1
|
Bustos-Hamdan A, Bracho-Gallardo JI, Hamdan-Partida A, Bustos-Martínez J. Repositioning of Antibiotics in the Treatment of Viral Infections. Curr Microbiol 2024; 81:427. [PMID: 39460768 PMCID: PMC11512906 DOI: 10.1007/s00284-024-03948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Drug repurposing, also known as drug repositioning, is a currently tested approach by which new uses are being assigned for already tested drugs. In this case there are antibiotics that are used to combat bacterial infections. However, antibiotics are among the drugs that have been studied for possible antiviral activities. Therefore, the aim of this work is to carry out a review of the studies of antibiotics that could be repositioned for the treatment of viral infections. Among the main antibiotics that have demonstrated antiviral activity are macrolides and glycopeptides. In addition, several antibiotics from the group of tetracyclines, fluoroquinolones, cephalosporins and aminoglycosides have also been studied for their antiviral activity. These antibiotics have demonstrated antiviral activity against both RNA and DNA viruses, including the recent pandemic virus SARS-CoV-2. Some of these antibiotics were selected in addition to its antiviral activity for their immunomodulatory and anti-inflammatory properties. Of the antibiotics that present antiviral activity, in many cases the mechanisms of action are not exactly known. The use of these antibiotics to combat viral infections remains controversial and is not generally accepted, since clinical trials are required to prove its effectiveness. Therefore, there is currently no antibiotic approved as antiviral therapy. Hence is necessary to present the studies carried out on antibiotics that can be repositioned in the future as antiviral drugs.
Collapse
Affiliation(s)
- Anaíd Bustos-Hamdan
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Jair Isidoro Bracho-Gallardo
- Maestria en Biología de la Reproducción Animal, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Aída Hamdan-Partida
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Jaime Bustos-Martínez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico.
| |
Collapse
|
2
|
Lőrincz EB, Herczeg M, Houser J, Rievajová M, Kuki Á, Malinovská L, Naesens L, Wimmerová M, Borbás A, Herczegh P, Bereczki I. Amphiphilic Sialic Acid Derivatives as Potential Dual-Specific Inhibitors of Influenza Hemagglutinin and Neuraminidase. Int J Mol Sci 2023; 24:17268. [PMID: 38139095 PMCID: PMC10743929 DOI: 10.3390/ijms242417268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
In the shadow of SARS-CoV-2, influenza seems to be an innocent virus, although new zoonotic influenza viruses evolved by mutations may lead to severe pandemics. According to WHO, there is an urgent need for better antiviral drugs. Blocking viral hemagglutinin with multivalent N-acetylneuraminic acid derivatives is a promising approach to prevent influenza infection. Moreover, dual inhibition of both hemagglutinin and neuraminidase may result in a more powerful effect. Since both viral glycoproteins can bind to neuraminic acid, we have prepared three series of amphiphilic self-assembling 2-thio-neuraminic acid derivatives constituting aggregates in aqueous medium to take advantage of their multivalent effect. One of the series was prepared by the azide-alkyne click reaction, and the other two by the thio-click reaction to yield neuraminic acid derivatives containing lipophilic tails of different sizes and an enzymatically stable thioglycosidic bond. Two of the three bis-octyl derivatives produced proved to be active against influenza viruses, while all three octyl derivatives bound to hemagglutinin and neuraminidase from H1N1 and H3N2 influenza types.
Collapse
Affiliation(s)
- Eszter Boglárka Lőrincz
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
| | - Josef Houser
- National Centre for Biomolecular Research, Masaryk University, 611 37 Brno, Czech Republic; (J.H.); (L.M.); (M.W.)
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Martina Rievajová
- Department of Biochemistry, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic;
| | - Ákos Kuki
- Department of Applied Chemistry, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Lenka Malinovská
- National Centre for Biomolecular Research, Masaryk University, 611 37 Brno, Czech Republic; (J.H.); (L.M.); (M.W.)
