1
|
Liu Y, Wang X, Feng H, Li X, Yang R, Zhang M, Du Y, Liu R, Luo M, Li Z, Liu B, Wang J, Wang W, An F, Niu F, He P. Glutathione-depleting Liposome Adjuvant for Augmenting the Efficacy of a Glutathione Covalent Inhibitor Oridonin for Acute Myeloid Leukemia Therapy. J Nanobiotechnology 2024; 22:299. [PMID: 38812031 PMCID: PMC11137913 DOI: 10.1186/s12951-024-02574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Discrepancies in the utilization of reactive oxygen species (ROS) between cancer cells and their normal counterparts constitute a pivotal juncture for the precise treatment of cancer, delineating a noteworthy trajectory in the field of targeted therapies. This phenomenon is particularly conspicuous in the domain of nano-drug precision treatment. Despite substantial strides in employing nanoparticles to disrupt ROS for cancer therapy, current strategies continue to grapple with challenges pertaining to efficacy and specificity. One of the primary hurdles lies in the elevated levels of intracellular glutathione (GSH). Presently, predominant methods to mitigate intracellular GSH involve inhibiting its synthesis or promoting GSH efflux. However, a conspicuous gap remains in the absence of a strategy capable of directly and efficiently clearing GSH. METHODS We initially elucidated the chemical mechanism underpinning oridonin, a diminutive pharmacological agent demonstrated to perturb reactive oxygen species, through its covalent interaction with glutathione. Subsequently, we employed the incorporation of maleimide-liposomes, renowned for their capacity to disrupt the ROS delivery system, to ameliorate the drug's water solubility and pharmacokinetics, thereby enhancing its ROS-disruptive efficacy. In a pursuit to further refine the targeting for acute myeloid leukemia (AML), we harnessed the maleic imide and thiol reaction mechanism, facilitating the coupling of Toll-like receptor 2 (TLR2) peptides to the liposomes' surface via maleic imide. This strategic approach offers a novel method for the precise removal of GSH, and its enhancement endeavors are directed towards fortifying the precision and efficacy of the drug's impact on AML targets. RESULTS We demonstrated that this peptide-liposome-small molecule machinery targets AML and consequently induces cell apoptosis both in vitro and in vivo through three disparate mechanisms: (I) Oridonin, as a Michael acceptor molecule, inhibits GSH function through covalent bonding, triggering an initial imbalance of oxidative stress. (II) Maleimide further induces GSH exhaustion, aggravating redox imbalance as a complementary augment with oridonin. (III) Peptide targets TLR2, enhances the directivity and enrichment of oridonin within AML cells. CONCLUSION The rationally designed nanocomplex provides a ROS drug enhancement and targeted delivery platform, representing a potential solution by disrupting redox balance for AML therapy.
Collapse
Affiliation(s)
- Yi Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Xiaoning Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Hui Feng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Xinyan Li
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Runyu Yang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Mengyao Zhang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yue Du
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Ruimin Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Minna Luo
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Zhiyi Li
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Bo Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Jincheng Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Wenjuan Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Feifei An
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| | - Fan Niu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
2
|
Li Q, Lianghao Y, Shijie G, Zhiyi W, Yuanting T, Cong C, Chun-Qin Z, Xianjun F. Self-assembled nanodrug delivery systems for anti-cancer drugs from traditional Chinese medicine. Biomater Sci 2024; 12:1662-1692. [PMID: 38411151 DOI: 10.1039/d3bm01451g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Traditional Chinese medicine (TCM) is a combination of raw herbs and herbal extracts with a plethora of documented beneficial bioactivities, which has unique advantages in anti-tumor therapy, and many of its major bioactive molecules have been identified in recent years due to advances in chemical separation and structural analysis. However, the major chemical classes of plant-derived bioactive compounds frequently possess chemical properties, including poor water solubility, stability, and bioavailability, that limit their therapeutic application. Alternatively, natural small molecules (NSMs) containing these components possess modifiable groups, multiple action sites, hydrophobic side chains, and a rigid skeleton with self-assembly properties that can be exploited to construct self-assembled nanoparticles with therapeutic effects superior to their individual constituents. For instance, the construction of a self-assembled nanodrug delivery system can effectively overcome the strong hydrophobicity and poor in vivo stability of NSMs, thereby greatly improving their bioavailability and enhancing their anti-tumor efficacy. This review summarizes the self-assembly methods, mechanisms, and applications of a variety of NSMs, including terpenoids, flavonoids, alkaloids, polyphenols, and saponins, providing a theoretical basis for the subsequent research on NSMs and the development of SANDDS.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Yuan Lianghao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Gao Shijie
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Wang Zhiyi
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Tang Yuanting
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chen Cong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China.
| | - Zhao Chun-Qin
- Academy of Chinese Medicine Literature and Culture, Key Laboratory of Classical Theory of Traditional Chinese Medicine, Ministry of Education, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Fu Xianjun
- Marine Traditional Chinese Medicine Research Centre, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, P. R. China.
| |
Collapse
|
3
|
Liu Z, Liu X, Zhang W, Gao R, Wei H, Yu CY. Current advances in modulating tumor hypoxia for enhanced therapeutic efficacy. Acta Biomater 2024; 176:1-27. [PMID: 38232912 DOI: 10.1016/j.actbio.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/08/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Hypoxia is a common feature of most solid tumors, which promotes the proliferation, invasion, metastasis, and therapeutic resistance of tumors. Researchers have been developing advanced strategies and nanoplatforms to modulate tumor hypoxia to enhance therapeutic effects. A timely review of this rapidly developing research topic is therefore highly desirable. For this purpose, this review first introduces the impact of hypoxia on tumor development and therapeutic resistance in detail. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are also systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We provide a detailed discussion of the rationale and research progress of these strategies. Through a review of current trends, it is hoped that this comprehensive overview can provide new prospects for clinical application in tumor treatment. STATEMENT OF SIGNIFICANCE: As a common feature of most solid tumors, hypoxia significantly promotes tumor progression. Advanced nanoplatforms have been developed to modulate tumor hypoxia to enhanced therapeutic effects. In this review, we first introduce the impact of hypoxia on tumor progression. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We discuss the rationale and research progress of the above strategies in detail, and finally introduce future challenges for treatment of hypoxic tumors. By reviewing the current trends, this comprehensive overview can provide new prospects for clinical translatable tumor therapy.
