1
|
Rubio-Ruíz ME, Plata-Corona JC, Soria-Castro E, Díaz-Juárez JA, Sánchez-Aguilar M. Pleiotropic Effects of Peroxisome Proliferator-Activated Receptor Alpha and Gamma Agonists on Myocardial Damage: Molecular Mechanisms and Clinical Evidence-A Narrative Review. Cells 2024; 13:1488. [PMID: 39273057 PMCID: PMC11394383 DOI: 10.3390/cells13171488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases remain the leading cause of death in the world, and that is why finding an effective and multi-functional treatment alternative to combat these diseases has become more important. Fibrates and thiazolidinediones, peroxisome proliferator-activated receptors alpha and gamma are the pharmacological therapies used to treat dyslipidemia and type 2 diabetes, respectively. New mechanisms of action of these drugs have been found, demonstrating their pleiotropic effects, which contribute to preserving the heart by reducing or even preventing myocardial damage. Here, we review the mechanisms underlying the cardioprotective effects of PPAR agonists and regulating morphological and physiological heart alterations (metabolic flexibility, mitochondrial damage, apoptosis, structural remodeling, and inflammation). Moreover, clinical evidence regarding the cardioprotective effect of PPAR agonists is also addressed.
Collapse
Affiliation(s)
- María Esther Rubio-Ruíz
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Juan Carlos Plata-Corona
- Department of Interventional Cardiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Julieta Anabell Díaz-Juárez
- Department of Pharmacology “Dr. Rafael Méndez Martínez”, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - María Sánchez-Aguilar
- Department of Pharmacology “Dr. Rafael Méndez Martínez”, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| |
Collapse
|
2
|
Vilas-Boas C, Sousa J, Lima E, Running L, Resende D, Ribeiro ARL, Sousa E, Santos MM, Aga DS, Tiritan ME, Ruivo R, Atilla-Gokcumen GE, Correia-da-Silva M. Preliminary hazard assessment of a new nature-inspired antifouling (NIAF) agent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172824. [PMID: 38688370 DOI: 10.1016/j.scitotenv.2024.172824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
A recently synthesized aminated 3,4-dioxygenated xanthone (Xantifoul2) was found to have promising antifouling (AF) effects against the settlement of the macrofouler Mytilus galloprovincialis larvae. Preliminary assessment indicated that Xantifoul2 has reduced ecotoxicological impacts: e.g., being non-toxic to the marine crustacea Artemia salina (<10 % mortality at 50 μM) and showing low bioconcentration factor in marine organisms. In order to meet the EU Biocidal Product Regulation, a preliminary hazard assessment of this new nature-inspired antifouling (NIAF) agent was conducted in this work. Xantifoul2 did not affect the swimming ability of the planktonic crustacean Daphnia magna, the growth of the diatom Phaeodactylum tricornutum, and the cellular respiration of luminescent Gram-negative bacteria Vibrio fischeri, supporting the low toxicity towards several non-target marine species. Regarding human cytotoxicity, Xantifoul2 did not affect the cell viability of retinal human cells (hTERT-RPE-1) and lipidomic studies revealed depletion of lipids involved in cell death, membrane modeling, lipid storage, and oxidative stress only at a high concentration (10 μM). Accelerated degradation studies in water were conducted under simulated sunlight to allow the understanding of putative transformation products (TPs) that could be generated in the aquatic ecosystems. Both Xantifoul2 and photolytic-treated Xantifoul2 in the aqueous matrix were therefore evaluated on several nuclear receptors (NRs). The results of this preliminary hazard assessment of Xantifoul2, combined with the high degradation rates in water, provide strong evidence of the safety of this AF agent under the evaluated conditions, and provide the support for future validation studies before this compound can be introduced in the market.
Collapse
Affiliation(s)
- Cátia Vilas-Boas
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - João Sousa
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Erica Lima
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Logan Running
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Diana Resende
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Ana Rita L Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Diana S Aga
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Maria Elizabeth Tiritan
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Raquel Ruivo
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal.
| | | | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
3
|
Vlk AM, Prantner D, Shirey KA, Perkins DJ, Buzza MS, Thumbigere-Math V, Keegan AD, Vogel SN. M2a macrophages facilitate resolution of chemically-induced colitis in TLR4-SNP mice. mBio 2023; 14:e0120823. [PMID: 37768050 PMCID: PMC10653841 DOI: 10.1128/mbio.01208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, impacts millions of individuals worldwide and severely impairs the quality of life for patients. Dysregulation of innate immune signaling pathways reduces barrier function and exacerbates disease progression. Macrophage (Mφ) signaling pathways are potential targets for IBD therapies. While multiple treatments are available for IBD, (i) not all patients respond, (ii) responses may diminish over time, and (iii) treatments often have undesirable side effects. Genetic studies have shown that the inheritance of two co-segregating SNPs expressed in the innate immune receptor, TLR4, is associated with human IBD. Mice expressing homologous SNPs ("TLR4-SNP" mice) exhibited more severe colitis than WT mice in a DSS-induced colonic inflammation/repair model. We identified a critical role for M2a "tissue repair" Mφ in the resolution of colitis. Our findings provide insight into potential development of novel therapies targeting Mφ signaling pathways that aim to alleviate the debilitating symptoms experienced by individuals with IBD.
