1
|
Othman DIA, Hamdi A, Tawfik SS, Elgazar AA, Mostafa AS. Identification of new benzimidazole-triazole hybrids as anticancer agents: multi-target recognition, in vitro and in silico studies. J Enzyme Inhib Med Chem 2023; 38:2166037. [PMID: 36651111 PMCID: PMC9858449 DOI: 10.1080/14756366.2023.2166037] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Multi-target inhibitors represent useful anticancer agents with superior therapeutic attributes. Here in, two novel series of benzimidazole-triazole hybrids were designed, synthesised as multi-target EGFR, VEGFR-2 and Topo II inhibitors, and evaluated for anticancer activity. Compounds 5a and 6g were the most potent analogues against four cancer cell lines, HepG-2, HCT-116, MCF-7 and HeLa, and were further evaluated for EGFR, VEGFR-2, and Topo II inhibition. Compound 5a was especially good inhibitor for EGFR (IC50 = 0.086 µM) compared to Gefitinib (IC50 = 0.052 µM), moderate VEGFR-2 inhibitor (IC50 = 0.107 µM) compared to Sorafenib (IC50 = 0.0482 µM), and stronger Topo II inhibitor (IC50 = 2.52 µM) than Doxorubicin (IC50 = 3.62 µM). Compound 6g exhibited moderate EGFR and VEGFR-2 inhibition and weaker Topo II inhibition. DNA binding assay, cell cycle analysis, apoptotic induction, molecular docking, and physicochemical studies were additionally implemented to explore the plausible mechanism of the active compounds.
Collapse
Affiliation(s)
- Dina I. A. Othman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Samar S. Tawfik
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdullah A. Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Amany S. Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt,CONTACT Amany S. Mostafa Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Khodair AI, Alzahrani FM, Awad MK, Al-Issa SA, Al-Hazmi GH, Nafie MS. Design, synthesis, molecular modelling and antitumor evaluation of S-glucosylated rhodanines through topo II inhibition and DNA intercalation. J Enzyme Inhib Med Chem 2023; 38:2163996. [PMID: 36629439 PMCID: PMC9848385 DOI: 10.1080/14756366.2022.2163996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the present study, 5-arylidene rhodanine derivatives 3a-f, N-glucosylation rhodanine 6, S-glucosylation rhodanine 7, N-glucoside rhodanine 8 and S-glucosylation 5-arylidene rhodanines 13a-c were synthesised and screened for cytotoxicity against a panel of cancer cells with investigating the effective molecular target and mechanistic cell death. The anomers were separated by flash column chromatography and their configurations were assigned by NMR spectroscopy. The stable structures of the compounds under study were modelled on a molecular level, and DFT calculations were carried out at the B3LYP/6-31 + G (d,p) level to examine their electronic and geometric features. A good correlation between the quantum chemical descriptors and experimental observations was found. Interestingly, compound 6 induced potent cytotoxicity against MCF-7, HepG2 and A549 cells, with IC50 values of 11.7, 0.21, and 1.7 µM, compared to Dox 7.67, 8.28, and 6.62 µM, respectively. For the molecular target, compound 6 exhibited topoisomerase II inhibition and DNA intercalation with IC50 values of 6.9 and 19.6 µM, respectively compared to Dox (IC50 = 9.65 and 31.27 µM). Additionally, compound 6 treatmnet significantly activated apoptotic cell death in HepG2 cells by 80.7-fold, it induced total apoptosis by 34.73% (23.07% for early apoptosis, 11.66% for late apoptosis) compared to the untreated control group (0.43%) arresting the cell population at the S-phase by 49.6% compared to control 39.15%. Finally, compound 6 upregulated the apoptosis-related genes, while it inhibted the Bcl-2 expression. Hence, glucosylated rhodanines may serve as a promising drug candidates against cancer with promising topoisomerase II and DNA intercalation.
Collapse
Affiliation(s)
- Ahmed I. Khodair
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt,CONTACT Ahmed I. Khodair Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh33516, Egypt
| | - Fatimah M. Alzahrani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed K. Awad
- Theoretical Applied Chemistry Unit (TACU), Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Siham A. Al-Issa
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghaferah H. Al-Hazmi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed S. Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
El-Kalyoubi S, Khalifa MM, Abo-Elfadl MT, El-Sayed AA, Elkamhawy A, Lee K, Al-Karmalawy AA. Design and synthesis of new spirooxindole candidates and their selenium nanoparticles as potential dual Topo I/II inhibitors, DNA intercalators, and apoptotic inducers. J Enzyme Inhib Med Chem 2023; 38:2242714. [PMID: 37592917 PMCID: PMC10444021 DOI: 10.1080/14756366.2023.2242714] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
A new wave of dual Topo I/II inhibitors was designed and synthesised via the hybridisation of spirooxindoles and pyrimidines. In situ selenium nanoparticles (SeNPs) for some derivatives were synthesised. The targets and the SeNP derivatives were examined for their cytotoxicity towards five cancer cell lines. The inhibitory potencies of the best members against Topo I and Topo II were also assayed besides their DNA intercalation abilities. Compound 7d NPs exhibited the best inhibition against Topo I and Topo II enzymes with IC50 of 0.042 and 1.172 μM, respectively. The ability of compound 7d NPs to arrest the cell cycle and induce apoptosis was investigated. It arrested the cell cycle in the A549 cell at the S phase and prompted apoptosis by 41.02% vs. 23.81% in the control. In silico studies were then performed to study the possible binding interactions between the designed members and the target proteins.
Collapse
Affiliation(s)
- Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Mohamed M. Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud T. Abo-Elfadl
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt
| | - Ahmed A. El-Sayed
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Giza, Egypt
| | - Ahmed Elkamhawy
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University—Seoul, Goyang, Republic of Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Kyeong Lee
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University—Seoul, Goyang, Republic of Korea
| | - Ahmed A. Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| |
Collapse
|
4
|
Olatunde OZ, Yong J, Lu C, Ming Y. A Review on Shikonin and Its Derivatives as Potent Anticancer Agents Targeted against Topoisomerases. Curr Med Chem 2023; 31:CMC-EPUB-129356. [PMID: 36752292 DOI: 10.2174/0929867330666230208094828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/12/2022] [Accepted: 11/30/2022] [Indexed: 02/09/2023]
Abstract
The topoisomerases (TOPO) play indispensable roles in DNA metabolism, by regulating the topological state of DNA. Topoisomerase I and II are the well-established drug-targets for the development of anticancer agents and antibiotics. These drugs-targeting enzymes have been used to establish the relationship between drug-stimulated DNA cleavable complex formation and cytotoxicity. Some anticancer drugs (such as camptothecin, anthracyclines, mitoxantrone) are also widely used as Topo I and Topo II inhibitors, but the poor water solubility, myeloma suppression, dose-dependent cardiotoxicity, and multidrug resistance (MDR) limited their prolong use as therapeutics. Also, most of these agents displayed selective inhibition only against Topo I or II. In recent years, researchers focus on the design and synthesis of the dual Topo I and II inhibitors, or the discovery of the dual Topo I and II inhibitors from natural products. Shikonin (a natural compound with anthraquinone skeleton, isolated from the roots of Lithospermum erythrorhizon) has drawn much attention due to its wide spectrum of anticancer activities, especially due to its dual Topo inhibitive performance, and without the adverse side effects, and different kinds of shikonin derivatives have been synthesized as TOPO inhibitors for the development of anticancer agents. In this review, the progress of the shikonin and its derivatives together with their anticancer activities, anticancer mechanism, and their structure-activity relationship (SAR) was comprehensively summarized by searching the CNKI, PubMed, Web of Science, Scopus, and Google Scholar databases.