Collapse
Affiliation(s)
- Zihan Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xinping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Wei Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ruijie Gao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
4
|
Yang S, Song Y, Dong H, Hu Y, Jiang J, Chang S, Shao J, Yang D. Stimuli-Actuated Turn-On Theranostic Nanoplatforms for Imaging-Guided Antibacterial Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304127. [PMID: 37649207 DOI: 10.1002/smll.202304127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Antibacterial theranostic nanoplatforms, which integrate diagnostic and therapeutic properties, exhibit gigantic application prospects in precision medicine. However, traditional theranostic nanoplatforms usually present an always-on signal output, which leads to poor specificity or selectivity in the treatment of bacterial infections. To address this challenge, stimuli-actuated turn-on nanoplatforms are developed for simultaneous activation of diagnostic signals (e.g., fluorescent, photoacoustic, magnetic signals) and initiation of antibacterial treatment. Specifically, by combining the infection microenvironment-responsive activation of visual signals and antibacterial activity, these theranostic nanoplatforms exert both higher accurate diagnosis rates and more effective treatment effects. In this review, the imaging and treatment strategies that are commonly used in the clinic are first briefly introduced. Next, the recent progress of stimuli-actuated turn-on theranostic nanoplatforms for treating bacterial infectious diseases is summarized in detail. Finally, current bottlenecks and future opportunities of antibacterial theranostic nanoplatforms are also outlined and discussed.
Collapse
Affiliation(s)
- Siyuan Yang
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
| | - Yingnan Song
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yanling Hu
- College of life and health, Nanjing Polytechnic Institute, Nanjing, 210048, China
| | - Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Siyuan Chang
- College of life and health, Nanjing Polytechnic Institute, Nanjing, 210048, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| |
Collapse
|
5
|
Pan Y, Liu L, He Y, Ye L, Zhao X, Hu Z, Mou X, Cai Y. NIR diagnostic imaging of triple-negative breast cancer and its lymph node metastasis for high-efficiency hypoxia-activated multimodal therapy. J Nanobiotechnology 2023; 21:312. [PMID: 37660121 PMCID: PMC10475188 DOI: 10.1186/s12951-023-02010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) possesses special biological behavior and clinicopathological characteristics, which is highly invasive and propensity to metastasize to lymph nodes, leading to a worse prognosis than other types of breast cancer. Thus, the development of an effective therapeutic method is significant to improve the survival rate of TNBC patients. RESULTS In this work, a liposome-based theranostic nanosystem (ILA@Lip) was successfully prepared by simultaneously encapsulating IR 780 as the photosensitizer and lenvatinib as an anti-angiogenic agent, together with banoxantrone (AQ4N) molecule as the hypoxia-activated prodrug. The ILA@Lip can be applied for the near-infrared (NIR) fluorescence diagnostic imaging of TNBC and its lymph node metastasis for multimodal therapy. Lenvatinib in ILA@Lip can inhibit angiogenesis by cutting oxygen supply, thereby leading to enhanced hypoxia levels. Meanwhile, large amounts of reactive oxygen species (ROS) were produced while IR 780 was irradiated by an 808 nm laser, which also rapidly exhausted oxygen in tumor cells to worsen tumor hypoxia. Through creating an extremely hypoxic in TNBC, the conversion of non-toxic AQ4N to toxic AQ4 was much more efficiency for hypoxia-activated chemotherapy. Cytotoxicity assay of ILA@Lip indicated excellent biocompatibility with normal cells and tissues, but showed high toxicity in hypoxic breast cancer cells. Also, the in vivo tumors treated by the ILA@Lip with laser irradiation were admirably suppressed in both subcutaneous tumor model and orthotopic tumor models. CONCLUSION Utilizing ILA@Lip is a profound strategy to create an extremely hypoxic tumor microenvironment for higher therapeutic efficacy of hypoxia-activated chemotherapy, which realized collective suppression of tumor growth and has promising potential for clinical translation.
Collapse
Affiliation(s)
- Yi Pan
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
| | - Yichen He
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Luyi Ye
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
| | - Xin Zhao
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
| | - Zhiming Hu
- Department of Hepatobiliary Pancreatic Surgery, Zhejiang Provincial Tongde Hospital, Hangzhou, 310012, Zhejiang, China.
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
6
|
Dohmen C, Ihmels H. Switching between DNA binding modes with a photo- and redox-active DNA-targeting ligand, part II: the influence of the substitution pattern. Org Biomol Chem 2023. [PMID: 37401249 DOI: 10.1039/d3ob00879g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
A disulfide-functionalized photoactive DNA ligand is presented that enables the control of its DNA-binding properties by a combination of a photocycloaddition reaction and the redox reactivity of the sulfide/disulfide functionalities. In particular, the initially applied ligand binds to DNA by a combination of intercalation and groove-binding of separate benzo[b]quinolizinium units. The association to DNA is interrupted by an intramolecular [4 + 4] photocycloaddition to the non-binding head-to-head cyclomers. In turn, the subsequent cleavage of these cyclomers with dithiothreitol (DTT) regains temporarily a DNA-intercalating benzoquinolizinium ligand that is eventually converted into a non-binding benzothiophene. As a special feature, this sequence of controlled deactivation, recovery and internal shut-off of DNA-binding properties can be performed directly in the presence of DNA.
Collapse
Affiliation(s)
- Christoph Dohmen
- Department of Chemistry - Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Heiko Ihmels
- Department of Chemistry - Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| |
Collapse
|
7
|
Wang Z, Zhang S, Kong Z, Li S, Sun J, Zheng Y, He Z, Ye H, Luo C. Self-adaptive nanoassembly enabling turn-on hypoxia illumination and periphery/center closed-loop tumor eradication. Cell Rep Med 2023; 4:101014. [PMID: 37075700 PMCID: PMC10140616 DOI: 10.1016/j.xcrm.2023.101014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
Solid tumors are regarded as complex evolving systems rather than simple diseases. Self-adaptive synthetic therapeutics are required to cope with the challenges of entire tumors; however, limitations in accurate positioning and destruction of hypoxic niches seriously hinder complete tumor eradication. In this study, we engineer a molecular nanoassembly of sorafenib and a hypoxia-sensitive cyanine probe (CNO) to facilitate periphery/center synergistic cancer therapies. The self-adaptive nanoassembly with cascade drug release features not only effectively kills the peripheral tumor cells in normoxic rims but precisely illuminates hypoxic niches following the reduction of CNO by nitroreductase. More important, CNO is found to synergistically induce tumor ferroptosis with sorafenib via nicotinamide adenine dinucleotide phosphate (NADPH) depletion in hypoxic niches. As expected, the engineered nanoassembly demonstrates self-adaptive hypoxic illumination and periphery/center synergetic tumor eradication in colon and breast cancer BALB/c mouse xenograft models. This study advances turn-on hypoxia illumination and chemo-ferroptosis toward clinical applicability.
Collapse
Affiliation(s)
- Ziyue Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Zhiqiang Kong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Songhao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Hao Ye
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, 8092 Zurich, Switzerland.
