1
|
Uchida R, Mukai Y, Amano T, Sakimura K, Itoi K, Yamanaka A, Minami M. Chronic pain enhances excitability of corticotropin-releasing factor-expressing neurons in the oval part of the bed nucleus of the stria terminalis. Mol Brain 2024; 17:22. [PMID: 38702738 PMCID: PMC11071157 DOI: 10.1186/s13041-024-01094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
We previously reported that enhanced corticotropin-releasing factor (CRF) signaling in the bed nucleus of the stria terminalis (BNST) caused the aversive responses during acute pain and suppressed the brain reward system during chronic pain. However, it remains to be examined whether chronic pain alters the excitability of CRF neurons in the BNST. In this study we investigated the chronic pain-induced changes in excitability of CRF-expressing neurons in the oval part of the BNST (ovBNSTCRF neurons) by whole-cell patch-clamp electrophysiology. CRF-Cre; Ai14 mice were used to visualize CRF neurons by tdTomato. Electrophysiological recordings from brain slices prepared from a mouse model of neuropathic pain revealed that rheobase and firing threshold were significantly decreased in the chronic pain group compared with the sham-operated control group. Firing rate of the chronic pain group was higher than that of the control group. These data indicate that chronic pain elevated neuronal excitability of ovBNSTCRF neurons.
Collapse
Affiliation(s)
- Ryoko Uchida
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Aichi, Japan
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
- Postdoctoral Research Fellow, Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
| | - Taiju Amano
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Keiichi Itoi
- Department of Nursing, Tohoku Fukushi University, Sendai, 981-8522, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Aichi, Japan
- Chinese Institute for Brain Research, Beijing, 102206, China
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Aichi, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
2
|
Sosa MK, Boorman DC, Keay KA. Sciatic nerve injury rebalances the hypothalamic-pituitary-adrenal axis in rats with persistent changes to their social behaviours. J Neuroendocrinol 2022; 34:e13131. [PMID: 35487591 PMCID: PMC9286784 DOI: 10.1111/jne.13131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
Increased glucocorticoids characterise acute pain responses, but not the chronic pain state, suggesting specific modifications to the hypothalamic-pituitary-adrenal (HPA)-axis preventing the persistent nature of chronic pain from elevating basal glucocorticoid levels. Individuals with chronic pain mount normal HPA-axis responses to acute stressors, indicating a rebalancing of the circuits underpinning these responses. Preclinical models of chronic neuropathic pain generally recapitulate these clinical observations, but few studies have considered that the underlying neuroendocrine circuitry may be altered. Additionally, individual differences in the behavioural outcomes of these pain models, which are strikingly similar to the range of behavioural subpopulations that manifest in response to stress, threat and motivational cues, may also be reflected in divergent patterns of HPA-axis activity, which characterises these other behavioural subpopulations. We investigated the effects of sciatic nerve chronic constriction injury (CCI) on adrenocortical and hypothalamic markers of HPA-axis activity in the subpopulation of rats showing persistent changes in social interactions after CCI (Persistent Effect) and compared them with rats that do not show these changes (No Effect). Basal plasma corticosterone did not change after CCI and did not differ between groups. However, adrenocortical sensitivity to adrenocorticotropic hormone (ACTH) diverged between these groups. No Effect rats showed large increases in basal plasma ACTH with no change in adrenocortical melanocortin 2 receptor (MC2 R) expression, whereas Persistent Effect rats showed modest decreases in plasma ACTH and large increases in MC2 R expression. In the paraventricular nucleus of the hypothalamus of Persistent Effect rats, single labelling revealed significantly increased numbers of corticotropin releasing factor (CRF) +ve and glucocorticoid receptor (GR) +ve neurons. Double-labelling revealed fewer GR +ve CRF +ve neurons, suggesting a decreased hypothalamic sensitivity of CRF neurons to circulating corticosterone in Persistent Effect rats. We suggest that in addition to rebalancing the HPA-axis, the increased CRF expression in Persistent Effect rats contributes to changes in complex behaviours, and in particular social interactions.
Collapse
Affiliation(s)
- M. Karmina Sosa
- School of Medical Sciences and the Brain and Mind CentreThe University of SydneyCamperdownNew South WalesAustralia
| | - Damien C. Boorman
- School of Medical Sciences and the Brain and Mind CentreThe University of SydneyCamperdownNew South WalesAustralia
| | - Kevin A. Keay
- School of Medical Sciences and the Brain and Mind CentreThe University of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
3
|
Xu L, Füredi N, Lutter C, Geenen B, Pétervári E, Balaskó M, Dénes Á, Kovács KJ, Gaszner B, Kozicz T. Leptin coordinates efferent sympathetic outflow to the white adipose tissue through the midbrain centrally-projecting Edinger-Westphal nucleus in male rats. Neuropharmacology 2021; 205:108898. [PMID: 34861283 DOI: 10.1016/j.neuropharm.2021.108898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/29/2021] [Accepted: 11/21/2021] [Indexed: 12/11/2022]
Abstract
The centrally-projecting Edinger-Westphal nucleus (EWcp) hosts a large population of neurons expressing urocortin 1 (Ucn1) and about half of these neurons also express the leptin receptor (LepRb). Previously, we have shown that the peripheral adiposity hormone leptin signaling energy surfeit modulates EWcp neurons' activity. Here, we hypothesized that Ucn1/LepRb neurons in the EWcp would act as a crucial neuronal node in the brain-white adipose tissue (WAT) axis modulating efferent sympathetic outflow to the WAT. We showed that leptin bound to neurons of the EWcp stimulated STAT3 phosphorylation, and increased Ucn1-production in a time-dependent manner. Besides, retrograde transneuronal tract-tracing using pseudorabies virus (PRV) identified EWcp Ucn1 neurons connected to WAT. Interestingly, reducing EWcp Ucn1 contents by ablating EWcp LepRb-positive neurons with leptin-saporin, did not affect food intake and body weight gain, but substantially (+26%) increased WAT weight accompanied by a higher plasma leptin level and changed plasma lipid profile. We also found that ablation of EWcp Ucn1/LepRb neurons resulted in lower respiratory quotient and oxygen consumption one week after surgery, but was comparable to sham values after 3 and 5 weeks of surgery. Taken together, we report that EWcp/LepRb/Ucn1 neurons not only respond to leptin signaling but also control WAT size and fat metabolism without altering food intake. These data suggest the existence of a EWcp-WAT circuitry allowing an organism to recruit fuels without being able to eat in situations such as the fight-or-flight response.
Collapse
Affiliation(s)
- Lu Xu
- Department of Anatomy Medical Imaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Nóra Füredi
- Department of Anatomy and Center for Neuroscience, Medical School, Pécs University, Pécs, Hungary; Department of Translational Medicine, Medical School, Pécs University, Pécs, Hungary
| | - Christoph Lutter
- Department of Anatomy and Center for Neuroscience, Medical School, Pécs University, Pécs, Hungary
| | - Bram Geenen
- Department of Anatomy Medical Imaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Erika Pétervári
- Department of Translational Medicine, Medical School, Pécs University, Pécs, Hungary
| | - Márta Balaskó
- Department of Translational Medicine, Medical School, Pécs University, Pécs, Hungary
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina J Kovács
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest, Hungary
| | - Balázs Gaszner
- Department of Anatomy and Center for Neuroscience, Medical School, Pécs University, Pécs, Hungary.
| | - Tamás Kozicz
- Department of Anatomy Medical Imaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Department of Clinical Genomics, Mayo Clinic, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, MN, USA; Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Cano G, Hernan SL, Sved AF. Centrally Projecting Edinger-Westphal Nucleus in the Control of Sympathetic Outflow and Energy Homeostasis. Brain Sci 2021; 11:1005. [PMID: 34439626 PMCID: PMC8392615 DOI: 10.3390/brainsci11081005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
The centrally projecting Edinger-Westphal nucleus (EWcp) is a midbrain neuronal group, adjacent but segregated from the preganglionic Edinger-Westphal nucleus that projects to the ciliary ganglion. The EWcp plays a crucial role in stress responses and in maintaining energy homeostasis under conditions that require an adjustment of energy expenditure, by virtue of modulating heart rate and blood pressure, thermogenesis, food intake, and fat and glucose metabolism. This modulation is ultimately mediated by changes in the sympathetic outflow to several effector organs, including the adrenal gland, heart, kidneys, brown and white adipose tissues and pancreas, in response to environmental conditions and the animal's energy state, providing for appropriate energy utilization. Classic neuroanatomical studies have shown that the EWcp receives inputs from forebrain regions involved in these functions and projects to presympathetic neuronal populations in the brainstem. Transneuronal tracing with pseudorabies virus has demonstrated that the EWcp is connected polysynaptically with central circuits that provide sympathetic innervation to all these effector organs that are critical for stress responses and energy homeostasis. We propose that EWcp integrates multimodal signals (stress, thermal, metabolic, endocrine, etc.) and modulates the sympathetic output simultaneously to multiple effector organs to maintain energy homeostasis under different conditions that require adjustments of energy demands.