Collapse
Affiliation(s)
- Olagoke Zacchaeus Olatunde
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian,350002, China
| | - Jianping Yong
- Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Canzhong Lu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian,350002, China
- Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Yanlin Ming
- Fujian Institute of Subtropical Botany, Xiamen, Fujian, 361006, China
| |
Collapse
|
5
|
Gökçe Topkaya C, Göktürk T, Hökelek T, Sakalli Çetin E, Kincal S, Güp R. In vitro DNA interaction, topoisomerase I/II Inhibition and cytotoxic properties of polymeric copper(II) complex bridged with perchlorate ion containing N4-type schiff base ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Bonakolluru Y, Nukala SK, Dasari G, Badithapuram V, Manchal R, Bandari S. Design and Synthesis of Some New N-(Thiazol-2-yl) Benzamides of Quinoxaline as DNA Topoisomerase II Targeting Anticancer Agents and ADMET. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2117208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | | | - Gouthami Dasari
- Department of Chemistry, Chaitanya Deemed to Be University, Warangal, India
| | | | - Ravinder Manchal
- Department of Chemistry, Chaitanya Deemed to Be University, Warangal, India
| | - Srinivas Bandari
- Department of Chemistry, Chaitanya Deemed to Be University, Warangal, India
| |
Collapse
|
7
|
Abinaya R, Srinath S, Soundarya S, Sridhar R, Balasubramanian KK, Baskar B. Recent Developments on Synthesis Strategies, SAR Studies and Biological Activities of β-Carboline Derivatives – An Update. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Szczepański J, Tuszewska H, Trotsko N. Anticancer Profile of Rhodanines: Structure-Activity Relationship (SAR) and Molecular Targets-A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123750. [PMID: 35744873 PMCID: PMC9231410 DOI: 10.3390/molecules27123750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
The rhodanine core is a well-known privileged heterocycle in medicinal chemistry. The rhodanines, as subtypes of thiazolidin-4-ones, show a broad spectrum of biological activity, including anticancer properties. This review aims to analyze the anticancer features of the rhodanines described over the last decade in the scientific literature. The structure–activity relationship of rhodanine derivatives, as well as some of the molecular targets, were discussed. The information contained in this review could be of benefit to the design of new, effective small molecules with anticancer potential among rhodanine derivatives or their related heterocycles.
Collapse
|
9
|
New trinuclear nickel(II) complexes as potential topoisomerase I/IIα inhibitors: in vitro DNA binding, cleavage and cytotoxicity against human cancer cell lines. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02005-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Hammoud MM, Nageeb AS, Morsi MA, Gomaa EA, Elmaaty AA, Al-Karmalawy AA. Design, synthesis, biological evaluation, and SAR studies of novel cyclopentaquinoline derivatives as DNA intercalators, topoisomerase II inhibitors, and apoptotic inducers. NEW J CHEM 2022. [DOI: 10.1039/d2nj01646j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel cyclopentaquinoline derivatives as promising DNA intercalators, topoisomerase II inhibitors, and apoptotic inducers.
Collapse
Affiliation(s)
- Mohamed M. Hammoud
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Alaa S. Nageeb
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - M. A. Morsi
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Esam A. Gomaa
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| |
Collapse
|
11
|
Advances in Phenazines over the Past Decade: Review of Their Pharmacological Activities, Mechanisms of Action, Biosynthetic Pathways and Synthetic Strategies. Mar Drugs 2021; 19:md19110610. [PMID: 34822481 PMCID: PMC8620606 DOI: 10.3390/md19110610] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/25/2023] Open
Abstract
Phenazines are a large group of nitrogen-containing heterocycles, providing diverse chemical structures and various biological activities. Natural phenazines are mainly isolated from marine and terrestrial microorganisms. So far, more than 100 different natural compounds and over 6000 synthetic derivatives have been found and investigated. Many phenazines show great pharmacological activity in various fields, such as antimicrobial, antiparasitic, neuroprotective, insecticidal, anti-inflammatory and anticancer activity. Researchers continued to investigate these compounds and hope to develop them as medicines. Cimmino et al. published a significant review about anticancer activity of phenazines, containing articles from 2000 to 2011. Here, we mainly summarize articles from 2012 to 2021. According to sources of compounds, phenazines were categorized into natural phenazines and synthetic phenazine derivatives in this review. Their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies were summarized. These may provide guidance for the investigation on phenazines in the future.
Collapse
|
12
|
Mermer A. The Importance of Rhodanine Scaffold in Medicinal Chemistry: A Comprehensive Overview. Mini Rev Med Chem 2021; 21:738-789. [PMID: 33334286 DOI: 10.2174/1389557521666201217144954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
After the clinical use of epalrestat that contains a rhodanine ring, in type II diabetes mellitus and diabetic complications, rhodanin-based compounds have become an important class of heterocyclic in the field of medicinal chemistry. Various modifications to the rhodanine ring have led to a broad spectrum of biological activity of these compounds. Synthesis of rhodanine derivatives, depended on advenced throughput scanning hits, frequently causes potent and selective modulators of targeted enzymes or receptors, which apply their pharmacological activities through different mechanisms of action. Rhodanine-based compounds will likely stay a privileged scaffold in drug discovery because of different probability of chemical modifications of the rhodanine ring. We have, therefore reviewed their biological activities and structure activity relationship.
Collapse
Affiliation(s)
- Arif Mermer
- Department of Biotechnology, Hamidiye Health Science Institute, University of Health Sciences Turkey, 34668, İstanbul, Turkey
| |
Collapse
|
13
|
Baglini E, Salerno S, Barresi E, Robello M, Da Settimo F, Taliani S, Marini AM. Multiple Topoisomerase I (TopoI), Topoisomerase II (TopoII) and Tyrosyl-DNA Phosphodiesterase (TDP) inhibitors in the development of anticancer drugs. Eur J Pharm Sci 2021; 156:105594. [DOI: 10.1016/j.ejps.2020.105594] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
|
14
|
Alesawy MS, Al-Karmalawy AA, Elkaeed EB, Alswah M, Belal A, Taghour MS, Eissa IH. Design and discovery of new 1,2,4-triazolo[4,3-c]quinazolines as potential DNA intercalators and topoisomerase II inhibitors. Arch Pharm (Weinheim) 2020; 354:e2000237. [PMID: 33226150 DOI: 10.1002/ardp.202000237] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 02/05/2023]
Abstract
A new series of 1,2,4-triazolo[4,3-c]quinazoline derivatives was designed and synthesized as Topo II inhibitors and DNA intercalators. The cytotoxic effect of the new members was evaluated in vitro against a group of cancer cell lines including HCT-116, HepG-2, and MCF-7. Compounds 14c , 14d , 14e , 14e , 15b , 18b , 18c , and 19b exhibited the highest activities with IC50 values ranging from 5.22 to 24.24 µM. Furthermore, Topo II inhibitory activities and DNA intercalating affinities of the most promising candidates were evaluated as a possible mechanism for the antiproliferative effect. The results of the Topo II inhibition and DNA binding tests were coherent with that of in vitro cytotoxicity. Additionally, the most promising compound 18c was analyzed in HepG-2 cells for its apoptotic effect and cell cycle arrest. It was found that 18c can induce apoptosis and arrest the cell cycle at the G2-M phase. Finally, molecular docking studies were carried out for the designed compounds against the crystal structure of the DNA-Topo II complex as a potential target to explore their binding modes. On the basis of these studies, it was hypothesized that the DNA binding and/or Topo II inhibition would participate in the noted cytotoxicity of the synthesized compounds.