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium;
| | - Michaela Wimmerová
- National Centre for Biomolecular Research, Masaryk University, 611 37 Brno, Czech Republic; (J.H.); (L.M.); (M.W.)
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic;
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
- National Laboratory of Virology, University of Pécs, H-7624 Pécs, Hungary
- HUN-REN–UD Molecular Recognition and Interaction Research Group, University of Debrecen, H-4032 Debrecen, Hungary
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
- National Laboratory of Virology, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Bereczki I, Vimberg V, Lőrincz E, Papp H, Nagy L, Kéki S, Batta G, Mitrović A, Kos J, Zsigmond Á, Hajdú I, Lőrincz Z, Bajusz D, Petri L, Hodek J, Jakab F, Keserű GM, Weber J, Naesens L, Herczegh P, Borbás A. Semisynthetic teicoplanin derivatives with dual antimicrobial activity against SARS-CoV-2 and multiresistant bacteria. Sci Rep 2022; 12:16001. [PMID: 36163239 PMCID: PMC9511441 DOI: 10.1038/s41598-022-20182-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Patients infected with SARS-CoV-2 risk co-infection with Gram-positive bacteria, which severely affects their prognosis. Antimicrobial drugs with dual antiviral and antibacterial activity would be very useful in this setting. Although glycopeptide antibiotics are well-known as strong antibacterial drugs, some of them are also active against RNA viruses like SARS-CoV-2. It has been shown that the antiviral and antibacterial efficacy can be enhanced by synthetic modifications. We here report the synthesis and biological evaluation of seven derivatives of teicoplanin bearing hydrophobic or superbasic side chain. All but one teicoplanin derivatives were effective in inhibiting SARS-CoV-2 replication in VeroE6 cells. One lipophilic and three perfluoroalkyl conjugates showed activity against SARS-CoV-2 in human Calu-3 cells and against HCoV-229E, an endemic human coronavirus, in HEL cells. Pseudovirus entry and enzyme inhibition assays established that the teicoplanin derivatives efficiently prevent the cathepsin-mediated endosomal entry of SARS-CoV-2, with some compounds inhibiting also the TMPRSS2-mediated surface entry route. The teicoplanin derivatives showed good to excellent activity against Gram-positive bacteria resistant to all approved glycopeptide antibiotics, due to their ability to dually bind to the bacterial membrane and cell-wall. To conclude, we identified three perfluoralkyl and one monoguanidine analog of teicoplanin as dual inhibitors of Gram-positive bacteria and SARS-CoV-2.
Collapse
Affiliation(s)
- Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary.,National Laboratory of Virology, University of Pécs, Pecs, Ifjúság útja 20, 7624, Hungary
| | - Vladimir Vimberg
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology, Academy of Sciences of the Czech Republic, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Eszter Lőrincz
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary.,Institute of Healthcare Industry, University of Debrecen, Debrecen, Nagyerdei körút 98, 4032, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary
| | - Henrietta Papp
- National Laboratory of Virology, University of Pécs, Pecs, Ifjúság útja 20, 7624, Hungary.,Faculty of Sciences, Institute of Biology, University of Pécs, Pecs, Ifjúság útja 6, 7624, Hungary
| | - Lajos Nagy
- Department of Applied Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| | - Sándor Kéki
- Department of Applied Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| | - Ana Mitrović
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Áron Zsigmond
- TargetEx Ltd., Dunakeszi, Madách Imre utca 31/2, 2120, Hungary
| | - István Hajdú
- TargetEx Ltd., Dunakeszi, Madách Imre utca 31/2, 2120, Hungary
| | - Zsolt Lőrincz
- TargetEx Ltd., Dunakeszi, Madách Imre utca 31/2, 2120, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Magyar tudósok krt. 2, 1117, Hungary
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Magyar tudósok krt. 2, 1117, Hungary
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000, Prague 6, Czech Republic
| | - Ferenc Jakab
- National Laboratory of Virology, University of Pécs, Pecs, Ifjúság útja 20, 7624, Hungary.,Faculty of Sciences, Institute of Biology, University of Pécs, Pecs, Ifjúság útja 6, 7624, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Magyar tudósok krt. 2, 1117, Hungary.