Collapse
Affiliation(s)
- Georgina Cano
- Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA; (S.L.H.); (A.F.S.)
| | | | | |
Collapse
|
5
|
Yu W, Caira CM, Del R Rivera Sanchez N, Moseley GA, Kash TL. Corticotropin-releasing factor neurons in the bed nucleus of the stria terminalis exhibit sex-specific pain encoding in mice. Sci Rep 2021; 11:12500. [PMID: 34127705 PMCID: PMC8203647 DOI: 10.1038/s41598-021-91672-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST) plays an emerging role in pain regulation. Pharmacological studies have found that inhibiting corticotropin-releasing factor (CRF) signaling in the BNST can selectively mitigate the sensory and affective-motivational components of pain. However, mechanistic insight on the source of CRF that drives BNST responses to these harmful experiences remains unknown. In the present study, we used a series of genetic approaches to show that CRF in the BNST is engaged in the processing and modulation of pain. We conducted cell-type specific in vivo calcium imaging in CRF-Cre mice and found robust and synchronized recruitment of BNSTCRF neurons during acute exposures to noxious heat. Distinct patterns of recruitment were observed by sex, as the magnitude and timing of heat responsive activity in BNSTCRF neurons differed for male and female mice. We then used a viral approach in Floxed-CRF mice to selectively reduce CRF expression in the BNST and found it decreased nociceptive sensitivity for both sexes and increased paw attending for females. Together, these findings reveal that CRF in the BNST influences multiple facets of the pain experience to impact the sex-specific expression of pain-related behaviors.
Collapse
Affiliation(s)
- Waylin Yu
- Department of Pharmacology, School of Medicine, University of North Carolina At Chapel Hill, CB 7178 Thurston Bowles Building, 104 Manning Drive, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Pharmacology, School of Medicine, University of North Carolina At Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Christina M Caira
- Department of Pharmacology, School of Medicine, University of North Carolina At Chapel Hill, CB 7178 Thurston Bowles Building, 104 Manning Drive, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Natalia Del R Rivera Sanchez
- Department of Pharmacology, School of Medicine, University of North Carolina At Chapel Hill, CB 7178 Thurston Bowles Building, 104 Manning Drive, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Garrett A Moseley
- Department of Pharmacology, School of Medicine, University of North Carolina At Chapel Hill, CB 7178 Thurston Bowles Building, 104 Manning Drive, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas L Kash
- Department of Pharmacology, School of Medicine, University of North Carolina At Chapel Hill, CB 7178 Thurston Bowles Building, 104 Manning Drive, Chapel Hill, NC, 27599, USA.
- Bowles Center for Alcohol Studies, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Pharmacology, School of Medicine, University of North Carolina At Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Kang JWM, Mor D, Keay KA. Nerve injury alters restraint-induced activation of the basolateral amygdala in male rats. Brain Struct Funct 2021; 226:1209-1227. [PMID: 33582845 DOI: 10.1007/s00429-021-02235-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/28/2021] [Indexed: 01/05/2023]
Abstract
The amygdala is critical for the production of appropriate responses towards emotional or stressful stimuli. It has a characteristic neuronal activation pattern to acute stressors. Chronic pain and acute stress have each been shown to independently modulate the activity of the amygdala. Few studies have investigated the effect of pain or injury, on amygdala activation to acute stress. This study investigated the effects of a neuropathic injury on the activation response of the amygdala to an acute restraint stress. Chronic constriction injury of the right sciatic nerve (CCI) was used to create neuropathic injury and a single brief 15-min acute restraint was used as an emotional/psychological stressor. All rats received cholera toxin B (CTB) retrograde tracer injections into the medial prefrontal cortex (mPFC) to assess if the amygdala to mPFC pathway was specifically regulated by the combination of neuropathic injury and acute stress. To assess differential patterns of activity in amygdala subregions, cFos expression was used as a marker for "acute", restraint triggered neuronal activation, and FosB/ΔFosB expression was used to reveal prolonged neuronal activation/sensitisation triggered by CCI. Restraint resulted in a characteristic increase in cFos expression in the medial amygdala, which was not altered by CCI. Rats with a CCI showed increased cFos expression in the basolateral amygdala (BLA), in response to an acute restraint stress, but not in neurons projecting to the prefrontal cortex. Further, CCI rats showed an increase in FosB/ΔFosB expression which was exclusive to the BLA. This increase likely reflects sensitisation of the BLA as a consequence of nerve injury which may contribute to heightened sensitivity of BLA neurons to acute emotional/ psychological stressors.
Collapse
Affiliation(s)
- James W M Kang
- Faculty of Medicine and Health, School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW, 2006, Australia. .,Brain and Mind Centre (M02G), 100 Mallet Street, Camperdown, NSW, 2050, Australia.
| | - David Mor
- Faculty of Medicine and Health, School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kevin A Keay
- Faculty of Medicine and Health, School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW, 2006, Australia.,Brain and Mind Centre (M02G), 100 Mallet Street, Camperdown, NSW, 2050, Australia
| |
Collapse
|
7
|
Cucinello-Ragland JA, Edwards S. Neurobiological aspects of pain in the context of alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:1-29. [PMID: 33648668 DOI: 10.1016/bs.irn.2020.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alcohol is an effective and widely utilized analgesic. However, the chronic use of alcohol can actually facilitate nociceptive sensitivity over time, a condition known as hyperalgesia. Excessive and uncontrollable alcohol drinking is also a hallmark feature of alcohol use disorder (AUD). Both AUD and chronic pain are typically accompanied by negative affective states that may underlie reinforcement mechanisms contributing to AUD maintenance or progression. Frequent utilization of alcohol to relieve pain in individuals suffering from AUD or other chronic pain conditions may thus represent a powerful negative reinforcement construct. This chapter will describe ties between alcohol-mediated pain relief and potential exacerbation of AUD. We describe neurobiological systems engaged in alcohol analgesia as well as systems recruited in the development and maintenance of AUD and hyperalgesia. Although few effective therapies exist for either chronic pain or AUD, the common interaction of these conditions will likely lead the way for promising new discoveries of more effective and even simultaneous treatment of AUD and co-morbid hyperalgesia. An abundance of neurobiological findings from multiple laboratories has implicated a potentiation of central amygdala (CeA) signaling in both pain and AUD, and these data also suggest that attenuation of stress-related systems (including corticotropin-releasing factor, vasopressin, and glucocorticoid receptor activity) would be particularly effective and comprehensive therapeutic strategies targeting the critical intersection of somatic and motivational mechanisms driving AUD, including alcohol-induced hyperalgesia.
Collapse
Affiliation(s)
- Jessica A Cucinello-Ragland
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States
| | - Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States.
| |
Collapse
|
8
|
da Silva MD, Guginski G, Sato KL, Sanada LS, Sluka KA, Santos AR. Persistent pain induces mood problems and memory loss by the involvement of cytokines, growth factors, and supraspinal glial cells. Brain Behav Immun Health 2020; 7:100118. [PMID: 34589875 PMCID: PMC8474185 DOI: 10.1016/j.bbih.2020.100118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022] Open
Abstract
Lesions of peripheral nerves lead to pain, hyperalgesia, and psychological comorbidities. However, the relationship between mood disorders and neuropathic pain is unclear, as well as the underlying mechanisms related to these disorders. Therefore, we investigated if nerve injury induces depression, anxiety, and cognitive impairment and if there were changes in cytokines, growth factors, and glial cell activation in cortical sites involved in processing pain and mood in animals with nerve injury. Nerve injury was induced by partial sciatic nerve ligation (PSNL) in male Swiss mice and compared to sham-operated animals. Nociceptive behavioral tests to mechanical and thermal (heat and cold) stimuli confirmed the development of hyperalgesia. We further examined mood disorders and memory behaviors. We show nerve injury induces a decrease in mechanical withdrawal thresholds and thermal latency to heat and cold. We also show that nerve injury causes depressive-like and anxiety-like behaviors as well as impairment in short-term memory in mice. There were increases in proinflammatory cytokines as well as Brain-Derived Neurotrophic Factor (BDNF) in the injured nerve. In the spinal cord, there were increases in both pro and anti-inflammatory cytokines, as well as of BDNF and Nerve Growth Factor (NGF). Further, in our data was a decrease in the density of microglia and astrocytes in the hippocampus and increased microglial density in the prefrontal cortex, areas associated with neuropathic pain conditions.