Collapse
Affiliation(s)
- Mohamed S Alesawy
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Alswah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Belal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
15
|
Rui B, Feng Y, Luo L. A novel benzo[a]phenazin-based fluorescence probe for selective detection of cysteine with anti-cancer potency. Talanta 2020; 224:121902. [PMID: 33379107 DOI: 10.1016/j.talanta.2020.121902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 01/20/2023]
Abstract
Among the physiological and pathological sulfur-containing species, cysteine (Cys) is the most typical one which is an important component of the REDOX system in vivo. Monitoring the level of Cys from other competing species seems quite important in pre-clinical diagnosis and therapeutic evaluation. Herein, we developed a selective fluorescent probe, BPCys, for Cys from the benzo[a]phenazin backbone which had the potential of anti-cancer potency. BPCys suggested advantages including high specificity (40 fold over other species), high sensitivity (detection limit: 18 nM), wide pH adaptability (6.0-11.0) and in particular, the anti-cancer effect. Biological assays and in silico simulation hinted the potency of the detecting product on Topoisomerase I/II. In brief, this study raised a practical strategy for monitoring the Cys level in living cells, especially in cancer models with its anti-cancer potential, thus opened the mind of exploring more specific tool for specific applications.
Collapse
Affiliation(s)
- Bing Rui
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yangrui Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
16
|
Synthesis and biological evaluation of β-lapachone-monastrol hybrids as potential anticancer agents. Eur J Med Chem 2020; 203:112594. [DOI: 10.1016/j.ejmech.2020.112594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/22/2020] [Accepted: 06/16/2020] [Indexed: 01/12/2023]
|
17
|
Song Y, Feng S, Feng J, Dong J, Yang K, Liu Z, Qiao X. Synthesis and biological evaluation of novel pyrazoline derivatives containing indole skeleton as anti-cancer agents targeting topoisomerase II. Eur J Med Chem 2020; 200:112459. [PMID: 32502865 DOI: 10.1016/j.ejmech.2020.112459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 11/25/2022]
Abstract
In order to develop potent anticaner agents, a novel series of 3-(1H-indol-3-yl)-2,3,3a,4-tetrahydrothiochromeno[4,3-c]pyrazole derivatives were synthesized. Structures of all compounds were confirmed. MTT assay has been employed to study antiproliferative activity of these compounds with four human cancer cell lines (MGC-803, Hela, MCF-7 and Bel-7404) and a normal cell line L929. Most of these compounds showed potential anticancer activity and low cytotoxicity on normal cell in vitro. 7d and 7f showed the best anticancer activity, whose IC50 value is 15.43 μM and 20.54 μM towards MGC-803, respectively. Most of them exhibited topoisomerase II selective inhibitory. Cleavage reaction assay and DNA unwinding assay showed that 7f was a nonintercalative Topo II catalytic inhibitor, which was consistent with the docking results. Laser scanning confocal microscopy system tracks the location of representative compounds 7d and 7f which can be abundantly entering the nucleus. In particular, the most potent compounds 7d and 7f were shown to be able to induce G2/M cell cycle arrest and apoptosis in MGC-803 cells.
Collapse
Affiliation(s)
- Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China.
| | - Siran Feng
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jiajia Feng
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jinjiao Dong
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaoqiang Qiao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
18
|
Xiong K, Qian C, Yuan Y, Wei L, Liao X, He L, Rees TW, Chen Y, Wan J, Ji L, Chao H. Necroptosis Induced by Ruthenium(II) Complexes as Dual Catalytic Inhibitors of Topoisomerase I/II. Angew Chem Int Ed Engl 2020; 59:16631-16637. [PMID: 32533618 DOI: 10.1002/anie.202006089] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/10/2020] [Indexed: 12/29/2022]
Abstract
Inducing necroptosis in cancer cells is an effective approach to circumvent drug-resistance. Metal-based triggers have, however, rarely been reported. Ruthenium(II) complexes containing 1,1-(pyrazin-2-yl)pyreno[4,5-e][1,2,4]triazine were developed with a series of different ancillary ligands (Ru1-7). The combination of the main ligand with bipyridyl and phenylpyridyl ligands endows Ru7 with superior nucleus-targeting properties. As a rare dual catalytic inhibitor, Ru7 effectively inhibits the endogenous activities of topoisomerase (topo) I and II and kills cancer cells by necroptosis. The cell signaling pathway from topo inhibition to necroptosis was elucidated. Furthermore, Ru7 displays significant antitumor activity against drug-resistant cancer cells in vivo. To the best of our knowledge, Ru7 is the first Ru-based necroptosis-inducing chemotherapeutic agent.
Collapse
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Chen Qian
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yixian Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lin Wei
- College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Liting He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jian Wan
- College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, P. R. China
| |
Collapse
|
19
|
Xiong K, Qian C, Yuan Y, Wei L, Liao X, He L, Rees TW, Chen Y, Wan J, Ji L, Chao H. Necroptosis Induced by Ruthenium(II) Complexes as Dual Catalytic Inhibitors of Topoisomerase I/II. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Chen Qian
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yixian Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Lin Wei
- College of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liting He
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jian Wan
- College of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
- College of Chemistry and Environmental EngineeringShenzhen University Shenzhen 518071 P. R. China
| |
Collapse
|
20
|
Zhou W, Zhang W, Peng Y, Jiang ZH, Zhang L, Du Z. Design, Synthesis and Anti-Tumor Activity of Novel Benzimidazole-Chalcone Hybrids as Non-Intercalative Topoisomerase II Catalytic Inhibitors. Molecules 2020; 25:molecules25143180. [PMID: 32664629 PMCID: PMC7397320 DOI: 10.3390/molecules25143180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Chemical diversification of type II topoisomerase (Topo II) inhibitors remains indispensable to extend their anti-tumor therapeutic values which are limited by their side effects. Herein, we designed and synthesized a novel series of benzimidazole-chalcone hybrids (BCHs). These BCHs showed good inhibitory effect in the Topo II mediated DNA relaxation assay and anti-proliferative effect in 4 tumor cell lines. 4d and 4n were the most potent, with IC50 values less than 5 μM, superior to etoposide. Mechanistic studies indicated that the BCHs functioned as non-intercalative Topo II catalytic inhibitors. Moreover, 4d and 4n demonstrated versatile properties against tumors, including inhibition on the colony formation and cell migration, and promotion of apoptosis of A549 cells. The structure-activity relationship and molecular docking analysis suggested possible contribution of the chalcone motif to the Topo II inhibitory and anti-proliferative potency. These results indicated that 4d and 4n could be promising lead compounds for further anti-tumor drug research.