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China.
| |
Collapse
|
8
|
Yang M, Conceição M, Chen W, Yang F, Zhao B, Wood MJA, Qiu L, Chen J. Engineered bacteria combined with doxorubicin nanoparticles suppress angiogenesis and metastasis in murine melanoma models. Acta Biomater 2023; 158:734-746. [PMID: 36563772 DOI: 10.1016/j.actbio.2022.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
Methods capable of distributing antitumour therapeutics uniformly throughout an entire tumour and that can suppress metastasis at the same time, would be of great significance in improving cancer treatment. Bacteria-mediated synergistic therapies have been explored for better specificity, temporal and spatial controllability, as well for providing regulation of the immune microenvironment, in order to provide improved cancer treatment. To achieve this goal, here we developed an engineered bacteria delivery system (GDOX@HSEc) using synthetic biology and interfacial chemistry technologies. The engineered bacteria were concurrently modified to express heparin sulfatase 1 (HSulf-1) inside (HSEc), to attach doxorubicin-loaded glycogen nanoparticles (GDOX NPs) on their surface. Here we demonstrate that HSEc can actively target and colonise tumour sites resulting in HSulf-1 overexpression, thereby suppressing angiogenesis and metastasis. Simultaneously, the GDOX NPs were able to penetrate into tumour cells, leading to intracellular DNA damage. Our results confirmed that a combination of biotherapy and chemotherapy using GDOX@HSEc resulted in significant melanoma suppression in murine models, with reduced side effects. This study provides a powerful platform for the simultaneous delivery of biomacromolecules and chemotherapeutic drugs to tumours, representing an innovative strategy potentially more effective in treating solid tumours. STATEMENT OF SIGNIFICANCE: An original engineered bacteria-based system (GDOX@HSEc) was developed using synthetic biology and interfacial chemistry technologies to concurrently produce naturally occurring heparin sulfatase 1 (HSulf-1) inside and anchor doxorubicin-loaded glycogen nanoparticles on the surface. GDOX@HSEc allowed for combined local delivery of chemotherapeutic agents along with the enzymes and immunostimulatory bacterial adjuvants, which resulted in a synergistic action in the inhibition of tumour growth and metastasis. The study provides a potential therapeutic approach that allows therapeutic agents to be distributed in a spatiotemporally controllable manner in tumours for combinatorial enhanced therapy.
Collapse
Affiliation(s)
- Meiyang Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | | | - Weijun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Fuwei Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Bingke Zhao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford, UK; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Lipeng Qiu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China; Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| |
Collapse
|
9
|
Dohmen C, Ihmels H. Switching between DNA binding modes with a photo- and redox-active DNA-targeting ligand. Org Biomol Chem 2023; 21:1958-1966. [PMID: 36762516 DOI: 10.1039/d3ob00013c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A disulfide-functionalized bis-benzo[b]quinolizinium is presented that is transformed quantitatively into its cyclomers in a fast intramolecular [4 + 4] photocycloaddition. Both the bis-quinolizinium and the photocyclomers react with glutathione (GSH) or dithiothreitol (DTT) to give 9-(sulfanylmethyl)benzo[b]quinolizinium as the only product. As all components of this reaction sequence have different DNA-binding properties, it enables the external control and switching of DNA association. Hence, the bis-benzo[b]quinolizinium binds strongly to DNA and is deactivated upon photocycloaddition to the non-binding cyclomers. In turn, the subsequent cleavage of the cyclomers with DTT regains a DNA-intercalating benzoquinolizinium ligand. Notably, this sequence of controlled deactivation and recovery of DNA-binding properties can be performed directly in the presence of DNA.
Collapse
Affiliation(s)
- Christoph Dohmen
- Department of Chemistry and Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| |
Collapse
|
10
|
Li X, Chen L, Huang M, Zeng S, Zheng J, Peng S, Wang Y, Cheng H, Li S. Innovative strategies for photodynamic therapy against hypoxic tumor. Asian J Pharm Sci 2023; 18:100775. [PMID: 36896447 PMCID: PMC9989661 DOI: 10.1016/j.ajps.2023.100775] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Photodynamic therapy (PDT) is applied as a robust therapeutic option for tumor, which exhibits some advantages of unique selectivity and irreversible damage to tumor cells. Among which, photosensitizer (PS), appropriate laser irradiation and oxygen (O2) are three essential components for PDT, but the hypoxic tumor microenvironment (TME) restricts the O2 supply in tumor tissues. Even worse, tumor metastasis and drug resistance frequently happen under hypoxic condition, which further deteriorate the antitumor effect of PDT. To enhance the PDT efficiency, critical attention has been received by relieving tumor hypoxia, and innovative strategies on this topic continue to emerge. Traditionally, the O2 supplement strategy is considered as a direct and effective strategy to relieve TME, whereas it is confronted with great challenges for continuous O2 supply. Recently, O2-independent PDT provides a brand new strategy to enhance the antitumor efficiency, which can avoid the influence of TME. In addition, PDT can synergize with other antitumor strategies, such as chemotherapy, immunotherapy, photothermal therapy (PTT) and starvation therapy, to remedy the inadequate PDT effect under hypoxia conditions. In this paper, we summarized the latest progresses in the development of innovative strategies to improve PDT efficacy against hypoxic tumor, which were classified into O2-dependent PDT, O2-independent PDT and synergistic therapy. Furthermore, the advantages and deficiencies of various strategies were also discussed to envisage the prospects and challenges in future study.
Collapse
Affiliation(s)
- Xiaotong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Lei Chen
- Department of Anesthesiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Miaoting Huang
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Shaoting Zeng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Jiayi Zheng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Shuyi Peng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Yuqing Wang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Shiying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
11
|
Microfluidic Technologies in Tumour Metabolism. Int J Pharm 2022; 629:122370. [DOI: 10.1016/j.ijpharm.2022.122370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
12
|
Yang DC, Wen LF, Du L, Luo CM, Lu ZY, Liu JY, Lin Z. A Hypoxia-Activated Prodrug Conjugated with a BODIPY-Based Photothermal Agent for Imaging-Guided Chemo-Photothermal Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40546-40558. [PMID: 36059107 DOI: 10.1021/acsami.2c09071] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hypoxia-activated prodrugs (HAPs) have drawn increasing attention for improving the antitumor effects while minimizing side effects. However, the heterogeneous distribution of the hypoxic region in tumors severely impedes the curative effect of HAPs. Additionally, most HAPs are not amenable to optical imaging, and it is difficult to precisely trace them in tissues. Herein, we carefully designed and synthesized a multifunctional therapeutic BAC prodrug by connecting the chemotherapeutic drug camptothecin (CPT) and the fluorescent photothermal agent boron dipyrromethene (BODIPY) via hypoxia-responsive azobenzene linkers. To enhance the solubility and tumor accumulation, the prepared BAC was further encapsulated into a human serum albumin (HSA)-based drug delivery system to form HSA@BAC nanoparticles. Since the CPT was caged by a BODIPY-based molecule at the active site, the BAC exhibited excellent biosafety. Importantly, the activated CPT could be quickly released from BAC and could perform chemotherapy in hypoxic cancer cells, which was ascribed to the cleavage of the azobenzene linker by overexpressed azoreductase. After irradiation with a 730 nm laser, HSA@BAC can efficiently generate hyperthermia to achieve irreversible cancer cell death by oxygen-independent photothermal therapy. Under fluorescence imaging-guided local irradiation, both in vitro and in vivo studies demonstrated that HSA@BAC exhibited superior antitumor effects with minimal side effects.