Collapse
Affiliation(s)
- Morgana D. da Silva
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center for Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
- Program of Pos-graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Giselle Guginski
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Karina L. Sato
- Department of Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, #1-252 MEB, Iowa City, IA, 52241, USA
| | - Luciana Sayuri Sanada
- Department of Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, #1-252 MEB, Iowa City, IA, 52241, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, #1-252 MEB, Iowa City, IA, 52241, USA
| | - Adair R.S. Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center for Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
- Program of Pos-graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
9
|
Cardenas A, Caniglia J, Keljalic D, Dimitrov E. Sex differences in the development of anxiodepressive-like behavior of mice subjected to sciatic nerve cuffing. Pain 2020; 161:1861-1871. [PMID: 32701845 PMCID: PMC7502469 DOI: 10.1097/j.pain.0000000000001875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the contribution of nucleus locus ceruleus (LC) to the development of pain-associated affective behavior. Mice of both sexes were subjected to sciatic nerve cuffing, a model of peripheral nerve injury, and monitored for 45 days. Although the thermal and mechanical thresholds were equally decreased in both males and females, only the male mice developed anxiodepressive-like behavior, which was complemented by suppressed hippocampal neurogenesis. Furthermore, the LC activity was lower in males when compared with females subjected to sciatic cuffing. Next, we used a chemogenetic approach to modulate the activity of LC projections to the dentate gyrus of the hippocampus in females without cuffs and in males with sciatic cuffs. Sustained inhibition of the LC projections to the dentate gyrus for 15 days induced anxiodepressive-like behavior and reduced the hippocampal neurogenesis in females. Activation of the LC projections to the dentate gyrus for 15 days prevented the development of anxiodepressive-like behavior and increased the hippocampal neurogenesis in males with cuffs. In sum, we demonstrated that the LC projections to the hippocampus link the sensory to the affective component of neuropathic injury and that the female mice are able to dissociate the nociception from affect by maintaining robust LC activity. The work provides evidence that sex differences in LC response to pain determine the sex differences in the development of pain phenotype.
Collapse
Affiliation(s)
- Andrea Cardenas
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| | - John Caniglia
- Illinois College of Medicine, University of Illinois, 1 Illini Drive, Peoria, IL 61605
| | - Denis Keljalic
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| | - Eugene Dimitrov
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, Tel: (847) 578-8364
| |
Collapse
|
10
|
Abstract
The amygdala has emerged as an important brain area for the emotional-affective dimension of pain and pain modulation. The amygdala receives nociceptive information through direct and indirect routes. These excitatory inputs converge on the amygdala output region (central nucleus) and can be modulated by inhibitory elements that are the target of (prefrontal) cortical modulation. For example, inhibitory neurons in the intercalated cell mass in the amygdala project to the central nucleus to serve gating functions, and so do inhibitory (PKCdelta) interneurons within the central nucleus. In pain conditions, synaptic plasticity develops in output neurons because of an excitation-inhibition imbalance and drives pain-like behaviors and pain persistence. Mechanisms of pain related neuroplasticity in the amygdala include classical transmitters, neuropeptides, biogenic amines, and various signaling pathways. An emerging concept is that differences in amygdala activity are associated with phenotypic differences in pain vulnerability and resilience and may be predetermining factors of the complexity and persistence of pain.
Collapse
Affiliation(s)
- Volker Neugebauer
- Professor and Chair, Department of Pharmacology and Neuroscience, Giles McCrary Endowed Chair in Addiction Medicine, Director, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center
- School of Medicine, 3601 4th Street
- Mail Stop 6592, Lubbock, Texas 79430-6592
| |
Collapse
|
11
|
Neugebauer V, Mazzitelli M, Cragg B, Ji G, Navratilova E, Porreca F. Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology 2020; 170:108052. [PMID: 32188569 DOI: 10.1016/j.neuropharm.2020.108052] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Neuropeptides play important modulatory roles throughout the nervous system, functioning as direct effectors or as interacting partners with other neuropeptide and neurotransmitter systems. Limbic brain areas involved in learning, memory and emotions are particularly rich in neuropeptides. This review will focus on the amygdala, a limbic region that plays a key role in emotional-affective behaviors and pain modulation. The amygdala is comprised of different nuclei; the basolateral (BLA) and central (CeA) nuclei and in between, the intercalated cells (ITC), have been linked to pain-related functions. A wide range of neuropeptides are found in the amygdala, particularly in the CeA, but this review will discuss those neuropeptides that have been explored for their role in pain modulation. Calcitonin gene-related peptide (CGRP) is a key peptide in the afferent nociceptive pathway from the parabrachial area and mediates excitatory drive of CeA neurons. CeA neurons containing corticotropin releasing factor (CRF) and/or somatostatin (SOM) are a source of long-range projections and serve major output functions, but CRF also acts locally to excite neurons in the CeA and BLA. Neuropeptide S (NPS) is associated with inhibitory ITC neurons that gate amygdala output. Oxytocin and vasopressin exert opposite (inhibitory and excitatory, respectively) effects on amygdala output. The opioid system of mu, delta and kappa receptors (MOR, DOR, KOR) and their peptide ligands (β-endorphin, enkephalin, dynorphin) have complex and partially opposing effects on amygdala function. Neuropeptides therefore serve as valuable targets to regulate amygdala function in pain conditions. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Bryce Cragg
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
12
|
Takahashi D, Asaoka Y, Kimura K, Hara R, Arakaki S, Sakasai K, Suzuki H, Yamauchi N, Nomura H, Amano T, Minami M. Tonic Suppression of the Mesolimbic Dopaminergic System by Enhanced Corticotropin-Releasing Factor Signaling Within the Bed Nucleus of the Stria Terminalis in Chronic Pain Model Rats. J Neurosci 2019; 39:8376-8385. [PMID: 31451580 PMCID: PMC6794933 DOI: 10.1523/jneurosci.3047-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/01/2019] [Accepted: 08/16/2019] [Indexed: 02/02/2023] Open
Abstract
Although dysfunction of the mesolimbic dopaminergic system has been implicated in chronic pain, the underlying mechanisms remain to be elucidated. We hypothesized that increased inhibitory inputs to the neuronal pathway from the dorsolateral bed nucleus of the stria terminalis (dlBNST) to the ventral tegmental area (VTA) during chronic pain may induce tonic suppression of the mesolimbic dopaminergic system. To test this hypothesis, male Sprague Dawley rats were subjected to spinal nerve ligation to induce neuropathic pain and then spontaneous IPSCs (sIPSCs) were measured in this neuronal pathway. Whole-cell patch-clamp electrophysiology of brain slices containing the dlBNST revealed that the frequency of sIPSCs significantly increased in VTA-projecting dlBNST neurons 4 weeks after surgery. Next, the role of corticotropin-releasing factor (CRF) signaling within the dlBNST in the increased sIPSCs was examined. CRF increased the frequency of sIPSCs in VTA-projecting dlBNST neurons in sham-operated controls, but not in chronic pain rats. By contrast, NBI27914, a CRF type 1 receptor antagonist, decreased the frequency of sIPSCs in VTA-projecting dlBNST neurons in the chronic pain rats, but not in the control animals. In addition, histological analyses revealed the increased expression of CRF mRNA in the dlBNST. Finally, bilateral injections of NBI27914 into the dlBNST of chronic pain rats activated mesolimbic dopaminergic neurons and induced conditioned place preference. Together, these results suggest that the mesolimbic dopaminergic system is tonically suppressed during chronic pain by enhanced CRF signaling within the dlBNST via increased inhibitory inputs to VTA-projecting dlBNST neurons.SIGNIFICANCE STATEMENT The comorbidity of chronic pain and depression has long been recognized. Although dysfunction of the mesolimbic dopaminergic system has been implicated in both chronic pain and depression, the underlying mechanisms remain to be elucidated. Here, we show that the inhibitory inputs to the neuronal pathway from the dorsolateral bed nucleus of the stria terminalis (dlBNST) to the ventral tegmental area increase during chronic pain. This neuroplastic change is mediated by enhanced corticotropin-releasing factor signaling within the dlBNST that leads to tonic suppression of the mesolimbic dopaminergic system, which may be involved in the depressive mood and anhedonia under the chronic pain condition.
Collapse
Affiliation(s)
- Daiki Takahashi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuta Asaoka
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Keisuke Kimura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Ryuto Hara
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Saya Arakaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Keisuke Sakasai
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hiroe Suzuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Naoki Yamauchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hiroshi Nomura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Taiju Amano
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
13
|
Modulation of the Negative Affective Dimension of Pain: Focus on Selected Neuropeptidergic System Contributions. Int J Mol Sci 2019; 20:ijms20164010. [PMID: 31426473 PMCID: PMC6720937 DOI: 10.3390/ijms20164010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
It is well known that emotions can interfere with the perception of physical pain, as well as with the development and maintenance of painful conditions. On the other hand, somatic pain can have significant consequences on an individual’s affective behavior. Indeed, pain is defined as a complex and multidimensional experience, which includes both sensory and emotional components, thus exhibiting the features of a highly subjective experience. Over the years, neural pathways involved in the modulation of the different components of pain have been identified, indicating the existence of medial and lateral pain systems, which, respectively, project from medial or lateral thalamic nuclei to reach distinct cortex regions relating to specific functions. However, owing to the limited information concerning how mood state and painful input affect each other, pain treatment is frequently unsatisfactory. Different neuromodulators, including endogenous neuropeptides, appear to be involved in pain-related emotion and in its affective influence on pain perception, thus playing key roles in vulnerability and clinical outcome. Hence, this review article focuses on evidence concerning the modulation of the sensory and affective dimensions of pain, with particular attention given to some selected neuropeptidergic system contributions.
