1
|
Lu Q, Luo L, Zeng B, Luo H, Wang X, Qiu L, Yang Y, Feng C, Zhou J, Hu Y, Huang T, Ma P, Huang T, Xie K, Yuan H, Huang S, Yang B, Zou Y, Liu Y. Prenatal chromosomal microarray analysis in a large Chinese cohort of fetuses with congenital heart defects: a single center study. Orphanet J Rare Dis 2024; 19:307. [PMID: 39175064 PMCID: PMC11342572 DOI: 10.1186/s13023-024-03317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Congenital heart defect (CHD) is one of the most common birth defects. The aim of this cohort study was to evaluate the prevalence of chromosomal abnormalities and the clinical utility of chromosomal microarray analysis (CMA) in fetuses with different types of CHD, aiming to assist genetic counseling and clinical decision-making. METHODS In this study, 642 fetuses with CHD were enrolled from a single center over a six-year period (2017-2022). Both conventional karyotyping and CMA were performed simultaneously on these fetuses. RESULTS The diagnostic yield of CMA in fetuses with CHD in our study was 15.3% (98/642). Our findings revealed a significant increase in the diagnostic yield of CMA compared to karyotyping in fetuses with CHD. Among CHD subgroups, the diagnostic yields were high in complex CHD (34.9%), conotruncal defects (28.6%), right ventricular outflow tract obstructive defects (RVOTO) (25.9%), atrioventricular septal defects (AVSD) (25.0%) and left ventricular outflow tract obstructive defects (LVOTO) (24.1%), while those in other CHD (10.6%) and septal defects (10.9%) were relatively low. The overall detection rate of clinically significant chromosomal abnormalities was significantly higher in the non-isolated CHD group compared to the isolated CHD group (33.1% vs. 9.9%, P < 0.0001). Interestingly, numerical chromosomal abnormalities were more likely to occur in the non-isolated CHD group than in the isolated CHD group (20.3% vs. 2.0%, P < 0.0001). The rate of termination of pregnancy (TOP)/Still birth in the non-isolated CHD group was significantly higher than that in the isolated CHD group (40.5% vs. 20.6%, P < 0.0001). Compared to the isolated CHD group, the detection rate of clinically significant chromosomal abnormalities was significantly higher in the group of CHD with soft markers (35.6% vs. 9.9%, P < 0.0001) and in the group of CHD with additional structural anomalies (36.1% vs. 9.9%, P < 0.0001). CONCLUSIONS CMA is a reliable and high-resolution technique that should be recommended as the front-line test for prenatal diagnosis of fetuses with CHD. The prevalence of chromosomal abnormalities varies greatly among different subgroups of CHD, and special attention should be given to prenatal non-isolated cases of CHD, especially those accompanied by additional structural anomalies or soft markers.
Collapse
Affiliation(s)
- Qing Lu
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Laipeng Luo
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Baitao Zeng
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Haiyan Luo
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Xianjin Wang
- Department of Ultrasound, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
| | - Lijuan Qiu
- Department of Ultrasound, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
| | - Yan Yang
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Chuanxin Feng
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Jihui Zhou
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Yanling Hu
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Tingting Huang
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Pengpeng Ma
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Ting Huang
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Kang Xie
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Huizhen Yuan
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Shuhui Huang
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China
| | - Bicheng Yang
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China.
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China.
| | - Yongyi Zou
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China.
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China.
| | - Yanqiu Liu
- Medical Genetic Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, China.
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, No. 318, Bayi Avenue, Nanchang, China.
| |
Collapse
|
2
|
Sessa F, Chisari M, Salerno M, Esposito M, Zuccarello P, Capasso E, Scoto E, Cocimano G. Congenital heart diseases (CHDs) and forensic investigations: Searching for the cause of death. Exp Mol Pathol 2024; 137:104907. [PMID: 38820762 DOI: 10.1016/j.yexmp.2024.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Congenital Heart Diseases (CHDs) are a group of structural abnormalities or defects of the heart that are present at birth. CHDs could be connected to sudden death (SD), defined by the WHO (World Health Organization) as "death occurring within 24 h after the onset of the symptoms" in an apparently "healthy" subject. These conditions can range from relatively mild defects to severe, life-threatening anomalies. The prevalence of CHDs varies across populations, but they affect millions of individuals worldwide. This article aims to discuss the post-mortem investigation of death related to CHDs, exploring the forensic approach, current methodologies, challenges, and potential advancements in this challenging field. A further goal of this article is to provide a guide for understanding these complex diseases, highlighting the pivotal role of autopsy, histopathology, and genetic investigations in defining the cause of death, and providing evidence about the translational use of autopsy reports. Forensic investigations play a crucial role in understanding the complexities of CHDs and determining the cause of death accurately. Through collaboration between medical professionals and forensic experts, meticulous examinations, and analysis of evidence, valuable insights can be gained. These insights not only provide closure to the families affected but also contribute to the prevention of future tragedies.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | - Mario Chisari
- "Rodolico-San Marco" Hospital, Santa Sofia Street, 87, Catania 95121, Italy.
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | | | - Pietro Zuccarello
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | - Emanuele Capasso
- Department of Advanced Biomedical Science-Legal Medicine Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Edmondo Scoto
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy
| | - Giuseppe Cocimano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Vanvitelli", 80121 Napoli, Italy.
| |
Collapse
|
3
|
Perrot A, Rickert-Sperling S. Human Genetics of Ventricular Septal Defect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:505-534. [PMID: 38884729 DOI: 10.1007/978-3-031-44087-8_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.
Collapse
Affiliation(s)
- Andreas Perrot
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
4
|
Vasireddi SK, Draksler TZ, Bouman A, Kummeling J, Wheeler M, Reuter C, Srivastava S, Harris J, Fisher PG, Narayan SM, Wang PJ, Badhwar N, Kleefstra T, Perez MV. Arrhythmias including atrial fibrillation and congenital heart disease in Kleefstra syndrome: a possible epigenetic link. Europace 2023; 26:euae003. [PMID: 38195854 PMCID: PMC10803030 DOI: 10.1093/europace/euae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/09/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
AIMS Kleefstra syndrome (KS), often diagnosed in early childhood, is a rare genetic disorder due to haploinsufficiency of EHMT1 and is characterized by neuromuscular and intellectual developmental abnormalities. Although congenital heart disease (CHD) is common, the prevalence of arrhythmias and CHD subtypes in KS is unknown. METHODS AND RESULTS Inspired by a novel case series of KS patients with atrial tachyarrhythmias in the USA, we evaluate the two largest known KS registries for arrhythmias and CHD: Radboudumc (50 patients) based on health record review at Radboud University Medical Center in the Netherlands and GenIDA (163 patients) based on worldwide surveys of patient families. Three KS patients (aged 17-25 years) presented with atrial tachyarrhythmias without manifest CHD. In the international KS registries, the median [interquartile range (IQR)] age was considerably younger: GenIDA/Radboudumc at 10/13.5 (12/13) years, respectively. Both registries had a 40% prevalence of cardiovascular abnormalities, the majority being CHD, including septal defects, vascular malformations, and valvular disease. Interestingly, 4 (8%) patients in the Radboudumc registry reported arrhythmias without CHD, including one atrial fibrillation (AF), two with supraventricular tachycardias, and one with non-sustained ventricular tachycardia. The GenIDA registry reported one patient with AF and another with chronic ectopic atrial tachycardia (AT). In total, atrial tachyarrhythmias were noted in six young KS patients (6/213 or 3%) with at least four (three AF and one AT) without structural heart disease. CONCLUSION In addition to a high prevalence of CHD, evolving data reveal early-onset atrial tachyarrhythmias in young KS patients, including AF, even in the absence of structural heart disease.
Collapse
Affiliation(s)
- Sunil K Vasireddi
- Division of Cardiovascular Medicine, Cardiac Arrhythmia Center, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
- Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tanja Zdolsek Draksler
- Centre for Knowledge Transfer in Information Technologies, Jozef Stefan Institute, Ljubljana, Slovenia
- IDefine Europe, Ljubljana, Slovenia
| | - Arianne Bouman
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost Kummeling
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matthew Wheeler
- Division of Cardiovascular Medicine, Cardiac Arrhythmia Center, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
- Stanford Center for Inherited Cardiovascular Diseases, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
- Stanford Center for Undiagnosed Diseases, Falk Cardiovascular Research Center, Stanford University, 870 Quarry Road, Palo Alto, CA 94305, USA
| | - Chloe Reuter
- Stanford Center for Inherited Cardiovascular Diseases, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
- Stanford Center for Undiagnosed Diseases, Falk Cardiovascular Research Center, Stanford University, 870 Quarry Road, Palo Alto, CA 94305, USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacqueline Harris
- Department of Neurology and Neurogenetics, Kennedy Krieger Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Paul G Fisher
- Department of Neurology, Lucile Packard Children’s Hospital, Stanford University, Stanford, CA, USA
| | - Sanjiv M Narayan
- Division of Cardiovascular Medicine, Cardiac Arrhythmia Center, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Paul J Wang
- Division of Cardiovascular Medicine, Cardiac Arrhythmia Center, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Nitish Badhwar
- Division of Cardiovascular Medicine, Cardiac Arrhythmia Center, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
| | - Marco V Perez
- Division of Cardiovascular Medicine, Cardiac Arrhythmia Center, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
- Stanford Center for Inherited Cardiovascular Diseases, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
- Stanford Center for Undiagnosed Diseases, Falk Cardiovascular Research Center, Stanford University, 870 Quarry Road, Palo Alto, CA 94305, USA
| |
Collapse
|
5
|
Baquedano M, de Jesus SE, Rapetto F, Murphy GJ, Angelini G, Benedetto U, Caldas P, Srivastava PK, Uzun O, Luyt K, Gonzalez Corcia C, Taliotis D, Stoica S, Lawlor DA, Bamber AR, Perry A, Skeffington KL, Omeje I, Pappachan J, Mumford AD, Coward RJM, Kenny D, Caputo M. Outcome monitoring and risk stratification after cardiac procedure in neonates, infants, children and young adults born with congenital heart disease: protocol for a multicentre prospective cohort study (Children OMACp). BMJ Open 2023; 13:e071629. [PMID: 37553192 PMCID: PMC10414053 DOI: 10.1136/bmjopen-2023-071629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
INTRODUCTION Congenital heart disease (CHD) represents the most common birth defect, affecting from 0.4% to 1.2% of children born in developed countries. The survival of these patients has increased significantly, but CHD remains one of the major causes of neonatal and childhood death. The aetiology of CHD is complex, with some evidence of both genetic and environmental causes. However, there is still lack of knowledge regarding modifiable risk factors and molecular and genetic mechanisms underlying the development of CHD. This study aims to develop a prospective cohort of patients undergoing cardiac procedures that will bring together routinely collected clinical data and biological samples from patients and their biological mothers, in order to investigate risk factors and predictors of postoperative-outcomes, as well as better understanding the effect of the surgical intervention on the early and long-term outcomes. METHODS AND ANALYSIS Children OMACp (OMACp, outcome monitoring after cardiac procedure in congenital heart disease) is a multicentre, prospective cohort study recruiting children with CHD undergoing a cardiac procedure. The study aims to recruit 3000 participants over 5 years (2019-2024) across multiple UK sites. Routine clinical data will be collected, as well as participant questionnaires collecting sociodemographic, NHS resource use and quality of life data. Biological samples (blood, urine and surgical waste tissue from patients, and blood and urine samples from biological mothers) will be collected where consent has been obtained. Follow-up outcome and questionnaire data will be collected for 5 years. ETHICS AND DISSEMINATION The study was approved by the London-Brent Research Ethics Committee on 30 July 2019 (19/SW/0113). Participants (or their parent/guardian if under 16 years of age) must provide informed consent prior to being recruited into the study. Mothers who wish to take part must also provide informed consent prior to being recruited. The study is sponsored by University Hospitals Bristol and Weston Foundation Trust and is managed by the University of Bristol. Children OMACp is adopted onto the National Institute for Health Research Clinical Research Network portfolio. Findings will be disseminated through peer-reviewed publications, presentation at conference, meetings and through patient organisations and newsletters. TRIAL REGISTRATION NUMBER ISRCTN17650644.
