1
|
Lee M, Kim EJ, Yum MS. Early developmental changes in a rat model of malformations of cortical development: Abnormal neuronal migration and altered response to NMDA-induced excitotoxic injury. Exp Neurol 2024; 376:114759. [PMID: 38519010 DOI: 10.1016/j.expneurol.2024.114759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Malformations of cortical development (MCDs) are caused by abnormal neuronal migration processes during the fetal period and are a major cause of intractable epilepsy in infancy. However, the timing of hyperexcitability or epileptogenesis in MCDs remains unclear. To identify the early developmental changes in the brain of the MCD rat model, which exhibits increased seizure susceptibility during infancy (P12-15), we analyzed the pathological changes in the brains of MCD model rats during the neonatal period and tested NMDA-induced seizure susceptibility. Pregnant rats were injected with two doses of methylazoxymethanol acetate (MAM, 15 mg/kg, i.p.) to induce MCD, while controls were administered normal saline. The cortical development of the offspring was measured by performing magnetic resonance imaging (MRI) on postnatal days (P) 1, 5, and 8. At P8, some rats were sacrificed for immunofluorescence, Golgi staining, and Western analysis. In another set of rats, the number and latency to onset of spasms were monitored for 90 min after the NMDA (5 mg/kg i.p.) injection at P8. In MCD rats, in vivo MR imaging showed smaller brain volume and thinner cortex from day 1 after birth (p < 0.001). Golgi staining and immunofluorescence revealed abnormal neuronal migration, with a reduced number of neuronal cell populations and less dendritic arborization at P8. Furthermore, MCD rats exhibited a significant reduction in the expression of NMDA receptors and AMPAR4, along with an increase in AMPAR3 expression (p < 0.05). Although there was no difference in the latency to seizure onset between MCD rats and controls, the MCD rats survived significantly longer than the controls. These results provide insights into the early developmental changes in the cortex of a MCD rat model and suggest that delayed and abnormal neuronal development in the immature brain is associated with a blunted response to NMDA-induced excitotoxic injury. These developmental changes may be involved in the sudden onset of epilepsy in patients with MCD or prenatal brain injury.
Collapse
Affiliation(s)
- Minyoung Lee
- Department of Pediatrics, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea.
| | - Eun-Jin Kim
- Department of Pediatrics, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Mi-Sun Yum
- Department of Pediatrics, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Department of Pediatrics, Asan Medical Center Children's Hospital, Seoul 05505, Republic of Korea.
| |
Collapse
|
2
|
Co M, O'Brien GK, Wright KM, O'Roak BJ. Detailed phenotyping of Tbr1-2A-CreER knock-in mice demonstrates significant impacts on TBR1 protein levels and axon development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588147. [PMID: 38617321 PMCID: PMC11014564 DOI: 10.1101/2024.04.04.588147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Spatiotemporal control of Cre-mediated recombination has been an invaluable tool for understanding key developmental processes. For example, knock-in of Cre into cell type marker gene loci drives Cre expression under endogenous promoter and enhancer sequences, greatly facilitating the study of diverse neuronal subtypes in the cerebral cortex. However, insertion of exogenous DNA into the genome can have unintended effects on local gene regulation or protein function that must be carefully considered. Here, we analyze a recently generated Tbr1-2A-CreER knock-in mouse line, where a 2A-CreER cassette was inserted in-frame just before the stop codon of the transcription factor gene Tbr1 . Heterozygous TBR1 mutations in humans and mice are known to cause autism or autism-like behavioral phenotypes accompanied by structural brain malformations, most frequently a reduction of the anterior commissure. Thus, it is critical for modified versions of Tbr1 to exhibit true wild-type-like activity. We evaluated the Tbr1-2A-CreER allele for its potential impact on Tbr1 function and complementation to Tbr1 loss-of-function alleles. In mice with one copy of the Tbr1-2A-CreER allele, we identified reduction of TBR1 protein in early postnatal cortex along with thinning of the anterior commissure, suggesting hypersensitivity of this structure to TBR1 dosage. Comparing Tbr1-2A-CreER and Tbr1 -null heterozygous and homozygous mice to Tbr1 -null complementation crosses showed reductions of TBR1 dosage ranging from 28.4% to 95.9%. Using these combinatorial genotypes, we found that low levels of TBR1 protein (∼16%) are sufficient to establish cortical layer positioning, while greater levels (>50%) are required for normal suppression of layer 5 identity. In total, these results strongly support the conclusion that Tbr1-2A-CreER is a hypomorphic allele. We advise caution when interpreting experiments using this allele, such as transcriptomic studies, considering the sensitivity of various corticogenic processes to TBR1 dosage and the association of heterozygous TBR1 mutations with complex neurodevelopmental disorders.