Collapse
|
14
|
Chronic stress induces cell type-selective transcriptomic and electrophysiological changes in the bed nucleus of the stria terminalis. Neuropharmacology 2019; 150:80-90. [PMID: 30878403 DOI: 10.1016/j.neuropharm.2019.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 02/01/2023]
Abstract
Distinct regions and cell types in the anterolateral group of the bed nucleus of the stria terminalis (BNSTALG) act to modulate anxiety in opposing ways. A history of chronic stress increases anxiety-like behavior with lasting electrophysiological effects on the BNSTALG. However, the opposing circuits within the BNSTALG suggest that stress may have differential effects on the individual cell types that comprise these circuits to shift the balance to favor anxiogenesis. Yet, the effects of stress are generally examined by treating all neurons within a particular region of the BNST as a homogenoeus population. We used patch-clamp electrophysiology and single-cell quantitative reverse transcriptase PCR (scRT-PCR) to determine how chronic shock stress (CSS) affects electrophysiological and neurochemical properties of Type I, Type II, and Type III neurons in the BNSTALG. We report that CSS resulted in changes in the input resistance, time constant, action potential waveform, and firing rate of Type III but not Type I or II neurons. Additionally, only the Type III neurons exhibited an increase in Crf mRNA and a decrease in striatal-enriched protein tyrosine phosphatase (Ptpn5) mRNA after CSS. In contrast, only non-Type III cells showed a reduction in calcium-permeable AMPA receptor (CP-AMPAR) current and changes in mRNA expression of genes encoding AMPA receptor subunits after CSS. Importantly, none of the effects of CSS observed were seen in all cell types. Our results suggest that Type III neurons play a unique role in the BNSTALG circuit and represent a population of CRF neurons particularly sensitive to chronic stress.
Collapse
|
15
|
Monteiro C, Cardoso-Cruz H, Galhardo V. Animal models of congenital hypoalgesia: Untapped potential for assessing pain-related plasticity. Neurosci Lett 2019; 702:51-60. [DOI: 10.1016/j.neulet.2018.11.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
16
|
Verheij MMM, Contet C, Karel P, Latour J, van der Doelen RHA, Geenen B, van Hulten JA, Meyer F, Kozicz T, George O, Koob GF, Homberg JR. Median and Dorsal Raphe Serotonergic Neurons Control Moderate Versus Compulsive Cocaine Intake. Biol Psychiatry 2018; 83:1024-1035. [PMID: 29357981 PMCID: PMC5960600 DOI: 10.1016/j.biopsych.2017.10.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Reduced expression of the serotonin transporter (SERT) promotes anxiety and cocaine intake in both humans and rats. We tested the hypothesis that median raphe nucleus (MRN) and dorsal raphe nucleus (DRN) serotonergic projections differentially mediate these phenotypes. METHODS We used virally mediated RNA interference to locally downregulate SERT expression and compared the results with those of constitutive SERT knockout. Rats were allowed either short access (ShA) (1 hour) or long access (LgA) (6 hours) to cocaine self-administration to model moderate versus compulsive-like cocaine taking. RESULTS SERT knockdown in the MRN increased cocaine intake selectively under ShA conditions and, like ShA cocaine self-administration, reduced corticotropin-releasing factor (CRF) immunodensity in the paraventricular nucleus of the hypothalamus. In contrast, SERT knockdown in the DRN increased cocaine intake selectively under LgA conditions and, like LgA cocaine self-administration, reduced CRF immunodensity in the central nucleus of the amygdala. SERT knockdown in the MRN or DRN produced anxiety-like behavior, as did withdrawal from ShA or LgA cocaine self-administration. The phenotype of SERT knockout rats was a summation of the phenotypes generated by MRN- and DRN-specific SERT knockdown. CONCLUSIONS Our results highlight a differential role of serotonergic projections arising from the MRN and DRN in the regulation of cocaine intake. We propose that a cocaine-induced shift from MRN-driven serotonergic control of CRF levels in the hypothalamus to DRN-driven serotonergic control of CRF levels in the amygdala may contribute to the transition from moderate to compulsive intake of cocaine.
Collapse
Affiliation(s)
- Michel M M Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Department of Molecular and Animal Physiology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands.
| | - Candice Contet
- Department of Molecular and Animal Physiology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Peter Karel
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Judith Latour
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Rick H A van der Doelen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Bram Geenen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | | | - Francisca Meyer
- Department of Neuroscience, Scripps Research Institute, La Jolla, California
| | - Tamas Kozicz
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Olivier George
- Department of Molecular and Animal Physiology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - George F Koob
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
17
|
Kai Y, Li Y, Sun T, Yin W, Mao Y, Li J, Xie W, Chen S, Wang L, Li J, Zhang Z, Tao W. A medial prefrontal cortex-nucleus acumens corticotropin-releasing factor circuitry for neuropathic pain-increased susceptibility to opioid reward. Transl Psychiatry 2018; 8:100. [PMID: 29780165 PMCID: PMC5960646 DOI: 10.1038/s41398-018-0152-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have shown that persistent pain facilitates the response to morphine reward. However, the circuit mechanism underlying this process remains ambiguous. In this study, using chronic constriction injury (CCI) of the sciatic nerve in mice, we found that persistent neuropathic pain reduced the minimum number of morphine conditioning sessions required to induce conditioned place preference (CPP) behavior. This dose of morphine had no effect on the pain threshold. In the medial prefrontal cortex (mPFC), which is involved in both pain and emotion processing, corticotropin-releasing factor (CRF) expressing neuronal activity was increased in CCI mice. Chemogenetic inhibition of mPFC CRF neurons reversed CCI-induced morphine CPP facilitation. Furthermore, the nucleus acumens (NAc) received mPFC CRF functional projections that exerted excitatory effects on NAc neurons. Optogenetic inhibition of mPCF neuronal terminals or local infusion of the CRF receptor 1 (CRFR1) antagonist in the NAc restored the effects of neuropathic pain on morphine-induced CPP behavior, but not in normal mice. On a molecular level, in CCI mice, CRFR1 protein expression was increased in the NAc by a histone dimethyltransferase G9a-mediated epigenetic mechanism. Local G9a knockdown increased the expression of CRFR1 and mimicked CCI-induced hypersensitivity to acquiring morphine CPP. Taken together, these findings demonstrate a previously unknown and specific mPFC CRF engagement of NAc neuronal circuits, the sensitization of which facilitates behavioral responses to morphine reward in neuropathic pain states via CRFR1s.
Collapse
Affiliation(s)
- Yuanzhong Kai
- 0000000121679639grid.59053.3aKey Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027 China ,0000 0001 0085 4987grid.252245.6Institute of Health Sciences and technology, School of Life Sciences, Anhui University, Hefei, Anhui 2300601 China
| | - Yanhua Li
- 0000000121679639grid.59053.3aKey Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027 China
| | - Tingting Sun
- 0000000121679639grid.59053.3aKey Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027 China
| | - Weiwei Yin
- 0000000121679639grid.59053.3aKey Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027 China
| | - Yu Mao
- 0000000121679639grid.59053.3aKey Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027 China ,0000 0004 1771 3402grid.412679.fDepartment of Anesthesiology and Department of Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022 China
| | - Jie Li
- 0000000121679639grid.59053.3aKey Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027 China
| | - Wen Xie
- grid.452190.bDepartment of Psychology, Anhui Mental Health Center, Hefei, Anhui 230022 China
| | - Shi Chen
- 0000 0004 1771 3402grid.412679.fDepartment of Anesthesiology and Department of Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022 China
| | - Likui Wang
- 0000 0004 1771 3402grid.412679.fDepartment of Anesthesiology and Department of Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022 China
| | - Juan Li
- 0000000121679639grid.59053.3aKey Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027 China
| | - Zhi Zhang
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenjuan Tao
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
18
|
Abstract
Chronic pain is frequently associated with anxiety, depression, and cognitive dysfunction. This review discusses recent work in rodents that contributes to the understanding of their neurobiological links. Brain regions that contain circuits that mediate persistent changes in behavior that are caused by nerve injury or joint inflammation include the rostral anterior cingulate and other parts of the medial prefrontal cortex, the basolateral and central nucleus of the amygdala, and the nucleus accumbens. Functional changes, including increases in the activity within specific neuronal pathways and in the levels of specific synaptic components, that are associated with the behavior changes, or are in some cases necessary for them, have recently been identified. Broadly projecting modulatory systems and widely expressed factors such as cytokines and growth factors also contribute to pain-associated behavior. Integrating these observations and determining their causal relationships is now critical for the identification of therapeutic targets and the design of appropriate interventions.
Collapse
Affiliation(s)
- Ted B Usdin
- Section on Fundamental Neuroscience, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Eugene L Dimitrov
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
19
|
Abstract
The amygdala is a limbic brain region that plays a key role in emotional processing, neuropsychiatric disorders, and the emotional-affective dimension of pain. Preclinical and clinical studies have identified amygdala hyperactivity as well as impairment of cortical control mechanisms in pain states. Hyperactivity of basolateral amygdala (BLA) neurons generates enhanced feedforward inhibition and deactivation of the medial prefrontal cortex (mPFC), resulting in pain-related cognitive deficits. The mPFC sends excitatory projections to GABAergic neurons in the intercalated cell mass (ITC) in the amygdala, which project to the laterocapsular division of the central nucleus of the amygdala (CeLC; output nucleus) and serve gating functions for amygdala output. Impairment of these cortical control mechanisms allows the development of amygdala pain plasticity. Mechanisms of abnormal amygdala activity in pain with particular focus on loss of cortical control mechanisms as well as new strategies to correct pain-related amygdala dysfunction will be discussed in the present review.
