, Rajasekar TK, Harrison RE. F-actin flashes on phagosomes mechanically deform contents for efficient digestion in macrophages. J Cell Sci 2020; 133:jcs239384. [PMID: 32501286 DOI: 10.1242/jcs.239384] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/11/2020] [Indexed: 08/31/2023] Open
Abstract
The mechanism and role of transient F-actin recruitment, or F-actin 'flashes', on phagosomes remains enigmatic. Here we provide a comprehensive characterization of F-actin flashing dynamics on phagosomes, including receptor and signaling involvement. F-actin flashes predominate during the integrin-driven complement receptor (CR)-mediated phagocytosis. F-actin flashes begin shortly after internalization and persist on phagosomes for approximately 3 minutes before disassembling and reassembling several times within the first hour. Strikingly, the appearance of F-actin flashes on phagosomes coincides with morphological deformation, lysis and occasional fission of internalized red blood cells. The cadence of flashes depends on particle stiffness, and the F-actin networks on phagosomes are enriched in mechanosensitive components including focal adhesion proteins, RhoA and actomyosin. Inhibiting Arp2/3 and myosin IIA activity significantly reduces the frequency at which phagosome cargo becomes deformed during transient F-actin accumulation. At later time points, post-F-actin flashing, enhanced degradation of phagosome contents is observed, compared with non-flashing phagosomes. Taken together, these data suggest that actomyosin-driven phagosome contractions serve to disrupt malleable particles physically, a process akin to mastication, to enhance later enzymatic digestion.
Collapse
Affiliation(s)
- Mathieu B Poirier
- Department of Cell & Systems Biology and the Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Cara Fiorino
- Department of Cell & Systems Biology and the Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Thiviya K Rajasekar
- Department of Cell & Systems Biology and the Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Rene E Harrison
- Department of Cell & Systems Biology and the Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
33
|
Taneja N, Neininger AC, Burnette DT. Coupling to substrate adhesions drives the maturation of muscle stress fibers into myofibrils within cardiomyocytes. Mol Biol Cell 2020; 31:1273-1288. [PMID: 32267210 PMCID: PMC7353145 DOI: 10.1091/mbc.e19-11-0652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Forces generated by heart muscle contraction must be balanced by adhesion to the extracellular matrix (ECM) and to other cells for proper heart function. Decades of data have suggested that cell-ECM adhesions are important for sarcomere assembly. However, the relationship between cell-ECM adhesions and sarcomeres assembling de novo remains untested. Sarcomeres arise from muscle stress fibers (MSFs) that are translocating on the top (dorsal) surface of cultured cardiomyocytes. Using an array of tools to modulate cell-ECM adhesion, we established a strong positive correlation between the extent of cell-ECM adhesion and sarcomere assembly. On the other hand, we found a strong negative correlation between the extent of cell-ECM adhesion and the rate of MSF translocation, a phenomenon also observed in nonmuscle cells. We further find a conserved network architecture that also exists in nonmuscle cells. Taken together, our results show that cell-ECM adhesions mediate coupling between the substrate and MSFs, allowing their maturation into sarcomere-containing myofibrils.
Collapse
Affiliation(s)
- Nilay Taneja
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Abigail C Neininger
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
34
|
Zhao X, Zhu Y, Laslett AL, Chan HF. Hepatic Differentiation of Stem Cells in 2D and 3D Biomaterial Systems. Bioengineering (Basel) 2020; 7:E47. [PMID: 32466173 PMCID: PMC7356247 DOI: 10.3390/bioengineering7020047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
A critical shortage of donor livers for treating end-stage liver failure signifies the urgent need for alternative treatment options. Hepatocyte-like cells (HLC) derived from various stem cells represent a promising cell source for hepatocyte transplantation, liver tissue engineering, and development of a bioartificial liver assist device. At present, the protocols of hepatic differentiation of stem cells are optimized based on soluble chemical signals introduced in the culture medium and the HLC produced typically retain an immature phenotype. To promote further hepatic differentiation and maturation, biomaterials can be designed to recapitulate cell-extracellular matrix (ECM) interactions in both 2D and 3D configurations. In this review, we will summarize and compare various 2D and 3D biomaterial systems that have been applied to hepatic differentiation, and highlight their roles in presenting biochemical and physical cues to different stem cell sources.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; (X.Z.); (Y.Z.)
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yanlun Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; (X.Z.); (Y.Z.)