Collapse
Affiliation(s)
- Mai Baquedano
- Translational Health Sciences, University of Bristol, Bristol, UK
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Filippo Rapetto
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Gavin J Murphy
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, NIHR Leicester Biomedical Research Centre Cardiovascular Diseases, Leicester, East Midlands, UK
| | - Gianni Angelini
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Umberto Benedetto
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Patricia Caldas
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | | | - Karen Luyt
- Bristol Medical School, University of Bristol, Bristol, UK
- NICU, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, Avon, UK
| | | | - Demetris Taliotis
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Deborah A Lawlor
- Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Andrew R Bamber
- Bristol Medical School, University of Bristol, Bristol, UK
- North Bristol NHS Trust, Westbury on Trym, Bristol, UK
| | - Alison Perry
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Ikenna Omeje
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | | | - Andrew D Mumford
- Department of Haematology, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Damien Kenny
- Children's Health Ireland at Crumlin, Dublin, Crumlin, Ireland
| | - Massimo Caputo
- Translational Health Sciences, University of Bristol, Bristol, UK
- Bristol Heart Institute, University of Bristol, Bristol, UK
| |
Collapse
|
6
|
Altuwaireqi AS, Aljouhani AF, Alghuraibi AB, Alsuhaymi AH, Alamrai RA, Alzahrani SM. The Awareness of Females About Risk Factors That Lead to Having a Baby With Congenital Heart Disease in Taif, Saudi Arabia. Cureus 2023; 15:e40800. [PMID: 37485135 PMCID: PMC10362837 DOI: 10.7759/cureus.40800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Background There is limited data on the awareness of risk factors associated with congenital heart diseases in Saudi Arabia. This study assesses females' knowledge of the risk factors that lead to giving birth to a child with congenital heart disease in Taif, Saudi Arabia. Methodology A cross-sectional study was done on 254 females. An online questionnaire was used to collect data about the participants' demographics and their knowledge of risk factors that lead to having a baby with congenital heart disease, including risks such as smoking, drinking alcohol, taking unprescribed medication, exercising, contracting German measles, developing thyroid disease, and not taking vitamins and folic acid, as well as genetic factors such as high blood pressure, diabetes, obesity, consanguineous marriage, advanced maternal age, and eating unhealthy food. Results The most common risk factors linked to newborns with congenital heart disorders (CHDs) are alcohol consumption (98.4%), smoking (96%), genetics (86.6%), high blood pressure (82.3%), diabetes (78.4%), and taking medication during pregnancy (74.4%). A little over 73.3% of the participants were aware that risk factors for preterm birth included not taking vitamins and folic acid during pregnancy, obesity (68.9%), contracting German measles while pregnant (68.5%), consanguineous marriage (62.2%), developing thyroid disease during pregnancy (56.7%), and advanced maternal age (50%); 11.4%, 46.1%, and 42.5% of the participants had poor, fair, and good understanding, respectively, of the risk factors for having a baby with congenital cardiac disease. There was no significant correlation between the participants' demographic characteristics and their levels of awareness. Conclusion There is a need for public programs to increase awareness about the risk factors associated with congenital heart diseases.
Collapse
|
7
|
DNMT3B rs2424913 as a Risk Factor for Congenital Heart Defects in Down Syndrome. Genes (Basel) 2023; 14:genes14030576. [PMID: 36980848 PMCID: PMC10048502 DOI: 10.3390/genes14030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Impairments of the genes that encode enzymes that are involved in one-carbon metabolism because of the presence of gene polymorphisms can affect the methylation pattern. The altered methylation profiles of the genes involved in cardiogenesis may result in congenital heart defects (CHDs). The aim of this study was to investigate the association between the MTHFR rs1801133, MTHFR rs1801131, MTRR rs1801394, DNMT1 rs2228611, DNMT3A rs1550117, DNMT3B rs1569686, and DNMT3B rs2424913 gene polymorphisms and congenital heart defects in Down syndrome (DS) individuals. The study was conducted on 350 participants, including 134 DS individuals with CHDs (DSCHD+), 124 DS individuals without CHDs (DSCHD−), and 92 individuals with non-syndromic CHD. The genotyping was performed using the PCR–RFLP method. A statistically significant higher frequency of the DNMT3B rs2424913 TT in the DSCHD+ individuals was observed. The DNMT3B rs2424913 TT genotype, as well as the T allele, had significantly higher frequencies in the individuals with DS and atrial septal defects (ASDs) in comparison with the individuals with DS and other CHDs. Furthermore, our results indicate a statistically significant effect of the DNMT3B rs1569686 TT genotype in individuals with non-syndromic CHDs. The results of the study suggest that the DNMT3B rs2424913 TT genotypes may be a possible predisposing factor for CHDs in DS individuals, and especially those with ASDs.
Collapse
|
8
|
Ranganath P, Vs V, Rungsung I, Dalal A, Aggarwal S. Next Generation Sequencing in a Case of Early Onset Hydrops: Closing the Loop on the Diagnostic Odyssey! Fetal Pediatr Pathol 2023; 42:103-109. [PMID: 35380090 DOI: 10.1080/15513815.2022.2058660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Non-immune fetal hydrops (NIFH) is an etiologically heterogeneous condition. Cardiac anomalies are one of the common causes of NIFH. Cardiac anomalies can be isolated, multifactorial malformations or have a genetic basis. PLD1 variants have been associated with developmental defects involving the right heart. We present a NIFH with a PLD1 associated right heart malformation. We describe a spontaneously aborted 14 weeks old NIFH fetus with a rudimentary right ventricle, pulmonary valve atresia and pulmonary artery stenosis found at fetopsy. After a normal microarray, whole exome sequencing revealed a homozygous missense variant c.2023 C > T (p. Arg675Trp) in the PLD1 gene. Conclusion: Detailed fetopsy and genetic evaluation in this NIFH allowed an etiological explanation, further corroborated the association of PLD1 gene variants and developmental right heart defects, and that this defect can be associated with NIHF.
Collapse
Affiliation(s)
- Priya Ranganath
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Vineeth Vs
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Ikromi Rungsung
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Shagun Aggarwal
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| |
Collapse
|
9
|
Cappuccio G, Brunetti-Pierri N, Clift P, Learn C, Dykes JC, Mercer CL, Callewaert B, Meerschaut I, Spinelli AM, Bruno I, Gillespie MJ, Dorfman AT, Grimberg A, Lindsay ME, Lin AE. Expanded cardiovascular phenotype of Myhre syndrome includes tetralogy of Fallot suggesting a role for SMAD4 in human neural crest defects. Am J Med Genet A 2022; 188:1384-1395. [PMID: 35025139 DOI: 10.1002/ajmg.a.62645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 12/11/2021] [Indexed: 11/08/2022]
Abstract
Tetralogy of Fallot (ToF) can be associated with a wide range of extracardiac anomalies, with an underlying etiology identified in approximately 10% of cases. Individuals affected with Myhre syndrome due to recurrent SMAD4 mutations frequently have cardiovascular anomalies, including congenital heart defects. In addition to two patients in the literature with ToF, we describe five additional individuals with Myhre syndrome and classic ToF, ToF with pulmonary atresia and multiple aorto-pulmonary collaterals, and ToF with absent pulmonary valve. Aorta hypoplasia was documented in one patient and suspected in another two. In half of these individuals, postoperative cardiac dysfunction was thought to be more severe than classic postoperative ToF repair. There may be an increase in right ventricular pressure, and right ventricular dysfunction due to free pulmonic regurgitation. Noncardiac developmental abnormalities in our series and the literature, including corectopia, heterochromia iridis, and congenital miosis suggest an underlying defect of neural crest cell migration in Myhre syndrome. We advise clinicians that Myhre syndrome should be considered in the genetic evaluation of a child with ToF, short stature, unusual facial features, and developmental delay, as these children may be at risk for increased postoperative morbidity. Additional research is needed to investigate the hypothesis that postoperative hemodynamics in these patients may be consistent with restrictive myocardial physiology.
Collapse
Affiliation(s)
- Gerarda Cappuccio
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Paul Clift
- Adult Congenital Heart Disease Unit, University Hospitals Birmingham, Birmingham, UK
| | - Christopher Learn
- Adult Congenital Heart Disease Program, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John C Dykes
- Departments of Pediatrics, Stanford, California, USA
| | - Catherine L Mercer
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Princess Anne Hospital, Southampton, UK
| | - Bert Callewaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ilse Meerschaut
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | | | - Irene Bruno
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Matthew J Gillespie
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Aaron T Dorfman
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Adda Grimberg
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mark E Lindsay
- Department of Pediatrics, Division of Pediatric Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Cardiovascular Research Center, Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Angela E Lin
- Genetics Unit, Department of Pediatrics, MassGeneral Hospital for Children, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Diz OM, Toro R, Cesar S, Gomez O, Sarquella-Brugada G, Campuzano O. Personalized Genetic Diagnosis of Congenital Heart Defects in Newborns. J Pers Med 2021; 11:562. [PMID: 34208491 PMCID: PMC8235407 DOI: 10.3390/jpm11060562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 12/26/2022] Open
Abstract
Congenital heart disease is a group of pathologies characterized by structural malformations of the heart or great vessels. These alterations occur during the embryonic period and are the most frequently observed severe congenital malformations, the main cause of neonatal mortality due to malformation, and the second most frequent congenital malformations overall after malformations of the central nervous system. The severity of different types of congenital heart disease varies depending on the combination of associated anatomical defects. The causes of these malformations are usually considered multifactorial, but genetic variants play a key role. Currently, use of high-throughput genetic technologies allows identification of pathogenic aneuploidies, deletions/duplications of large segments, as well as rare single nucleotide variants. The high incidence of congenital heart disease as well as the associated complications makes it necessary to establish a diagnosis as early as possible to adopt the most appropriate measures in a personalized approach. In this review, we provide an exhaustive update of the genetic bases of the most frequent congenital heart diseases as well as other syndromes associated with congenital heart defects, and how genetic data can be translated to clinical practice in a personalized approach.
Collapse
Affiliation(s)
- Olga María Diz
- UGC Laboratorios, Hospital Universitario Puerta del Mar, 11009 Cadiz, Spain;
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08950 Barcelona, Spain
| | - Rocio Toro
- Medicine Department, School of Medicine, Cádiz University, 11519 Cadiz, Spain;
| | - Sergi Cesar
- Arrhythmia, Inherited Cardiac Diseases and Sudden Death Unit, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain;
| | - Olga Gomez
- Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08950 Barcelona, Spain;
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), 28029 Madrid, Spain
| | - Georgia Sarquella-Brugada
- Arrhythmia, Inherited Cardiac Diseases and Sudden Death Unit, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain;
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
| | - Oscar Campuzano
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08950 Barcelona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBER-CV), 28029 Madrid, Spain
| |
Collapse
|
11
|
The role of DNA methylation in syndromic and non-syndromic congenital heart disease. Clin Epigenetics 2021; 13:93. [PMID: 33902696 PMCID: PMC8077695 DOI: 10.1186/s13148-021-01077-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Congenital heart disease (CHD) is a common structural birth defect worldwide, and defects typically occur in the walls and valves of the heart or enlarged blood vessels. Chromosomal abnormalities and genetic mutations only account for a small portion of the pathogenic mechanisms of CHD, and the etiology of most cases remains unknown. The role of epigenetics in various diseases, including CHD, has attracted increased attention. The contributions of DNA methylation, one of the most important epigenetic modifications, to CHD have not been illuminated. Increasing evidence suggests that aberrant DNA methylation is related to CHD. Here, we briefly introduce DNA methylation and CHD and then review the DNA methylation profiles during cardiac development and in CHD, abnormalities in maternal genome-wide DNA methylation patterns are also described. Whole genome methylation profile and important differentially methylated genes identified in recent years are summarized and clustered according to the sample type and methodologies. Finally, we discuss the novel technology for and prospects of CHD-related DNA methylation.