Collapse
Affiliation(s)
- De-Chao Yang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lin-Feng Wen
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Liyang Du
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cheng-Miao Luo
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zi-Yao Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jian-Yong Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhonghui Lin
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
13
|
Dong H, Yang D, Hu Y, Song X. Recent advances in smart nanoplatforms for tumor non-interventional embolization therapy. J Nanobiotechnology 2022; 20:337. [PMID: 35858896 PMCID: PMC9301833 DOI: 10.1186/s12951-022-01548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/10/2022] [Indexed: 11/10/2022] Open
Abstract
Tumor embolization therapy has attracted great attention due to its high efficiency in inhibiting tumor growth by cutting off tumor nutrition and oxygen supply by the embolic agent. Although transcatheter arterial embolization (TAE) is the mainstream technique in the clinic, there are still some limitations to be considered, especially the existence of high risks and complications. Recently, nanomaterials have drawn wide attention in disease diagnosis, drug delivery, and new types of therapies, such as photothermal therapy and photodynamic therapy, owing to their unique optical, thermal, convertible and in vivo transport properties. Furthermore, the utilization of nanoplatforms in tumor non-interventional embolization therapy has attracted the attention of researchers. Herein, the recent advances in this area are summarized in this review, which revealed three different types of nanoparticle strategies: (1) nanoparticles with active targeting effects or stimuli responsiveness (ultrasound and photothermal) for the safe delivery and responsive release of thrombin; (2) tumor microenvironment (copper and phosphate, acidity and GSH/H2O2)-responsive nanoparticles for embolization therapy with high specificity; and (3) peptide-based nanoparticles with mimic functions and excellent biocompatibility for tumor embolization therapy. The benefits and limitations of each kind of nanoparticle in tumor non-interventional embolization therapy will be highlighted. Investigations of nanoplatforms are undoubtedly of great significance, and some advanced nanoplatform systems have arrived at a new height and show potential applications in practical applications.
Collapse
Affiliation(s)
- Heng Dong
- Nanjing Stomatological Hospital, Medical School of Nanjing University Jiangsu, 30 Zhongyang Road, 210008, Nanjing, China
| | - Dongliang Yang
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Yanling Hu
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China.
- Nanjing Polytechnic Institute, 210048, Nanjing, China.
| | - Xuejiao Song
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China.
| |
Collapse
|
14
|
Cong X, Chen J, Xu R. Recent Progress in Bio-Responsive Drug Delivery Systems for Tumor Therapy. Front Bioeng Biotechnol 2022; 10:916952. [PMID: 35845404 PMCID: PMC9277442 DOI: 10.3389/fbioe.2022.916952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022] Open
Abstract
Spatially- and/or temporally-controlled drug release has always been the pursuit of drug delivery systems (DDSs) to achieve the ideal therapeutic effect. The abnormal pathophysiological characteristics of the tumor microenvironment, including acidosis, overexpression of special enzymes, hypoxia, and high levels of ROS, GSH, and ATP, offer the possibility for the design of stimulus-responsive DDSs for controlled drug release to realize more efficient drug delivery and anti-tumor activity. With the help of these stimulus signals, responsive DDSs can realize controlled drug release more precisely within the local tumor site and decrease the injected dose and systemic toxicity. This review first describes the major pathophysiological characteristics of the tumor microenvironment, and highlights the recent cutting-edge advances in DDSs responding to the tumor pathophysiological environment for cancer therapy. Finally, the challenges and future directions of bio-responsive DDSs are discussed.
Collapse
Affiliation(s)
- Xiufeng Cong
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ran Xu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Ran Xu,
| |
Collapse
|
15
|
Li Y, Chen Z, Gu L, Duan Z, Pan D, Xu Z, Gong Q, Li Y, Zhu H, Luo K. Anticancer nanomedicines harnessing tumor microenvironmental components. Expert Opin Drug Deliv 2022; 19:337-354. [PMID: 35244503 DOI: 10.1080/17425247.2022.2050211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Small-molecular drugs are extensively used in cancer therapy, while they have issues of nonspecific distribution and consequent side effects. Nanomedicines that incorporate chemotherapeutic drugs have been developed to enhance the therapeutic efficacy of these drugs and reduce their side effects. One of the promising strategies is to prepare nanomedicines by harnessing the unique tumor microenvironment (TME). AREAS COVERED The TME contains numerous cell types that specifically express specific antibodies on the surface including tumor vascular endothelial cells, tumor-associated adipocytes, tumor-associated fibroblasts, tumor-associated immune cells and cancer stem cells. The physicochemical environment is characterized with a low pH, hypoxia, and a high redox potential resulting from tumor-specific metabolism. The intelligent nanomedicines can be categorized into two groups: the first group which is rapidly responsive to extracellular chemical/biological factors in the TME and the second one which actively and/or specifically targets cellular components in the TME. EXPERT OPINION In this paper, we review recent progress of nanomedicines by harnessing the TME and illustrate the principles and advantages of different strategies for designing nanomedicines, which are of great significance for exploring novel nanomedicines or translating current nanomedicines into clinical practice. We will discuss the challenges and prospects of preparing nanomedicines to utilize or alter the TME for achieving effective, safe anticancer treatment.
Collapse
Affiliation(s)
- Yinggang Li
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhonglan Chen
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Gu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengyu Duan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhuping Xu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Youping Li
- Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
16
|
Hu Y, Gao S, Khan AR, Yang X, Ji J, Xi Y, Zhai G. Tumor microenvironment-responsive size-switchable drug delivery nanosystems. Expert Opin Drug Deliv 2022; 19:221-234. [PMID: 35164610 DOI: 10.1080/17425247.2022.2042512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Compared with ordinary chemotherapeutic drugs, the variable-size nanoparticles (NPs) have better therapeutic effects and fewer side effects. AREAS COVERED This review mainly summarizes the strategies used to construct smart, size-tunable nanocarriers based on characteristic factors of tumor microenvironment (TME) to dramatically increase the penetration and retention of drugs within tumors. EXPERT OPINION Nanosystems with changeable sizes based on the TME have been extensively studied in the past decade, and their permeability and retention have been greatly improved, making them a very promising treatment for tumors.