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000, Prague 6, Czech Republic
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium.
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary. .,National Laboratory of Virology, University of Pécs, Pecs, Ifjúság útja 20, 7624, Hungary.
| |
Collapse
|
5
|
van Groesen E, Innocenti P, Martin NI. Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022. ACS Infect Dis 2022; 8:1381-1407. [PMID: 35895325 PMCID: PMC9379927 DOI: 10.1021/acsinfecdis.2c00253] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accelerated appearance of drug-resistant bacteria poses an ever-growing threat to modern medicine's capacity to fight infectious diseases. Gram-positive species such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae continue to contribute significantly to the global burden of antimicrobial resistance. For decades, the treatment of serious Gram-positive infections relied upon the glycopeptide family of antibiotics, typified by vancomycin, as a last line of defense. With the emergence of vancomycin resistance, the semisynthetic glycopeptides telavancin, dalbavancin, and oritavancin were developed. The clinical use of these compounds is somewhat limited due to toxicity concerns and their unusual pharmacokinetics, highlighting the importance of developing next-generation semisynthetic glycopeptides with enhanced antibacterial activities and improved safety profiles. This Review provides an updated overview of recent advancements made in the development of novel semisynthetic glycopeptides, spanning the period from 2014 to today. A wide range of approaches are covered, encompassing innovative strategies that have delivered semisynthetic glycopeptides with potent activities against Gram-positive bacteria, including drug-resistant strains. We also address recent efforts aimed at developing targeted therapies and advances made in extending the activity of the glycopeptides toward Gram-negative organisms.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| |
Collapse
|
6
|
Flores-Holguín N, Frau J, Glossman-Mitnik D. Computational Chemistry Study of Natural Apocarotenoids and Their Synthetic Glycopeptide Conjugates as Therapeutic Drugs. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The objective of the research to be presented in the chapter is the determination of the chemical reactivity properties of some natural apocarotenoids and their synthetic glycopeptide conjugates that could have the ability to inhibit SARS-CoV-2 replication. The study will be based on the consideration of the Conceptual DFT branch of Density Functional Theory (DFT) through the consideration of particular successful model chemistry which has been demonstrated as satisfying the Janak and Ionization Energy theorems within Generalized Gradient Approximation (GGA) theory. The research will be complemented by a report of the ADMET and pharmacokinetic properties hoping that this information could be of help in the development of new pharmaceutical drugs for fighting COVID-19.
Collapse
|
7
|
Acharya Y, Bhattacharyya S, Dhanda G, Haldar J. Emerging Roles of Glycopeptide Antibiotics: Moving beyond Gram-Positive Bacteria. ACS Infect Dis 2022; 8:1-28. [PMID: 34878254 DOI: 10.1021/acsinfecdis.1c00367] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycopeptides, a class of cell wall biosynthesis inhibitors, have been the antibiotics of choice against drug-resistant Gram-positive bacterial infections. Their unique mechanism of action involving binding to the substrate of cell wall biosynthesis and substantial longevity in clinics makes this class of antibiotics an attractive choice for drug repurposing and reprofiling. However, resistance to glycopeptides has been observed due to alterations in the substrate, cell wall thickening, or both. The emergence of glycopeptide resistance has resulted in the development of synthetic and semisynthetic glycopeptide analogues to target acquired resistance. Recent findings demonstrate that these derivatives, along with some of the FDA approved glycopeptides have been shown to have antimicrobial activity against Gram-negative bacteria, Mycobacteria, and viruses thus expanding their spectrum of activity across the microbial kingdom. Additional mechanisms of action and identification of novel targets have proven to be critical in broadening the spectrum of activity of glycopeptides. This review focuses on the applications of glycopeptides beyond their traditional target group of Gram-positive bacteria. This will aid in making the scientific community aware about the nontraditional activity profiles of glycopeptides, identify the existing loopholes, and further explore this antibiotic class as a potential broad-spectrum antimicrobial agent.