Collapse
|
12
|
Kathiriya IS, Rao KS, Iacono G, Devine WP, Blair AP, Hota SK, Lai MH, Garay BI, Thomas R, Gong HZ, Wasson LK, Goyal P, Sukonnik T, Hu KM, Akgun GA, Bernard LD, Akerberg BN, Gu F, Li K, Speir ML, Haeussler M, Pu WT, Stuart JM, Seidman CE, Seidman JG, Heyn H, Bruneau BG. Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease. Dev Cell 2021; 56:292-309.e9. [PMID: 33321106 PMCID: PMC7878434 DOI: 10.1016/j.devcel.2020.11.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 01/10/2023]
Abstract
Haploinsufficiency of transcriptional regulators causes human congenital heart disease (CHD); however, the underlying CHD gene regulatory network (GRN) imbalances are unknown. Here, we define transcriptional consequences of reduced dosage of the CHD transcription factor, TBX5, in individual cells during cardiomyocyte differentiation from human induced pluripotent stem cells (iPSCs). We discovered highly sensitive dysregulation of TBX5-dependent pathways-including lineage decisions and genes associated with heart development, cardiomyocyte function, and CHD genetics-in discrete subpopulations of cardiomyocytes. Spatial transcriptomic mapping revealed chamber-restricted expression for many TBX5-sensitive transcripts. GRN analysis indicated that cardiac network stability, including vulnerable CHD-linked nodes, is sensitive to TBX5 dosage. A GRN-predicted genetic interaction between Tbx5 and Mef2c, manifesting as ventricular septation defects, was validated in mice. These results demonstrate exquisite and diverse sensitivity to TBX5 dosage in heterogeneous subsets of iPSC-derived cardiomyocytes and predicts candidate GRNs for human CHDs, with implications for quantitative transcriptional regulation in disease.
Collapse
Affiliation(s)
- Irfan S Kathiriya
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA.
| | - Kavitha S Rao
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Giovanni Iacono
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - W Patrick Devine
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pathology, University of California, San Francisco, CA 94158, USA
| | - Andrew P Blair
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Swetansu K Hota
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Michael H Lai
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Bayardo I Garay
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | | | - Henry Z Gong
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Lauren K Wasson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Piyush Goyal
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Tatyana Sukonnik
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Kevin M Hu
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Gunes A Akgun
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Laure D Bernard
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Fei Gu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kai Li
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Matthew L Speir
- Genomics Institute, University of California, Santa Cruz, CA 95064, USA
| | | | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02115, USA
| | - Joshua M Stuart
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Universitat Pompeu Fabra, 08028 Barcelona, Spain
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Huang H, Cai M, Wang Y, Liang B, Lin N, Xu L. SNP Array as a Tool for Prenatal Diagnosis of Congenital Heart Disease Screened by Echocardiography: Implications for Precision Assessment of Fetal Prognosis. Risk Manag Healthc Policy 2021; 14:345-355. [PMID: 33542665 PMCID: PMC7851374 DOI: 10.2147/rmhp.s286001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022] Open
Abstract
Objective This study aimed to examine the effectiveness of the SNP array for the prenatal diagnosis of congenital heart disease (CHD) screened by echocardiography. Patients and Methods A total of 356 pregnant women with fetal congenital heart malformations revealed by echocardiography at the Center for Prenatal Diagnosis of Fujian Maternal and Children Hospital during the period from November 2016 through July 2019 were recruited. The fetuses were assigned into three cohorts, including 142 with a single cardiac malformation, 106 with multiple cardiac malformations and 108 with cardiac and extracardiac malformations. All fetuses underwent chromosomal karyotyping and SNP array simultaneously, and the effectiveness of the SNP array for the prenatal diagnosis of CHD was evaluated. Results The overall prevalence of abnormal karyotypes was 9.3% among the 356 fetuses with CHD, and a higher proportion was found in fetuses with cardiac and extracardiac malformations (18.5%) than in those with single (5.6%) or multiple cardiac malformations (4.7%) (P<0.05). Consistent with karyotype analysis, SNP array detected an additional 25 fetuses with pathogenic copy number variations (CNVs), seven with variant of unknown significance (VOUS) and seven with benign CNVs, and a lower proportion of abnormal CNV was found in fetuses with a single cardiac malformation (4.2%) than in those with multiple cardiac malformations (9.4%) or cardiac and extracardiac malformations (14.8%) (P<0.05). Among the 33 fetuses with chromosomal abnormality, postnatal follow-up showed termination of pregnancy in 25 with pathogenic CNVs, one with VOUS, and six with normal karyotypes and SNP array findings but severe multiple malformations by ultrasonography. Conclusion SNP array increases the overall detection of abnormal CNVs by 9%, which improves the detection of CNVs associated with CHD. SNP array may serve as a tool for prenatal diagnosis of CHD that facilitates the discovery of pathogenic genes associated with CHD and provide valuable insights into the precision assessment of fetal prognosis during the prenatal counseling.
Collapse
Affiliation(s)
- Hailong Huang
- Center for Prenatal Diagnosis, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China.,Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Meiying Cai
- Center for Prenatal Diagnosis, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China.,Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Yan Wang
- Center for Prenatal Diagnosis, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China.,Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Bin Liang
- Center for Prenatal Diagnosis, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China.,Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Na Lin
- Center for Prenatal Diagnosis, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China.,Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Liangpu Xu
- Center for Prenatal Diagnosis, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China.,Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou 350001, Fujian Province, People's Republic of China
| |
Collapse
|
14
|
Yuki K, Koutsogiannaki S. Neutrophil and T Cell Functions in Patients with Congenital Heart Diseases: A Review. Pediatr Cardiol 2021; 42:1478-1482. [PMID: 34282478 PMCID: PMC8289712 DOI: 10.1007/s00246-021-02681-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023]
Abstract
With a significant improvement of survival in patients with congenital heart disease, we expect to encounter these patients more frequently for various medical issues. Clinical studies indicate that infection can pose higher risk in this cohort than general population. Here, with the hypothesis that more severe infection-related complications in CHD cohort may be linked to their inadequate immune response, we reviewed the current literature regarding neutrophil and T cell functions in patients with congenital heart diseases.
Collapse
Affiliation(s)
- Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, USA.
| | - Sophia Koutsogiannaki
- grid.2515.30000 0004 0378 8438Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Anaesthesia and Immunology, Harvard Medical School, Boston, MA USA
| |
Collapse
|
15
|
Bruneau BG. The developing heart: from The Wizard of Oz to congenital heart disease. Development 2020; 147:147/21/dev194233. [PMID: 33087326 DOI: 10.1242/dev.194233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023]
Abstract
The heart is an essential organ with a fascinating developmental biology. It is also one of the organs that is most often affected in human disease, either during development or in postnatal life. Over the last few decades, insights into the development of the heart have led to fundamental new concepts in gene regulation, but also to genetic and mechanistic insights into congenital heart defects. In more recent years, the lessons learned from studying heart development have been applied to interrogating regeneration of the diseased heart, exemplifying the importance of understanding the mechanistic underpinnings that lead to the development of an organ.
Collapse
Affiliation(s)
- Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA 94158, USA .,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.,Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Lowry RB, Bedard T, Crawford S, Grevers X, Bernier FP, Thomas MA. Prevalence rates study of selected isolated non-Mendelian congenital anomalies in the Hutterite population of Alberta, 1980-2016. Am J Med Genet A 2020; 182:2594-2604. [PMID: 32893972 DOI: 10.1002/ajmg.a.61834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 11/10/2022]
Abstract
A study of the prevalence rates for selected isolated non-Mendelian congenital anomalies in the Hutterite Brethren of Alberta, Canada was undertaken to further examine longitudinal data in this isolated community that was last reported in 1985 (Lowry et al., 1985), although there are numerous publications on recessive disorders (Boycott et al., 2008; Triggs-Raine et al., 2016). Cases were ascertained from the Alberta Congenital Anomaly Surveillance System for the years 1997-2016. Since our initial results showed some surprising findings in the Hutterite Brethren, such as zero cases of spina bifida, cleft lip and palate, gastroschisis, and omphalocele, and a significant excess of cases with hypospadias, we extended the study to prior years (1980-1996) for selected anomalies. For the extended study period (1980-2016), there was a significant increased prevalence of hypospadias, tetralogy of Fallot and tricuspid atresia in the Hutterite population, and although not statistically significant, zero cases of cleft lip with cleft palate, gastroschisis and omphalocele were confirmed. Further research is needed to determine the precise effects of rural environmental exposures, lifestyle factors, and genetic associations for selected multifactorial congenital anomalies.
Collapse
Affiliation(s)
- R Brian Lowry
- Alberta Congenital Anomalies Surveillance System, Alberta Health Services, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary and Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Medical Genetics, University of Calgary and Alberta Children's Hospital, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tanya Bedard
- Alberta Congenital Anomalies Surveillance System, Alberta Health Services, Calgary, Alberta, Canada
| | - Susan Crawford
- Alberta Perinatal Health Program, Alberta Health Services, Calgary, Alberta, Canada
| | - Xin Grevers
- Alberta Congenital Anomalies Surveillance System, Alberta Health Services, Calgary, Alberta, Canada
| | - François P Bernier
- Department of Pediatrics, University of Calgary and Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Medical Genetics, University of Calgary and Alberta Children's Hospital, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mary Ann Thomas
- Alberta Congenital Anomalies Surveillance System, Alberta Health Services, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary and Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Medical Genetics, University of Calgary and Alberta Children's Hospital, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
You G, Zu B, Wang B, Fu Q, Li F. Identification of miRNA-mRNA-TFs Regulatory Network and Crucial Pathways Involved in Tetralogy of Fallot. Front Genet 2020; 11:552. [PMID: 32595699 PMCID: PMC7303929 DOI: 10.3389/fgene.2020.00552] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease. However, its pathogenesis remains unknown. To explore key regulatory connections and crucial pathways underlying the TOF, gene or microRNA expression profile datasets of human TOF were obtained from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. The differentially expressed mRNAs (DEmRNAs) and microRNAs (DEmiRs) between TOF and healthy groups were identified after data preprocessing, followed by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Then, we further constructed protein-protein interaction (PPI) network and subnetwork of modules. Ultimately, to investigate the regulatory network underlying TOF, a global triple network including miRNAs, mRNAs, and transcription factors (TFs) was constructed based on the integrated data. In the present study, a total of 529 DEmRNAs, including 115 downregulated and 414 upregulated DEmRNAs, and 7 significantly upregulated DemiRs, including miR-499, miR-23b, miR-222, miR-1275, miR-93, miR-155, and miR-187, were found between TOF and control groups. Furthermore, 22 hub genes ranked by top 5% genes with high connectivity and six TFs, including SRF, CNOT4, SIX6, SRRM3, NELFA, and ONECUT3, were identified and might play crucial roles in the molecular pathogenesis of TOF. Additionally, an miRNA-mRNA-TF co-regulatory network was established and indicated ubiquitin-mediated proteolysis, energy metabolism associated pathways, neurodevelopmental disorder associated pathways, and ribosomes might be involved in the pathogenesis of TOF. The current research provides a comprehensive perspective of regulatory mechanism networks underlying TOF and also identifies potential molecule targets of genetic counseling and prenatal diagnosis for TOF.
Collapse
Affiliation(s)
- Guoling You
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bailing Zu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihua Fu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fen Li
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Genetics of Congenital Heart Disease. Biomolecules 2019; 9:biom9120879. [PMID: 31888141 PMCID: PMC6995556 DOI: 10.3390/biom9120879] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Congenital heart disease (CHD) is one of the most common birth defects. Studies in animal models and humans have indicated a genetic etiology for CHD. About 400 genes have been implicated in CHD, encompassing transcription factors, cell signaling molecules, and structural proteins that are important for heart development. Recent studies have shown genes encoding chromatin modifiers, cilia related proteins, and cilia-transduced cell signaling pathways play important roles in CHD pathogenesis. Elucidating the genetic etiology of CHD will help improve diagnosis and the development of new therapies to improve patient outcomes.