Collapse
Affiliation(s)
- Yue Hu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Shan Gao
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- Government of Punjab, Specialized HealthCare and Medical Education Department, Lahore, Pakistan
| | - Xiaoye Yang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Yanwei Xi
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| |
Collapse
|
17
|
Qin S, Xu Y, Li H, Chen H, Yuan Z. Recent advances in in situ oxygen-generating and oxygen-replenishing strategies for hypoxic-enhanced photodynamic therapy. Biomater Sci 2021; 10:51-84. [PMID: 34882762 DOI: 10.1039/d1bm00317h] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer is a leading cause of death worldwide, accounting for an estimated 10 million deaths by 2020. Over the decades, various strategies for tumor therapy have been developed and evaluated. Photodynamic therapy (PDT) has attracted increasing attention due to its unique characteristics, including low systemic toxicity and minimally invasive nature. Despite the excellent clinical promise of PDT, hypoxia is still the Achilles' heel associated with its oxygen-dependent nature related to increased tumor proliferation, angiogenesis, and distant metastases. Moreover, PDT-mediated oxygen consumption further exacerbates the hypoxia condition, which will eventually lead to the poor effect of drug treatment and resistance and irreversible tumor metastasis, even limiting its effective application in the treatment of hypoxic tumors. Hypoxia, with increased oxygen consumption, may occur in acute and chronic hypoxia conditions in developing tumors. Tumor cells farther away from the capillaries have much lower oxygen levels than cells in adjacent areas. However, it is difficult to change the tumor's deep hypoxia state through different ways to reduce the tumor tissue's oxygen consumption. Therefore, it will become more difficult to cure malignant tumors completely. In recent years, numerous investigations have focused on improving PDT therapy's efficacy by providing molecular oxygen directly or indirectly to tumor tissues. In this review, different molecular oxygen supplementation methods are summarized to alleviate tumor hypoxia from the innovative perspective of using supplemental oxygen. Besides, the existing problems, future prospects and potential challenges of this strategy are also discussed.
Collapse
Affiliation(s)
- Shuheng Qin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Hua Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| |
Collapse
|
18
|
Wishart G, Gupta P, Nisbet A, Schettino G, Velliou E. On the Evaluation of a Novel Hypoxic 3D Pancreatic Cancer Model as a Tool for Radiotherapy Treatment Screening. Cancers (Basel) 2021; 13:6080. [PMID: 34885188 PMCID: PMC8657010 DOI: 10.3390/cancers13236080] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering is evolving to mimic intricate ecosystems of tumour microenvironments (TME) to more readily map realistic in vivo niches of cancerous tissues. Such advanced cancer tissue models enable more accurate preclinical assessment of treatment strategies. Pancreatic cancer is a dangerous disease with high treatment resistance that is directly associated with a highly complex TME. More specifically, the pancreatic cancer TME includes (i) complex structure and complex extracellular matrix (ECM) protein composition; (ii) diverse cell populations (e.g., stellate cells), cancer associated fibroblasts, endothelial cells, which interact with the cancer cells and promote resistance to treatment and metastasis; (iii) accumulation of high amounts of (ECM), which leads to the creation of a fibrotic/desmoplastic reaction around the tumour; and (iv) heterogeneous environmental gradients such as hypoxia, which result from vessel collapse and stiffness increase in the fibrotic/desmoplastic area of the TME. These unique hallmarks are not effectively recapitulated in traditional preclinical research despite radiotherapeutic resistance being largely connected to them. Herein, we investigate, for the first time, the impact of in vitro hypoxia (5% O2) on the radiotherapy treatment response of pancreatic cancer cells (PANC-1) in a novel polymer (polyurethane) based highly macroporous scaffold that was surface modified with proteins (fibronectin) for ECM mimicry. More specifically, PANC-1 cells were seeded in fibronectin coated macroporous scaffolds and were cultured for four weeks in in vitro normoxia (21% O2), followed by a two day exposure to either in vitro hypoxia (5% O2) or maintenance in in vitro normoxia. Thereafter, in situ post-radiation monitoring (one day, three days, seven days post-irradiation) of the 3D cell cultures took place via quantification of (i) live/dead and apoptotic profiles and (ii) ECM (collagen-I) and HIF-1a secretion by the cancer cells. Our results showed increased post-radiation viability, reduced apoptosis, and increased collagen-I and HIF-1a secretion in in vitro hypoxia compared to normoxic cultures, revealing hypoxia-induced radioprotection. Overall, this study employed a low cost, animal free model enabling (i) the possibility of long-term in vitro hypoxic 3D cell culture for pancreatic cancer, and (ii) in vitro hypoxia associated PDAC radio-protection development. Our novel platform for radiation treatment screening can be used for long-term in vitro post-treatment observations as well as for fractionated radiotherapy treatment.
Collapse
Affiliation(s)
- Gabrielle Wishart
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; (G.W.); (P.G.)
- Department of Physics, University of Surrey, Guildford GU2 7XH, UK;
| | - Priyanka Gupta
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; (G.W.); (P.G.)
- Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London (UCL), London W1W 7TY, UK
| | - Andrew Nisbet
- Department of Medical Physics and Biomedical Engineering, University College London (UCL), London WC1E 6BT, UK;
| | - Giuseppe Schettino
- Department of Physics, University of Surrey, Guildford GU2 7XH, UK;
- National Physical Laboratory, Teddington TW11 0LW, UK
| | - Eirini Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; (G.W.); (P.G.)
- Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London (UCL), London W1W 7TY, UK
| |
Collapse
|
19
|
The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors. NANOMATERIALS 2021; 11:nano11113018. [PMID: 34835785 PMCID: PMC8623458 DOI: 10.3390/nano11113018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
While many classes of chemotherapeutic agents exist to treat solid tumors, few can generate a lasting response without substantial off-target toxicity despite significant scientific advancements and investments. In this review, the paths of development for nanoparticles, oncolytic viruses, and oncolytic bacteria over the last 20 years of research towards clinical translation and acceptance as novel cancer therapeutics are compared. Novel nanoparticle, oncolytic virus, and oncolytic bacteria therapies all start with a common goal of accomplishing therapeutic drug activity or delivery to a specific site while avoiding off-target effects, with overlapping methodology between all three modalities. Indeed, the degree of overlap is substantial enough that breakthroughs in one therapeutic could have considerable implications on the progression of the other two. Each oncotherapeutic modality has accomplished clinical translation, successfully overcoming the potential pitfalls promising therapeutics face. However, once studies enter clinical trials, the data all but disappears, leaving pre-clinical researchers largely in the dark. Overall, the creativity, flexibility, and innovation of these modalities for solid tumor treatments are greatly encouraging, and usher in a new age of pharmaceutical development.