Collapse
Affiliation(s)
- Wei Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.Z.); (Y.P.); (L.Z.)
- Correspondence: (W.Z.); (Z.D.)
| | - Wenjin Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.Z.); (Y.P.); (L.Z.)
| | - Yi Peng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.Z.); (Y.P.); (L.Z.)
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China;
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.Z.); (Y.P.); (L.Z.)
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.Z.); (Y.P.); (L.Z.)
- Correspondence: (W.Z.); (Z.D.)
| |
Collapse
|
21
|
Shakya B, Yadav PN. Thiosemicarbazones as Potent Anticancer Agents and their Modes of Action. Mini Rev Med Chem 2020; 20:638-661. [DOI: 10.2174/1389557519666191029130310] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/17/2019] [Accepted: 10/03/2019] [Indexed: 11/22/2022]
Abstract
:Thiosemicarbazones (TSCs) are a class of Schiff bases usually obtained by the condensation of thiosemicarbazide with a suitable aldehyde or ketone. TSCs have been the focus of chemists and biologists due to their wide range of pharmacological effects. One of the promising areas in which these excellent metal chelators are being developed is their use against cancer. TSCs have a wide clinical antitumor spectrum with efficacy in various tumor types such as leukemia, pancreatic cancer, breast cancer, non-small cell lung cancer, cervical cancer, prostate cancer and bladder cancer. To obtain better activity, different series of TSCs have been developed by modifying the heteroaromatic system in their molecules. These compounds possessed significant antineoplastic activity when the carbonyl attachment of the side chain was located at a position α to the ring nitrogen atom, whereas attachment of the side chain β or γ to the heterocyclic N atom resulted in inactive antitumor agents. In addition, replacement of the heterocyclic ring N with C also resulted in a biologically inactive compound suggesting that a conjugated N,N,S-tridentate donor set is essential for the biological activities of thiosemicarbazones. Several possible mechanisms have been implemented for the anticancer activity of thiosemicarbazones.
Collapse
Affiliation(s)
- Bhushan Shakya
- Amrit Campus, Tribhuvan University, Thamel, Kathmandu, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
22
|
Skok Ž, Zidar N, Kikelj D, Ilaš J. Dual Inhibitors of Human DNA Topoisomerase II and Other Cancer-Related Targets. J Med Chem 2019; 63:884-904. [DOI: 10.1021/acs.jmedchem.9b00726] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Žiga Skok
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Danijel Kikelj
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, He M, Lv C, Zhang W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur J Med Chem 2019; 171:129-168. [PMID: 30917303 DOI: 10.1016/j.ejmech.2019.03.034] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/28/2023]
Abstract
The topoisomerase enzymes play an important role in DNA metabolism, and searching for enzyme inhibitors is an important target in the search for new anticancer drugs. Discovery of new anticancer chemotherapeutical capable of inhibiting topoisomerase enzymes is highlighted in anticancer research. Therefore, biologists, organic chemists and medicinal chemists all around the world have been identifying, designing, synthesizing and evaluating a variety of novel bioactive molecules targeting topoisomerase. This review summarizes types of topoisomerase inhibitors in the past decade, and divides them into nine classes by structural characteristics, including N-heterocycles compounds, quinone derivatives, flavonoids derivatives, coumarin derivatives, lignan derivatives, polyphenol derivatives, diterpenes derivatives, fatty acids derivatives, and metal complexes. Then we discussed the application prospect and development of these anticancer compounds, as well as concluded parts of their structural-activity relationships. We believe this review would be invaluable in helping to further search potential topoisomerase inhibition as antitumor agent in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shangxian Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhixiang Yuan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Min He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
24
|
Liu QQ, Lu K, Zhu HM, Kong SL, Yuan JM, Zhang GH, Chen NY, Gu CX, Pan CX, Mo DL, Su GF. Identification of 3-(benzazol-2-yl)quinoxaline derivatives as potent anticancer compounds: Privileged structure-based design, synthesis, and bioactive evaluation in vitro and in vivo. Eur J Med Chem 2019; 165:293-308. [PMID: 30685528 DOI: 10.1016/j.ejmech.2019.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 12/29/2022]
Abstract
Inspired by the common structural characteristics of numerous known antitumor compounds targeting DNA or topoisomerase I, 3-(benzazol-2-yl)-quinoxaline-based scaffold was designed via the combination of two important privileged structure units -quinoxaline and benzazole. Thirty novel 3-(benzazol-2-yl)-quinoxaline derivatives were synthesized and evaluated for their biological activities. The MTT assay indicated that most compounds possessed moderate to potent antiproliferation effects against MGC-803, HepG2, A549, HeLa, T-24 and WI-38 cell lines. 3-(Benzoxazol- -2-yl)-2-(N-3-dimethylaminopropyl)aminoquinoxaline (12a) exhibited the most potent cytotoxicity, with IC50 values ranging from 1.49 to 10.99 μM against the five tested cancer and one normal cell line. Agarose-gel electrophoresis assays suggested that 12a did not interact with intact DNA, but rather it strongly inhibited topoisomerase I (Topo I) via Topo I-mediated DNA unwinding to exert its anticancer activity. The molecular modeling study indicated that 12a adopt a unique mode to interact with DNA and Topo I. Detailed biological study of 12a in MGC-803 cells revealed that 12a could arrest the cell cycle in G2 phase, inducing the generation of reactive oxygen species (ROS), the fluctuation of intracellular Ca2+, and the loss of mitochondrial membrane potential (ΔΨm). Western Blot analysis indicated that 12a-treatment could significantly up-regulate the levels of pro-apoptosis proteins Bak, Bax, and Bim, down-regulate anti-apoptosis proteins Bcl-2 and Bcl-xl, and increase levels of cyclin B1 and CDKs inhibitor p21, cytochrome c, caspase-3, caspase-9 and their activated form in MGC-803 cells in a dose-dependent manner to induce cell apoptosis via a caspase-dependent intrinsic mitochondria-mediated pathway. Studies in MGC-803 xenograft tumors models demonstrated that 12a could significantly reduce tumor growth in vivo at doses as low as 6 mg/kg with low toxicity. Its convenient preparation and potent anticancer efficacy in vivo makes the 3-(benzazol-2-yl)quinoxaline scaffold a promising new chemistry entity for the development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Qing-Qing Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Ke Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Hai-Miao Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Shi-Lin Kong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Jing-Mei Yuan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Guo-Hai Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Nan-Ying Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Chen-Xi Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| |