Collapse
|
20
|
Andreoli M, Marketkar T, Dimitrov E. Contribution of amygdala CRF neurons to chronic pain. Exp Neurol 2017; 298:1-12. [PMID: 28830762 DOI: 10.1016/j.expneurol.2017.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/03/2017] [Accepted: 08/18/2017] [Indexed: 12/30/2022]
Abstract
We investigated the role of amygdala corticotropin-releasing factor (CRF) neurons in the perturbations of descending pain inhibition caused by neuropathic pain. Forced swim increased the tail-flick response latency in uninjured mice, a phenomenon known as stress-induced analgesia (SIA) but did not change the tail-flick response latency in mice with neuropathic pain caused by sciatic nerve constriction. Neuropathic pain also increased the expression of CRF in the central amygdala (CeAmy) and ΔFosB in the dorsal horn of the spinal cord. Next, we injected the CeAmy of CRF-cre mice with cre activated AAV-DREADD (Designer Receptors Exclusively Activated by Designer Drugs) vectors. Activation of CRF neurons by DREADD/Gq did not affect the impaired SIA but inhibition of CRF neurons by DREADD/Gi restored SIA and decreased allodynia in mice with neuropathic pain. The possible downstream circuitry involved in the regulation of SIA was investigated by combined injections of retrograde cre-virus (CAV2-cre) into the locus ceruleus (LC) and cre activated AAV-diphtheria toxin (AAV-FLEX-DTX) virus into the CeAmy. The viral injections were followed by a sciatic nerve constriction ipsilateral or contralateral to the injections. Ablation of amygdala projections to the LC on the side of injury but not on the opposite side, completely restored SIA, decreased allodynia and decreased ΔFosB expression in the spinal cord in mice with neuropathic pain. The possible lateralization of SIA impairment to the side of injury was confirmed by an experiment in which unilateral inhibition of the LC decreased SIA even in uninjured mice. The current view in the field of pain research attributes the process of pain chronification to abnormal functioning of descending pain inhibition. Our results demonstrate that the continuous activity of CRF neurons brought about by persistent pain leads to impaired SIA, which is a symptom of dysregulation of descending pain inhibition. Therefore, an over-activation of amygdala CRF neurons is very likely an important contributing factor for pain chronification.
Collapse
Affiliation(s)
- Matthew Andreoli
- Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, Unites States.
| | - Tanvi Marketkar
- Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, Unites States.
| | - Eugene Dimitrov
- Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, Unites States.
| |
Collapse
|
21
|
Palmisano M, Mercatelli D, Caputi FF, Carretta D, Romualdi P, Candeletti S. N/OFQ system in brain areas of nerve-injured mice: its role in different aspects of neuropathic pain. GENES, BRAIN, AND BEHAVIOR 2017; 16:537-545. [PMID: 28000999 DOI: 10.1111/gbb.12365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/15/2016] [Accepted: 12/18/2016] [Indexed: 12/28/2022]
Abstract
Several studies showed that chronic pain causes reorganization and functional alterations of supraspinal brain regions. The nociceptin-NOP receptor system is one of the major systems involved in pain control and much evidence also suggested its implication in stress, anxiety and depression. Therefore, we investigated the nociceptin-NOP system alterations in selected brain regions in a neuropathic pain murine model. Fourteen days after the common sciatic nerve ligature, polymerase chain reaction (PCR) analysis indicated a significant decrease of pronociceptin and NOP receptor mRNA levels in the thalamus; these alterations could contribute to the decrease of the thalamic inhibitory function reported in neuropathic pain condition. Nociceptin peptide and NOP mRNA increased in the anterior cingulate cortex (ACC) and not in the somatosensory cortex, suggesting a peculiar involvement of this system in pain regulating circuitry. Similarly to the ACC, an increase of nociceptin peptide levels was observed in the amygdala. Finally, the pronociceptin and NOP mRNAs decrease observed in the hypothalamus reflects the lack of hypothalamus-pituitary-adrenal axis activation, already reported in neuropathic pain models. Our data indicate that neuropathic pain conditions affect the supraspinal nociceptin-NOP system which is also altered in regions known to play a role in emotional aspects of pain.
Collapse
Affiliation(s)
- M Palmisano
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - D Mercatelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - F F Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - D Carretta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - P Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - S Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
22
|
Monteiro C, Cardoso-Cruz H, Matos M, Dourado M, Lima D, Galhardo V. Increased fronto-hippocampal connectivity in the Prrxl1 knockout mouse model of congenital hypoalgesia. Pain 2017; 157:2045-2056. [PMID: 27168359 DOI: 10.1097/j.pain.0000000000000611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite the large number of studies addressing how prolonged painful stimulation affects brain functioning, there are only a handful of studies aimed at uncovering if persistent conditions of reduced pain perception would also result in brain plasticity. Permanent hypoalgesia induced by neonatal injection of capsaicin or carrageenan has already been shown to affect learning and memory and to induce alterations in brain gene expression. In this study, we used the Prrxl1 model of congenital mild hypoalgesia to conduct a detailed study of the neurophysiological and behavioral consequences of reduced pain experience. Prrxl1 knockout animals are characterized by selective depletion of small diameter primary afferents and abnormal development of the superficial dorsal laminae of the spinal cord, resulting in diminished pain perception but normal tactile and motor behaviour. Behavioral testing of Prrxl1 mice revealed that these animals have reduced anxiety levels, enhanced memory performance, and improved fear extinction. Neurophysiological recordings from awake behaving Prrxl1 mice show enhanced altered fronto-hippocampal connectivity in the theta- and gamma-bands. Importantly, although inflammatory pain by Complete Freund Adjuvant injection caused a decrease in fronto-hippocampal connectivity in the wild-type animals, Prrxl1 mice maintained the baseline levels. The onset of inflammatory pain also reverted the differences in forebrain expression of stress- and monoamine-related genes in Prrxl1 mice. Altogether our results suggest that congenital hypoalgesia may have an effect on brain plasticity that is the inverse of what is usually observed in animal models of chronic pain.
Collapse
Affiliation(s)
- Clara Monteiro
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Helder Cardoso-Cruz
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Mariana Matos
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Margarida Dourado
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Deolinda Lima
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Vasco Galhardo
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| |
Collapse
|
23
|
Kiss A, Majercikova Z. Repeated asenapine treatment does not participate in the mild stress induced FosB/ΔFosB expression in the rat hypothalamic paraventricular nucleus neurons. Neuropeptides 2017; 61:57-65. [PMID: 27756486 DOI: 10.1016/j.npep.2016.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 01/15/2023]
Abstract
Effect of repeated asenapine (ASE) treatment on FosB/ΔFosB expression was studied in the hypothalamic paraventricular nucleus (PVN) of male rats exposed to chronic mild stress (CMS) for 21days. Our intention was to find out whether repeated ASE treatment for 14days may: 1) induce FosB/ΔFosB expression in the PVN; 2) activate selected PVN neuronal phenotypes, synthesizing oxytocin (OXY), vasopressin (AVP), corticoliberin (CRH) or tyrosine hydroxylase (TH); and 3) interfere with the impact of CMS. Control, ASE, CMS, and CMS+ASE treated groups were used. CMS included restraint, social isolation, crowding, swimming, and cold. From the 7th day of CMS, rats received ASE (0.3mg/kg) or saline (300μl/rat) subcutaneously, twice a day for 14days. They were sacrificed on the day 22nd (16-18h after last treatments). FosB/ΔFosB was visualized with avidin biotin peroxidase complex and OXY, AVP, CRH or TH antibodies by fluorescent dyes. Saline and ASE did not promote FosB/ΔFosB expression in the PVN. CMS and CMS+ASE elicited FosB/ΔFosB-expression in the PVN, whereas, ASE did not augment or attenuate FosB/ΔFosB induction elicited by CMS. FosB/ΔFosB-CRH occurred after CMS and CMS+ASE treatments in the PVN middle sector, while FosB/ΔFosB-AVP and FosB/ΔFosB-OXY after CMS and CMS+ASE treatments in the PVN posterior sector. FosB/ΔFosB-TH colocalization was rare. Larger FosB/ΔFosB profiles, running above the PVN, did not show any colocalizations. The study provides an anatomical/functional knowledge about an unaccented nature of prolonged ASE treatment at the level of PVN and excludes its positive or negative interplay with CMS effect. Data indicate that long-lasting ASE treatment might not act as a stressor acting at the PVN level.