Collapse
|
20
|
Shi Y, Gong M, Deng Z, Liu H, Chang Y, Yang Z, Cai L. Tirapazamine suppress osteosarcoma cells in part through SLC7A11 mediated ferroptosis. Biochem Biophys Res Commun 2021; 567:118-124. [PMID: 34147710 DOI: 10.1016/j.bbrc.2021.06.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022]
Abstract
Osteosarcoma is the most common primary orthopedic malignant bone tumor in adolescents. However, the traditional neoadjuvant chemotherapy regimen has reached the bottleneck. TPZ is a hypoxic prodrug that has a powerful anti-tumor effect in the hypoxic microenvironment of tumors. And ferroptosis is a newly discovered cell death in 2012, and ferroptosis inducers have been used in anti-tumor therapy research in recent decades. Though, the role of TPZ and ferroptosis in osteosarcoma remains unclear. The aim of this study was to investigate the role of TPZ in osteosarcoma and the specific mechanism. MTT assay showed the extraordinary inhibition of TPZ on three osteosarcoma cells under hypoxia. And fluorescence of Fe2+ staining was enhanced by TPZ. Western blotting showed decreased expression of SLC7A11 and GPX4. Lipid peroxidation was confirmed by MDA assay and C11 BODIPY 581/591 staining. SLC7A11 overexpression could restored the proliferation and migration abilities inhibited by TPZ. Thus, we for the first time demonstrated that TPZ could inhibit the proliferation and migration of osteosarcoma cells, and induce ferroptosis in part through inhibiting SLC7A11.
Collapse
Affiliation(s)
- Yihua Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Ming Gong
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zhouming Deng
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Huifan Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yiqiang Chang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zhiqiang Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
21
|
Güçlü E, Eroğlu Güneş C, Kurar E, Vural H. Knockdown of lncRNA HIF1A-AS2 increases drug sensitivity of SCLC cells in association with autophagy. Med Oncol 2021; 38:113. [PMID: 34378101 DOI: 10.1007/s12032-021-01562-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
The aim of this study was to determine the effect of lncRNA HIF1A-AS2 on autophagy-associated drug resistance in small cell lung cancer (SCLC) cells. The expression of HIF1A-AS2 was silenced by siRNA in doxorubicin-sensitive H69 and doxorubicin-resistant H69AR cells. Then, cytotoxicity, apoptosis and autophagy analyses were carried out in the normoxic and CoCl2-induced hypoxic environment. The effect of HIF1A-AS2 on the expression levels of genes, which are associated with drug resistance and autophagy, was determinated by qRT-PCR analysis. The levels of MRP1, HIF-1α and Beclin-1 were analyzed by western blot method. Knockdown of HIF1A-AS2 increased doxorubicin sensitivity of SCLC cells and decreased autophagy. Knockdown of HIF1A-AS2 has also affected the expression of several genes that will increase drug sensitivity and inhibit autophagy in both cell lines. The levels of HIF-1α and Beclin-1 were decreased in both cell lines by knockdown of HIF1A-AS2. MRP1 expression was decrease in H69AR cells. In addition, CoCl2-induced hypoxic environment decreased in doxorubicin sensitivity of H69 cells, and knockdown of HIF1A-AS2 reversed this effect of hypoxia. Knockdown of HIF1A-AS2 increased drug sensitivity of SCLC cells in relation to autophagy. Therefore, hypoxia-HIF1A-AS2-autophagy interaction is thought to be determinative in drug sensitivity of these cells.
Collapse
Affiliation(s)
- Ebru Güçlü
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey.
| | - Canan Eroğlu Güneş
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ercan Kurar
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Hasibe Vural
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
22
|
Cathepsin L, a Target of Hypoxia-Inducible Factor-1-α, Is Involved in Melanosome Degradation in Melanocytes. Int J Mol Sci 2021; 22:ijms22168596. [PMID: 34445307 PMCID: PMC8395286 DOI: 10.3390/ijms22168596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 01/07/2023] Open
Abstract
Hypoxic conditions induce the activation of hypoxia-inducible factor-1α (HIF-1α) to restore the supply of oxygen to tissues and cells. Activated HIF-1α translocates into the nucleus and binds to hypoxia response elements to promote the transcription of target genes. Cathepsin L (CTSL) is a lysosomal protease that degrades cellular proteins via the endolysosomal pathway. In this study, we attempted to determine if CTSL is a hypoxia responsive target gene of HIF-1α, and decipher its role in melanocytes in association with the autophagic pathway. The results of our luciferase reporter assay showed that the expression of CTSL is transcriptionally activated through the binding of HIF1-α at its promoter. Under autophagy-inducing starvation conditions, HIF-1α and CTSL expression is highly upregulated in melan-a cells. The mature form of CTSL is closely involved in melanosome degradation through lysosomal activity upon autophagosome–lysosome fusion. The inhibition of conversion of pro-CTSL to mature CTSL leads to the accumulation of gp100 and tyrosinase in addition to microtubule-associated protein 1 light chain 3 (LC3) II, due to decreased lysosomal activity in the autophagic pathway. In conclusion, we have identified that CTSL, a novel target of HIF-1α, participates in melanosome degradation in melanocytes through lysosomal activity during autophagosome–lysosome fusion.
Collapse
|
23
|
Anduran E, Dubois LJ, Lambin P, Winum JY. Hypoxia-activated prodrug derivatives of anti-cancer drugs: a patent review 2006 - 2021. Expert Opin Ther Pat 2021; 32:1-12. [PMID: 34241566 DOI: 10.1080/13543776.2021.1954617] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The hypoxic tumor microenvironment represents a persistent obstacle in the treatment of most solid tumors. In the past years, significant efforts have been made to improve the efficacy of anti-cancer drugs. Therefore, hypoxia-activated prodrugs (HAPs) of chemotherapeutic compounds have attracted widespread interest as a therapeutic means to treat hypoxic tumors. AREAS COVERED This updated review paper covers key patents published between 2006 and 2021 on the developments of HAP derivatives of anti-cancer compounds. EXPERT OPINION Despite significant achievements in the development of HAP derivatives of anti-cancer compounds and although many clinical trials have been performed or are ongoing both as monotherapies and as part of combination therapies, there has currently no HAP anti-cancer agent been commercialized into the market. Unsuccessful clinical translation is partly due to the lack of patient stratification based on reliable biomarkers that are predictive of a positive response to hypoxia-targeted therapy.
Collapse
Affiliation(s)
- Emilie Anduran
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.,GROW-School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Ludwig J Dubois
- GROW-School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Philippe Lambin
- GROW-School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | |
Collapse
|
24
|
Xin J, Deng C, Aras O, Zhou M, Wu C, An F. Chemodynamic nanomaterials for cancer theranostics. J Nanobiotechnology 2021; 19:192. [PMID: 34183023 PMCID: PMC8240398 DOI: 10.1186/s12951-021-00936-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/13/2021] [Indexed: 12/20/2022] Open
Abstract
It is of utmost urgency to achieve effective and safe anticancer treatment with the increasing mortality rate of cancer. Novel anticancer drugs and strategies need to be designed for enhanced therapeutic efficacy. Fenton- and Fenton-like reaction-based chemodynamic therapy (CDT) are new strategies to enhance anticancer efficacy due to their capacity to generate reactive oxygen species (ROS) and oxygen (O2). On the one hand, the generated ROS can damage the cancer cells directly. On the other hand, the generated O2 can relieve the hypoxic condition in the tumor microenvironment (TME) which hinders efficient photodynamic therapy, radiotherapy, etc. Therefore, CDT can be used together with many other therapeutic strategies for synergistically enhanced combination therapy. The antitumor applications of Fenton- and Fenton-like reaction-based nanomaterials will be discussed in this review, including: (iþ) producing abundant ROS in-situ to kill cancer cells directly, (ii) enhancing therapeutic efficiency indirectly by Fenton reaction-mediated combination therapy, (iii) diagnosis and monitoring of cancer therapy. These strategies exhibit the potential of CDT-based nanomaterials for efficient cancer therapy.