Collapse
Affiliation(s)
- Alexandra M. Vlk
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Daniel Prantner
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Darren J. Perkins
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Marguerite S. Buzza
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vivek Thumbigere-Math
- Division of Periodontics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Achsah D. Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Loeffler DA. Antibody-Mediated Clearance of Brain Amyloid-β: Mechanisms of Action, Effects of Natural and Monoclonal Anti-Aβ Antibodies, and Downstream Effects. J Alzheimers Dis Rep 2023; 7:873-899. [PMID: 37662616 PMCID: PMC10473157 DOI: 10.3233/adr-230025] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023] Open
Abstract
Immunotherapeutic efforts to slow the clinical progression of Alzheimer's disease (AD) by lowering brain amyloid-β (Aβ) have included Aβ vaccination, intravenous immunoglobulin (IVIG) products, and anti-Aβ monoclonal antibodies. Neither Aβ vaccination nor IVIG slowed disease progression. Despite conflicting phase III results, the monoclonal antibody Aducanumab received Food and Drug Administration (FDA) approval for treatment of AD in June 2021. The only treatments unequivocally demonstrated to slow AD progression to date are the monoclonal antibodies Lecanemab and Donanemab. Lecanemab received FDA approval in January 2023 based on phase II results showing lowering of PET-detectable Aβ; phase III results released at that time indicated slowing of disease progression. Topline results released in May 2023 for Donanemab's phase III trial revealed that primary and secondary end points had been met. Antibody binding to Aβ facilitates its clearance from the brain via multiple mechanisms including promoting its microglial phagocytosis, activating complement, dissolving fibrillar Aβ, and binding of antibody-Aβ complexes to blood-brain barrier receptors. Antibody binding to Aβ in peripheral blood may also promote cerebral efflux of Aβ by a peripheral sink mechanism. According to the amyloid hypothesis, for Aβ targeting to slow AD progression, it must decrease downstream neuropathological processes including tau aggregation and phosphorylation and (possibly) inflammation and oxidative stress. This review discusses antibody-mediated mechanisms of Aβ clearance, findings in AD trials involving Aβ vaccination, IVIG, and anti-Aβ monoclonal antibodies, downstream effects reported in those trials, and approaches which might improve the Aβ-clearing ability of monoclonal antibodies.
Collapse
Affiliation(s)
- David A. Loeffler
- Beaumont Research Institute, Department of Neurology, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
5
|
Faheem SA, Hazem RM, Elsayed NM, Ahmed YM, Saeed NM. Niclosamide modulates cyclosporin A-induced hepatotoxicity in a mouse model: PPAR-γ and Wnt/β-catenin crosstalk. Int Immunopharmacol 2023; 117:109941. [PMID: 37012891 DOI: 10.1016/j.intimp.2023.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate whether: 1) Wnt/β-catenin signaling is involved in cyclosporin A (CsA)-induced hepatotoxicity, and 2) knockdown of this pathway by niclosamide (NCL) attenuate CsA-induced hepatotoxicity. METHODS The experiment was accomplished in 21 days. Adult male mice were randomly distributed into five groups: control group, CsA (25 mg/kg/day) group, CsA + NCL (2.5 mg/kg/day) group, CsA + NCL (5 mg/kg/day) group, and NCL (5 mg/kg/day) group. RESULTS NCL showed marked hepatoprotection by significantly decreasing liver enzymes activities and ameliorating the histopathological alterations induced by CsA. Besides, NCL alleviated oxidative stress and inflammation. NCL-treated groups (2.5 and 5 mg/kg) displayed rise in the expression of hepatic peroxisome proliferator-activated receptor-γ (PPAR-γ) by 2.1- and 2.5-fold, respectively. Notably, NCL (2.5 and 5 mg/kg) significantly inhibited Wnt/β-catenin signaling, evidenced by a marked decrease in the hepatic expression of Wnt3a by 54 % and 50 %, frizzled-7 receptor by 50 % and 50 %, β-catenin by 22 % and 49 %, and c-myc by 50 % and 50 %, respectively. CONCLUSIONS NCL can be regarded as a potential agent to mitigate CsA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Safaa A Faheem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Reem M Hazem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Norhan M Elsayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Yasser M Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt
| | - Noha M Saeed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt.
| |
Collapse
|
6
|
Chemically inducible split protein regulators for mammalian cells. Nat Chem Biol 2023; 19:64-71. [PMID: 36163385 DOI: 10.1038/s41589-022-01136-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/08/2022] [Indexed: 12/31/2022]
Abstract
Chemically inducible systems represent valuable synthetic biology tools that enable the external control of biological processes. However, their translation to therapeutic applications has been limited because of unfavorable ligand characteristics or the immunogenicity of xenogeneic protein domains. To address these issues, we present a strategy for engineering inducible split protein regulators (INSPIRE) in which ligand-binding proteins of human origin are split into two fragments that reassemble in the presence of a cognate physiological ligand or clinically approved drug. We show that the INSPIRE platform can be used for dynamic, orthogonal and multiplex control of gene expression in mammalian cells. Furthermore, we demonstrate the functionality of a glucocorticoid-responsive INSPIRE platform in vivo and apply it for perturbing an endogenous regulatory network. INSPIRE presents a generalizable approach toward designing small-molecule responsive systems that can be implemented for the construction of new sensors, regulatory networks and therapeutic applications.