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Andrew L. Laslett
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia;
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; (X.Z.); (Y.Z.)
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
35
|
Guadarrama Bello D, Fouillen A, Badia A, Nanci A. Nanoporosity Stimulates Cell Spreading and Focal Adhesion Formation in Cells with Mutated Paxillin. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14924-14932. [PMID: 32155329 DOI: 10.1021/acsami.0c01172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We have evaluated the response to nanotopography of CHO-K1 cells that express wild-type paxillin or paxillin with mutations at serine 273 that inhibit phosphorylation. Cells were grown on nanoporous and polished titanium surfaces. With all cell types, immunofluorescence showed that adhesion and spreading were minimally affected on the treated surface and that the actin filaments were more abundant and well-aligned. Scanning electron microscopy revealed changes in cell shape and abundant filopodia with lateral nanoprotrusions in response to nanoporosity. Gene expression of proteins associated with cellular adhesion and protrusions was significantly increased on the nanoporous surface regardless of the cell type. In particular, α-actinin, Rac1, Cdc42, and ITGα1 were upregulated in S273 cells with alanine substitutions, whereas FAK, Pxn, and Src were downregulated, leading to improved focal adhesion formation. These findings suggest that the surface nanoporosity can "compensate for" the genetic mutations that affect the biomechanical relationship of cells to surfaces.
Collapse
Affiliation(s)
- Dainelys Guadarrama Bello
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Aurélien Fouillen
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Antonella Badia
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, Québec H3C3J7, Canada
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3C3J7, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec H3C3J7, Canada
| |
Collapse
|
36
|
Nasrin SR, Afrin T, Kabir AMR, Inoue D, Torisawa T, Oiwa K, Sada K, Kakugo A. Regulation of Biomolecular-Motor-Driven Cargo Transport by Microtubules under Mechanical Stress. ACS APPLIED BIO MATERIALS 2020; 3:1875-1883. [DOI: 10.1021/acsabm.9b01010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Syeda Rubaiya Nasrin
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Tanjina Afrin
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | | | - Daisuke Inoue
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Takayuki Torisawa
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima 411-8540, Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Hyogo, Japan
| | - Kazuki Sada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Akira Kakugo
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| |
Collapse
|
37
|
Strouhalova K, Přechová M, Gandalovičová A, Brábek J, Gregor M, Rosel D. Vimentin Intermediate Filaments as Potential Target for Cancer Treatment. Cancers (Basel) 2020; 12:E184. [PMID: 31940801 PMCID: PMC7017239 DOI: 10.3390/cancers12010184] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Intermediate filaments constitute the third component of the cellular skeleton. Unlike actin and microtubule cytoskeletons, the intermediate filaments are composed of a wide variety of structurally related proteins showing distinct expression patterns in tissues and cell types. Changes in the expression patterns of intermediate filaments are often associated with cancer progression; in particular with phenotypes leading to increased cellular migration and invasion. In this review we will describe the role of vimentin intermediate filaments in cancer cell migration, cell adhesion structures, and metastasis formation. The potential for targeting vimentin in cancer treatment and the development of drugs targeting vimentin will be reviewed.
Collapse
Affiliation(s)
- Katerina Strouhalova
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (K.S.); (A.G.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Magdalena Přechová
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Aneta Gandalovičová
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (K.S.); (A.G.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (K.S.); (A.G.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Daniel Rosel
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (K.S.); (A.G.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| |
Collapse
|
38
|
Iida M, Sahashi K, Kondo N, Nakatsuji H, Tohnai G, Tsutsumi Y, Noda S, Murakami A, Onodera K, Okada Y, Nakatochi M, Tsukagoshi Okabe Y, Shimizu S, Mizuno M, Adachi H, Okano H, Sobue G, Katsuno M. Src inhibition attenuates polyglutamine-mediated neuromuscular degeneration in spinal and bulbar muscular atrophy. Nat Commun 2019; 10:4262. [PMID: 31537808 PMCID: PMC6753158 DOI: 10.1038/s41467-019-12282-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by an expanded CAG repeat in the androgen receptor (AR) gene. Here, we perform a comprehensive analysis of signaling pathways in a mouse model of SBMA (AR-97Q mice) utilizing a phosphoprotein assay. We measure the levels of 17 phosphorylated proteins in spinal cord and skeletal muscle of AR-97Q mice at three stages. The level of phosphorylated Src (p-Src) is markedly increased in the spinal cords and skeletal muscles of AR-97Q mice prior to the onset. Intraperitoneal administration of a Src kinase inhibitor improves the behavioral and histopathological phenotypes of the transgenic mice. We identify p130Cas as an effector molecule of Src and show that the phosphorylated p130Cas is elevated in murine and cellular models of SBMA. These results suggest that Src kinase inhibition is a potential therapy for SBMA.