Collapse
Affiliation(s)
- Yash Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Shaown Bhattacharyya
- Biochemistry and Molecular Biology Program, Departments of Chemistry and Biology, College of Arts and Science, Boston University, Boston, Massachusetts 02215, United States
| | - Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
8
|
Teicoplanin-A New Use for an Old Drug in the COVID-19 Era? Pharmaceuticals (Basel) 2021; 14:ph14121227. [PMID: 34959628 PMCID: PMC8708781 DOI: 10.3390/ph14121227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
Teicoplanin is an antibiotic that has been actively used in medical practice since 1986 to treat serious Gram-positive bacterial infections. Due to its efficiency and low cytotoxicity, teicoplanin has also been used for patients with complications, including pediatric and immunocompromised patients. Although teicoplanin is accepted as an antibacterial drug, its action against RNA viruses, including SARS-CoV2, has been proven in vitro. Here, we provide a thorough overview of teicoplanin usage in medicine, based on the current literature. We summarize infection sites treated with teicoplanin, concentrations of the antibiotic in different organs, and side effects. Finally, we summarize all available data about the antiviral activity of teicoplanin. We believe that, due to the extensive experience of teicoplanin usage in clinical settings to treat bacterial infections and its demonstrated activity against SARS-CoV2, teicoplanin could become a drug of choice in the treatment of COVID-19 patients. Teicoplanin stops the replication of the virus and at the same time avoids the development of Gram-positive bacterial co-infections.
Collapse
|
9
|
Two Novel Semisynthetic Lipoglycopeptides Active against Staphylococcus aureus Biofilms and Cells in Late Stationary Growth Phase. Pharmaceuticals (Basel) 2021; 14:ph14111182. [PMID: 34832964 PMCID: PMC8619453 DOI: 10.3390/ph14111182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/06/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
The increase in antibiotic resistance among Gram-positive bacteria underscores the urgent need to develop new antibiotics. New antibiotics should target actively growing susceptible bacteria that are resistant to clinically accepted antibiotics including bacteria that are not growing or are protected in a biofilm environment. In this paper, we compare the in vitro activities of two new semisynthetic glycopeptide antibiotics, MA79 and ERJ390, with two clinically used glycopeptide antibiotics-vancomycin and teicoplanin. The new antibiotics effectively killed not only exponentially growing cells of Staphylococcus aureus, but also cells in the stationary growth phase and biofilm.
Collapse
|
10
|
Natural Apocarotenoids and Their Synthetic Glycopeptide Conjugates Inhibit SARS-CoV-2 Replication. Pharmaceuticals (Basel) 2021; 14:ph14111111. [PMID: 34832893 PMCID: PMC8619593 DOI: 10.3390/ph14111111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
The protracted global COVID-19 pandemic urges the development of new drugs against the causative agent SARS-CoV-2. The clinically used glycopeptide antibiotic, teicoplanin, emerged as a potential antiviral, and its efficacy was improved with lipophilic modifications. This prompted us to prepare new lipophilic apocarotenoid conjugates of teicoplanin, its pseudoaglycone and the related ristocetin aglycone. Their antiviral effect was tested against SARS-CoV-2 in Vero E6 cells, using a cell viability assay and quantitative PCR of the viral RNA, confirming their micromolar inhibitory activity against viral replication. Interestingly, two of the parent apocarotenoids, bixin and β-apo-8′carotenoic acid, exerted remarkable anti-SARS-CoV-2 activity. Mechanistic studies involved cathepsin L and B, as well as the main protease 3CLPro, and the results were rationalized by computational studies. Glycopeptide conjugates show dual inhibitory action, while apocarotenoids have mostly cathepsin B and L affinity. Since teicoplanin is a marketed antibiotic and the natural bixin is an approved, cheap and widely used red colorant food additive, these readily available compounds and their conjugates as potential antivirals are worthy of further exploration.