Collapse
Affiliation(s)
- Alexander Kiss
- Institute of Experimental Endocrinology, Biomedial Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Zuzana Majercikova
- Institute of Experimental Endocrinology, Biomedial Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
24
|
Morland RH, Novejarque A, Spicer C, Pheby T, Rice ASC. Enhanced c-Fos expression in the central amygdala correlates with increased thigmotaxis in rats with peripheral nerve injury. Eur J Pain 2016; 20:1140-54. [PMID: 27030378 PMCID: PMC4950342 DOI: 10.1002/ejp.839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2015] [Indexed: 12/12/2022]
Abstract
Background Pain is associated with affective, cognitive and sensory dysfunction. Animal models can be used to observe ethologically relevant behaviours such as thigmotaxis, giving insight into how ongoing sensory abnormalities influence natural rodent behaviours. The amygdala is a complex group of nuclei implicated in the integration and generation of emotional behavioural responses, including those associated with pain, and a region known as the central amygdala is particularly associated with generation of behavioural responses, due to its links to the descending pain modulation pathways; as such, study of amygdalar c‐Fos immunoreactivity can help identify the neuronal circuits involved. Method This study investigated changes in both nociceptive evoked responses and open field behaviour following spinal nerve transection (SNT) in male Wistar rats, and attempted to correlate these with changes in central amygdala c‐Fos immunoreactivity. Results Fourteen days after SNT, mechanical hypersensitivity was present in the hind paw ipsilateral to site of injury. Thigmotactic behaviour was significantly increased in both SNT and sham surgery animals, with c‐Fos immunoreactivity in the central amygdala significantly greater in SNT animals compared to both sham and naive groups. Activation was greatest in the capsular and lateral subnuclei of the central amygdala, and in the caudal‐most regions. There was a strong correlation between thigmotactic behaviour and central amygdala activation following SNT surgery not seen in sham animals suggesting a role for the amygdala in behavioural responses to peripheral nerve injury. Conclusions This study provides evidence to support the role of the amygdala in thigmotactic open field behaviour following SNT. What does this study add? Thigmotaxis and amygdala activation are positively correlated in rats following spinal nerve transection. Behavioural changes seen in sham animals did not correlate with amygdala activation, suggesting amygdala activation is related to nociceptive input. Evoked measures, such as hindpaw withdrawal, are not correlated with either thigmotaxis or amygdala activation, emphasizing the importance of complex behaviours when studying pain.
Collapse
Affiliation(s)
- R H Morland
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Chelsea and Westminster Hospital campus, Imperial College London, UK
| | - A Novejarque
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Chelsea and Westminster Hospital campus, Imperial College London, UK
| | - C Spicer
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Chelsea and Westminster Hospital campus, Imperial College London, UK
| | - T Pheby
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Chelsea and Westminster Hospital campus, Imperial College London, UK
| | - A S C Rice
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Chelsea and Westminster Hospital campus, Imperial College London, UK
| |
Collapse
|
25
|
Morland RH, Novejarque A, Huang W, Wodarski R, Denk F, Dawes JD, Pheby T, McMahon SB, Rice AS. Short-term effect of acute and repeated urinary bladder inflammation on thigmotactic behaviour in the laboratory rat. F1000Res 2015; 4:109. [PMID: 27158443 PMCID: PMC4850861 DOI: 10.12688/f1000research.6255.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2015] [Indexed: 12/13/2022] Open
Abstract
Understanding the non-sensory components of the pain experience is crucial to developing effective treatments for pain conditions. Chronic pain is associated with increased incidence of anxio-depressive disorders, and patients often report feelings of vulnerability which can decrease quality of life. In animal models of pain, observation of behaviours such as thigmotaxis can be used to detect such affective disturbances by exploiting the influence of nociceptive stimuli on the innate behavioural conflict between exploration of a novel space and predator avoidance behaviour. This study investigates whether acute and repeated bladder inflammation in adult female Wistar rats increases thigmotactic behaviour in the open field paradigm, and aims to determine whether this correlates with activation in the central amygdala, as measured by c-Fos immunoreactivity. Additionally, up-regulation of inflammatory mediators in the urinary bladder was measured using RT-qPCR array featuring 92 transcripts to examine how local mediators change under experimental conditions. We found acute but not repeated turpentine inflammation of the bladder increased thigmotactic behaviour (decreased frequency of entry to the inner zone) in the open field paradigm, a result that was also observed in the catheter-only instrumentation group. Decreases in locomotor activity were also observed in both models in turpentine and instrumentation groups. No differences were observed in c-Fos activation, although a general increased in activation along the rostro-caudal axis was seen. Inflammatory mediator up-regulation was greatest following acute inflammation, with CCL12, CCL7, and IL-1β significantly up-regulated in both conditions when compared to naïve tissue. These results suggest that acute catheterisation, with or without turpentine inflammation, induces affective alterations detectable in the open field paradigm accompanied by up-regulation of multiple inflammatory mediators.
Collapse
Affiliation(s)
- Rosemary H Morland
- Pain Research Group, Department of Surgery and Cancer, Faculty of Medicine, Imperial College , London, UK
| | - Amparo Novejarque
- Pain Research Group, Department of Surgery and Cancer, Faculty of Medicine, Imperial College , London, UK
| | - Wenlong Huang
- Pain Research Group, Department of Surgery and Cancer, Faculty of Medicine, Imperial College , London, UK
| | - Rachel Wodarski
- Pain Research Group, Department of Surgery and Cancer, Faculty of Medicine, Imperial College , London, UK
| | - Franziska Denk
- Wolfson Centre for Age Related Disease, King's College London, London, UK
| | - John D Dawes
- The Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Tim Pheby
- Pain Research Group, Department of Surgery and Cancer, Faculty of Medicine, Imperial College , London, UK
| | - Stephen B McMahon
- Wolfson Centre for Age Related Disease, King's College London, London, UK
| | - Andrew Sc Rice
- Pain Research Group, Department of Surgery and Cancer, Faculty of Medicine, Imperial College , London, UK
| |
Collapse
|
26
|
Anxiety- and depression-like behavior and impaired neurogenesis evoked by peripheral neuropathy persist following resolution of prolonged tactile hypersensitivity. J Neurosci 2015; 34:12304-12. [PMID: 25209272 DOI: 10.1523/jneurosci.0312-14.2014] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pain and depression are frequently associated with and often persist after resolution of an initial injury. Identifying the extent to which depression remains causally associated with ongoing physical discomfort during chronic pain, or becomes independent of it, is an important problem for basic neuroscience and psychiatry. Difficulty in distinguishing between effects of ongoing aversive sensory input and its long-term consequences is a significant roadblock, especially in animal models. To address this relationship between localized physical discomfort and its more global consequences, we investigated cellular and behavioral changes during and after reversing a mouse model of neuropathic pain. Tactile allodynia produced by placing a plastic cuff around the sciatic nerve resolved within several days when the cuff was removed. In contrast, the changes in elevated O-maze, forced-swim, Y-maze spontaneous alternation and novel-object recognition test performance that developed after nerve cuff placement remained for at least 3 weeks after the nerve cuffs were removed, or 10-15 d following complete normalization of mechanical sensitivity. Hippocampal neurogenesis, measured by doublecortin and proliferating cell nuclear antigen expression, was also suppressed after nerve cuff placement and remained suppressed 3 weeks after cuff removal. FosB expression was elevated in the central nucleus of the amygdala and spinal cord dorsal horn only in mice with ongoing allodynia. In contrast, FosB remained elevated in the basolateral amygdala of mice with resolved nociception and persisting behavioral effects. These observations suggest that different processes control tactile hypersensitivity and the behavioral changes and impaired neurogenesis that are associated with neuropathic allodynia.
Collapse
|
27
|
Abstract
A limbic brain area, the amygdala plays a key role in emotional responses and affective states and disorders such as learned fear, anxiety, and depression. The amygdala has also emerged as an important brain center for the emotional-affective dimension of pain and for pain modulation. Hyperactivity in the laterocapsular division of the central nucleus of the amygdala (CeLC, also termed the "nociceptive amygdala") accounts for pain-related emotional responses and anxiety-like behavior. Abnormally enhanced output from the CeLC is the consequence of an imbalance between excitatory and inhibitory mechanisms. Impaired inhibitory control mediated by a cluster of GABAergic interneurons in the intercalated cell masses (ITC) allows the development of glutamate- and neuropeptide-driven synaptic plasticity of excitatory inputs from the brainstem (parabrachial area) and from the lateral-basolateral amygdala network (LA-BLA, site of integration of polymodal sensory information). BLA hyperactivity also generates abnormally enhanced feedforward inhibition of principal cells in the medial prefrontal cortex (mPFC), a limbic cortical area that is strongly interconnected with the amygdala. Pain-related mPFC deactivation results in cognitive deficits and failure to engage cortically driven ITC-mediated inhibitory control of amygdala processing. Impaired cortical control allows the uncontrolled persistence of amygdala pain mechanisms.