Collapse
Affiliation(s)
- Madoka Iida
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
- Japan Society for the Promotion of Science, 5-3-1, Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Kentaro Sahashi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
| | - Naohide Kondo
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
| | - Hideaki Nakatsuji
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
| | - Genki Tohnai
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
| | - Yutaka Tsutsumi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
| | - Seiya Noda
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
- Department of Neurology, National Hospital Organization Suzuka National Hospital, 3-2-1, Kasado, Suzuka city, Mie, 513-8501, Japan
| | - Ayuka Murakami
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
- Department of Neurology, National Hospital Organization Suzuka National Hospital, 3-2-1, Kasado, Suzuka city, Mie, 513-8501, Japan
| | - Kazunari Onodera
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
- Department of Neurology, Aichi Medical University School of Medicine, 1, Karimata, Yazako, Nagakute-city, Aichi, 480-1195, Japan
| | - Yohei Okada
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
- Department of Neurology, Aichi Medical University School of Medicine, 1, Karimata, Yazako, Nagakute-city, Aichi, 480-1195, Japan
- Department of Physiology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Nakatochi
- Department of Nursing, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya city, Aichi, 461-8673, Japan
| | - Yuka Tsukagoshi Okabe
- Department of Advanced Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8560, Japan
| | - Shinobu Shimizu
- Department of Advanced Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8560, Japan
| | - Masaaki Mizuno
- Department of Advanced Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8560, Japan
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, 1-1, Iseigaoka, Yahatanichi-ku, Kitakyushu-city, Fukuoka, 807-0804, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan.
| |
Collapse
|
39
|
Zhu Y, Qu J, He L, Zhang F, Zhou Z, Yang S, Zhou Y. Calcium in Vascular Smooth Muscle Cell Elasticity and Adhesion: Novel Insights Into the Mechanism of Action. Front Physiol 2019; 10:852. [PMID: 31440163 PMCID: PMC6693425 DOI: 10.3389/fphys.2019.00852] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the arterial wall. These cells play a critical role in maintaining vascular homeostasis including vasoconstriction and vasodilatation through active contraction and relaxation. Dysregulation of VSMC function alters the response of blood vessels to mechanical stress, contributing to the pathogenesis of vascular diseases, particularly atherosclerosis and hypertension. The stiffness of VSMCs is a major regulator of vascular function. Previous studies suggest that intracellular Ca2+ controls the stiffness of VSMCs by a mechanism involving myosin contractile apparatus. More recent studies highlight important functions of cytoskeletal α-smooth muscle actin (α-SMA), α5β1 integrin, and integrin-mediated cell-extracellular matrix (ECM) interactions in Ca2+-dependent regulation of VSMC stiffness and adhesion to the ECM, providing novel insights into the mechanism of calcium action.