Collapse
Affiliation(s)
- Jingqi Xin
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Caiting Deng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, People's Republic of China.
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
25
|
Zhang Y, Coleman M, Brekken RA. Perspectives on Hypoxia Signaling in Tumor Stroma. Cancers (Basel) 2021; 13:3070. [PMID: 34202979 PMCID: PMC8234221 DOI: 10.3390/cancers13123070] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a well-known characteristic of solid tumors that contributes to tumor progression and metastasis. Oxygen deprivation due to high demand of proliferating cancer cells and standard of care therapies induce hypoxia. Hypoxia signaling, mainly mediated by the hypoxia-inducible transcription factor (HIF) family, results in tumor cell migration, proliferation, metabolic changes, and resistance to therapy. Additionally, the hypoxic tumor microenvironment impacts multiple cellular and non-cellular compartments in the tumor stroma, including disordered tumor vasculature, homeostasis of ECM. Hypoxia also has a multifaceted and often contradictory influence on immune cell function, which contributes to an immunosuppressive environment. Here, we review the important function of HIF in tumor stromal components and summarize current clinical trials targeting hypoxia. We provide an overview of hypoxia signaling in tumor stroma that might help address some of the challenges associated with hypoxia-targeted therapies.
Collapse
Affiliation(s)
- Yuqing Zhang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern, Dallas, TX 75390, USA; (Y.Z.); (M.C.)
- Department of Surgery, UT Southwestern, Dallas, TX 75390, USA
- Cancer Biology Graduate Program, UT Southwestern, Dallas, TX 75390, USA
| | - Morgan Coleman
- Hamon Center for Therapeutic Oncology Research, UT Southwestern, Dallas, TX 75390, USA; (Y.Z.); (M.C.)
- Division of Pediatric Hematology and Oncology, UT Southwestern, Dallas, TX 75390, USA
| | - Rolf A. Brekken
- Hamon Center for Therapeutic Oncology Research, UT Southwestern, Dallas, TX 75390, USA; (Y.Z.); (M.C.)
- Department of Surgery, UT Southwestern, Dallas, TX 75390, USA
- Cancer Biology Graduate Program, UT Southwestern, Dallas, TX 75390, USA
| |
Collapse
|
26
|
Wishart G, Gupta P, Nisbet A, Velliou E, Schettino G. Novel Anticancer and Treatment Sensitizing Compounds against Pancreatic Cancer. Cancers (Basel) 2021; 13:2940. [PMID: 34208295 PMCID: PMC8231164 DOI: 10.3390/cancers13122940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/05/2023] Open
Abstract
The isolation of chemical compounds from natural origins for medical application has played an important role in modern medicine with a range of novel treatments having emerged from various natural forms over the past decades. Natural compounds have been exploited for their antioxidant, antimicrobial and antitumor capabilities. Specifically, 60% of today's anticancer drugs originate from natural sources. Moreover, the combination of synthetic and natural treatments has shown applications for (i) reduced side effects, (ii) treatment sensitization and (iii) reduction in treatment resistance. This review aims to collate novel and natural compounds that are being explored for their preclinical anticancer, chemosensitizing and radiosensitizing effects on Pancreatic Ductal Adenocarcinoma (PDAC), which is a lethal disease with current treatments being inefficient and causing serve side effects. Two key points are highlighted by this work: (i) the availability of a range of natural compounds for potentially new therapeutic approaches for PDAC, (ii) potential synergetic impact of natural compounds with advanced chemo- and radio-therapeutic modalities for PDAC.
Collapse
Affiliation(s)
- Gabrielle Wishart
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; (G.W.); (P.G.); (E.V.)
- Department of Physics, University of Surrey, Guildford GU2 7XH, UK
| | - Priyanka Gupta
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; (G.W.); (P.G.); (E.V.)
| | - Andrew Nisbet
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK;
| | - Eirini Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; (G.W.); (P.G.); (E.V.)
- Centre for 3D Models of Health and Disease, UCL-Division of Surgery and Interventional Science, Charles Bell House, 43-45 Foley Street, Fitzrovia, London W1W 7TY, UK
| | - Giuseppe Schettino
- Department of Physics, University of Surrey, Guildford GU2 7XH, UK
- National Physical Laboratory, Teddington TW11 0LW, UK
| |
Collapse
|
27
|
Wishart G, Gupta P, Schettino G, Nisbet A, Velliou E. 3d tissue models as tools for radiotherapy screening for pancreatic cancer. Br J Radiol 2021; 94:20201397. [PMID: 33684308 PMCID: PMC8010544 DOI: 10.1259/bjr.20201397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
The efficiency of radiotherapy treatment regimes varies from tumour to tumour and from patient to patient but it is generally highly influenced by the tumour microenvironment (TME). The TME can be described as a heterogeneous composition of biological, biophysical, biomechanical and biochemical milieus that influence the tumour survival and its' response to treatment. Preclinical research faces challenges in the replication of these in vivo milieus for predictable treatment response studies. 2D cell culture is a traditional, simplistic and cost-effective approach to culture cells in vitro, however, the nature of the system fails to recapitulate important features of the TME such as structure, cell-cell and cell-matrix interactions. At the same time, the traditional use of animals (Xenografts) in cancer research allows realistic in vivo architecture, however foreign physiology, limited heterogeneity and reduced tumour mutation rates impairs relevance to humans. Furthermore, animal research is very time consuming and costly. Tissue engineering is advancing as a promising biomimetic approach, producing 3D models that capture structural, biophysical, biochemical and biomechanical features, therefore, facilitating more realistic treatment response studies for further clinical application. However, currently, the application of 3D models for radiation response studies is an understudied area of research, especially for pancreatic ductal adenocarcinoma (PDAC), a cancer with a notoriously complex microenvironment. At the same time, specific novel and/or more enhanced radiotherapy tumour-targeting techniques such as MRI-guided radiotherapy and proton therapy are emerging to more effectively target pancreatic cancer cells. However, these emerging technologies may have different biological effectiveness as compared to established photon-based radiotherapy. For example, for MRI-guided radiotherapy, the novel use of static magnetic fields (SMF) during radiation delivery is understudied and not fully understood. Thus, reliable biomimetic platforms to test new radiation delivery strategies are required to more accurately predict in vivo responses. Here, we aim to collate current 3D models for radiation response studies of PDAC, identifying the state of the art and outlines knowledge gaps. Overall, this review paper highlights the need for further research on the use of 3D models for pre-clinical radiotherapy screening including (i) 3D (re)-modeling of the PDAC hypoxic TME to allow for late effects of ionising radiation (ii) the screening of novel radiotherapy approaches and their combinations as well as (iii) a universally accepted 3D-model image quantification method for evaluating TME components in situ that would facilitate accurate post-treatment(s) quantitative comparisons.