Collapse
|
19
|
De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes. Nat Commun 2019; 10:4722. [PMID: 31624253 PMCID: PMC6797711 DOI: 10.1038/s41467-019-12582-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
The genetic architecture of sporadic congenital heart disease (CHD) is characterized by enrichment in damaging de novo variants in chromatin-modifying genes. To test the hypothesis that gene pathways contributing to de novo forms of CHD are distinct from those for recessive forms, we analyze 2391 whole-exome trios from the Pediatric Cardiac Genomics Consortium. We deploy a permutation-based gene-burden analysis to identify damaging recessive and compound heterozygous genotypes and disease genes, controlling for confounding effects, such as background mutation rate and ancestry. Cilia-related genes are significantly enriched for damaging rare recessive genotypes, but comparatively depleted for de novo variants. The opposite trend is observed for chromatin-modifying genes. Other cardiac developmental gene classes have less stratification by mode of inheritance than cilia and chromatin-modifying gene classes. Our analyses reveal dominant and recessive CHD are associated with distinct gene functions, with cilia-related genes providing a reservoir of rare segregating variation leading to CHD. Large whole-exome sequencing studies have suggested that the genetic architecture of syndromic congenital heart disease (CHD) is different from sporadic forms. Here, Watkins et al. estimate the relative contribution of damaging recessive and de novo genotypes to CHD in 2391 trios and find them to be associated with different gene functions.
Collapse
|
20
|
Epigenetics and Mechanobiology in Heart Development and Congenital Heart Disease. Diseases 2019; 7:diseases7030052. [PMID: 31480510 PMCID: PMC6787645 DOI: 10.3390/diseases7030052] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
: Congenital heart disease (CHD) is the most common birth defect worldwide and the number one killer of live-born infants in the United States. Heart development occurs early in embryogenesis and involves complex interactions between multiple cell populations, limiting the understanding and consequent treatment of CHD. Furthermore, genome sequencing has largely failed to predict or yield therapeutics for CHD. In addition to the underlying genome, epigenetics and mechanobiology both drive heart development. A growing body of evidence implicates the aberrant regulation of these two extra-genomic systems in the pathogenesis of CHD. In this review, we describe the stages of human heart development and the heart defects known to manifest at each stage. Next, we discuss the distinct and overlapping roles of epigenetics and mechanobiology in normal development and in the pathogenesis of CHD. Finally, we highlight recent advances in the identification of novel epigenetic biomarkers and environmental risk factors that may be useful for improved diagnosis and further elucidation of CHD etiology.
Collapse
|
21
|
Xie HM, Taylor DM, Zhang Z, McDonald-McGinn DM, Zackai EH, Stambolian D, Hakonarson H, Morrow BE, Emanuel BS, Goldmuntz E. Copy number variations in individuals with conotruncal heart defects reveal some shared developmental pathways irrespective of 22q11.2 deletion status. Birth Defects Res 2019; 111:888-905. [PMID: 31222980 DOI: 10.1002/bdr2.1534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/28/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022]
Abstract
Over 50% of patients with 22q11.2 deletion syndrome (DS) have a conotruncal or related cardiac defect (CTRD). We hypothesized that similar genetic variants, developmental pathways and biological functions, contribute to disease risk for CTRD in patients without a 22q11.2 deletion (ND-CTRD) and with a 22q11.2 deletion (DS-CTRD). To test this hypothesis, we performed rare CNV (rCNV)-based analyses on 630 ND-CTRD cases and 602 DS-CTRD cases with comparable cardiac lesions separately and jointly. First, we detected a collection of heart development related pathways from Gene Ontology and Mammalian Phenotype Ontology analysis. We then constructed gene regulation networks using unique genes collected from the rCNVs found in the ND-CTRD and DS-CTRD cohorts. These gene networks were clustered and their predicted functions were examined. We further investigated expression patterns of those unique genes using publicly available mouse embryo microarray expression data from single-cell embryos to fully developed hearts. By these bioinformatics approaches, we identified a commonly shared gene expression pattern in both the ND-CTRD and DS-CTRD cohorts. Computational analysis of gene functions characterized with this expression pattern revealed a collection of significantly enriched terms related to cardiovascular development. By our combined analysis of rCNVs in the ND-CTRD and DS-CTRD cohorts, a group of statistically significant shared pathways, biological functions, and gene expression patterns were identified that can be tested in future studies for their biological relevance.
Collapse
Affiliation(s)
- Hongbo M Xie
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Deanne M Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Donna M McDonald-McGinn
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elaine H Zackai
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dwight Stambolian
- Department of Ophthalmology and Human Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hakon Hakonarson
- The Center for Applied Genomics, Department of Pediatrics, The Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bernice E Morrow
- Department of Genetics, Yeshiva University, Albert Einstein College of Medicine, Bronx, New York
| | - Beverly S Emanuel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth Goldmuntz
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Division of Cardiology, The Children's Hospital of Philadelphia, Department of Pediatrics, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Genetic Imbalances in Argentinean Patients with Congenital Conotruncal Heart Defects. Genes (Basel) 2018; 9:genes9090454. [PMID: 30208644 PMCID: PMC6162499 DOI: 10.3390/genes9090454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/23/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Congenital conotruncal heart defects (CCHD) are a subset of serious congenital heart defects (CHD) of the cardiac outflow tracts or great arteries. Its frequency is estimated in 1/1000 live births, accounting for approximately 10–30% of all CHD cases. Chromosomal abnormalities and copy number variants (CNVs) contribute to the disease risk in patients with syndromic and/or non-syndromic forms. Although largely studied in several populations, their frequencies are barely reported for Latin American countries. The aim of this study was to analyze chromosomal abnormalities, 22q11 deletions, and other genomic imbalances in a group of Argentinean patients with CCHD of unknown etiology. A cohort of 219 patients with isolated CCHD or associated with other major anomalies were referred from different provinces of Argentina. Cytogenetic studies, Multiplex-Ligation-Probe-Amplification (MLPA) and fluorescent in situ hybridization (FISH) analysis were performed. No cytogenetic abnormalities were found. 22q11 deletion was found in 23.5% of the patients from our cohort, 66% only had CHD with no other major anomalies. None of the patients with transposition of the great vessels (TGV) carried the 22q11 deletion. Other 4 clinically relevant CNVs were also observed: a distal low copy repeat (LCR)D-E 22q11 duplication, and 17p13.3, 4q35 and TBX1 deletions. In summary, 25.8% of CCHD patients presented imbalances associated with the disease.
Collapse
|
23
|
Touma M. Fetal Mouse Cardiovascular Imaging Using a High-frequency Ultrasound (30/45MHZ) System. J Vis Exp 2018. [PMID: 29781990 DOI: 10.3791/57210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Congenital heart defects (CHDs) are the most common cause of childhood morbidity and early mortality. Prenatal detection of the underlying molecular mechanisms of CHDs is crucial for inventing new preventive and therapeutic strategies. Mutant mouse models are powerful tools to discover new mechanisms and environmental stress modifiers that drive cardiac development and their potential alteration in CHDs. However, efforts to establish the causality of these putative contributors have been limited to histological and molecular studies in non-survival animal experiments, in which monitoring the key physiological and hemodynamic parameters is often absent. Live imaging technology has become an essential tool to establish the etiology of CHDs. In particular, ultrasound imaging can be used prenatally without surgically exposing the fetuses, allowing maintaining their baseline physiology while monitoring the impact of environmental stress on the hemodynamic and structural aspects of cardiac chamber development. Herein, we use the High-Frequency Ultrasound (30/45) system to examine the cardiovascular system in fetal mice at E18.5 in utero at the baseline and in response to prenatal hypoxia exposure. We demonstrate the feasibility of the system to measure cardiac chamber size, morphology, ventricular function, fetal heart rate, and umbilical artery flow indices, and their alterations in fetal mice exposed to systemic chronic hypoxia in utero in real time.
Collapse
Affiliation(s)
- Marlin Touma
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles; Children's Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles;
| |
Collapse
|
24
|
Hauser NS, Solomon BD, Vilboux T, Khromykh A, Baveja R, Bodian DL. Experience with genomic sequencing in pediatric patients with congenital cardiac defects in a large community hospital. Mol Genet Genomic Med 2018; 6:200-212. [PMID: 29368431 PMCID: PMC5902396 DOI: 10.1002/mgg3.357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Congenital cardiac defects, whether isolated or as part of a larger syndrome, are the most common type of human birth defect occurring on average in about 1% of live births depending on the malformation. As there is an expanding understanding of the underlying molecular mechanisms by which a cardiac defect may occur, there is a need to assess the current rates of diagnosis of cardiac defects by molecular sequencing in a clinical setting. METHODS AND RESULTS In this report, we evaluated 34 neonatal and pediatric patients born with a cardiac defect and their parents using exomized preexisting whole genome sequencing (WGS) data to model clinically available exon-based tests. Overall, we identified candidate variants in previously reported cardiac-related genes in 35% (12/34) of the probands. These include clearly pathogenic variants in two of 34 patients (6%) and variants of uncertain significance in relevant genes in 10 patients (26%), of these latter 10, 2 segregated with clinically apparent findings in the family trios. CONCLUSIONS These findings suggest that with current knowledge of the proteins underlying CHD, genomic sequencing can identify the underlying genetic etiology in certain patients; however, this technology currently does not have a high enough yield to be of routine clinical use in the screening of pediatric congenital cardiac defects.
Collapse
Affiliation(s)
- Natalie S. Hauser
- Inova Translational Medicine InstituteFalls ChurchVAUSA
- Inova Children's HospitalInova Health SystemFalls ChurchVAUSA
| | - Benjamin D. Solomon
- Inova Translational Medicine InstituteFalls ChurchVAUSA
- Present address:
GeneDxGaithersburgMDUSA
| | | | | | - Rajiv Baveja
- Inova Children's HospitalInova Health SystemFalls ChurchVAUSA
| | | |
Collapse
|
25
|
Yield rate of chromosomal microarray analysis in fetuses with congenital heart defects. Eur J Obstet Gynecol Reprod Biol 2018; 221:172-176. [DOI: 10.1016/j.ejogrb.2017.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 01/29/2023]
|
26
|
Yu Z, Tang PL, Wang J, Bao S, Shieh JT, Leung AW, Zhang Z, Gao F, Wong SY, Hui AL, Gao Y, Dung N, Zhang ZG, Fan Y, Zhou X, Zhang Y, Wong DS, Sham PC, Azhar A, Kwok PY, Tam PP, Lian Q, Cheah KS, Wang B, Song YQ. Mutations in Hnrnpa1 cause congenital heart defects. JCI Insight 2018; 3:98555. [PMID: 29367466 PMCID: PMC5821217 DOI: 10.1172/jci.insight.98555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022] Open
Abstract
Incomplete penetrance of congenital heart defects (CHDs) was observed in a mouse model. We hypothesized that the contribution of a major genetic locus modulates the manifestation of the CHDs. After genome-wide linkage mapping, fine mapping, and high-throughput targeted sequencing, a recessive frameshift mutation of the heterogeneous nuclear ribonucleoprotein A1 (Hnrnpa1) gene was confirmed (Hnrnpa1ct). Hnrnpa1 was expressed in both the first heart field (FHF) and second heart field (SHF) at the cardiac crescent stage but was only maintained in SHF progenitors after heart tube formation. Hnrnpa1ct/ct homozygous mutants displayed complete CHD penetrance, including truncated and incomplete looped heart tube at E9.5, ventricular septal defect (VSD) and persistent truncus arteriosus (PTA) at E13.5, and VSD and double outlet right ventricle at P0. Impaired development of the dorsal mesocardium and sinoatrial node progenitors was also observed. Loss of Hnrnpa1 expression leads to dysregulation of cardiac transcription networks and multiple signaling pathways, including BMP, FGF, and Notch in the SHF. Finally, two rare heterozygous mutations of HNRNPA1 were detected in human CHDs. These findings suggest a role of Hnrnpa1 in embryonic heart development in mice and humans. Heterogeneous nuclear ribonucleoprotein A1 (Hnrnpa1) is essential for embryonic heart development in both mice and humans.