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, Center for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430-6592, USA,
| |
Collapse
|
28
|
Cahill CM, Taylor AMW, Cook C, Ong E, Morón JA, Evans CJ. Does the kappa opioid receptor system contribute to pain aversion? Front Pharmacol 2014; 5:253. [PMID: 25452729 PMCID: PMC4233910 DOI: 10.3389/fphar.2014.00253] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/30/2014] [Indexed: 01/18/2023] Open
Abstract
The kappa opioid receptor (KOR) and the endogenous peptide-ligand dynorphin have received significant attention due the involvement in mediating a variety of behavioral and neurophysiological responses, including opposing the rewarding properties of drugs of abuse including opioids. Accumulating evidence indicates this system is involved in regulating states of motivation and emotion. Acute activation of the KOR produces an increase in motivational behavior to escape a threat, however, KOR activation associated with chronic stress leads to the expression of symptoms indicative of mood disorders. It is well accepted that KOR can produce analgesia and is engaged in chronic pain states including neuropathic pain. Spinal studies have revealed KOR-induced analgesia in reversing pain hypersensitivities associated with peripheral nerve injury. While systemic administration of KOR agonists attenuates nociceptive sensory transmission, this effect appears to be a stress-induced effect as anxiolytic agents, including delta opioid receptor agonists, mitigate KOR agonist-induced analgesia. Additionally, while the role of KOR and dynorphin in driving the dysphoric and aversive components of stress and drug withdrawal has been well characterized, how this system mediates the negative emotional states associated with chronic pain is relatively unexplored. This review provides evidence that dynorphin and the KOR system contribute to the negative affective component of pain and that this receptor system likely contributes to the high comorbidity of mood disorders associated with chronic neuropathic pain.
Collapse
Affiliation(s)
- Catherine M Cahill
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Department of Pharmacology, University of California Irvine Irvine, CA, USA ; Department of Biomedical and Molecular Sciences, Queen's University Kingston, ON, Canada
| | - Anna M W Taylor
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles, CA, USA
| | - Christopher Cook
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Department of Pharmacology, University of California Irvine Irvine, CA, USA
| | - Edmund Ong
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Department of Biomedical and Molecular Sciences, Queen's University Kingston, ON, Canada
| | - Jose A Morón
- Department of Anesthesiology, Columbia University Medical Center, New York, NY USA
| | - Christopher J Evans
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles, CA, USA
| |
Collapse
|
29
|
Rialland P, Otis C, Moreau M, Pelletier JP, Martel-Pelletier J, Beaudry F, del Castillo JR, Bertaim T, Gauvin D, Troncy E. Association between sensitisation and pain-related behaviours in an experimental canine model of osteoarthritis. Pain 2014; 155:2071-9. [DOI: 10.1016/j.pain.2014.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/03/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022]
|
30
|
|
31
|
Xu Q, Liu T, Chen S, Gao Y, Wang J, Qiao L, Liu J. Correlation between the cumulative analgesic effect of electroacupuncture intervention and synaptic plasticity of hypothalamic paraventricular nucleus neurons in rats with sciatica. Neural Regen Res 2014; 8:218-25. [PMID: 25206591 PMCID: PMC4107526 DOI: 10.3969/j.issn.1673-5374.2013.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/10/2012] [Indexed: 01/11/2023] Open
Abstract
In the present study, a rat model of chronic neuropathic pain was established by ligation of the sciatic nerve and a model of learning and memory impairment was established by ovariectomy to investigate the analgesic effect of repeated electroacupuncture stimulation at bilateral Zusanli (ST36) and Yanglingquan (GB34). In addition, associated synaptic changes in neurons in the paraventricular nucleus of the hypothalamus were examined. Results indicate that the thermal pain threshold (paw withdrawal latency) was significantly increased in rats subjected to 2-week electroacupuncture intervention compared with 2-day electroacupuncture, but the analgesic effect was weakened remarkably in ovariectomized rats with chronic constrictive injury. 2-week electroacupuncture intervention substantially reversed the chronic constrictive injury-induced increase in the synaptic cleft width and thinning of the postsynaptic density. These findings indicate that repeated electroacupuncture at bilateral Zusanli and Yanglingquan has a cumulative analgesic effect and can effectively relieve chronic neuropathic pain by remodeling the synaptic structure of the hypothalamic paraventricular nucleus.
Collapse
Affiliation(s)
- Qiuling Xu
- Hainan Medical University, Haikou 571101, Hainan Province, China
| | - Tao Liu
- Hainan Medical University, Haikou 571101, Hainan Province, China
| | - Shuping Chen
- Institute of Acu-moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yonghui Gao
- Institute of Acu-moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junying Wang
- Institute of Acu-moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lina Qiao
- Institute of Acu-moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junling Liu
- Institute of Acu-moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
32
|
Yalcin I, Barthas F, Barrot M. Emotional consequences of neuropathic pain: insight from preclinical studies. Neurosci Biobehav Rev 2014; 47:154-64. [PMID: 25148733 DOI: 10.1016/j.neubiorev.2014.08.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/15/2014] [Accepted: 08/03/2014] [Indexed: 01/12/2023]
Abstract
Mood disorders such as depression and anxiety are frequently observed in patients suffering from chronic pain, including neuropathic pain. While this comorbidity is clinically well established, the underlying mechanism(s) remained unclear. The recent development of animal models now allows addressing the consequences of neuropathic pain. In this review, we report the preclinical evidences from anatomical, neuroimaging, behavioral, pharmacological and biochemical studies that address the anxiodepressive consequences of neuropathic pain. We present an overview of rodent models of these consequences and we discuss the challenges and parameters to consider for generating these models. We then discuss the possible mechanism(s) underlying anxiodepressive consequences by describing morphological and functional changes. Information is provided concerning neuroanatomical changes and plasticity, including LTP and LTD, in the anterior cingulate cortex, the insula, the hippocampus, the amygdala and the mesolimbic system, neuroendocrine parameters concerning the hypothalamo-pituitary-adrenal axis, neuroimmune response including the role of glial cells and cytokines, monoamine systems and changes in locus coeruleus noradrenergic system, and neurotrophic factors such as BDNF.
Collapse
Affiliation(s)
- Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, 67084 Strasbourg, France.
| | - Florent Barthas
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, 67084 Strasbourg, France; Université de Strasbourg, 67084 Strasbourg, France
| | - Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, 67084 Strasbourg, France
| |
Collapse
|
33
|
Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain. Neuropharmacology 2014; 86:38-48. [PMID: 24998751 DOI: 10.1016/j.neuropharm.2014.06.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 11/22/2022]
Abstract
The intricate relationships that associate pain, stress responses and emotional behavior have been well established. Acute stressful situations can decrease nociceptive sensations and conversely, chronic pain can enhance other pain experiences and heighten the emotional and behavioral consequences of stress. Accordingly, chronic pain is comorbid with a number of behavioral disorders including depression, anxiety abnormalities and associated stress-related disorders including post traumatic stress disorder (PTSD). The central nucleus of the amygdala (CeA) represents a convergence of pathways for pain, stress and emotion, and we have identified pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in fiber elements in the lateral capsular division of the CeA (CeLC). The PACAP staining patterns colocalized in part with those for calcitonin gene related peptide (CGRP); anterograde fiber tracing and excitotoxic lesion studies demonstrated that the CeLC PACAP/CGRP immunoreactivities represented sensory fiber projections from the lateral parabrachial nucleus (LPBn) along the spino-parabrachioamygdaloid tract. The same PBn PACAP/CGRP fiber system also projected to the BNST. As in the BNST, CeA PACAP signaling increased anxiety-like behaviors accompanied by weight loss and decreased feeding. But in addition to heightened anxiety-like responses, CeA PACAP signaling also altered nociception as reflected by decreased latency and threshold responses in thermal and mechanical sensitivity tests, respectively. From PACAP expression in major pain pathways, the current observations are novel and suggest that CeA PACAP nociceptive signaling and resulting neuroplasticity via the spino-parabrachioamygdaloid tract may represent mechanisms that associate chronic pain with sensory hypersensitivity, fear memory consolidation and severe behavioral disorders.
Collapse
|
34
|
Apkarian AV, Neugebauer V, Koob G, Edwards S, Levine JD, Ferrari L, Egli M, Regunathan S. Neural mechanisms of pain and alcohol dependence. Pharmacol Biochem Behav 2013; 112:34-41. [PMID: 24095683 DOI: 10.1016/j.pbb.2013.09.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/06/2013] [Accepted: 09/17/2013] [Indexed: 01/09/2023]
Abstract
An association between chronic pain conditions and alcohol dependence has been revealed in numerous studies with episodes of alcohol abuse antedating chronic pain in some people and alcohol dependence emerging after the onset of chronic pain in others. Alcohol dependence and chronic pain share common neural circuits giving rise to the possibility that chronic pain states could significantly affect alcohol use patterns and that alcohol dependence could influence pain sensitivity. The reward and emotional pathways that regulate drug/alcohol addiction also mediate chronic pain. For example, pain-evoked activation of brain learning and brain reward circuitry may modulate cortical processing of pain and central sensitization mediated by mesocorticolimbic circuitry. Imbalance and reorganization of amygdala-mPFC interactions may not only be important for persistent pain, but also for disorders characterized by the abnormal persistence of emotional-affective states such as drug and alcohol addiction. Further studies are necessary to understand how these neural circuits are regulated in comorbid conditions of alcoholism and chronic pain. In addition, long term alcohol use could induce pain symptoms and may exacerbate chronic pain arising from other sources. While prior studies have established a role of neuroendocrine stress axis mediators in alcohol abuse and neurotoxic effects, these studies have not explored the distinction between the individual impact of alcohol and stress hormones. Future studies should explore the mechanisms mediating the contribution of alcohol and stress axis hormones on pain, an important question in our understanding of the neurobiology of alcohol abuse and chronic pain.