Collapse
Affiliation(s)
- Yi Zhu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama-Birmingham, Birmingham, AL, United States
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, United States
| | - Jing Qu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama-Birmingham, Birmingham, AL, United States
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama-Birmingham, Birmingham, AL, United States
| | - Feng Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama-Birmingham, Birmingham, AL, United States
- Department of Ophthalmology, The Second Xiangya Hospital, Central-South University, Changsha, China
| | - Zijing Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama-Birmingham, Birmingham, AL, United States
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central-South University, Changsha, China
| | - Shanzhong Yang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama-Birmingham, Birmingham, AL, United States
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama-Birmingham, Birmingham, AL, United States
| |
Collapse
|
40
|
Palamà IE, D'Amone S, Ratano P, Donatelli A, Liscio A, Antonacci G, Testini M, Di Angelantonio S, Ragozzino D, Cortese B. Mechanical Durotactic Environment Enhances Specific Glioblastoma Cell Responses. Cancers (Basel) 2019; 11:E643. [PMID: 31075964 PMCID: PMC6562761 DOI: 10.3390/cancers11050643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/17/2019] [Accepted: 05/07/2019] [Indexed: 01/24/2023] Open
Abstract
Background: A hallmark of glioblastoma is represented by their ability to widely disperse throughout the brain parenchyma. The importance of developing new anti-migratory targets is critical to reduce recurrence and improve therapeutic efficacy. Methods: Polydimethylsiloxane substrates, either mechanically uniform or presenting durotactic cues, were fabricated to assess GBM cell morphological and dynamical response with and without pharmacological inhibition of NNMII contractility, of its upstream regulator ROCK and actin polymerization. Results: Glioma cells mechanotactic efficiency varied depending on the rigidity compliance of substrates. Morphologically, glioma cells on highly rigid and soft bulk substrates displayed bigger and elongated aggregates whereas on durotactic substrates the same cells were homogeneously dispersed with a less elongated morphology. The durotactic cues also induced a motility change, cell phenotype dependent, and with cells being more invasive on stiffer substrates. Pharmacological inhibition of myosin or ROCK revealed a rigidity-insensitivity, unlike inhibition of microfilament contraction and polymerization of F-actin, suggesting that alternative signalling is used to respond to durotactic cues. Conclusions: The presence of a distinct mechanical cue is an important factor in cell migration. Together, our results provide support for a durotactic role of glioma cells that acts through actomyosin contractility to regulate the aggressive properties of GBM cells.
Collapse
Affiliation(s)
| | - Stefania D'Amone
- National Research Council-Nanotechnology Institute, 73100 Lecce, Italy.
| | - Patrizia Ratano
- National Research Council-Nanotechnology Institute, 00185 Rome, Italy.
| | - Amato Donatelli
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy.
| | - Andrea Liscio
- National Research Council-Institute for Microelectronics and Microsystems, via del Fosso del Cavaliere 100, 00133 Roma, Italy.
| | - Giuseppe Antonacci
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00185 Rome, Italy.
| | | | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy.
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00185 Rome, Italy.
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy.
| | - Barbara Cortese
- National Research Council-Nanotechnology Institute, 00185 Rome, Italy.
| |
Collapse
|
41
|
Montel L, Sotiropoulos A, Hénon S. The nature and intensity of mechanical stimulation drive different dynamics of MRTF-A nuclear redistribution after actin remodeling in myoblasts. PLoS One 2019; 14:e0214385. [PMID: 30921405 PMCID: PMC6438519 DOI: 10.1371/journal.pone.0214385] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/12/2019] [Indexed: 01/14/2023] Open
Abstract
Serum response factor and its cofactor myocardin-related transcription factor (MRTF) are key elements of muscle-mass adaptation to workload. The transcription of target genes is activated when MRTF is present in the nucleus. The localization of MRTF is controlled by its binding to G-actin. Thus, the pathway can be mechanically activated through the mechanosensitivity of the actin cytoskeleton. The pathway has been widely investigated from a biochemical point of view, but its mechanical activation and the timescales involved are poorly understood. Here, we applied local and global mechanical cues to myoblasts through two custom-built set-ups, magnetic tweezers and stretchable substrates. Both induced nuclear accumulation of MRTF-A. However, the dynamics of the response varied with the nature and level of mechanical stimulation and correlated with the polymerization of different actin sub-structures. Local repeated force induced local actin polymerization and nuclear accumulation of MRTF-A by 30 minutes, whereas a global static strain induced both rapid (minutes) transient nuclear accumulation, associated with the polymerization of an actin cap above the nucleus, and long-term accumulation, with a global increase in polymerized actin. Conversely, high strain induced actin depolymerization at intermediate times, associated with cytoplasmic MRTF accumulation.
Collapse
Affiliation(s)
- Lorraine Montel
- Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Athanassia Sotiropoulos
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sylvie Hénon
- Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
42
|
Integrin intracellular machinery in action. Exp Cell Res 2019; 378:226-231. [PMID: 30853446 DOI: 10.1016/j.yexcr.2019.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
Integrin-mediated adhesion to the extracellular matrix involves a surprisingly large number of intracellular proteins, the integrin-associated proteins (IAPs), which are a fraction of the total integrin adhesome. In this review we discuss how genetic approaches have improved our understanding of how each IAP contributes to integrin function, especially in the context of building a functional organism during development. We then begin the process of assembling IAP roles together into an integrated mechanism.