Collapse
|
25
|
Sinicropi MS, Iacopetta D, Rosano C, Randino R, Caruso A, Saturnino C, Muià N, Ceramella J, Puoci F, Rodriquez M, Longo P, Plutino MR. N-thioalkylcarbazoles derivatives as new anti-proliferative agents: synthesis, characterisation and molecular mechanism evaluation. J Enzyme Inhib Med Chem 2018; 33:434-444. [PMID: 29383954 PMCID: PMC6010102 DOI: 10.1080/14756366.2017.1419216] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022] Open
Abstract
Synthetic or natural carbazole derivatives constitute an interesting class of heterocycles, which showed several pharmaceutical properties and occupied a promising place as antitumour tools in preclinical studies. They target several cellular key-points, e.g. DNA and Topoisomerases I and II. The most studied representative, i.e. Ellipticine, was introduced in the treatment of metastatic breast cancer. However, because of the onset of dramatic side effects, its use was almost dismissed. Many efforts were made in order to design and synthesise new carbazole derivatives with good activity and reduced side effects. The major goal of the present study was to synthesise a series of new N-thioalkylcarbazole derivatives with anti-proliferative effects. Two compounds, 5a and 5c, possess an interesting anti-proliferative activity against breast and uterine cancer cell lines without affecting non-tumoural cell lines viability. The most active compound (5c) induces cancer cells death triggering the intrinsic apoptotic pathway by inhibition of Topoisomerase II.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS Policlinico San Martino-IST, Genova, Italy
| | - Rosario Randino
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | | | - Noemi Muià
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | | | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN-CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Messina, Italy
| |
Collapse
|
26
|
Saturnino C, Caruso A, Iacopetta D, Rosano C, Ceramella J, Muià N, Mariconda A, Bonomo MG, Ponassi M, Rosace G, Sinicropi MS, Longo P. Inhibition of Human Topoisomerase II by N,N,N-Trimethylethanammonium Iodide Alkylcarbazole Derivatives. ChemMedChem 2018; 13:2635-2643. [PMID: 30347518 DOI: 10.1002/cmdc.201800546] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/29/2018] [Indexed: 12/14/2022]
Abstract
Chemotherapy is used for the treatment of all stages of breast cancer, including the metastatic stage of the disease. Treatment regimens are generally tailored for each patient's particular situation. However, chemotherapeutic agents are the leading cause of serious drug-related adverse effects; moreover, drug resistance often occurs. In this study, we designed and synthesized a new series of N-alkylcarbazoles derived from ellipticine, an alkaloid with a carbazole skeleton initially used in the treatment of metastatic breast cancer and later dismissed because of poor aqueous solubility and severe side effects. After evaluating the binding modes of our class of newly synthesized compounds with human topoisomerase II (hTopo II), we performed hTopo II decatenation assays, identifying compound 4 f (2-(4-((3-chloro-9H-carbazol-9-yl)pentyl)piperazin-1-yl)-N,N,N-trimethylethanammonium iodide) as a good inhibitor. Moreover, 4 f and 4 g (2-(4-((3-chloro-9H-carbazol-9-yl)hexyl)piperazin-1-yl)-N,N,N-trimethylethanammonium iodide) showed a good anti-proliferative activity toward breast cancer cells, causing apoptosis by activation of the caspase pathway. Interestingly, the activity of these two compounds on triple-negative MDA-MB-231 cells, which tend to be highly metastatic and aggressive, is strictly connected to the observed inhibition of hTopo II.
Collapse
Affiliation(s)
- Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino - IST, Largo R. Benzi 10, 16132, Genova, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Noemi Muià
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Annaluisa Mariconda
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044, Dalmine, BG, Italy
| | - Maria Grazia Bonomo
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Marco Ponassi
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino - IST, Largo R. Benzi 10, 16132, Genova, Italy
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044, Dalmine, BG, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| |
Collapse
|
27
|
de Camargo MS, De Grandis RA, da Silva MM, da Silva PB, Santoni MM, Eismann CE, Menegário AA, Cominetti MR, Zanelli CF, Pavan FR, Batista AA. Determination of in vitro absorption in Caco-2 monolayers of anticancer Ru(II)-based complexes acting as dual human topoisomerase and PARP inhibitors. Biometals 2018; 32:89-100. [PMID: 30506342 DOI: 10.1007/s10534-018-0160-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/28/2018] [Indexed: 11/27/2022]
Abstract
Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anticancer agents. Previous studies showed that three ruthenium(II) compounds: [Ru(pySH)(bipy)(dppb)]PF6 (1), [Ru(HSpym)(bipy)(dppb)]PF6 (2) and Ru[(SpymMe2)(bipy)(dppb)]PF6 (3) presented anticancer properties higher than doxorubicin and cisplatin and acted as human topoisomerase IB (Topo I) inhibitors. Here, we focused our studies on in vitro intestinal permeability and anticancer mechanisms of these three complexes. Caco-2 permeation studies showed that 1 did not permeate the monolayer of intestinal cells, suggesting a lack of absorption on oral administration, while 2 and 3 permeated the cells after 60 and 120 min, respectively. Complexes 2 and 3 fully inhibited Topo II relaxation activity at 125 µM. In previously studies, 3 was the most potent inhibitor of Topo I, here, we concluded that it is a dual topoisomerase inhibitor. Moreover, it presented selectivity to cancer cells when evaluated by clonogenic assay. Thus, 3 was selected to gene expression assay front MDA-MB-231 cells from triple-negative breast cancer (TNBC), which represents the highly aggressive subgroup of breast cancers with poor prognosis. The analyses revealed changes of 27 out of 84 sought target genes. PARP1 and PARP2 were 5.29 and 1.83 times down-regulated after treatment with 3, respectively. PARPs have been attractive antitumor drug targets, considering PARP inhibition could suppress DNA damage repair and sensitize tumor cells to DNA damage agents. Recent advances in DNA repair studies have shown that an approach that causes cell lethality using synthetic PARP-inhibiting drugs has produced promising results in TNBC.