Collapse
Affiliation(s)
- Zhe Yu
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Paul Lf Tang
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Jing Wang
- National Research Institute for Family Planning, Beijing, China
| | - Suying Bao
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Joseph T Shieh
- Institute for Human Genetics and Department of Pediatrics, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Alan Wl Leung
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Zhao Zhang
- Department of Medicine and Ophthalmology
| | - Fei Gao
- Department of Medicine and Ophthalmology
| | - Sandra Yy Wong
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Andy Lc Hui
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Yuan Gao
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Nelson Dung
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Zhi-Gang Zhang
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Yanhui Fan
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | | | - Yalun Zhang
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Dana Sm Wong
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Pak C Sham
- Department of Psychiatry.,Centre for Genome Sciences, and.,State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Hong Kong, China
| | - Abid Azhar
- Institute of Biotechnology & Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Patrick Pl Tam
- Embryology Unit, Children's Medical Research Institute, School of Medical Sciences, University of Sydney, Westmead, New South Wales, Australia
| | | | - Kathryn Se Cheah
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Binbin Wang
- National Research Institute for Family Planning, Beijing, China
| | - You-Qiang Song
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China.,Centre for Genome Sciences, and.,State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Hong Kong, China.,The University of Hong Kong Shenzhen Institute of Research and Innovation and.,The University of Hong Kong-Southern University of Science and Technology Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
Li AH, Hanchard NA, Furthner D, Fernbach S, Azamian M, Nicosia A, Rosenfeld J, Muzny D, D'Alessandro LCA, Morris S, Jhangiani S, Parekh DR, Franklin WJ, Lewin M, Towbin JA, Penny DJ, Fraser CD, Martin JF, Eng C, Lupski JR, Gibbs RA, Boerwinkle E, Belmont JW. Whole exome sequencing in 342 congenital cardiac left sided lesion cases reveals extensive genetic heterogeneity and complex inheritance patterns. Genome Med 2017; 9:95. [PMID: 29089047 PMCID: PMC5664429 DOI: 10.1186/s13073-017-0482-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/12/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Left-sided lesions (LSLs) account for an important fraction of severe congenital cardiovascular malformations (CVMs). The genetic contributions to LSLs are complex, and the mutations that cause these malformations span several diverse biological signaling pathways: TGFB, NOTCH, SHH, and more. Here, we use whole exome sequence data generated in 342 LSL cases to identify likely damaging variants in putative candidate CVM genes. METHODS Using a series of bioinformatics filters, we focused on genes harboring population-rare, putative loss-of-function (LOF), and predicted damaging variants in 1760 CVM candidate genes constructed a priori from the literature and model organism databases. Gene variants that were not observed in a comparably sequenced control dataset of 5492 samples without severe CVM were then subjected to targeted validation in cases and parents. Whole exome sequencing data from 4593 individuals referred for clinical sequencing were used to bolster evidence for the role of candidate genes in CVMs and LSLs. RESULTS Our analyses revealed 28 candidate variants in 27 genes, including 17 genes not previously associated with a human CVM disorder, and revealed diverse patterns of inheritance among LOF carriers, including 9 confirmed de novo variants in both novel and newly described human CVM candidate genes (ACVR1, JARID2, NR2F2, PLRG1, SMURF1) as well as established syndromic CVM genes (KMT2D, NF1, TBX20, ZEB2). We also identified two genes (DNAH5, OFD1) with evidence of recessive and hemizygous inheritance patterns, respectively. Within our clinical cohort, we also observed heterozygous LOF variants in JARID2 and SMAD1 in individuals with cardiac phenotypes, and collectively, carriers of LOF variants in our candidate genes had a four times higher odds of having CVM (odds ratio = 4.0, 95% confidence interval 2.5-6.5). CONCLUSIONS Our analytical strategy highlights the utility of bioinformatic resources, including human disease records and model organism phenotyping, in novel gene discovery for rare human disease. The results underscore the extensive genetic heterogeneity underlying non-syndromic LSLs, and posit potential novel candidate genes and complex modes of inheritance in this important group of birth defects.
Collapse
Affiliation(s)
- Alexander H Li
- Human Genetics Center, University of Texas Health Science Center, Houston, TX, USA
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Dieter Furthner
- Department of Paediatrics, Children's Hospital, Krankenhausstr. 26-30, 4020, Linz, Austria
| | - Susan Fernbach
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mahshid Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Annarita Nicosia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jill Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Shaine Morris
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Shalini Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Dhaval R Parekh
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Wayne J Franklin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mark Lewin
- Division of Cardiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jeffrey A Towbin
- Pediatric Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel J Penny
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Charles D Fraser
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, and the Texas Heart Institute, Houston, TX, USA
| | - Christine Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. .,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA. .,, 5200 Illumina Way, San Diego, CA, USA.
| |
Collapse
|
28
|
Zhang M, Li FX, Liu XY, Hou JY, Ni SH, Wang J, Zhao CM, Zhang W, Kong Y, Huang RT, Xue S, Yang YQ. TBX1 loss-of-function mutation contributes to congenital conotruncal defects. Exp Ther Med 2017; 15:447-453. [PMID: 29250159 DOI: 10.3892/etm.2017.5362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Conotruncal defects (CTDs) account for ~30% of all types of congenital heart disease and contribute to increased morbidity and mortality rates. Increasing evidence suggests that genetic risk factors are involved in the pathogenesis of CTDs. Mutations in a number of genes, including the TBX1 gene that codes for a T-box transcription factor essential for normal cardiovascular development, may contribute to the development of CTD. CTDs are genetically heterogeneous and the genetic defects responsible for CTDs in the majority of patients remain unknown. The present study sequenced the coding regions and splicing junction boundaries of TBX1 in 136 patients with CTDs and 300 matched healthy individuals. The disease-causing potential of the identified TBX1 sequence variation was evaluated using MutationTaster, PolyPhen-2, SIFT and PROVEN software. The functional characteristics of the mutant TBX1 gene were defined using a dual-luciferase reporter assay system. A novel heterozygous TBX1 mutation, p.S233Y, was identified in a patient with transposition of the great arteries (TGA) and a ventricular septal defect. This mutation was absent in the 300 controls and altered the amino acid produced, serine, which is evolutionarily conserved across several species, and was predicted to be pathogenic in silico. Luciferase assays conducted in COS-7 cells demonstrated that the newly identified TBX1 mutation was associated with significantly diminished transcriptional activation of the ANF promoter compared with the wild-type TBX1. To the best of our knowledge, the present study is the first to associate a TBX1 loss-of-function mutation with enhanced susceptibility to TGA, which adds significant insight to the molecular mechanism of TGA.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Fu-Xing Li
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jing-Yi Hou
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Shi-Hong Ni
- Department of Pediatrics, Baoshan Branch of Huashan Hospital, Fudan University, Shanghai 200431, P.R. China
| | - Juan Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Wei Zhang
- Department of Cardiac Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ye Kong
- Department of Cardiac Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yi-Qing Yang
- Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
29
|
Hassan FM, Khattab AA, Abo El Fotoh WMM, Zidan RS. A66G and C524T polymorphisms of methionine synthase reductase gene are linked to the development of acyanotic congenital heart diseases in Egyptian children. Gene 2017; 629:59-63. [PMID: 28778621 DOI: 10.1016/j.gene.2017.07.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 11/26/2022]
Abstract
Methionine synthase reductase (MTRR) is one of the main regulatory enzymes in the homocysteine/folate pathway. Genes involved in this pathway may play an important role in the development of congenital heart diseases (CHDs). C524T and A66G polymorphisms of MTRR gene may play an imperative role in the development of acyanotic CHDs. This study carried out on 200 children equally divided into 2 groups: group I: 100 children with acyanotic CHDs; and group II: 100 healthy children served as controls. PCR-RFLP method carried out to amplify the A66G and C524T polymorphisms of MTRR gene digested with Xho1and NdeI enzymes. A significant difference(P=0.015) in genotype frequencies of C524T polymorphism between cases and controls, where CC, CT, and TT were 14.0%, 40.0% and 46.0% in patients compared to 38.0,36.0% and 26.0% in controls. Again, a significant difference (P=0.010) in genotype frequencies of A66G polymorphism between the two groups as AA, AG and GG were 26.0%, 32.0% and42.0% in patients compared to 48.0, 36.0% and 16.0% in controls. Also, MTRR A66G and C524T polymorphisms were associated with a higher CHD risk in the homozygote comparison of wild and mutant genotypes and also in heterozygote and mutant comparison. So A66G and C524T polymorphisms of MTRR gene are associated with increased risk of acyanotic CHDs.
Collapse
Affiliation(s)
- Fahima M Hassan
- Pediatric department, Faculty of Medicine, Menoufia University Hospitals, Egypt
| | - Ahmad A Khattab
- Pediatric department, Faculty of Medicine, Menoufia University Hospitals, Egypt
| | | | - Reham S Zidan
- Pediatric department, Faculty of Medicine, Menoufia University Hospitals, Egypt
| |
Collapse
|
30
|
Yi X, Jiang X, Li X, Jiang DS. Histone lysine methylation and congenital heart disease: From bench to bedside (Review). Int J Mol Med 2017; 40:953-964. [PMID: 28902362 DOI: 10.3892/ijmm.2017.3115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/21/2017] [Indexed: 11/05/2022] Open
Abstract
Histone post-translational modifications (PTM) as one of the key epigenetic regulatory mechanisms that plays critical role in various biological processes, including regulating chromatin structure dynamics and gene expression. Histone lysine methyltransferase contributes to the establishment and maintenance of differential histone methylation status, which can recognize histone methylated sites and build an association between these modifications and their downstream processes. Recently, it was found that abnormalities in the histone lysine methylation level or pattern may lead to the occurrence of many types of cardiovascular diseases, such as congenital heart disease (CHD). In order to provide new theoretical basis and targets for the treatment of CHD from the view of developmental biology and genetics, this review discusses and elaborates on the association between histone lysine methylation modifications and CHD.
Collapse
Affiliation(s)
- Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
31
|
Zhang M, Li FX, Liu XY, Huang RT, Xue S, Yang XX, Li YJ, Liu H, Shi HY, Pan X, Qiu XB, Yang YQ. MESP1 loss-of-function mutation contributes to double outlet right ventricle. Mol Med Rep 2017; 16:2747-2754. [DOI: 10.3892/mmr.2017.6875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 03/30/2017] [Indexed: 11/06/2022] Open
|
32
|
Hanchard NA, Umana LA, D'Alessandro L, Azamian M, Poopola M, Morris SA, Fernbach S, Lalani SR, Towbin JA, Zender GA, Fitzgerald-Butt S, Garg V, Bowman J, Zapata G, Hernandez P, Arrington CB, Furthner D, Prakash SK, Bowles NE, McBride KL, Belmont JW. Assessment of large copy number variants in patients with apparently isolated congenital left-sided cardiac lesions reveals clinically relevant genomic events. Am J Med Genet A 2017; 173:2176-2188. [PMID: 28653806 DOI: 10.1002/ajmg.a.38309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/18/2017] [Accepted: 05/06/2017] [Indexed: 12/30/2022]
Abstract
Congenital left-sided cardiac lesions (LSLs) are a significant contributor to the mortality and morbidity of congenital heart disease (CHD). Structural copy number variants (CNVs) have been implicated in LSL without extra-cardiac features; however, non-penetrance and variable expressivity have created uncertainty over the use of CNV analyses in such patients. High-density SNP microarray genotyping data were used to infer large, likely-pathogenic, autosomal CNVs in a cohort of 1,139 probands with LSL and their families. CNVs were molecularly confirmed and the medical records of individual carriers reviewed. The gene content of novel CNVs was then compared with public CNV data from CHD patients. Large CNVs (>1 MB) were observed in 33 probands (∼3%). Six of these were de novo and 14 were not observed in the only available parent sample. Associated cardiac phenotypes spanned a broad spectrum without clear predilection. Candidate CNVs were largely non-recurrent, associated with heterozygous loss of copy number, and overlapped known CHD genomic regions. Novel CNV regions were enriched for cardiac development genes, including seven that have not been previously associated with human CHD. CNV analysis can be a clinically useful and molecularly informative tool in LSLs without obvious extra-cardiac defects, and may identify a clinically relevant genomic disorder in a small but important proportion of these individuals.