Collapse
|
43
|
Santoro R, Perrucci GL, Gowran A, Pompilio G. Unchain My Heart: Integrins at the Basis of iPSC Cardiomyocyte Differentiation. Stem Cells Int 2019; 2019:8203950. [PMID: 30906328 PMCID: PMC6393933 DOI: 10.1155/2019/8203950] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
The cellular response to the extracellular matrix (ECM) microenvironment mediated by integrin adhesion is of fundamental importance, in both developmental and pathological processes. In particular, mechanotransduction is of growing importance in groundbreaking cellular models such as induced pluripotent stem cells (iPSC), since this process may strongly influence cell fate and, thus, augment the precision of differentiation into specific cell types, e.g., cardiomyocytes. The decryption of the cellular machinery starting from ECM sensing to iPSC differentiation calls for new in vitro methods. Conveniently, engineered biomaterials activating controlled integrin-mediated responses through chemical, physical, and geometrical designs are key to resolving this issue and could foster clinical translation of optimized iPSC-based technology. This review introduces the main integrin-dependent mechanisms and signalling pathways involved in mechanotransduction. Special consideration is given to the integrin-iPSC linkage signalling chain in the cardiovascular field, focusing on biomaterial-based in vitro models to evaluate the relevance of this process in iPSC differentiation into cardiomyocytes.
Collapse
Affiliation(s)
- Rosaria Santoro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Gianluca Lorenzo Perrucci
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Aoife Gowran
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy
| |
Collapse
|
44
|
Koudelková L, Pataki AC, Tolde O, Pavlik V, Nobis M, Gemperle J, Anderson K, Brábek J, Rosel D. Novel FRET-Based Src Biosensor Reveals Mechanisms of Src Activation and Its Dynamics in Focal Adhesions. Cell Chem Biol 2019; 26:255-268.e4. [DOI: 10.1016/j.chembiol.2018.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
|
45
|
Jacquemet G, Stubb A, Saup R, Miihkinen M, Kremneva E, Hamidi H, Ivaska J. Filopodome Mapping Identifies p130Cas as a Mechanosensitive Regulator of Filopodia Stability. Curr Biol 2019; 29:202-216.e7. [PMID: 30639111 PMCID: PMC6345628 DOI: 10.1016/j.cub.2018.11.053] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/25/2018] [Accepted: 11/20/2018] [Indexed: 01/09/2023]
Abstract
Filopodia are adhesive cellular protrusions specialized in the detection of extracellular matrix (ECM)-derived cues. Although ECM engagement at focal adhesions is known to trigger the recruitment of hundreds of proteins ("adhesome") to fine-tune cellular behavior, the components of the filopodia adhesions remain undefined. Here, we performed a structured-illumination-microscopy-based screen to map the localization of 80 target proteins, linked to cell adhesion and migration, within myosin-X-induced filopodia. We demonstrate preferential enrichment of several adhesion proteins to either filopodia tips, filopodia shafts, or shaft subdomains, suggesting divergent, spatially restricted functions for these proteins. Moreover, proteins with phosphoinositide (PI) binding sites are particularly enriched in filopodia. This, together with the strong localization of PI(3,4)P2 in filopodia tips, predicts critical roles for PIs in regulating filopodia ultra-structure and function. Our mapping further reveals that filopodia adhesions consist of a unique set of proteins, the filopodome, that are distinct from classical nascent adhesions, focal adhesions, and fibrillar adhesions. Using live imaging, we observe that filopodia adhesions can give rise to nascent adhesions, which, in turn, form focal adhesions. We demonstrate that p130Cas (BCAR1) is recruited to filopodia tips via its C-terminal Cas family homology domain (CCHD) and acts as a mechanosensitive regulator of filopodia stability. Finally, we demonstrate that our map based on myosin-X-induced filopodia can be translated to endogenous filopodia and fascin- and IRSp53-mediated filopodia.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Aki Stubb
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Rafael Saup
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mitro Miihkinen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Elena Kremneva
- Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland; Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
46
|