Collapse
Affiliation(s)
| | - Priyanka Gupta
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, UK
| | | | | | | |
Collapse
|
28
|
Khot VM, Salunkhe AB, Pricl S, Bauer J, Thorat ND, Townley H. Nanomedicine-driven molecular targeting, drug delivery, and therapeutic approaches to cancer chemoresistance. Drug Discov Today 2020; 26:724-739. [PMID: 33359624 DOI: 10.1016/j.drudis.2020.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/13/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Cancer cell resistance to chemotherapeutics (chemoresistance) poses a significant clinical challenge that oncology research seeks to understand and overcome. Multiple anticancer drugs and targeting agents can be incorporated in nanomedicines, in addition to different treatment modalities, forming a single nanoplatform that can be used to address tumor chemoresistance. Nanomedicine-driven molecular assemblies using nucleic acids, small interfering (si)RNAs, miRNAs, and aptamers in combination with stimuli-responsive therapy improve the pharmacokinetic (PK) profile of the drugs and enhance their accumulation in tumors and, thus, therapeutic outcomes. In this review, we highlight nanomedicine-driven molecular targeting and therapy combination used to improve the 3Rs (right place, right time, and right dose) for chemoresistant tumor therapies.
Collapse
Affiliation(s)
- Vishwajeet M Khot
- Department of Medical Physics, Center for Interdisciplinary Research, D.Y. Patil Education Society (Institution Deemed to be University), Kolhapur 416006, MS, India.
| | | | - Sabrina Pricl
- MolBNL@UniTS-DEA University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-137 Lodz, Poland
| | - Joanna Bauer
- Department of Biomedical Engineering, Faculty of Fundamental Technology, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland
| | - Nanasaheb D Thorat
- Nuffield Department of Women's & Reproductive Health, Division of Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Department of Engineering Science, University of Oxford, South Parks Road, Oxford, OX1 3PJ, UK.
| | - Helen Townley
- Nuffield Department of Women's & Reproductive Health, Division of Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Department of Engineering Science, University of Oxford, South Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|
29
|
Sawant SS, Patil SM, Gupta V, Kunda NK. Microbes as Medicines: Harnessing the Power of Bacteria in Advancing Cancer Treatment. Int J Mol Sci 2020; 21:ijms21207575. [PMID: 33066447 PMCID: PMC7589870 DOI: 10.3390/ijms21207575] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Conventional anti-cancer therapy involves the use of chemical chemotherapeutics and radiation and are often non-specific in action. The development of drug resistance and the inability of the drug to penetrate the tumor cells has been a major pitfall in current treatment. This has led to the investigation of alternative anti-tumor therapeutics possessing greater specificity and efficacy. There is a significant interest in exploring the use of microbes as potential anti-cancer medicines. The inherent tropism of the bacteria for hypoxic tumor environment and its ability to be genetically engineered as a vector for gene and drug therapy has led to the development of bacteria as a potential weapon against cancer. In this review, we will introduce bacterial anti-cancer therapy with an emphasis on the various mechanisms involved in tumor targeting and tumor suppression. The bacteriotherapy approaches in conjunction with the conventional cancer therapy can be effective in designing novel cancer therapies. We focus on the current progress achieved in bacterial cancer therapies that show potential in advancing existing cancer treatment options and help attain positive clinical outcomes with minimal systemic side-effects.
Collapse
|
30
|
Anduran E, Aspatwar A, Parvathaneni NK, Suylen D, Bua S, Nocentini A, Parkkila S, Supuran CT, Dubois L, Lambin P, Winum JY. Hypoxia-Activated Prodrug Derivatives of Carbonic Anhydrase Inhibitors in Benzenesulfonamide Series: Synthesis and Biological Evaluation. Molecules 2020; 25:E2347. [PMID: 32443462 PMCID: PMC7287649 DOI: 10.3390/molecules25102347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoxia, a common feature of solid tumours' microenvironment, is associated with an aggressive phenotype and is known to cause resistance to anticancer chemo- and radiotherapies. Tumour-associated carbonic anhydrases isoform IX (hCA IX), which is upregulated under hypoxia in many malignancies participating to the microenvironment acidosis, represents a valuable target for drug strategy against advanced solid tumours. To overcome cancer cell resistance and improve the efficacy of therapeutics, the use of bio-reducible prodrugs also known as Hypoxia-activated prodrugs (HAPs), represents an interesting strategy to be applied to target hCA IX isozyme through the design of selective carbonic anhydrase IX inhibitors (CAIs). Here, we report the design, synthesis and biological evaluations including CA inhibition assays, toxicity assays on zebrafish and viability assays on human cell lines (HT29 and HCT116) of new HAP-CAIs, harboring different bio-reducible moieties in nitroaromatic series and a benzenesulfonamide warhead to target hCA IX. The CA inhibition assays of this compound series showed a slight selectivity against hCA IX versus the cytosolic off-target hCA II and hCA I isozymes. Toxicity and viability assays have highlighted that the compound bearing the 2-nitroimidazole moiety possesses the lowest toxicity (LC50 of 1400 µM) and shows interesting results on viability assays.
Collapse
Affiliation(s)
- Emilie Anduran
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, 34296 Montpellier CEDEX 05, France; (E.A.); (N.-K.P.)
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology and Fimlab Ltd., University of Tampere and Tampere University Hospital, 33520 Tampere, Finland; (A.A.); (S.P.)
| | - Nanda-Kumar Parvathaneni
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, 34296 Montpellier CEDEX 05, France; (E.A.); (N.-K.P.)
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Dennis Suylen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands;
| | - Silvia Bua
- Neurofarba Department, Section of Pharmaceutical Sciences, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (S.B.); (A.N.); (C.T.S.)
| | - Alessio Nocentini
- Neurofarba Department, Section of Pharmaceutical Sciences, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (S.B.); (A.N.); (C.T.S.)
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology and Fimlab Ltd., University of Tampere and Tampere University Hospital, 33520 Tampere, Finland; (A.A.); (S.P.)
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (S.B.); (A.N.); (C.T.S.)
| | - Ludwig Dubois
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, 34296 Montpellier CEDEX 05, France; (E.A.); (N.-K.P.)
| |
Collapse
|