Collapse
|
11
|
Nile SH, Nile A, Jalde S, Kai G. Recent advances in potential drug therapies combating COVID-19 and related coronaviruses-A perspective. Food Chem Toxicol 2021; 154:112333. [PMID: 34118347 PMCID: PMC8189744 DOI: 10.1016/j.fct.2021.112333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Coronaviruses (CoVs) are a large family of viruses responsible for the severe pathophysiological effects on human health. The most severe outbreak includes Severe Acute Respiratory Syndrome (SARS-CoV), Middle East Respiratory Syndrome (MERS-CoV) and Coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 poses major challenges to clinical management because no specific FDA-approved therapy yet to be available. Thus, the existing therapies are being used for the treatment of COVID-19, which are under clinical trials and compassionate use, based on in vitro and in silico studies. In this review, we summarize the potential therapies utilizing small molecules, bioactive compounds, nucleoside and nucleotide analogs, peptides, antibodies, natural products, and synthetic compounds targeting the complex molecular signaling network involved in COVID-19. In this review>230 natural and chemically synthesized drug therapies are described with their recent advances in research and development being done in terms of their chemical, structural and functional properties. This review focuses on possible targets for viral cells, viral proteins, viral replication, and different molecular pathways for the discovery of novel viral- and host-based therapeutic targets against SARS-CoV-2.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Arti Nile
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Shivkumar Jalde
- Department of Medicinal Chemistry, Jungwon University, Goesan, 28420, South Korea
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
12
|
Ceccarelli G, Alessandri F, Oliva A, Borrazzo C, Dell'Isola S, Ialungo AM, Rastrelli E, Pelli M, Raponi G, Turriziani O, Ruberto F, Rocco M, Pugliese F, Russo A, d'Ettorre G, Venditti M. The role of teicoplanin in the treatment of SARS-CoV-2 infection: A retrospective study in critically ill COVID-19 patients (Tei-COVID study). J Med Virol 2021; 93:4319-4325. [PMID: 33675235 PMCID: PMC8250836 DOI: 10.1002/jmv.26925] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Teicoplanin has a potential antiviral activity expressed against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was suggested as a complementary option to treat coronavirus disease 2019 (COVID-19) patients. In this multicentric, retrospective, observational research the aim was to evaluate the impact of teicoplanin on the course of COVID-19 in critically ill patients. Fifty-five patients with severe COVID-19, hospitalized in the intensive care units (ICUs) and treated with best available therapy were retrospectively analysed. Among them 34 patients were also treated with teicoplanin (Tei-COVID group), while 21 without teicoplanin (control group). Crude in-hospital Day-30 mortality was lower in Tei-COVID group (35.2%) than in control group (42.8%), however not reaching statistical significance (p = .654). No statistically significant differences in length of stay in the ICU were observed between Tei-COVID group and control group (p = .248). On Day 14 from the ICU hospitalization, viral clearance was achieved in 64.7% patients of Tei-COVID group and 57.1% of control group, without statistical difference. Serum C-reactive protein level was significantly reduced in Tei-COVID group compared to control group, but not other biochemical parameters. Finally, Gram-positive were the causative pathogens for 25% of BSIs in Tei-COVID group and for 70.6% in controls. No side effects related to teicoplanin use were observed. Despite several limitations require further research, in this study the use of teicoplanin is not associated with a significant improvement in outcomes analysed. The antiviral activity of teicoplanin against SARS-CoV-2, previously documented, is probably more effective at early clinical stages.