Collapse
Affiliation(s)
- Mariana S de Camargo
- Center of Exact Sciences and Technology, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| | - Rone A De Grandis
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, 14800-903, Brazil
| | - Monize M da Silva
- Center of Exact Sciences and Technology, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Patricia B da Silva
- Department of Genetics and Morphology, University of Brasilia, Federal District, DF, 70910-970, Brazil
| | - Mariana M Santoni
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, 14800-903, Brazil
| | - Carlos E Eismann
- Center of Environmental Studies, São Paulo State University, Rio Claro, SP, 13506-900, Brazil
| | - Amauri A Menegário
- Center of Environmental Studies, São Paulo State University, Rio Claro, SP, 13506-900, Brazil
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Cleslei F Zanelli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, 14800-903, Brazil
| | - Fernando R Pavan
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, 14800-903, Brazil
| | - Alzir A Batista
- Center of Exact Sciences and Technology, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
28
|
Arepalli SK, Lee C, Sim S, Lee K, Jo H, Jun KY, Kwon Y, Kang JS, Jung JK, Lee H. Development of 13H-benzo[f]chromeno[4,3-b][1,7]naphthyridines and their salts as potent cytotoxic agents and topoisomerase I/IIα inhibitors. Bioorg Med Chem 2018; 26:5181-5193. [PMID: 30253887 DOI: 10.1016/j.bmc.2018.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
A novel series of 35 angularly fused pentacyclic 13H-benzo[f]chromeno[4,3-b][1,7]naphthyridines and 13H-benzo[f]chromeno[4,3-b][1,7]naphthyridin-5-ium chlorides were designed and synthesized. Their cytotoxic activities were investigated against six human cancer cell lines (NCIH23, HCT15, NUGC-3, ACHN, PC-3, and MDA-MB-231). Among all screened compounds; 28, 30, 34, 35, 46, 48, 52, and 53 compounds exhibited potent cytotoxic activities against all tested human cancer cell lines. Further, these potent lead cytotoxic agents were evaluated against human Topoisomerase I and IIα inhibition. Among them, the compound 48 exhibited dual Topoisomerase I and IIα inhibition especially at 20 μM concentrations the compound 48 exhibited 1.25 times more potent Topoisomerase IIα inhibitory activity (38.3%) than the reference drug etoposide (30.6%). The compound 52 also exhibited excellent (88.4%) topoisomerase I inhibition than the reference drug camptothecin (66.7%) at 100 μM concentrations. Molecular docking studies of the compounds 48 and 52 with topo I discovered that they both intercalated into the DNA single-strand cleavage site where the compound 48 have van der Waals interactions with residues Arg364, Pro431, and Asn722 whilst the compound 52 have with Arg364, Thr718, and Asn722 residues. Both the compounds 48 and 52 have π-π stacking interactions with the stacked DNA bases. The docking studies of the compound 48 with topo IIα explored that it was bound to the topo IIα DNA cleavage site where etoposide was situated. The benzo[f]chromeno[4,3-b][1,7]naphthyridine ring of the compound 48 was stacked between the DNA bases of the cleavage site with π-π stacking interactions and there were no hydrogen bond interactions with topo IIα.
Collapse
Affiliation(s)
| | - Chaerim Lee
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - Seongrak Sim
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - Kiho Lee
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Hyunji Jo
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyu-Yeon Jun
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jong-Soon Kang
- Korea Research Institute of Bioscience and Biotechnology, Chungbuk 28116, Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - Heesoon Lee
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
29
|
Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors. Eur J Med Chem 2018; 155:117-134. [DOI: 10.1016/j.ejmech.2018.06.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/01/2023]
|
30
|
Synthesis, characterization, DNA binding, topoisomerase I inhibition, and antiproliferation activities of (di-tert-butylbipyridine) platinum(II) complexes. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Hu W, Huang XS, Wu JF, Yang L, Zheng YT, Shen YM, Li ZY, Li X. Discovery of Novel Topoisomerase II Inhibitors by Medicinal Chemistry Approaches. J Med Chem 2018; 61:8947-8980. [PMID: 29870668 DOI: 10.1021/acs.jmedchem.7b01202] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, 27 South Shanda Road, 250100 Ji’nan, Shandong, P. R. China
| | - Xu-Sheng Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Science and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ji-Feng Wu
- Institute of Criminal Science and Technology, Ji’nan Public Security Bureau, 21 South QiliShan Road, 250000 Ji’nan, Shandong, P. R. China
| | - Liang Yang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Science and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yue-Mao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| | - Zhi-Yu Li
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Philadelphia, Pennsylvania 19104, United States
| | - Xun Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| |
Collapse
|
32
|
Li P, Zhang W, Jiang H, Li Y, Dong C, Chen H, Zhang K, Du Z. Design, synthesis and biological evaluation of benzimidazole-rhodanine conjugates as potent topoisomerase II inhibitors. MEDCHEMCOMM 2018; 9:1194-1205. [PMID: 30109008 DOI: 10.1039/c8md00278a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/01/2018] [Indexed: 11/21/2022]
Abstract
In this study, a series of benzimidazole-rhodanine conjugates were designed, synthesized and investigated for their topoisomerase II (Topo II) inhibitory and cytotoxic activities. The results from Topo II-mediated pBR322 DNA relaxation and cleavage assays showed that the synthesized compounds might act as Topo II catalytic inhibitors. Certain compounds displayed potent Topo II inhibition at 10 μM. The cytotoxic activities of these compounds against HeLa, A549, Raji, PC-3, MDA-MB-201, and HL-60 cancer cell lines were evaluated. The results indicated that these compounds exhibited strong antiproliferative activity. A good relationship was observed between the Topo II inhibitory potency and the cytotoxicity of these compounds. The structure-activity relationship revealed that the electronic effects, the phenyl group, and the rhodanine moiety were particularly important for the Topo II inhibitory potency and cytotoxicity.
Collapse
Affiliation(s)
- Penghui Li
- Institute of Natural Medicine & Green Chemistry , School of Chemical Engineering and Light Industry , Guandong University of Technology , Guangzhou 510006 , China .
| | - Wenjin Zhang
- Institute of Natural Medicine & Green Chemistry , School of Chemical Engineering and Light Industry , Guandong University of Technology , Guangzhou 510006 , China .
| | - Hong Jiang
- Institute of Natural Medicine & Green Chemistry , School of Chemical Engineering and Light Industry , Guandong University of Technology , Guangzhou 510006 , China .
| | - Yongliang Li
- Institute of Natural Medicine & Green Chemistry , School of Chemical Engineering and Light Industry , Guandong University of Technology , Guangzhou 510006 , China .
| | - Changzhi Dong
- Institute of Natural Medicine & Green Chemistry , School of Chemical Engineering and Light Industry , Guandong University of Technology , Guangzhou 510006 , China . .,Universite Paris Diderot , Sorbonne Paris Cite , ITODYS , UMR 7086 CNRS , 15 rue J-A de Baif , 75270 Cedex 13 Paris , France
| | - Huixiong Chen
- Institute of Natural Medicine & Green Chemistry , School of Chemical Engineering and Light Industry , Guandong University of Technology , Guangzhou 510006 , China . .,CNRS , UMR8601 , Laboratoire de Chimine et Biochimie Pharmacologiques et Toxicologiques , CBNIT , Universite Paris Descartes PRES Sorbonne Paris Cite , UFR Biomedicale , 45 rue des Saints-Peres , 75270 Cedex 06 Paris , France
| | - Kun Zhang
- Institute of Natural Medicine & Green Chemistry , School of Chemical Engineering and Light Industry , Guandong University of Technology , Guangzhou 510006 , China . .,Wuyi University , Jiangmen 529020 , China
| | - Zhiyun Du
- Institute of Natural Medicine & Green Chemistry , School of Chemical Engineering and Light Industry , Guandong University of Technology , Guangzhou 510006 , China .