Collapse
|
3
|
Wang N, Wan R, Tang K. Transcriptional regulation in the development and dysfunction of neocortical projection neurons. Neural Regen Res 2024; 19:246-254. [PMID: 37488873 PMCID: PMC10503610 DOI: 10.4103/1673-5374.379039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 07/26/2023] Open
Abstract
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas, and between the neocortex and other regions of the brain and spinal cord. Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination, proliferation, specification, differentiation, migration, survival, axonogenesis, and synaptogenesis. These processes are precisely regulated in a tempo-spatial manner by intrinsic factors, extrinsic signals, and neural activities. The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions (such as sensory information integration, motor coordination, and cognition) but also to prevent the onset and progression of neurodevelopmental disorders (such as intellectual disability, autism spectrum disorders, anxiety, and depression). This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
Collapse
Affiliation(s)
- Ningxin Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Rong Wan
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Usui N. Possible roles of deep cortical neurons and oligodendrocytes in the neural basis of human sociality. Anat Sci Int 2024; 99:34-47. [PMID: 38010534 PMCID: PMC10771383 DOI: 10.1007/s12565-023-00747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Sociality is an instinctive property of organisms that live in relation to others and is a complex characteristic of higher order brain functions. However, the evolution of the human brain to acquire higher order brain functions, such as sociality, and the neural basis for executing these functions and their control mechanisms are largely unknown. Several studies have attempted to evaluate how human sociality was acquired during the course of evolution and the mechanisms controlling sociality from a neurodevelopment viewpoint. This review discusses these findings in the context of human brain evolution and the pathophysiology of autism spectrum disorder (ASD). Comparative genomic studies of postmortem primate brains have demonstrated human-specific regulatory mechanisms underlying higher order brain functions, providing evidence for the contribution of oligodendrocytes to human brain function. Functional analyses of the causative genes of ASD in animal models have demonstrated that the neural basis of social behavior is associated with layer 6 (L6) of the neocortex and oligodendrocytes. These findings demonstrate that both neurons and oligodendrocytes contribute to the neural basis and molecular mechanisms underlying human brain evolution and social functioning. This review provides novel insights into sociability and the corresponding neural bases of brain disorders and evolution.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- Omics Center, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan.
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan.
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan.
| |
Collapse
|
5
|
Crespo I, Pignatelli J, Kinare V, Méndez-Gómez HR, Esgleas M, Román MJ, Canals JM, Tole S, Vicario C. Tbr1 Misexpression Alters Neuronal Development in the Cerebral Cortex. Mol Neurobiol 2022; 59:5750-5765. [PMID: 35781633 PMCID: PMC9395452 DOI: 10.1007/s12035-022-02936-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
Changes in the transcription factor (TF) expression are critical for brain development, and they may also underlie neurodevelopmental disorders. Indeed, T-box brain1 (Tbr1) is a TF crucial for the formation of neocortical layer VI, and mutations and microdeletions in that gene are associated with malformations in the human cerebral cortex, alterations that accompany autism spectrum disorder (ASD). Interestingly, Tbr1 upregulation has also been related to the occurrence of ASD-like symptoms, although limited studies have addressed the effect of increased Tbr1 levels during neocortical development. Here, we analysed the impact of Tbr1 misexpression in mouse neural progenitor cells (NPCs) at embryonic day 14.5 (E14.5), when they mainly generate neuronal layers II-IV. By E18.5, cells accumulated in the intermediate zone and in the deep cortical layers, whereas they became less abundant in the upper cortical layers. In accordance with this, the proportion of Sox5+ cells in layers V-VI increased, while that of Cux1+ cells in layers II-IV decreased. On postnatal day 7, fewer defects in migration were evident, although a higher proportion of Sox5+ cells were seen in the upper and deep layers. The abnormal neuronal migration could be partially due to the altered multipolar-bipolar neuron morphologies induced by Tbr1 misexpression, which also reduced dendrite growth and branching, and disrupted the corpus callosum. Our results indicate that Tbr1 misexpression in cortical NPCs delays or disrupts neuronal migration, neuronal specification, dendrite development and the formation of the callosal tract. Hence, genetic changes that provoke ectopic Tbr1 upregulation during development could provoke cortical brain malformations.