Collapse
Affiliation(s)
- Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Covid Division, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Francesco Alessandri
- Covid Division, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy.,Department of Anesthesiology and Intensive Care, Sapienza University of Rome, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Covid Division, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Cristian Borrazzo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | | | - Elena Rastrelli
- Protect Medicine Division, Belcolle Hospital, Viterbo, Italy
| | - Massimiliano Pelli
- Intensive Care Unit, Department of medical and Surgical Science and Traslational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Giammarco Raponi
- Microbiology Unit, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Ombretta Turriziani
- Virology Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Franco Ruberto
- Covid Division, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy.,Department of Anesthesiology and Intensive Care, Sapienza University of Rome, Rome, Italy
| | - Monica Rocco
- Intensive Care Unit, Department of medical and Surgical Science and Traslational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Francesco Pugliese
- Covid Division, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy.,Department of Anesthesiology and Intensive Care, Sapienza University of Rome, Rome, Italy
| | - Alessandro Russo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,COVID Unit - Medicine Division, Casilino Hospital, Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Covid Division, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Covid Division, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| |
Collapse
|
13
|
Parlakpinar H, Gunata M. SARS-COV-2 (COVID-19): Cellular and biochemical properties and pharmacological insights into new therapeutic developments. Cell Biochem Funct 2021; 39:10-28. [PMID: 32992409 PMCID: PMC7537523 DOI: 10.1002/cbf.3591] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 caused by SARS-COV-2 first appeared in the Wuhan City of China and began to spread rapidly among people. Rapid progression of the outbreak has led to a major global public health problem of a potentially fatal disease. On January 30, 2020, WHO declared the pandemic as the sixth public health emergency of the world. Upon this, the whole country has started to take the necessary precautions. The new coronavirus uses membrane-bound angiotensin-converting enzyme 2 (ACE2) to enter into the cells, such as SARS-CoV, and mostly affects the respiratory tract. Symptoms of COVID-19 patients include fever (93%), fatigue (70%), cough (70%), anorexia (40%) and dyspnoea (34.5%). The elderly and people with underlying chronic diseases are more susceptible to infection and higher mortality. Currently, a large number of drugs and vaccines studies are ongoing. In this review, we discussed the virology, epidemiological data, the replication of the virus, and its relationship with cardiovascular diseases on COVID-19 pandemics, treatment and vaccines. Thereby, this study aims to neatly present scientific data in light of many regarding literature that can be a clue for readers who research this disease prevention and treatment. SIGNIFICANCE OF THE STUDY: This review summarized current information on COVID-19 (epidemiology, pathophysiology, clinical, laboratory, cardiovascular diseases, ACE2 and pharmacological agents) for researchers and reveals guiding data for researchers, especially in the field of cardiovascular system, pharmacology, dysregulation of cellular function in disease, molecular and cell biology and physiology in the regulation of tissue function in health and disease.
Collapse
Affiliation(s)
- Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of MedicineInonu UniversityMalatyaTurkey
| | - Mehmet Gunata
- Department of Medical Pharmacology, Faculty of MedicineInonu UniversityMalatyaTurkey
| |
Collapse
|
14
|
Bereczki I, Csávás M, Szűcs Z, Rőth E, Batta G, Ostorházi E, Naesens L, Borbás A, Herczegh P. Synthesis of Antiviral Perfluoroalkyl Derivatives of Teicoplanin and Vancomycin. ChemMedChem 2020; 15:1661-1671. [PMID: 32652783 PMCID: PMC7540527 DOI: 10.1002/cmdc.202000260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/28/2020] [Indexed: 02/07/2023]
Abstract
The limited scope of antiviral drugs and increasing problem of antiviral drug resistance represent a global health threat. Glycopeptide antibiotics and their lipophilic derivatives have emerged as relevant inhibitors of diverse viruses. Herein, we describe a new strategy for the synthesis of dual hydrophobic and lipophobic derivatives of glycopeptides to produce selective antiviral agents without membrane-disrupting activity. Perfluorobutyl and perfluorooctyl moieties were attached through linkers of different length to azido derivatives of vancomycin aglycone and teicoplanin pseudoaglycone, and the new derivatives were evaluated against a diverse panel of viruses. The teicoplanin derivatives displayed strong anti-influenza virus activity at nontoxic concentrations. Some of the perfluoroalkylated glycopeptides were also active against a few other viruses such as herpes simplex virus or coronavirus. These data encourage further exploration of glycopeptide analogues for broad antiviral application.