Gorgey AS, Witt O, O’Brien L, Cardozo C, Chen Q, Lesnefsky EJ, Graham ZA. Mitochondrial health and muscle plasticity after spinal cord injury. Eur J Appl Physiol 2018; 119:315-331. [DOI: 10.1007/s00421-018-4039-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023]
|
47
|
Cimmino C, Rossano L, Netti PA, Ventre M. Spatio-Temporal Control of Cell Adhesion: Toward Programmable Platforms to Manipulate Cell Functions and Fate. Front Bioeng Biotechnol 2018; 6:190. [PMID: 30564573 PMCID: PMC6288377 DOI: 10.3389/fbioe.2018.00190] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/21/2018] [Indexed: 01/06/2023] Open
Abstract
Biophysical and biochemical signals of material surfaces potently regulate cell functions and fate. In particular, micro- and nano-scale patterns of adhesion signals can finely elicit and affect a plethora of signaling pathways ultimately affecting gene expression, in a process known as mechanotransduction. Our fundamental understanding of cell-material signals interaction and reaction is based on static culturing platforms, i.e., substrates exhibiting signals whose configuration is time-invariant. However, cells in-vivo are exposed to arrays of biophysical and biochemical signals that change in time and space and the way cells integrate these might eventually dictate their behavior. Advancements in fabrication technologies and materials engineering, have recently enabled the development of culturing platforms able to display patterns of biochemical and biophysical signals whose features change in time and space in response to external stimuli and according to selected programmes. These dynamic devices proved to be particularly helpful in shedding light on how cells adapt to a dynamic microenvironment or integrate spatio-temporal variations of signals. In this work, we present the most relevant findings in the context of dynamic platforms for controlling cell functions and fate in vitro. We place emphasis on the technological aspects concerning the fabrication of platforms displaying micro- and nano-scale dynamic signals and on the physical-chemical stimuli necessary to actuate the spatio-temporal changes of the signal patterns. In particular, we illustrate strategies to encode material surfaces with dynamic ligands and patterns thereof, topographic relieves and mechanical properties. Additionally, we present the most effective, yet cytocompatible methods to actuate the spatio-temporal changes of the signals. We focus on cell reaction and response to dynamic changes of signal presentation. Finally, potential applications of this new generation of culturing systems for in vitro and in vivo applications, including regenerative medicine and cell conditioning are presented.
Collapse
Affiliation(s)
- Chiara Cimmino
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| | - Lucia Rossano
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| | - Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
48
|
Thottacherry JJ, Kosmalska AJ, Kumar A, Vishen AS, Elosegui-Artola A, Pradhan S, Sharma S, Singh PP, Guadamillas MC, Chaudhary N, Vishwakarma R, Trepat X, Del Pozo MA, Parton RG, Rao M, Pullarkat P, Roca-Cusachs P, Mayor S. Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells. Nat Commun 2018; 9:4217. [PMID: 30310066 PMCID: PMC6181995 DOI: 10.1038/s41467-018-06738-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 09/04/2018] [Indexed: 12/31/2022] Open
Abstract
Plasma membrane tension regulates many key cellular processes. It is modulated by, and can modulate, membrane trafficking. However, the cellular pathway(s) involved in this interplay is poorly understood. Here we find that, among a number of endocytic processes operating simultaneously at the cell surface, a dynamin independent pathway, the CLIC/GEEC (CG) pathway, is rapidly and specifically upregulated upon a sudden reduction of tension. Moreover, inhibition (activation) of the CG pathway results in lower (higher) membrane tension. However, alteration in membrane tension does not directly modulate CG endocytosis. This requires vinculin, a mechano-transducer recruited to focal adhesion in adherent cells. Vinculin acts by controlling the levels of a key regulator of the CG pathway, GBF1, at the plasma membrane. Thus, the CG pathway directly regulates membrane tension and is in turn controlled via a mechano-chemical feedback inhibition, potentially leading to homeostatic regulation of membrane tension in adherent cells. Plasma membrane tension is an important factor that regulates many key cellular processes. Here authors show that a specific dynamin-independent endocytic pathway is modulated by changes in tension via the mechano-transducer vinculin.