Collapse
Affiliation(s)
- Inmaculada Crespo
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- CES Cardenal Cisneros, Madrid, Spain
| | - Jaime Pignatelli
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Veena Kinare
- Department of Life Sciences, Sophia College for Women, Mumbai, 400026, India
| | - Héctor R Méndez-Gómez
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Miriam Esgleas
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - María José Román
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Josep M Canals
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Carlos Vicario
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
6
|
Zhang W, Hu L, Huang X, Xie D, Wu J, Fu X, Liang D, Huang S. Whole-exome sequencing identified five novel de novo variants in patients with unexplained intellectual disability. J Clin Lab Anal 2022; 36:e24587. [PMID: 35837997 PMCID: PMC9459325 DOI: 10.1002/jcla.24587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/20/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022] Open
Abstract
Background Intellectual disability (ID) represents a neurodevelopmental disorder, which is characterized by marked defects in the intellectual function and adaptive behavior, with an onset during the developmental period. ID is mainly caused by genetic factors, and it is extremely genetically heterogeneous. This study aims to identify the genetic cause of ID using trio‐WES analysis. Methods We recruited four pediatric patients with unexplained ID from non‐consanguineous families, who presented at the Department of Pediatrics, Guizhou Provincial People's Hospital. Whole‐exome sequencing (WES) and Sanger sequencing validation were performed in the patients and their unaffected parents. Furthermore, conservative analysis and protein structural and functional prediction were performed on the identified pathogenic variants. Results We identified five novel de novo mutations from four known ID‐causing genes in the four included patients, namely COL4A1 (c.2786T>A, p.V929D and c.2797G>A, p.G933S), TBR1 (c.1639_1640insCCCGCAGTCC, p.Y553Sfs*124), CHD7 (c.7013A>T, p.Q2338L), and TUBA1A (c.1350del, p.E450Dfs*34). These mutations were all predicted to be deleterious and were located at highly conserved domains that might affect the structure and function of these proteins. Conclusion Our findings contribute to expanding the mutational spectrum of ID‐related genes and help to deepen the understanding of the genetic causes and heterogeneity of ID.
Collapse
Affiliation(s)
- Wenqiu Zhang
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's hospital, Guiyang, China
| | - Li Hu
- Prenatal Diagnosis Center, Guizhou Provincial People's hospital, Guiyang, China
| | - Xinyi Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Xie
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's hospital, Guiyang, China
| | - Jiangfen Wu
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's hospital, Guiyang, China
| | - Xiaoling Fu
- Department of Pediatrics, Guizhou Provincial People's hospital, Guiyang, China
| | - Daiyi Liang
- Department of Neurology, Guizhou Provincial People's hospital, Guiyang, China
| | - Shengwen Huang
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's hospital, Guiyang, China.,NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
7
|
Lee K, Jung Y, Vyas Y, Skelton I, Abraham WC, Hsueh YP, Montgomery JM. Dietary zinc supplementation rescues fear-based learning and synaptic function in the Tbr1 +/- mouse model of autism spectrum disorders. Mol Autism 2022; 13:13. [PMID: 35303947 PMCID: PMC8932001 DOI: 10.1186/s13229-022-00494-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a dyad of behavioural symptoms-social and communication deficits and repetitive behaviours. Multiple aetiological genetic and environmental factors have been identified as causing or increasing the likelihood of ASD, including serum zinc deficiency. Our previous studies revealed that dietary zinc supplementation can normalise impaired social behaviours, excessive grooming, and heightened anxiety in a Shank3 mouse model of ASD, as well as the amelioration of synapse dysfunction. Here, we have examined the efficacy and breadth of dietary zinc supplementation as an effective therapeutic strategy