Collapse
Affiliation(s)
- Neil A Hanchard
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas.,USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Luis A Umana
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Lisa D'Alessandro
- Division of Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Mahshid Azamian
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Mojisola Poopola
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Shaine A Morris
- Division of Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Susan Fernbach
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Seema R Lalani
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Jeffrey A Towbin
- Pediatric Cardiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Gloria A Zender
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Sara Fitzgerald-Butt
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio.,Heart Center, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, Ohio State University, Columbus, Ohio
| | - Vidu Garg
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio.,Heart Center, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, Ohio State University, Columbus, Ohio
| | - Jessica Bowman
- Heart Center, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, Ohio State University, Columbus, Ohio
| | - Gladys Zapata
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas.,USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Patricia Hernandez
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas.,USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Cammon B Arrington
- Division of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Siddharth K Prakash
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Neil E Bowles
- Division of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Kim L McBride
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio.,Heart Center, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, Ohio State University, Columbus, Ohio
| | - John W Belmont
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas.,USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
33
|
Touma M, Reemtsen B, Halnon N, Alejos J, Finn JP, Nelson SF, Wang Y. A Path to Implement Precision Child Health Cardiovascular Medicine. Front Cardiovasc Med 2017; 4:36. [PMID: 28620608 PMCID: PMC5451507 DOI: 10.3389/fcvm.2017.00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/04/2017] [Indexed: 12/17/2022] Open
Abstract
Congenital heart defects (CHDs) affect approximately 1% of live births and are a major source of childhood morbidity and mortality even in countries with advanced healthcare systems. Along with phenotypic heterogeneity, the underlying etiology of CHDs is multifactorial, involving genetic, epigenetic, and/or environmental contributors. Clear dissection of the underlying mechanism is a powerful step to establish individualized therapies. However, the majority of CHDs are yet to be clearly diagnosed for the underlying genetic and environmental factors, and even less with effective therapies. Although the survival rate for CHDs is steadily improving, there is still a significant unmet need for refining diagnostic precision and establishing targeted therapies to optimize life quality and to minimize future complications. In particular, proper identification of disease associated genetic variants in humans has been challenging, and this greatly impedes our ability to delineate gene–environment interactions that contribute to the pathogenesis of CHDs. Implementing a systematic multileveled approach can establish a continuum from phenotypic characterization in the clinic to molecular dissection using combined next-generation sequencing platforms and validation studies in suitable models at the bench. Key elements necessary to advance the field are: first, proper delineation of the phenotypic spectrum of CHDs; second, defining the molecular genotype/phenotype by combining whole-exome sequencing and transcriptome analysis; third, integration of phenotypic, genotypic, and molecular datasets to identify molecular network contributing to CHDs; fourth, generation of relevant disease models and multileveled experimental investigations. In order to achieve all these goals, access to high-quality biological specimens from well-defined patient cohorts is a crucial step. Therefore, establishing a CHD BioCore is an essential infrastructure and a critical step on the path toward precision child health cardiovascular medicine.
Collapse
Affiliation(s)
- Marlin Touma
- Department of Pediatrics, Children's Discovery and Innovation Institute, University of California at Los Angeles, Los Angeles, CA, United States.,Cardiovascular Research Laboratory, University of California at Los Angeles, Los Angeles, CA, United States
| | - Brian Reemtsen
- Department of Cardiothoracic Surgery, University of California at Los Angeles, Los Angeles, CA, United States
| | - Nancy Halnon
- Department of Pediatrics, University of California at Los Angeles, Los Angeles, CA, United States
| | - Juan Alejos
- Department of Pediatrics, University of California at Los Angeles, Los Angeles, CA, United States
| | - J Paul Finn
- Department of Radiology, Cardiovascular Imaging, University of California at Los Angeles, Los Angeles, CA, United States
| | - Stanley F Nelson
- Department of Human Genetics, University of California at Los Angeles, Los Angeles, CA, United States
| | - Yibin Wang
- Cardiovascular Research Laboratory, University of California at Los Angeles, Los Angeles, CA, United States.,Department of Anesthesiology, Physiology and Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
34
|
Hinton RB, Ware SM. Heart Failure in Pediatric Patients With Congenital Heart Disease. Circ Res 2017; 120:978-994. [PMID: 28302743 DOI: 10.1161/circresaha.116.308996] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is a complex clinical syndrome resulting from diverse primary and secondary causes and shared pathways of disease progression, correlating with substantial mortality, morbidity, and cost. HF in children is most commonly attributable to coexistent congenital heart disease, with different risks depending on the specific type of malformation. Current management and therapy for HF in children are extrapolated from treatment approaches in adults. This review discusses the causes, epidemiology, and manifestations of HF in children with congenital heart disease and presents the clinical, genetic, and molecular characteristics that are similar or distinct from adult HF. The objective of this review is to provide a framework for understanding rapidly increasing genetic and molecular information in the challenging context of detailed phenotyping. We review clinical and translational research studies of HF in congenital heart disease including at the genome, transcriptome, and epigenetic levels. Unresolved issues and directions for future study are presented.
Collapse
Affiliation(s)
- Robert B Hinton
- From the Department of Pediatrics and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis
| | - Stephanie M Ware
- From the Department of Pediatrics and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis.
| |
Collapse
|
35
|
Fisher SC, Van Zutphen AR, Werler MM, Lin AE, Romitti PA, Druschel CM, Browne ML. Maternal Antihypertensive Medication Use and Congenital Heart Defects: Updated Results From the National Birth Defects Prevention Study. Hypertension 2017; 69:798-805. [PMID: 28373593 PMCID: PMC9976617 DOI: 10.1161/hypertensionaha.116.08773] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/18/2016] [Accepted: 02/22/2017] [Indexed: 11/16/2022]
Abstract
Previous NBDPS (National Birth Defects Prevention Study) findings from 1997 to 2003 suggested that maternal antihypertensive use was associated with congenital heart defects (CHDs). We re-examined associations between specific antihypertensive medication classes and specific CHDs with additional NBDPS data from 2004 to 2011. After excluding mothers missing hypertension information or who reported pregestational diabetes mellitus, a multiple birth, or antihypertensive use but no hypertension, we compared self-reported maternal exposure data on 10 625 CHD cases and 11 137 nonmalformed controls. We calculated adjusted odds ratios [95% confidence intervals] to estimate the risk of specific CHDs associated with antihypertensive use during the month before conception through the third month of pregnancy, controlling for maternal age, race/ethnicity, body mass index, first trimester cigarette smoking, and NBDPS site. Overall, 164 (1.5%) case mothers and 102 (0.9%) control mothers reported early pregnancy antihypertensive use for their hypertension. We observed increased risk of 4 CHD phenotypes, regardless of antihypertensive medication class reported: coarctation of the aorta (2.50 [1.52-4.11]), pulmonary valve stenosis (2.19 [1.44-3.34]), perimembranous ventricular septal defect (1.90 [1.09-3.31]), and secundum atrial septal defect (1.94 [1.36-2.79]). The associations for these phenotypes were statistically significant for mothers who reported β-blocker use or renin-angiotensin system blocker use; estimates for other antihypertensive medication classes were generally based on fewer exposed cases and were less stable but remained elevated. Our results support and expand on earlier NBDPS findings that antihypertensive medication use may be associated with increased risk of specific CHDs, although we cannot completely rule out confounding by underlying disease characteristics.
Collapse
Affiliation(s)
- Sarah C. Fisher
- Congenital Malformations Registry, New York State Department of Health, Albany, NY
| | - Alissa R. Van Zutphen
- Congenital Malformations Registry, New York State Department of Health, Albany, NY,Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, NY
| | - Martha M. Werler
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA
| | - Angela E. Lin
- Genetics Unit, MassGeneral Hospital for Children, Boston, Massachusetts,Massachusetts Center for Birth Defects Prevention, Massachusetts Department of Public Health
| | - Paul A. Romitti
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA
| | - Charlotte M. Druschel
- Congenital Malformations Registry, New York State Department of Health, Albany, NY,Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, NY
| | - Marilyn L. Browne
- Congenital Malformations Registry, New York State Department of Health, Albany, NY,Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, NY
| | | |
Collapse
|
36
|
Xie HM, Werner P, Stambolian D, Bailey-Wilson JE, Hakonarson H, White PS, Taylor DM, Goldmuntz E. Rare copy number variants in patients with congenital conotruncal heart defects. Birth Defects Res 2017; 109:271-295. [PMID: 28398664 PMCID: PMC5407323 DOI: 10.1002/bdra.23609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/22/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Previous studies using different cardiac phenotypes, technologies and designs suggest a burden of large, rare or de novo copy number variants (CNVs) in subjects with congenital heart defects. We sought to identify disease-related CNVs, candidate genes, and functional pathways in a large number of cases with conotruncal and related defects that carried no known genetic syndrome. METHODS Cases and control samples were divided into two cohorts and genotyped to assess each subject's CNV content. Analyses were performed to ascertain differences in overall CNV prevalence and to identify enrichment of specific genes and functional pathways in conotruncal cases relative to healthy controls. RESULTS Only findings present in both cohorts are presented. From 973 total conotruncal cases, a burden of rare CNVs was detected in both cohorts. Candidate genes from rare CNVs found in both cohorts were identified based on their association with cardiac development or disease, and/or their reported disruption in published studies. Functional and pathway analyses revealed significant enrichment of terms involved in either heart or early embryonic development. CONCLUSION Our study tested one of the largest cohorts specifically with cardiac conotruncal and related defects. These results confirm and extend previous findings that CNVs contribute to disease risk for congenital heart defects in general and conotruncal defects in particular. As disease heterogeneity renders identification of single recurrent genes or loci difficult, functional pathway and gene regulation network analyses appear to be more informative. Birth Defects Research 109:271-295, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hongbo M Xie
- The Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Petra Werner
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Dwight Stambolian
- Department of Ophthalmology and Human Genetics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joan E Bailey-Wilson
- Statistical Genetics Section, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland
| | - Hakon Hakonarson
- The Center for Applied Genomics, Department of Pediatrics, The Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter S White
- Division of Biomedical Informatics, Cincinnati Children's Hospital, Department of Biomedical Informatics, University of Cincinnati, Cincinnati, Ohio
| | - Deanne M Taylor
- The Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Xu YJ, Qiu XB, Yuan F, Shi HY, Xu L, Hou XM, Qu XK, Liu X, Huang RT, Xue S, Yang YQ, Li RG. Prevalence and spectrum of NKX2.5 mutations in patients with congenital atrial septal defect and atrioventricular block. Mol Med Rep 2017; 15:2247-2254. [PMID: 28259982 DOI: 10.3892/mmr.2017.6249] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 12/21/2016] [Indexed: 11/05/2022] Open
Abstract
Congenital atrial septal defect (ASD) and progressive atriventricular block (AVB) are the two most common phenotypes linked to NK2 homeobox 5 (NKX2.5) mutations in animals and humans. However, the prevalence and spectrum of NKX2.5 mutation in patients with ASD and AVB remain to be elucidated. In the present study, the coding exons and flanking introns of the NKX2.5 gene, which encodes a homeobox‑containing transcription factor essential for development of the heart, were sequenced in a cohort of 62 unrelated patients with ASD and AVB, and subsequently in a mutation carrier's available family members. As controls, 300 unrelated, ethnically‑matched healthy individuals were recruited, who were also genotyped for NKX2.5. The functional consequence of the mutant NKX2.5 was evaluated in contrast to its wild‑type counterpart using a dual‑luciferase reporter assay system. As a result, a novel heterozygous NKX2.5 mutation, p.Q181X, was identified in an index patient with ASD and AVB, with a prevalence of ~1.61%. Genetic analysis of the proband's pedigree revealed that the mutation co‑segregated with ASD and AVB with complete penetrance. The nonsense mutation, which eliminated partial homeobox and the carboxyl terminus, was absent in the 600 control chromosomes. Functional evaluation showed that the NKX2.5 mutant had no transcriptional activity. Furthermore, the mutation disrupted the synergistic activation between NKX2.5 and GATA binding protein 4, another cardiac core transcription factor associated with ASD. The results of the present study expand the spectrum of NKX2.5 mutations linked to ASD and AVB, and indicated that NKX2.5 loss‑of‑function mutations are an uncommon cause of ASD and AVB in humans.