Collapse
Affiliation(s)
- Joseph Jose Thottacherry
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bengaluru, 560065, India
| | - Anita Joanna Kosmalska
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain.,University of Barcelona, Barcelona, 08036, Spain
| | - Amit Kumar
- Raman Research Institute, C. V. Raman Avenue, Bengaluru, 560080, India
| | - Amit Singh Vishen
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bengaluru, 560065, India.,Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (NCBS), Bengaluru, 560065, India
| | | | - Susav Pradhan
- Raman Research Institute, C. V. Raman Avenue, Bengaluru, 560080, India
| | - Sumit Sharma
- CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Parvinder P Singh
- CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Marta C Guadamillas
- Integrin Signalling Lab, Cell Biology & Physiology Program, Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain
| | - Natasha Chaudhary
- University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, St Lucia, QLD, 4072, Australia.,Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Ram Vishwakarma
- CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain.,University of Barcelona, Barcelona, 08036, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Miguel A Del Pozo
- Integrin Signalling Lab, Cell Biology & Physiology Program, Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain
| | - Robert G Parton
- University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, St Lucia, QLD, 4072, Australia
| | - Madan Rao
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bengaluru, 560065, India.,Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (NCBS), Bengaluru, 560065, India
| | - Pramod Pullarkat
- Raman Research Institute, C. V. Raman Avenue, Bengaluru, 560080, India
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain.,University of Barcelona, Barcelona, 08036, Spain
| | - Satyajit Mayor
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bengaluru, 560065, India. .,Institute for Stem Cell Biology and Regenerative Medicine, Tata Institute of Fundamental Research (TIFR), Bengaluru, 560065, India.
| |
Collapse
|
49
|
Roy NH, Burkhardt JK. The Actin Cytoskeleton: A Mechanical Intermediate for Signal Integration at the Immunological Synapse. Front Cell Dev Biol 2018; 6:116. [PMID: 30283780 PMCID: PMC6156151 DOI: 10.3389/fcell.2018.00116] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022] Open
Abstract
The immunological synapse (IS) is a specialized structure that serves as a platform for cell-cell communication between a T cell and an antigen-presenting cell (APC). Engagement of the T cell receptor (TCR) with cognate peptide-MHC complexes on the APC activates the T cell and instructs its differentiation. Proper T cell activation also requires engagement of additional receptor-ligand pairs, which promote sustained adhesion and deliver costimulatory signals. These events are orchestrated by T cell actin dynamics, which organize IS components and facilitate their signaling. The actin network flows from the edge of the cell inward, driving the centralization of TCR microclusters and providing the force to activate the integrin LFA-1. We recently showed that engagement of LFA-1 slows actin flow, and that this affects TCR signaling. This study highlights the physical nature of the IS, and contributes to a growing appreciation in the field that mechanosensing and mechanotransduction are essential for IS function. Additionally, it is becoming clear that there are multiple types of actin structures at the IS that promote signaling in distinct ways. How the different actin structures contribute to force production and mechanotransduction is just beginning to be explored. In this Perspective, we will feature recent work from our lab and others, that collectively points toward a model in which actin dynamics drive mechanical signaling and receptor crosstalk during T cell activation.
Collapse
Affiliation(s)
- Nathan H Roy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, United States
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, United States.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
50
|
Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. Cellular Mechanotransduction: From Tension to Function. Front Physiol 2018; 9:824. [PMID: 30026699 PMCID: PMC6041413 DOI: 10.3389/fphys.2018.00824] [Citation(s) in RCA: 553] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
Living cells are constantly exposed to mechanical stimuli arising from the surrounding extracellular matrix (ECM) or from neighboring cells. The intracellular molecular processes through which such physical cues are transformed into a biological response are collectively dubbed as mechanotransduction and are of fundamental importance to help the cell timely adapt to the continuous dynamic modifications of the microenvironment. Local changes in ECM composition and mechanics are driven by a feed forward interplay between the cell and the matrix itself, with the first depositing ECM proteins that in turn will impact on the surrounding cells. As such, these changes occur regularly during tissue development and are a hallmark of the pathologies of aging. Only lately, though, the importance of mechanical cues in controlling cell function (e.g., proliferation, differentiation, migration) has been acknowledged. Here we provide a critical review of the recent insights into the molecular basis of cellular mechanotransduction, by analyzing how mechanical stimuli get transformed into a given biological response through the activation of a peculiar genetic program. Specifically, by recapitulating the processes involved in the interpretation of ECM remodeling by Focal Adhesions at cell-matrix interphase, we revise the role of cytoskeleton tension as the second messenger of the mechanotransduction process and the action of mechano-responsive shuttling proteins converging on stage and cell-specific transcription factors. Finally, we give few paradigmatic examples highlighting the emerging role of malfunctions in cell mechanosensing apparatus in the onset and progression of pathologies.
Collapse
Affiliation(s)
- Fabiana Martino
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
| | - Ana R. Perestrelo
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Vladimír Vinarský
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
| | - Stefania Pagliari
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Giancarlo Forte
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
- Department of Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|