utilising a non-Shank-related mouse model of ASD-mice with Tbr1 haploinsufficiency. METHODS We performed behavioural assays, amygdalar slice whole-cell patch-clamp electrophysiology, and immunohistochemistry to characterise the synaptic mechanisms underlying the ASD-associated behavioural deficits observed in Tbr1+/- mice and the therapeutic potential of dietary zinc supplementation. Two-way analysis of variance (ANOVA) with Šídák's post hoc test and one-way ANOVA with Tukey's post hoc multiple comparisons were performed for statistical analysis. RESULTS Our data show that dietary zinc supplementation prevents impairments in auditory fear memory and social interaction, but not social novelty, in the Tbr1+/- mice. Tbr1 haploinsufficiency did not induce excessive grooming nor elevate anxiety in mice. At the synaptic level, dietary zinc supplementation reversed α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and N-methyl-D-aspartate receptor (NMDAR) hypofunction and normalised presynaptic function at thalamic-lateral amygdala (LA) synapses that are crucial for auditory fear memory. In addition, the zinc supplemented diet significantly restored the synaptic puncta density of the GluN1 subunit essential for functional NMDARs as well as SHANK3 expression in both the basal and lateral amygdala (BLA) of Tbr1+/- mice. LIMITATIONS The therapeutic effect of dietary zinc supplementation observed in rodent models may not reproduce the same effects in human patients. The effect of dietary zinc supplementation on synaptic function in other brain structures affected by Tbr1 haploinsufficiency including olfactory bulb and anterior commissure will also need to be examined. CONCLUSIONS Our data further the understanding of the molecular mechanisms underlying the effect of dietary zinc supplementation and verify the efficacy and breadth of its application as a potential treatment strategy for ASD.
Collapse
Affiliation(s)
- Kevin Lee
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Yewon Jung
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Yukti Vyas
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Imogen Skelton
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, 128, Section 2, Academia Rd., Taipei, 11529, Taiwan
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.
| |
Collapse
|
8
|
Leifsdottir K, Jost K, Siljehav V, Thelin EP, Lassarén P, Nilsson P, Haraldsson Á, Eksborg S, Herlenius E. The cerebrospinal fluid proteome of preterm infants predicts neurodevelopmental outcome. Front Pediatr 2022; 10:921444. [PMID: 35928685 PMCID: PMC9343678 DOI: 10.3389/fped.2022.921444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Survival rate increases for preterm infants, but long-term neurodevelopmental outcome predictors are lacking. Our primary aim was to determine whether a specific proteomic profile in cerebrospinal fluid (CSF) of preterm infants differs from that of term infants and to identify novel biomarkers of neurodevelopmental outcome in preterm infants. METHODS Twenty-seven preterm infants with median gestational age 27 w + 4 d and ten full-term infants were enrolled prospectively. Protein profiling of CSF were performed utilizing an antibody suspension bead array. The relative levels of 178 unique brain derived proteins and inflammatory mediators, selected from the Human Protein Atlas, were measured. RESULTS The CSF protein profile of preterm infants differed from that of term infants. Increased levels of brain specific proteins that are associated with neurodevelopment and neuroinflammatory pathways made up a distinct protein profile in the preterm infants. The most significant differences were seen in proteins involved in neurodevelopmental regulation and synaptic plasticity, as well as components of the innate immune system. Several proteins correlated with favorable outcome in preterm infants at 18-24 months corrected age. Among the proteins that provided strong predictors of outcome were vascular endothelial growth factor C, Neurocan core protein and seizure protein 6, all highly important in normal brain development. CONCLUSION Our data suggest a vulnerability of the preterm brain to postnatal events and that alterations in protein levels may contribute to unfavorable neurodevelopmental outcome.