Collapse
Affiliation(s)
- Ying-Jia Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Fang Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hong-Yu Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Lei Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xu-Min Hou
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
38
|
Kalis NN, Sulaibikh LK, Al Amer SR, Al Amer HY. Computerized Tomography Use in Williams-Beuren Syndrome Aortopathy. Heart Views 2017; 18:21-25. [PMID: 28584589 PMCID: PMC5448247 DOI: 10.4103/1995-705x.206205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Williams-Beuren syndrome is a multisystem genetic disorder caused by hemizygous deletion on chromosome 7q11.23, encompassing about 28 genes including the elastin gene, ELN. Cardiovascular abnormalities are frequent and are related to elastin insufficiency. These abnormalities include supravalvular aortic stenosis (SVAS) in 70% of case, pulmonic valve stenosis, and renal artery stenosis. Definitive therapy for supravalvar aortic stenosis consists of surgical correction of the arteriopathies. Outcomes after surgical correction of SVAS depend on the extent of the arteriopathy and the presence of other associated lesions. We present a case of a 4-year-old boy, with Williams - Beuren syndrome with an SVAS. The patient was assessed with computerized tomography angiography to determine the extent of the aortopathy before surgical intervention.
Collapse
Affiliation(s)
- Neale Nicola Kalis
- Mohammed Bin Khalifa Bin Salman Al Khalifa Cardiac Center, Bahrain Defense Force Hospital, Manama, Kingdom of Bahrain
| | - Leena Khalifa Sulaibikh
- Mohammed Bin Khalifa Bin Salman Al Khalifa Cardiac Center, Bahrain Defense Force Hospital, Manama, Kingdom of Bahrain
| | - Saud Rashid Al Amer
- Mohammed Bin Khalifa Bin Salman Al Khalifa Cardiac Center, Bahrain Defense Force Hospital, Manama, Kingdom of Bahrain
| | - Haya Yousif Al Amer
- Mohammed Bin Khalifa Bin Salman Al Khalifa Cardiac Center, Bahrain Defense Force Hospital, Manama, Kingdom of Bahrain
| |
Collapse
|
39
|
Helm BM, Freeze SL. Genetic Evaluation and Use of Chromosome Microarray in Patients with Isolated Heart Defects: Benefits and Challenges of a New Model in Cardiovascular Care. Front Cardiovasc Med 2016; 3:19. [PMID: 27379245 PMCID: PMC4905945 DOI: 10.3389/fcvm.2016.00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/30/2016] [Indexed: 01/26/2023] Open
Abstract
Congenital heart defects (CHDs) are common birth defects and result in significant morbidity and global economic impact. Genetic factors play a role in most CHDs; however, identification of these factors has been historically slow due to technological limitations and incomplete understanding of the impact of human genomic variation on normal and abnormal cardiovascular development. The advent of chromosome microarray (CMA) brought tremendous gains in identifying chromosome abnormalities in a variety of human disorders and is now considered part of a standard evaluation for individuals with multiple congenital anomalies and/or neurodevelopmental disorders. Several studies investigating use of CMA found that this technology can identify pathogenic copy-number variations (CNVs) in up to 15-20% of patients with CHDs with other congenital anomalies. However, there have been fewer studies exploring the use of CMA for patients with isolated CHDs. Recent studies have shown that the diagnostic yield of CMA in individuals with seemingly isolated CHD is lower than in individuals with CHDs and additional anomalies. Nevertheless, positive CMA testing in this group supports chromosome variation as one mechanism underlying the development of isolated, non-syndromic CHD - either as a causative or risk-influencing genetic factor. CMA has also identified novel genomic variation in CHDs, shedding light on candidate genes and pathways involved in cardiac development and malformations. Additional studies are needed to further address this issue. Early genetic diagnosis can enhance the medical management of patients and potentially provide crucial information about recurrence. This information is critical for genetic counseling of patients and family members. In this review, we review CMA for the non-genetics cardiology provider, offer a summary of CNV in isolated CHDs, and advocate for the use of CMA as part of the cardiovascular genetics evaluation of patients with isolated CHDs. We also provide perspective regarding the benefits and challenges that lie ahead for this model in the clinical setting.
Collapse
Affiliation(s)
- Benjamin M Helm
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IU Health , Indianapolis, IN , USA
| | - Samantha L Freeze
- Department of Pediatrics, Indiana University School of Medicine, IU Health , Indianapolis, IN , USA
| |
Collapse
|
40
|
Pickardt T, Niggemeyer E, Bauer UMM, Abdul-Khaliq H. A Biobank for Long-term and Sustainable Research in the Field of Congenital Heart Disease in Germany. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:181-90. [PMID: 27132144 PMCID: PMC4996858 DOI: 10.1016/j.gpb.2016.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 11/17/2022]
Abstract
Congenital heart disease (CHD) is the most frequent birth defect (0.8%-1% of all live births). Due to the advance in prenatal and postnatal early diagnosis and treatment, more than 90% of these patients survive into adulthood today. However, several mid- and long-term morbidities are dominating the follow-up of these patients. Due to the rarity and heterogeneity of the phenotypes of CHD, multicenter registry-based studies are required. The CHD-Biobank was established in 2009 with the aim to collect DNA from patients and their parents (trios) or from affected families, as well as cardiovascular tissues from patients undergoing corrective heart surgery for cardiovascular malformations. Clinical/phenotype data are matched to the International Paediatric and Congenital Cardiac Code (IPCCC) and the International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10). The DNA collection currently comprises samples from approximately 4200 participants with a wide range of CHD phenotypes. The collection covers about 430 trios and 120 families with more than one affected member. The cardiac tissue collection comprises 1143 tissue samples from 556 patients after open heart surgery. The CHD-Biobank provides a comprehensive basis for research in the field of CHD with high standards of data privacy, IT management, and sample logistics.
Collapse
Affiliation(s)
- Thomas Pickardt
- National Register for Congenital Heart Defects, 13353 Berlin, Germany.
| | - Eva Niggemeyer
- National Register for Congenital Heart Defects, 13353 Berlin, Germany
| | - Ulrike M M Bauer
- National Register for Congenital Heart Defects, 13353 Berlin, Germany; Competence Network for Congenital Heart Defects, 13353 Berlin, Germany
| | - Hashim Abdul-Khaliq
- Saarland University Medical Center, Department of Paediatric Cardiology, 66421 Homburg, Germany; Competence Network for Congenital Heart Defects, 13353 Berlin, Germany
| |
Collapse
|
41
|
Zhu X, Li J, Ru T, Wang Y, Xu Y, Yang Y, Wu X, Cram DS, Hu Y. Identification of copy number variations associated with congenital heart disease by chromosomal microarray analysis and next-generation sequencing. Prenat Diagn 2016; 36:321-7. [PMID: 26833920 DOI: 10.1002/pd.4782] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 01/23/2016] [Accepted: 01/28/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To determine the type and frequency of pathogenic chromosomal abnormalities in fetuses diagnosed with congenital heart disease (CHD) using chromosomal microarray analysis (CMA) and validate next-generation sequencing as an alternative diagnostic method. METHOD Chromosomal aneuploidies and submicroscopic copy number variations (CNVs) were identified in amniocytes DNA samples from CHD fetuses using high-resolution CMA and copy number variation sequencing (CNV-Seq). RESULT Overall, 21 of 115 CHD fetuses (18.3%) referred for CMA had a pathogenic chromosomal anomaly. In six of 73 fetuses (8.2%) with an isolated CHD, CMA identified two cases of DiGeorge syndrome, and one case each of 1q21.1 microdeletion, 16p11.2 microdeletion and Angelman/Prader Willi syndromes, and 22q11.21 microduplication syndrome. In 12 of 42 fetuses (28.6%) with CHD and additional structural abnormalities, CMA identified eight whole or partial trisomies (19.0%), five CNVs (11.9%) associated with DiGeorge, Wolf-Hirschhorn, Miller-Dieker, Cri du Chat and Blepharophimosis, Ptosis, and Epicanthus Inversus syndromes and four other rare pathogenic CNVs (9.5%). Overall, there was a 100% diagnostic concordance between CMA and CNV-Seq for detecting all 21 pathogenic chromosomal abnormalities associated with CHD. CONCLUSION CMA and CNV-Seq are reliable and accurate prenatal techniques for identifying pathogenic fetal chromosomal abnormalities associated with cardiac defects. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xiangyu Zhu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Li
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Tong Ru
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yaping Wang
- Department of Medical Genetics of Nanjing University Medical School, Nanjing, China
| | - Yan Xu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ying Yang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xing Wu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | | | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
42
|
Abstract
Cardiovascular malformations (CVMs) are the most common birth defect, occurring in 1% to 5% of all live births. Genetic, epigenetic, and environmental factors all influence the development of CVMs, and an improved understanding of the causation of CVMs is a prerequisite for prevention. Cardiac development is a complex, multistep process of morphogenesis that is under genetic regulation. Although the genetic contribution to CVMs is well recognized, the genetic causes of human CVMs are still identified infrequently. This article discusses the key genetic concepts characterizing human CVMs, their developmental basis, and the critical developmental and genetic concepts underlying their pathogenesis.
Collapse
Affiliation(s)
- Mohamad Azhar
- Department of Cell Biology & Anatomy, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29208, USA.
| | - Stephanie M. Ware
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN,Corresponding authors: Mohamad Azhar, PhD, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, Phone: 317-278-8661, , Stephanie M. Ware, MD, PhD, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, Phone: 317-274-8938, Fax: 317-274-8679,
| |
Collapse
|
43
|
Werner P, Latney B, Deardorff MA, Goldmuntz E. MESP1 Mutations in Patients with Congenital Heart Defects. Hum Mutat 2016; 37:308-14. [PMID: 26694203 DOI: 10.1002/humu.22947] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/15/2015] [Indexed: 11/10/2022]
Abstract
Identifying the genetic etiology of congenital heart disease (CHD) has been challenging despite being one of the most common congenital malformations in humans. We previously identified a microdeletion in a patient with a ventricular septal defect containing over 40 genes including MESP1 (mesoderm posterior basic helix-loop-helix transcription factor 1). Because of the importance of MESP1 as an early regulator of cardiac development in both in vivo and in vitro studies, we tested for MESP1 mutations in 647 patients with congenital conotruncal and related heart defects. We identified six rare, nonsynonymous variants not seen in ethnically matched controls and one likely race-specific nonsynonymous variant. Functional analyses revealed that three of these variants altered activation of transcription by MESP1. Two of the deleterious variants are located within the conserved HLH domain and thus impair the protein-protein interaction of MESP1 and E47. The third deleterious variant was a loss-of-function frameshift mutation. Our results suggest that pathologic variants in MESP1 may contribute to the development of CHD and that additional protein partners and downstream targets could likewise contribute to the wide range of causes for CHD.