Collapse
Affiliation(s)
- A Vania Apkarian
- Department of Neuroscience, Northwestern University Med School, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Rechardt M, Shiri R, Lindholm H, Karppinen J, Viikari-Juntura E. Associations of metabolic factors and adipokines with pain in incipient upper extremity soft tissue disorders: a cross-sectional study. BMJ Open 2013; 3:e003036. [PMID: 23959751 PMCID: PMC3753506 DOI: 10.1136/bmjopen-2013-003036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Earlier studies have suggested associations between metabolic factors and musculoskeletal pain or disorders. We studied the associations of obesity, lipids, other features of the metabolic syndrome and adipokines (adiponectin, leptin, resistin, visfatin) with upper extremity pain in a clinical population with incipient upper extremity soft tissue disorders (UESTDs). DESIGN A cross-sectional study. SETTING Primary healthcare (occupational health service) with further examinations at a research institute. PARTICIPANTS Patients (N=163, 86% were women) seeking medical advice in the occupational health service due to incipient upper extremity symptoms with symptom duration of <1 month were referred for consultation to the Finnish Institute of Occupational Health from Spring 2006 to Fall 2008. We included all actively working subjects meeting diagnostic criteria based on physical examination. We excluded subjects meeting predetermined conditions. OUTCOME MEASURE Pain intensity was assessed with visual analogue scale and dichotomised at the highest tertile (cut-point 60). RESULTS Obesity (adjusted OR for high waist circumference 2.9, 95% CI 1.1 to 7.3), high-density lipoprotein cholesterol (OR 3.9, 95% CI 1.4 to 10.1 for low level) and triglycerides (OR 2.6, 95% CI 1.0 to 6.8 for high level) were associated with pain intensity. Of four adipokines studied, only visfatin was associated with upper extremity pain (adjusted OR 1.4, 95% CI 1.0 to 2.1 for 1SD increase in level). CONCLUSIONS Abdominal obesity and lipids may have an impact on pain intensity in UESTDs. They may intensify pain through proinflammatory pain-modifying molecular pathways or by causing soft tissue pathology and dysfunction of their supplying arteries. Of four adipokines studied only one (visfatin) was associated with pain intensity. In the future, further studies are required to better understand the relationship between metabolic factors and UESTDs.
Collapse
Affiliation(s)
- Martti Rechardt
- Centre of Expertise for Health and Work Ability, Finnish Institute of Occupational Health, Helsinki, Finland
- Disability Prevention Centre, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Rahman Shiri
- Centre of Expertise for Health and Work Ability, Finnish Institute of Occupational Health, Helsinki, Finland
- Disability Prevention Centre, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Harri Lindholm
- Centre of Expertise for Health and Work Ability, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Jaro Karppinen
- Centre of Expertise for Health and Work Ability, Finnish Institute of Occupational Health, Helsinki, Finland
- Institute of Clinical Medicine, Department of Physical and Rehabilitation Medicine, University of Oulu and Medical Research Center Oulu, Oulu, Finland
| | - Eira Viikari-Juntura
- Disability Prevention Centre, Finnish Institute of Occupational Health, Helsinki, Finland
| |
Collapse
|
36
|
Hooker B, Tobon G, Baker S, Zhu C, Hesterman J, Schmidt K, Rajagovindan R, Chandran P, Joshi S, Bannon A, Hoppin J, Beaver J, Fox G, Day M, Upadhyay J. Gabapentin-induced pharmacodynamic effects in the spinal nerve ligation model of neuropathic pain. Eur J Pain 2013; 18:223-37. [DOI: 10.1002/j.1532-2149.2013.00364.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2013] [Indexed: 12/15/2022]
Affiliation(s)
- B.A. Hooker
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | | | - S.J. Baker
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - C. Zhu
- Neuroscience Discovery; Abbvie Inc.; North Chicago USA
| | | | | | - R. Rajagovindan
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - P. Chandran
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - S.K. Joshi
- Neuroscience Discovery; Abbvie Inc.; North Chicago USA
| | - A.W. Bannon
- Neuroscience Discovery; Abbvie Inc.; North Chicago USA
| | | | - J. Beaver
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - G.B. Fox
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - M. Day
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - J. Upadhyay
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| |
Collapse
|
37
|
Veinante P, Yalcin I, Barrot M. The amygdala between sensation and affect: a role in pain. J Mol Psychiatry 2013; 1:9. [PMID: 25408902 PMCID: PMC4223879 DOI: 10.1186/2049-9256-1-9] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/11/2013] [Indexed: 01/15/2023] Open
Abstract
The amygdala is a structure of the temporal lobe thought to be involved in assigning emotional significance to environmental information and triggering adapted physiological, behavioral and affective responses. A large body of literature in animals and human implicates the amygdala in fear. Pain having a strong affective and emotional dimension, the amygdala, especially its central nucleus (CeA), has also emerged in the last twenty years as key element of the pain matrix. The CeA receives multiple nociceptive information from the brainstem, as well as highly processed polymodal information from the thalamus and the cerebral cortex. It also possesses the connections that allow influencing most of the descending pain control systems as well as higher centers involved in emotional, affective and cognitive functions. Preclinical studies indicate that the integration of nociceptive inputs in the CeA only marginally contributes to sensory-discriminative components of pain, but rather contributes to associated behavior and affective responses. The CeA doesn’t have a major influence on responses to acute nociception in basal condition, but it induces hypoalgesia during aversive situation, such as stress or fear. On the contrary, during persistent pain states (inflammatory, visceral, neuropathic), a long-lasting functional plasticity of CeA activity contributes to an enhancement of the pain experience, including hyperalgesia, aversive behavioral reactions and affective anxiety-like states.
Collapse
Affiliation(s)
- Pierre Veinante
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212, Centre National de la Recherche Scientifique, 21 Rue René Descartes, 67084 Strasbourg Cedex, France ; Université de Strasbourg, 21 Rue René Descartes, 67084 Strasbourg Cedex, France
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212, Centre National de la Recherche Scientifique, 21 Rue René Descartes, 67084 Strasbourg Cedex, France ; Université de Strasbourg, 21 Rue René Descartes, 67084 Strasbourg Cedex, France
| | - Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212, Centre National de la Recherche Scientifique, 21 Rue René Descartes, 67084 Strasbourg Cedex, France ; Université de Strasbourg, 21 Rue René Descartes, 67084 Strasbourg Cedex, France
| |
Collapse
|
38
|
Ji G, Fu Y, Adwanikar H, Neugebauer V. Non-pain-related CRF1 activation in the amygdala facilitates synaptic transmission and pain responses. Mol Pain 2013; 9:2. [PMID: 23410057 PMCID: PMC3583817 DOI: 10.1186/1744-8069-9-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/13/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) plays an important role in affective states and disorders. CRF is not only a "stress hormone" but also a neuromodulator outside the hypothalamic-pituitary-adrenocortical (HPA) axis. The amygdala, a brain center for emotions, is a major site of extrahypothalamic expression of CRF and its G-protein-coupled receptors. Our previous studies showed that endogenous activation of CRF1 receptors in an arthritis pain model contributes to amygdala hyperactivity and pain-related behaviors. Here we examined the synaptic and behavioral effects of CRF in the amygdala of normal animals in the absence of tissue injury or disease. RESULTS Whole-cell patch-clamp recordings of neurons in the latero-capsular division of the central nucleus of the amygdala (CeLC) in brain slices from normal rats showed that CRF (0.1-10 nM) increased excitatory postsynaptic currents (EPSCs) at the "nociceptive" parabrachio-amygdaloid (PB-CeLC) synapse and also increased neuronal output. Synaptic facilitation involved a postsynaptic action and was blocked by an antagonist for CRF1 (NBI27914, 1 μM) but not CRF2 (astressin-2B, 1 μM) and by an inhibitor of PKA (KT5720, 1 μM) but not PKC (GF109203X, 1 μM). CRF increased a latent NMDA receptor-mediated EPSC, and this effect also required CRF1 and PKA but not CRF2 and PKC. Stereotaxic administration of CRF (10 μM, concentration in microdialysis probe) into the CeLC by microdialysis in awake rats increased audible and ultrasonic vocalizations and decreased hindlimb withdrawal thresholds. Behavioral effects of CRF were blocked by a NBI27914 (100 μM) and KT5720 (100 μM) but not GF109203x (100 μM). CRF effects persisted when HPA axis function was suppressed by pretreatment with dexamethasone (50 μg/kg, subcutaneously). CONCLUSIONS Non-pain-related activation of CRF1 receptors in the amygdala can trigger pain-responses in normal animals through a mechanism that involves PKA-dependent synaptic facilitation in CeLC neurons independent of HPA axis function. The results suggest that conditions of increased amygdala CRF levels can contribute to pain in the absence of tissue pathology or disease state.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-1069, USA
| | - Yu Fu
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-1069, USA
| | - Hita Adwanikar
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-1069, USA
| | - Volker Neugebauer
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-1069, USA
| |
Collapse
|