Collapse
Affiliation(s)
- Kristin Leifsdottir
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,The Children's Hospital of Iceland, Reykjavik, Iceland
| | - Kerstin Jost
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Veronica Siljehav
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Eric P Thelin
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Philipp Lassarén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Peter Nilsson
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | | | - Staffan Eksborg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Herlenius
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Prenatal diagnosis by whole exome sequencing in a family with a novel TBR1 mutation causing intellectual disability. Taiwan J Obstet Gynecol 2021; 60:1094-1097. [PMID: 34794744 DOI: 10.1016/j.tjog.2021.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To provide prenatal diagnosis for a pregnant woman with genetic history of intellectual disability. CASE REPORT A Chinese pedigree with intellectual disability was collected in this study. Cytogenetic analysis, chromosomal microarray analysis (CMA) and whole exome sequencing (WES) followed by Sanger validation were conducted to identify the genetic pathogenesis. A novel heterozygous deletion c.370_374delTTCCC in TBR1 gene was identified, leading to a frameshift mutation starting at Phe124 followed by a premature stop codon at position 141 (p.Phe124Valfs∗18). Segregation analysis identified that this novel mutation is co-segregated among the affected family members but absent in unaffected family members. Prenatal diagnosis indicated the absence of this mutation, and the family decided to continue the pregnancy after genetic counseling. CONCLUSION Our findings demonstrated the significance of genetic testing in the diagnosis of intellectual disability. This work also confirmed the effectiveness of WES in prenatal diagnosis.
Collapse
|
10
|
Santos-Terra J, Deckmann I, Fontes-Dutra M, Schwingel GB, Bambini-Junior V, Gottfried C. Transcription factors in neurodevelopmental and associated psychiatric disorders: A potential convergence for genetic and environmental risk factors. Int J Dev Neurosci 2021; 81:545-578. [PMID: 34240460 DOI: 10.1002/jdn.10141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous and highly prevalent group of psychiatric conditions marked by impairments in the nervous system. Their onset occurs during gestation, and the alterations are observed throughout the postnatal life. Although many genetic and environmental risk factors have been described in this context, the interactions between them challenge the understanding of the pathways associated with NDDs. Transcription factors (TFs)-a group of over 1,600 proteins that can interact with DNA, regulating gene expression through modulation of RNA synthesis-represent a point of convergence for different risk factors. In addition, TFs organize critical processes like angiogenesis, blood-brain barrier formation, myelination, neuronal migration, immune activation, and many others in a time and location-dependent way. In this review, we summarize important TF alterations in NDD and associated disorders, along with specific impairments observed in animal models, and, finally, establish hypotheses to explain how these proteins may be critical mediators in the context of genome-environment interactions.
Collapse
Affiliation(s)
- Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| |
Collapse
|
11
|
Freitag CM, Chiocchetti AG, Haslinger D, Yousaf A, Waltes R. [Genetic risk factors and their influence on neural development in autism spectrum disorders]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2021; 50:187-202. [PMID: 34128703 DOI: 10.1024/1422-4917/a000803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Genetic risk factors and their influence on neural development in autism spectrum disorders Abstract. Abstract. Autism spectrum disorders are etiologically based on genetic and specific gene x biologically relevant environmental risk factors. They are diagnosed based on behavioral characteristics, such as impaired social communication and stereotyped, repetitive behavior and sensory as well as special interests. The genetic background is heterogeneous, i. e., it comprises diverse genetic risk factors across the disorder and high interindividual differences of specific genetic risk factors. Nevertheless, risk factors converge regarding underlying biological mechanisms and shared pathways, which likely cause the autism-specific behavioral characteristics. The current selective literature review summarizes differential genetic risk factors and focuses particularly on mechanisms and pathways currently being discussed by international research. In conclusion, clinically relevant aspects and open translational research questions are presented.
Collapse
Affiliation(s)
- Christine M Freitag
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main
| | - Andreas G Chiocchetti
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main
| | - Denise Haslinger
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main
| | - Afsheen Yousaf
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main
| | - Regina Waltes
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main
| |
Collapse
|
12
|
Pang Y, Shi M. Repetitive Transcranial Magnetic Stimulation Improves Mild Cognitive Impairment Associated with Alzheimer's Disease in Mice by Modulating the miR-567/NEUROD2/PSD95 Axis. Neuropsychiatr Dis Treat 2021; 17:2151-2161. [PMID: 34239303 PMCID: PMC8259939 DOI: 10.2147/ndt.s311183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/17/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a typical symptom of early Alzheimer's disease (AD) and is driven by the dysfunction of microRNAs (miRs). Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique for handling neuropsychiatric disorders and has universally effects on the functions of miRs. In the current study, the improvement effects of rTMS on MCI associated with AD were explored by focusing on miR-567/NEUROD2/PSD95 axis. METHODS MCI was induced in mice using scopolamine and was treated with rTMS of two frequencies (1 Hz and 10 Hz). The changes in cognitive function, brain structure, neurotrophic factor levels, and activity of miR-567/NEUROD2/PSD95 axis were assessed. The interaction between rTMS and miR-567 was further verified by inducing the level of miR-567 in AD mice. RESULTS The administrations of rTMS improved the cognitive function of AD mice and attenuated brain tissue destruction, which were associated with the restored production of BDNF and NGF. Additionally, rTMS administrations suppressed the expression of miR-567 and up-regulated the expressions of NEUROD2 and PSD95, which contributed to the improved condition in central nerve system. With the induced level of miR-567, the effects of rTMS were counteracted: the learning and memorizing abilities of mice were impaired, the brain neuron viability was suppressed, and the production of neurotrophic factors was suppressed even under the administration of rTMS. The changes in brain function and tissues were associated with the inhibited expressions of NEUROD2 and PSD95. CONCLUSION The findings outlined in the current study demonstrated that rTMS treatment could protect brain against AD-induced MCI without significant side effects, and the function depended on the inhibition of miR-567.