Collapse
Affiliation(s)
- Petra Werner
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104
| | - Brande Latney
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104
| | - Matthew A Deardorff
- Division of Genetics, Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, 19104
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
44
|
Yuan Y, Chen W, Ma X, Wang H, Yan W, Huang G. Pedigree-based Analysis of Inherited and Noninherited Risk Factors of Congenital Heart Defects. Early Hum Dev 2015; 91:713-8. [PMID: 26324253 DOI: 10.1016/j.earlhumdev.2015.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 08/02/2015] [Accepted: 08/04/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Although congenital heart defect (CHD) pedigrees are rare, they are generally taken as evidence of the existence of a genetic etiologic mechanism or environmental factors common to family members, or a combination of both. Therefore, the analysis of CHD pedigrees is important for bridging the gap in our knowledge of its etiology. AIMS To assess the prevalence of CHD and evaluate the nongenetic factors in the CHD patients and healthy controls in the pedigrees. STUDY DESIGN Observational retrospective study. SUBJECTS Twenty-three CHD pedigrees were involved in the prevalence statistics; thirty-nine CHD cases and fifty-two healthy controls in the CHD pedigrees were included in the family-based noninherited factors analysis. OUTCOME MEASURES The three-degree relatives and overall CHD prevalence were calculated. Thirty-four noninherited risk factors were compared between the CHD and control groups, first by univariate analysis and later by multivariable logistic stepwise regression analysis. RESULTS The CHD prevalence of the probands' relatives in all pedigrees was 8.0%, and it was 10.9%, 2.9% and 11.9% in first-, second- and third-degree relatives, respectively. The three risk factors, including maternal febrile illnesses (OR=14.2, 95%CI: [1.5 - 133.7]), influenza (OR=6.9 [2.0 - 23.6]) and air pollution (OR=13.5 [2.6 - 70.5]), were strongly associated with a higher risk of CHD in our sample. CONCLUSIONS For the cluster and high prevalence of CHD in the collected pedigrees, our study confirms that genetic factors play a major role in the pathogenesis of CHD, while environmental factors, such as maternal febrile illnesses, influenza and air pollution, may also increase the burden of risk for CHD pathogenesis.
Collapse
Affiliation(s)
- Yuan Yuan
- Children's Hospital of Fudan University, Shanghai, China, 201102
| | - Weicheng Chen
- Children's Hospital of Fudan University, Shanghai, China, 201102
| | - Xiaojing Ma
- Children's Hospital of Fudan University, Shanghai, China, 201102; Shanghai Key Laboratory of Birth Defects, Shanghai, China, 201102
| | - Huijun Wang
- Children's Hospital of Fudan University, Shanghai, China, 201102; Shanghai Key Laboratory of Birth Defects, Shanghai, China, 201102
| | - Weili Yan
- Children's Hospital of Fudan University, Shanghai, China, 201102; Shanghai Key Laboratory of Birth Defects, Shanghai, China, 201102
| | - Guoying Huang
- Children's Hospital of Fudan University, Shanghai, China, 201102; Shanghai Key Laboratory of Birth Defects, Shanghai, China, 201102.
| |
Collapse
|
45
|
Evaluation of regulatory genetic variants in POU5F1 and risk of congenital heart disease in Han Chinese. Sci Rep 2015; 5:15860. [PMID: 26507003 PMCID: PMC4623744 DOI: 10.1038/srep15860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022] Open
Abstract
OCT4 is a transcription factor of the POU family, which plays a key role in embryonic development and stem cell pluripotency. Previous studies have shown that Oct4 is required for cardiomyocyte differentiation in mice and its depletion could result in cardiac morphogenesis in embryo. However, whether the genetic variations in OCT4 coding gene, POU5F1, confer the predisposition to congenital heart disease (CHD) is unclear. This study sought to investigate the associations between low-frequency (defined here as having minor allele frequency (MAF) between 0.1%–5%) and rare (MAF below 0.1%) variants with potential function in POU5F1 and risk of CHD. We conducted association analysis in a two-stage case-control study with a total of 2,720 CHD cases and 3,331 controls in Chinese. The low-frequency variant rs3130933 was observed to be associated with a significantly increased risk of CHD [additive model: adjusted odds ratio (OR) = 2.15, adjusted P = 3.37 × 10−6]. Furthermore, luciferase activity assay showed that the variant A allele led to significantly lower expression levels as compared to the G allele. These findings indicate for the first time that low-frequency functional variant in POU5F1 may contribute to the risk of congenital heart malformations.
Collapse
|
46
|
Abstract
Congenital heart disease (CHD) is the most common type of birth defect. The advent of corrective cardiac surgery and the increase in knowledge concerning the longitudinal care of patients with CHD has led to a spectacular increase in life expectancy. Therefore, >90% of children with CHD, who survive the first year of life, will live into adulthood. The etiology of CHD is complex and is associated with both environmental and genetic causes. CHD is a genetically heterogeneous disease that is associated with long-recognized chromosomal abnormalities, as well as with mutation in numerous (developmental) genes. Nevertheless, the genetic factors underlying CHD have remained largely elusive, and it is important to realize that in the far majority of CHD patients no causal mutation or chromosomal abnormality is identified. However, new insights (alternative inheritance paradigms) and technology (next-generation sequencing) have become available that can greatly advance our understanding of the genetic factors that contribute to CHD; these will be discussed in this review. Moreover, we will focus on the discovery of regulatory regions of key (heart) developmental genes and the occurrence of variations and mutations within, in the setting of CHD.
Collapse
|
47
|
Lahm H, Schön P, Doppler S, Dreßen M, Cleuziou J, Deutsch MA, Ewert P, Lange R, Krane M. Tetralogy of Fallot and Hypoplastic Left Heart Syndrome - Complex Clinical Phenotypes Meet Complex Genetic Networks. Curr Genomics 2015; 16:141-58. [PMID: 26069455 PMCID: PMC4460219 DOI: 10.2174/1389202916666150303232520] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 01/06/2023] Open
Abstract
In many cases congenital heart disease (CHD) is represented by a complex phenotype and
an array of several functional and morphological cardiac disorders. These malformations will be
briefly summarized in the first part focusing on two severe CHD phenotypes, hypoplastic left heart
syndrome (HLHS) and tetralogy of Fallot (TOF). In most cases of CHD the genetic origin remains
largely unknown, though the complexity of the clinical picture strongly argues against a dysregulation which can be attributed
to a single candidate gene but rather suggests a multifaceted polygenetic origin with elaborate interactions. Consistent
with this idea, genome-wide approaches using whole exome sequencing, comparative sequence analysis of multiplex
families to identify de novo mutations and global technologies to identify single nucleotide polymorphisms, copy
number variants, dysregulation of the transcriptome and epigenetic variations have been conducted to obtain information
about genetic alterations and potential predispositions possibly linked to the occurrence of a CHD phenotype. In the second
part of this review we will summarize and discuss the available literature on identified genetic alterations linked to
TOF and HLHS.
Collapse
Affiliation(s)
- Harald Lahm
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany
| | - Patric Schön
- Department of Paediatric Cardiology and Congenital Heart Defects, German Heart Center Munich, Technische Universität München, D-80636 Munich, Germany
| | - Stefanie Doppler
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany
| | - Martina Dreßen
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany
| | - Julie Cleuziou
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany
| | - Marcus-André Deutsch
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany
| | - Peter Ewert
- Department of Paediatric Cardiology and Congenital Heart Defects, German Heart Center Munich, Technische Universität München, D-80636 Munich, Germany; ; DZHK (German Center for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Rüdiger Lange
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany; ; DZHK (German Center for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Markus Krane
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany; ; DZHK (German Center for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
48
|
Abstract
Congenital heart defects (CHDs) are structural abnormalities of the heart and great vessels that are present from birth. The presence or absence of extracardiac anomalies has historically been used to identify patients with possible monogenic, chromosomal, or teratogenic CHD causes. These distinctions remain clinically relevant, but it is increasingly clear that nonsyndromic CHDs can also be genetic. This article discusses key morphologic, molecular, and signaling mechanisms relevant to heart development, summarizes overall progress in molecular genetic analyses of CHDs, and provides current recommendations for clinical application of genetic testing.
Collapse
Affiliation(s)
- Jason R Cowan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202, USA
| | - Stephanie M Ware
- Department of Pediatrics and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
49
|
Zhao CM, Peng LY, Li L, Liu XY, Wang J, Zhang XL, Yuan F, Li RG, Qiu XB, Yang YQ. PITX2 Loss-of-Function Mutation Contributes to Congenital Endocardial Cushion Defect and Axenfeld-Rieger Syndrome. PLoS One 2015; 10:e0124409. [PMID: 25893250 PMCID: PMC4404345 DOI: 10.1371/journal.pone.0124409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 03/13/2015] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD), the most common type of birth defect, is still the leading non-infectious cause of infant morbidity and mortality in humans. Aggregating evidence demonstrates that genetic defects are involved in the pathogenesis of CHD. However, CHD is genetically heterogeneous and the genetic components underpinning CHD in an overwhelming majority of patients remain unclear. In the present study, the coding exons and flanking introns of the PITX2 gene, which encodes a paired-like homeodomain transcription factor 2essential for cardiovascular morphogenesis as well as maxillary facial development, was sequenced in 196 unrelated patients with CHD and subsequently in the mutation carrier's family members available. As a result, a novel heterozygous PITX2 mutation, p.Q102X for PITX2a, or p.Q148X for PITX2b, or p.Q155X for PITX2c, was identified in a family with endocardial cushion defect (ECD) and Axenfeld-Rieger syndrome (ARS). Genetic analysis of the pedigree showed that the nonsense mutation co-segregated with ECD and ARS transmitted in an autosomal dominant pattern with complete penetrance. The mutation was absent in 800 control chromosomes from an ethnically matched population. Functional analysis by using a dual-luciferase reporter assay system revealed that the mutant PITX2 had no transcriptional activity and that the mutation eliminated synergistic transcriptional activation between PITX2 and NKX2.5, another transcription factor pivotal for cardiogenesis. To our knowledge, this is the first report on the association of PITX2 loss-of-function mutation with increased susceptibility to ECD and ARS. The findings provide novel insight into the molecular mechanisms underpinning ECD and ARS, suggesting the potential implications for the antenatal prophylaxis and personalized treatment of CHD and ARS.
Collapse
Affiliation(s)
- Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Division of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Lu-Ying Peng
- Division of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Li Li
- Division of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xian-Ling Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
50
|
Abstract
Transcriptional regulation of thousands of genes instructs complex morphogenetic and molecular events for heart development. Cardiac transcription factors choreograph gene expression at each stage of differentiation by interacting with cofactors, including chromatin-modifying enzymes, and by binding to a constellation of regulatory DNA elements. Here, we present salient examples relevant to cardiovascular development and heart disease, and review techniques that can sharpen our understanding of cardiovascular biology. We discuss the interplay between cardiac transcription factors, cis-regulatory elements, and chromatin as dynamic regulatory networks, to orchestrate sequential deployment of the cardiac gene expression program.
Collapse
Affiliation(s)
- Irfan S Kathiriya
- From the Gladstone Institute of Cardiovascular Disease and the Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA (I.S.K., E.P.N., B.G.B.); and Department of Anesthesia and Perioperative Care (I.S.K.), Department of Pediatrics (B.G.B.), Cardiovascular Research Institute (B.G.B.), and Institute for Regeneration Medicine (B.G.B.), University of California, San Francisco.
| | - Elphège P Nora
- From the Gladstone Institute of Cardiovascular Disease and the Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA (I.S.K., E.P.N., B.G.B.); and Department of Anesthesia and Perioperative Care (I.S.K.), Department of Pediatrics (B.G.B.), Cardiovascular Research Institute (B.G.B.), and Institute for Regeneration Medicine (B.G.B.), University of California, San Francisco.
| | - Benoit G Bruneau
- From the Gladstone Institute of Cardiovascular Disease and the Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA (I.S.K., E.P.N., B.G.B.); and Department of Anesthesia and Perioperative Care (I.S.K.), Department of Pediatrics (B.G.B.), Cardiovascular Research Institute (B.G.B.), and Institute for Regeneration Medicine (B.G.B.), University of California, San Francisco.
| |
Collapse
|