Collapse
Affiliation(s)
- Ilona Bereczki
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Magdolna Csávás
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Zsolt Szűcs
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
- Doctoral School of Pharmaceutical SciencesUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Erzsébet Rőth
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Gyula Batta
- Department of Organic ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Eszter Ostorházi
- Department of Medical MicrobiologySemmelweis UniversityMária u. 411085BudapestHungary
| | - Lieve Naesens
- Rega Institute for Medical ResearchKU Leuven3000LeuvenBelgium
| | - Anikó Borbás
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Pál Herczegh
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| |
Collapse
|
15
|
Reprogramming of the Antibacterial Drug Vancomycin Results in Potent Antiviral Agents Devoid of Antibacterial Activity. Pharmaceuticals (Basel) 2020; 13:ph13070139. [PMID: 32610683 PMCID: PMC7407158 DOI: 10.3390/ph13070139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/05/2023] Open
Abstract
Influenza A and B viruses are a global threat to human health and increasing resistance to the existing antiviral drugs necessitates new concepts to expand the therapeutic options. Glycopeptide derivatives have emerged as a promising new class of antiviral agents. To avoid potential antibiotic resistance, these antiviral glycopeptides are preferably devoid of antibiotic activity. We prepared six vancomycin aglycone hexapeptide derivatives with the aim of obtaining compounds having anti-influenza virus but no antibacterial activity. Two of them exerted strong and selective inhibition of influenza A and B virus replication, while antibacterial activity was successfully eliminated by removing the critical N-terminal moiety. In addition, these two molecules offered protection against several other viruses, such as herpes simplex virus, yellow fever virus, Zika virus, and human coronavirus, classifying these glycopeptides as broad antiviral molecules with a favorable therapeutic index.
Collapse
|
16
|
Lai CC, Liu YH, Wang CY, Wang YH, Hsueh SC, Yen MY, Ko WC, Hsueh PR. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:404-412. [PMID: 32173241 PMCID: PMC7128959 DOI: 10.1016/j.jmii.2020.02.012] [Citation(s) in RCA: 541] [Impact Index Per Article: 135.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Since the emergence of coronavirus disease 2019 (COVID-19) (formerly known as the 2019 novel coronavirus [2019-nCoV]) in Wuhan, China in December 2019, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more than 75,000 cases have been reported in 32 countries/regions, resulting in more than 2000 deaths worldwide. Despite the fact that most COVID-19 cases and mortalities were reported in China, the WHO has declared this outbreak as the sixth public health emergency of international concern. The COVID-19 can present as an asymptomatic carrier state, acute respiratory disease, and pneumonia. Adults represent the population with the highest infection rate; however, neonates, children, and elderly patients can also be infected by SARS-CoV-2. In addition, nosocomial infection of hospitalized patients and healthcare workers, and viral transmission from asymptomatic carriers are possible. The most common finding on chest imaging among patients with pneumonia was ground-glass opacity with bilateral involvement. Severe cases are more likely to be older patients with underlying comorbidities compared to mild cases. Indeed, age and disease severity may be correlated with the outcomes of COVID-19. To date, effective treatment is lacking; however, clinical trials investigating the efficacy of several agents, including remdesivir and chloroquine, are underway in China. Currently, effective infection control intervention is the only way to prevent the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Chih-Cheng Lai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Tainan Branch, Tainan, Taiwan
| | - Yen Hung Liu
- Department of Internal Medicine, Cardinal Tien Hospital and School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Yi Wang
- Department of Internal Medicine, Cardinal Tien Hospital and School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ya-Hui Wang
- Medical Research Center, Cardinal Tien Hospital and School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shun-Chung Hsueh
- Department of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Muh-Yen Yen
- Section of Infectious Diseases, Taipei City Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
17
|
Is teicoplanin a complementary treatment option for COVID-19? The question remains. Int J Antimicrob Agents 2020; 56:106029. [PMID: 32454071 PMCID: PMC7245324 DOI: 10.1016/j.ijantimicag.2020.106029] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
|