Collapse
Affiliation(s)
- Yongfeng Pang
- Department of Rehabilitation, Tiantai People's Hospital of Zhejiang Province, Zhengjiang, 317200, People's Republic of China
| | - Mingfei Shi
- Department of Rehabilitation, Tiantai People's Hospital of Zhejiang Province, Zhengjiang, 317200, People's Republic of China
| |
Collapse
|
13
|
Pan YE, Tibbe D, Harms FL, Reißner C, Becker K, Dingmann B, Mirzaa G, Kattentidt-Mouravieva AA, Shoukier M, Aggarwal S, Missler M, Kutsche K, Kreienkamp HJ. Missense mutations in CASK, coding for the calcium-/calmodulin-dependent serine protein kinase, interfere with neurexin binding and neurexin-induced oligomerization. J Neurochem 2020; 157:1331-1350. [PMID: 33090494 DOI: 10.1111/jnc.15215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
Mutations in the X-linked gene coding for the calcium-/calmodulin-dependent serine protein kinase (CASK) are associated with severe neurological disorders ranging from intellectual disability (in males) to mental retardation and microcephaly with pontine and cerebellar hypoplasia. CASK is involved in transcription control, in the regulation of trafficking of the post-synaptic NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and acts as a presynaptic scaffolding protein. For CASK missense mutations, it is mostly unclear which of CASK's molecular interactions and cellular functions are altered and contribute to patient phenotypes. We identified five CASK missense mutations in male patients affected by neurodevelopmental disorders. These and five previously reported mutations were systematically analysed with respect to interaction with CASK interaction partners by co-expression and co-immunoprecipitation. We show that one mutation in the L27 domain interferes with binding to synapse-associated protein of 97 kDa. Two mutations in the guanylate kinase (GK) domain affect binding of CASK to the nuclear factors CASK-interacting nucleosome assembly protein (CINAP) and T-box, brain, 1 (Tbr1). A total of five mutations in GK as well as PSD-95/discs large/ZO-1 (PDZ) domains affect binding of CASK to the pre-synaptic cell adhesion molecule Neurexin. Upon expression in neurons, we observe that binding to Neurexin is not required for pre-synaptic localization of CASK. We show by bimolecular fluorescence complementation assay that Neurexin induces oligomerization of CASK, and that mutations in GK and PDZ domains interfere with the Neurexin-induced oligomerization of CASK. Our data are supported by molecular modelling, where we observe that the cooperative activity of PDZ, SH3 and GK domains is required for Neurexin binding and oligomerization of CASK.