| |
Collapse
|
33
|
Synthesis and biological evaluation of novel carbazole-rhodanine conjugates as topoisomerase II inhibitors. Bioorg Med Chem Lett 2018; 28:1320-1323. [DOI: 10.1016/j.bmcl.2018.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/18/2022]
|
34
|
Konkoľová E, Janočková J, Perjési P, Vašková J, Kožurková M. Selected ferrocenyl chalcones as DNA/BSA-interacting agents and inhibitors of DNA topoisomerase I and II activity. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Synthesis of podophyllotoxin linked β-carboline congeners as potential anticancer agents and DNA topoisomerase II inhibitors. Eur J Med Chem 2018; 144:557-571. [DOI: 10.1016/j.ejmech.2017.12.055] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022]
|
36
|
de Almeida SMV, Ribeiro AG, de Lima Silva GC, Ferreira Alves JE, Beltrão EIC, de Oliveira JF, de Carvalho LB, Alves de Lima MDC. DNA binding and Topoisomerase inhibition: How can these mechanisms be explored to design more specific anticancer agents? Biomed Pharmacother 2017; 96:1538-1556. [DOI: 10.1016/j.biopha.2017.11.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022] Open
|
37
|
Bist G, Park S, Song C, Thapa Magar TB, Shrestha A, Kwon Y, Lee ES. Dihydroxylated 2,6-diphenyl-4-chlorophenylpyridines: Topoisomerase I and IIα dual inhibitors with DNA non-intercalative catalytic activity. Eur J Med Chem 2017; 133:69-84. [DOI: 10.1016/j.ejmech.2017.03.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 01/10/2023]
|
38
|
Meier C, Steinhauer TN, Koczian F, Plitzko B, Jarolim K, Girreser U, Braig S, Marko D, Vollmar AM, Clement B. A Dual Topoisomerase Inhibitor of Intense Pro-Apoptotic and Antileukemic Nature for Cancer Treatment. ChemMedChem 2017; 12:347-352. [DOI: 10.1002/cmdc.201700026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Christopher Meier
- Department of Pharmaceutical and Medicinal Chemistry; Pharmaceutical Institute of the Christian Albrechts University in Kiel; Gutenbergstraße 76 24118 Kiel Germany
| | - Tamara N. Steinhauer
- Department of Pharmaceutical and Medicinal Chemistry; Pharmaceutical Institute of the Christian Albrechts University in Kiel; Gutenbergstraße 76 24118 Kiel Germany
| | - Fabian Koczian
- Department of Pharmacy, Center for Drug Research; Pharmaceutical Biology; University of Munich; Butenandtstraße 5-13 81377 Munich Germany
| | - Birte Plitzko
- Department of Pharmaceutical and Medicinal Chemistry; Pharmaceutical Institute of the Christian Albrechts University in Kiel; Gutenbergstraße 76 24118 Kiel Germany
| | - Katharina Jarolim
- Department of Food Chemistry and Toxicology; University of Vienna; Währinger Straße 38 1090 Vienna Austria
| | - Ulrich Girreser
- Department of Pharmaceutical and Medicinal Chemistry; Pharmaceutical Institute of the Christian Albrechts University in Kiel; Gutenbergstraße 76 24118 Kiel Germany
| | - Simone Braig
- Department of Pharmacy, Center for Drug Research; Pharmaceutical Biology; University of Munich; Butenandtstraße 5-13 81377 Munich Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology; University of Vienna; Währinger Straße 38 1090 Vienna Austria
| | - Angelika M. Vollmar
- Department of Pharmacy, Center for Drug Research; Pharmaceutical Biology; University of Munich; Butenandtstraße 5-13 81377 Munich Germany
| | - Bernd Clement
- Department of Pharmaceutical and Medicinal Chemistry; Pharmaceutical Institute of the Christian Albrechts University in Kiel; Gutenbergstraße 76 24118 Kiel Germany
| |
Collapse
|
39
|
Hou W, Lin H, Wang ZY, Banwell MG, Zeng T, Sun PH, Lin J, Chen WM. Novel bivalent securinine mimetics as topoisomerase I inhibitors. MEDCHEMCOMM 2017; 8:320-328. [PMID: 30108747 PMCID: PMC6072210 DOI: 10.1039/c6md00563b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/23/2016] [Indexed: 12/02/2022]
Abstract
A series of novel bivalent securinine mimetics incorporating different linkers between C-15 and C-15' were synthesized and their topoisomerase I (Topo I) inhibitory activities evaluated. It was thus revealed that mimetic R2 incorporating a rigid m-substituted benzene linker exhibits Topo I inhibitory activity three times that of parent securinine. Comprehensive structure-activity relationship analyses in combination with docking studies were used to rationalize the potent activity of these bivalent mimetics. Mechanistic studies served to confirm the deductions arising from docking studies that the active bivalent mimetics not only inhibited complexation between Topo I and DNA but also stabilized the Topo I-DNA complex itself.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy , Jinan University , Guangzhou 510632 , P. R. China . ; ; ; Tel: +86 20 8522 1367 ; Tel: +86 20 8522 4497
| | - Hui Lin
- College of Pharmacy , Jinan University , Guangzhou 510632 , P. R. China . ; ; ; Tel: +86 20 8522 1367 ; Tel: +86 20 8522 4497
| | - Zhen-Ya Wang
- College of Pharmacy , Jinan University , Guangzhou 510632 , P. R. China . ; ; ; Tel: +86 20 8522 1367 ; Tel: +86 20 8522 4497
| | - Martin G Banwell
- Research School of Chemistry , Institute of Advanced Studies , Australian National University , Canberra , ACT 2601 , Australia
| | - Ting Zeng
- College of Pharmacy , Jinan University , Guangzhou 510632 , P. R. China . ; ; ; Tel: +86 20 8522 1367 ; Tel: +86 20 8522 4497
| | - Ping-Hua Sun
- College of Pharmacy , Jinan University , Guangzhou 510632 , P. R. China . ; ; ; Tel: +86 20 8522 1367 ; Tel: +86 20 8522 4497
| | - Jing Lin
- College of Pharmacy , Jinan University , Guangzhou 510632 , P. R. China . ; ; ; Tel: +86 20 8522 1367 ; Tel: +86 20 8522 4497
| | - Wei-Min Chen
- College of Pharmacy , Jinan University , Guangzhou 510632 , P. R. China . ; ; ; Tel: +86 20 8522 1367 ; Tel: +86 20 8522 4497
| |
Collapse
|
40
|
Lu Y, Yan Y, Wang L, Wang X, Gao J, Xi T, Wang Z, Jiang F. Design, facile synthesis and biological evaluations of novel pyrano[3,2- a ]phenazine hybrid molecules as antitumor agents. Eur J Med Chem 2017; 127:928-943. [DOI: 10.1016/j.ejmech.2016.10.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/18/2022]
|
41
|
Guttenberger N, Blankenfeldt W, Breinbauer R. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg Med Chem 2017; 25:6149-6166. [PMID: 28094222 DOI: 10.1016/j.bmc.2017.01.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 12/24/2022]
Abstract
Phenazines are natural products which are produced by bacteria or by archaeal Methanosarcina species. The tricyclic ring system enables redox processes, which producing organisms use for oxidation of NADH or for the generation of reactive oxygen species (ROS), giving them advantages over other microorganisms. In this review we summarize the progress in the field since 2005 regarding the isolation of new phenazine natural products, new insights in their biological function, and particularly the now almost completely understood biosynthesis. The review is complemented by a description of new synthetic methods and total syntheses of phenazines.