Collapse
Affiliation(s)
- Yingzhou Edward Pan
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Debora Tibbe
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederike Leonie Harms
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Reißner
- Institut für Anatomie und Molekulare Neurobiologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Bri Dingmann
- Medical Genetics Department, Seattle Children's Hospital, Seattle, Washington, DC, USA
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, DC, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, DC, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | | | - Moneef Shoukier
- Pränatal-Medizin München, Frauenärzte und Humangenetiker MVZ, München, Germany
| | - Shagun Aggarwal
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Markus Missler
- Institut für Anatomie und Molekulare Neurobiologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kerstin Kutsche
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Sapey-Triomphe LA, Reversat J, Lesca G, Chatron N, Bussa M, Mazoyer S, Schmitz C, Sonié S, Edery P. A de novo frameshift pathogenic variant in TBR1 identified in autism without intellectual disability. Hum Genomics 2020; 14:32. [PMID: 32948248 PMCID: PMC7501624 DOI: 10.1186/s40246-020-00281-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/31/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND In order to be able to provide accurate genetic counseling to patients with Autism Spectrum Disorder (ASD), it is crucial to identify correlations between heterogeneous phenotypes and genetic alterations. Among the hundreds of de novo pathogenic variants reported in ASD, single-nucleotide variations and small insertions/deletions were reported in TBR1. This gene encodes a transcription factor that plays a key role in brain development. Pathogenic variants in TBR1 are often associated with severe forms of ASD, including intellectual disability and language impairment. METHODS Adults diagnosed with ASD but without intellectual disability (diagnosis of Asperger syndrome, according to the DSM-IV) took part in a genetic consultation encompassing metabolic assessments, a molecular karyotype and the screening of a panel of 268 genes involved in intellectual disability, ASD and epilepsy. In addition, the patient reported here went through a neuropsychological assessment, structural magnetic resonance imaging and magnetic resonance spectroscopy measurements. RESULTS Here, we report the case of a young adult male who presents with a typical form of ASD. Importantly, this patient presents with no intellectual disability or language impairment, despite a de novo heterozygous frameshift pathogenic variant in TBR1, leading to an early premature termination codon (c.26del, p.(Pro9Leufs*12)). CONCLUSION Based on this case report, we discuss the role of TBR1 in general brain development, language development, intellectual disability and other symptoms of ASD. Providing a detailed clinical description of the individuals with such pathogenic variants should help to understand the genotype-phenotype relationships in ASD.
Collapse
Affiliation(s)
- Laurie-Anne Sapey-Triomphe
- Lyon Neuroscience Research Center, Brain Dynamics and Cognition team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France
- Laboratory of Experimental Psychology, Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Julie Reversat
- Lyon Hospitals, Genetics Service and National Reference Centre for Developmental Anomalies, Lyon, France
| | - Gaëtan Lesca
- Lyon Hospitals, Genetics Service and National Reference Centre for Developmental Anomalies, Lyon, France
- Lyon Neuroscience Research Center, Genetics of Neurodevelopment team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France
| | - Nicolas Chatron
- Lyon Hospitals, Genetics Service and National Reference Centre for Developmental Anomalies, Lyon, France
- Lyon Neuroscience Research Center, Genetics of Neurodevelopment team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France
| | - Marina Bussa
- Centre de Ressource Autisme Rhône-Alpes, Centre Hospitalier Le Vinatier, Bron, France
- Hôpital Saint-Jean-de-Dieu, Lyon, France
| | - Sylvie Mazoyer
- Lyon Neuroscience Research Center, Genetics of Neurodevelopment team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France
| | - Christina Schmitz
- Lyon Neuroscience Research Center, Brain Dynamics and Cognition team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France.
| | - Sandrine Sonié
- Lyon Neuroscience Research Center, Brain Dynamics and Cognition team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France
- Centre de Ressource Autisme Rhône-Alpes, Centre Hospitalier Le Vinatier, Bron, France
- Hôpital Saint-Jean-de-Dieu, Lyon, France
| | - Patrick Edery
- Lyon Hospitals, Genetics Service and National Reference Centre for Developmental Anomalies, Lyon, France
- Lyon Neuroscience Research Center, Genetics of Neurodevelopment team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France
| |
Collapse
|
15
|
De novo TBR1 variants cause a neurocognitive phenotype with ID and autistic traits: report of 25 new individuals and review of the literature. Eur J Hum Genet 2020; 28:770-782. [PMID: 32005960 DOI: 10.1038/s41431-020-0571-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 11/26/2019] [Accepted: 12/24/2019] [Indexed: 11/08/2022] Open
Abstract
TBR1, a T-box transcription factor expressed in the cerebral cortex, regulates the expression of several candidate genes for autism spectrum disorders (ASD). Although TBR1 has been reported as a high-confidence risk gene for ASD and intellectual disability (ID) in functional and clinical reports since 2011, TBR1 has only recently been recorded as a human disease gene in the OMIM database. Currently, the neurodevelopmental disorders and structural brain anomalies associated with TBR1 variants are not well characterized. Through international data sharing, we collected data from 25 unreported individuals and compared them with data from the literature. We evaluated structural brain anomalies in seven individuals by analysis of MRI images, and compared these with anomalies observed in TBR1 mutant mice. The phenotype included ID in all individuals, associated to autistic traits in 76% of them. No recognizable facial phenotype could be identified. MRI analysis revealed a reduction of the anterior commissure and suggested new features including dysplastic hippocampus and subtle neocortical dysgenesis. This report supports the role of TBR1 in ID associated with autistic traits and suggests new structural brain malformations in humans. We hope this work will help geneticists to interpret TBR1 variants and diagnose ASD probands.