Collapse
Affiliation(s)
- Nikolaus Guttenberger
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; Institute of Chemistry-Analytical Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| |
Collapse
|
42
|
|
43
|
Obi CD, Okoro CO. Synthesis of 5-(trifluoromethyl)cyclohexane-1,2,3-trione (cVTC): new trifluoromethyl building block. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Design, synthesis, biological evaluation and molecular docking study on peptidomimetic analogues of XK469. Eur J Med Chem 2016; 124:311-325. [DOI: 10.1016/j.ejmech.2016.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 11/19/2022]
|
45
|
Iacopetta D, Rosano C, Puoci F, Parisi OI, Saturnino C, Caruso A, Longo P, Ceramella J, Malzert-Fréon A, Dallemagne P, Rault S, Sinicropi MS. Multifaceted properties of 1,4-dimethylcarbazoles: Focus on trimethoxybenzamide and trimethoxyphenylurea derivatives as novel human topoisomerase II inhibitors. Eur J Pharm Sci 2016; 96:263-272. [PMID: 27702608 DOI: 10.1016/j.ejps.2016.09.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/17/2016] [Accepted: 09/30/2016] [Indexed: 01/17/2023]
Abstract
Natural or synthetic carbazole derivatives have recently attracted the attention of the scientific world because of their multiple biological activity, leading to an increase of designed, synthesized and studied analogues. In this paper, four 1,4-dimethylcarbazole derivatives, analogues of Ellipticine, have been investigated for their ability to block cancer cells growth, with low effects on the proliferation of normal cells. DNA topoisomerases inhibition assays, docking simulations, stability studies and effects on a membrane model are reported. Particularly, compounds 2 and 3 have been found thermally stable and able to inhibit, strongly and selectively, the human DNA topoisomerase II. These properties confer a good and broad antitumoral activity in vitro, with very low cytotoxic effect on the proliferation of normal cell lines and without damaging, in contrast with Ellipticine, the cell membrane model. The presented outcomes set the most active compounds as good candidates for pre-clinical studies useful in cancer treatment.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Camillo Rosano
- UOS Proteomics IRCCS AOU San Martino-IST National Institute for Cancer Research, Largo R. Benzi 10, Genoa, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carmela Saturnino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Salerno, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Salerno, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Aurélie Malzert-Fréon
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France.
| | - Patrick Dallemagne
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Sylvain Rault
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
46
|
Zhao W, Jiang G, Bi C, Li Y, Liu J, Ye C, He H, Li L, Song D, Shao R. The dual topoisomerase inhibitor A35 preferentially and specially targets topoisomerase 2α by enhancing pre-strand and post-strand cleavage and inhibiting DNA religation. Oncotarget 2016; 6:37871-94. [PMID: 26462155 PMCID: PMC4741971 DOI: 10.18632/oncotarget.5680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/25/2015] [Indexed: 01/14/2023] Open
Abstract
DNA topoisomerases play a key role in tumor proliferation. Chemotherapeutics targeting topoisomerases have been widely used in clinical oncology, but resistance and side effects, particularly cardiotoxicity, usually limit their application. Clinical data show that a decrease in topoisomerase (top) levels is the primary factor responsible for resistance, but in cells there is compensatory effect between the levels of top1 and top2α. Here, we validated cyclizing-berberine A35, which is a dual top inhibitor and preferentially targets top2α. The impact on the top2α catalytic cycle indicated that A35 could intercalate into DNA but did not interfere with DNA-top binding and top2α ATPase activity. A35 could facilitate DNA-top2α cleavage complex formation by enhancing pre-strand and post-strand cleavage and inhibiting religation, suggesting this compound can be a topoisomerase poison and had a district mechanism from other topoisomerase inhibitors. TARDIS and comet assays showed that A35 could induce cell DNA breakage and DNA-top complexes but had no effect on the cardiac toxicity inducer top2β. Silencing top1 augmented DNA break and silencing top2α decreased DNA break. Further validation in H9c2 cardiac cells showed A35 did not disturb cell proliferation and mitochondrial membrane potency. Additionally, an assay with nude mice further demonstrated A35 did not damage the heart. Our work identifies A35 as a novel skeleton compound dually inhibits topoisomerases, and predominantly and specially targets top2α by interfering with all cleavage steps and its no cardiac toxicity was verified by cardiac cells and mice heart. A35 could be a novel and effective targeting topoisomerase agent.
Collapse
Affiliation(s)
- Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guohua Jiang
- Analysis and Testing Center, Beijing Normal University, Beijing, China
| | - Chongwen Bi
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yangbiao Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingbo Liu
- China Meitan General Hospital, Beijing, China
| | - Cheng Ye
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongwei He
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Danqing Song
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Liu K, Li DD, Zhao XM, Dai LL, Zhang T, Tao ZW. Synthesis, cytotoxicity, topoisomerase I inhibition and molecular docking of novel phosphoramide mustard sophoridinic acid analogues. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kai Liu
- School of Graduate; Tianjin Medical University; Tianjin 300070 China
- Tianjin Institute of Medical and Pharmaceutical Sciences; Tianjin 300020 China
| | - Dong-Dong Li
- Tianjin Institute of Medical and Pharmaceutical Sciences; Tianjin 300020 China
| | - Xiu-Mei Zhao
- Tianjin Institute of Medical and Pharmaceutical Sciences; Tianjin 300020 China
| | - Lin-Lin Dai
- Tianjin Institute of Medical and Pharmaceutical Sciences; Tianjin 300020 China
| | - Ting Zhang
- Tianjin Institute of Medical and Pharmaceutical Sciences; Tianjin 300020 China
| | - Zun-Wei Tao
- Tianjin Institute of Medical and Pharmaceutical Sciences; Tianjin 300020 China
| |
Collapse
|
48
|
Tan S, Sun D, Lyu J, Sun X, Wu F, Li Q, Yang Y, Liu J, Wang X, Chen Z, Li H, Qian X, Xu Y. Antiproliferative and apoptosis-inducing activities of novel naphthalimide–cyclam conjugates through dual topoisomerase (topo) I/II inhibition. Bioorg Med Chem 2015. [DOI: 10.1016/j.bmc.2015.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Chadar D, Rao SS, Gejji SP, Ugale B, Nagaraja CM, Nikalje M, Salunke-Gawali S. Regioselective synthesis of a vitamin K3 based dihydrobenzophenazine derivative: its novel crystal structure and DFT studies. RSC Adv 2015. [DOI: 10.1039/c5ra13169c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel regioselective synthesis of vitamin K3 based dihydrobenzophenazine is reported.
Collapse
Affiliation(s)
- Dattatray Chadar
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Soniya S. Rao
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Shridhar P. Gejji
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Bharat Ugale
- Department of Chemistry
- Indian Institute of Technology
- Rupnagar-140001
- India
| | - C. M. Nagaraja
- Department of Chemistry
- Indian Institute of Technology
- Rupnagar-140001
- India
| | - Milind Nikalje
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | | |
Collapse
|