Collapse
|
16
|
Song J, Yang X, Zhou Y, Chen L, Zhang X, Liu Z, Niu W, Zhan N, Fan X, Khan AA, Kuang Y, Song L, He G, Li W. Dysregulation of neuron differentiation in an autistic savant with exceptional memory. Mol Brain 2019; 12:91. [PMID: 31699123 PMCID: PMC6836402 DOI: 10.1186/s13041-019-0507-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/01/2019] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of complex neurodevelopmental disorders without a unique or definite underlying pathogenesis. Although savant syndrome is common in ASD, few models are available for studying the molecular and cellular mechanisms of this syndrome. In this study, we generated urinary induced pluripotent stem cells (UiPSCs) from a 13-year-old male autistic savant with exceptional memory. The UiPSC-derived neurons of the autistic savant exhibited upregulated expression levels of ASD genes/learning difficulty-related genes, namely PAX6, TBR1 and FOXP2, accompanied by hypertrophic neural somas, enlarged spines, reduced spine density, and an increased frequency of spontaneous excitatory postsynaptic currents. Although this study involved only a single patient and a single control because of the rarity of such cases, it provides the first autistic savant UiPSC model that elucidates the potential cellular mechanisms underlying the condition.
Collapse
Affiliation(s)
- Jinjing Song
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiujuan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ying Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lei Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xu Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhuxi Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weibo Niu
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute for Pediatric Research, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Nengpeng Zhan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xuelian Fan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Abdul Aziz Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yifang Kuang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lulu Song
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
17
|
Yook C, Kim K, Kim D, Kang H, Kim SG, Kim E, Kim SY. A TBR1-K228E Mutation Induces Tbr1 Upregulation, Altered Cortical Distribution of Interneurons, Increased Inhibitory Synaptic Transmission, and Autistic-Like Behavioral Deficits in Mice. Front Mol Neurosci 2019; 12:241. [PMID: 31680851 PMCID: PMC6797848 DOI: 10.3389/fnmol.2019.00241] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Mutations in Tbr1, a high-confidence ASD (autism spectrum disorder)-risk gene encoding the transcriptional regulator TBR1, have been shown to induce diverse ASD-related molecular, synaptic, neuronal, and behavioral dysfunctions in mice. However, whether Tbr1 mutations derived from autistic individuals cause similar dysfunctions in mice remains unclear. Here we generated and characterized mice carrying the TBR1-K228E de novo mutation identified in human ASD and identified various ASD-related phenotypes. In heterozygous mice carrying this mutation (Tbr1+/K228E mice), levels of the TBR1-K228E protein, which is unable to bind target DNA, were strongly increased. RNA-Seq analysis of the Tbr1+/K228E embryonic brain indicated significant changes in the expression of genes associated with neurons, astrocytes, ribosomes, neuronal synapses, and ASD risk. The Tbr1+/K228E neocortex also displayed an abnormal distribution of parvalbumin-positive interneurons, with a lower density in superficial layers but a higher density in deep layers. These changes were associated with an increase in inhibitory synaptic transmission in layer 6 pyramidal neurons that was resistant to compensation by network activity. Behaviorally, Tbr1+/K228E mice showed decreased social interaction, increased self-grooming, and modestly increased anxiety-like behaviors. These results suggest that the human heterozygous TBR1-K228E mutation induces ASD-related transcriptomic, protein, neuronal, synaptic, and behavioral dysfunctions in mice.
Collapse
Affiliation(s)
- Chaehyun Yook
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Kyungdeok Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, South Korea
| | - Sun-Gyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Soo Young Kim
- College of Pharmacy, Yeongnam University, Gyeongsan, South Korea
| |
Collapse
|