Collapse
|
7
|
Singh MK, Yadav R, Bhaskar AK, Sengupta S, Sachidanandan C. A diet-independent zebrafish model for NAFLD recapitulates patient lipid profiles and offers a system for small molecule screening. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159246. [PMID: 36202338 DOI: 10.1016/j.bbalip.2022.159246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 02/25/2023]
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) or pathological hepatic lipid overload, is considered to affect obese individuals. However, NAFLD in lean individuals is prevalent, especially in South Asian population. The pathophysiology of lean NAFLD is not well understood and most animal models of NAFLD use the high-fat diet paradigm. To bridge this gap, we have developed a diet-independent model of NAFLD in zebrafish. We have previously shown that chronic systemic inflammation causes metabolic changes in the liver leading to hepatic fat accumulation in an IL6 overexpressing (IL6-OE) zebrafish model. In the present study, we compared the hepatic lipid composition of adult IL6-OE zebrafish to the controls and found an accumulation of saturated triacylglycerols and a reduction in the unsaturated triacylglycerol species reminiscent of NAFLD patients. Zebrafish is an ideal system for chemical genetic screens. We tested whether the hepatic lipid accumulation in the IL6-OE is responsive to chemical treatment. We found that PPAR-gamma agonist Rosiglitazone, known to reduce lipid overload in the high-fat diet models of NAFLD, could ameliorate the fatty liver phenotype of the IL6-OE fish. Rosiglitazone treatment reduced the accumulation of saturated lipids and showed a concomitant increase in unsaturated TAG species in our inflammation-induced NAFLD model. Our observations suggest that the IL6-OE model can be effective for small molecule screening to identify compounds that can reverse hepatic lipid accumulation, especially relevant to lean NAFLD.
Collapse
Affiliation(s)
- Manoj K Singh
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rohit Yadav
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akash Kumar Bhaskar
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chetana Sachidanandan
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Latha K, Rao S, Sakamoto K, Watford WT. Tumor Progression Locus 2 Protects against Acute Respiratory Distress Syndrome in Influenza A Virus-Infected Mice. Microbiol Spectr 2022; 10:e0113622. [PMID: 35980186 PMCID: PMC9604045 DOI: 10.1128/spectrum.01136-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022] Open
Abstract
Excessive inflammation in patients with severe influenza disease may lead to acute lung injury that results in acute respiratory distress syndrome (ARDS). ARDS is associated with alveolar damage and pulmonary edema that severely impair gas exchange, leading to hypoxia. With no existing FDA-approved treatment for ARDS, it is important to understand the factors that lead to virus-induced ARDS development to improve prevention, diagnosis, and treatment. We have previously shown that mice deficient in the serine-threonine mitogen-activated protein kinase, Tpl2 (MAP3K8 or COT), succumb to infection with a typically low-pathogenicity strain of influenza A virus (IAV; HKX31, H3N2 [x31]). The goal of the current study was to evaluate influenza A virus-infected Tpl2-/- mice clinically and histopathologically to gain insight into the disease mechanism. We hypothesized that Tpl2-/- mice succumb to IAV infection due to development of ARDS-like disease and pulmonary dysfunction. We observed prominent signs of alveolar septal necrosis, hyaline membranes, pleuritis, edema, and higher lactate dehydrogenase (LDH) levels in the lungs of IAV-infected Tpl2-/- mice compared to wild-type (WT) mice from 7 to 9 days postinfection (dpi). Notably, WT mice showed signs of regenerating epithelium, indicative of repair and recovery, that were reduced in Tpl2-/- mice. Furthermore, biomarkers associated with human ARDS cases were upregulated in Tpl2-/- mice at 7 dpi, demonstrating an ARDS-like phenotype in Tpl2-/- mice in response to IAV infection. IMPORTANCE This study demonstrates the protective role of the serine-threonine mitogen-activated protein kinase, Tpl2, in influenza virus pathogenesis and reveals that host Tpl2 deficiency is sufficient to convert a low-pathogenicity influenza A virus infection into severe influenza disease that resembles ARDS, both histopathologically and transcriptionally. The IAV-infected Tpl2-/- mouse thereby represents a novel murine model for studying ARDS-like disease that could improve our understanding of this aggressive disease and assist in the design of better diagnostics and treatments.
Collapse
Affiliation(s)
- Krishna Latha
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Sanjana Rao
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | - Wendy T. Watford
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
9
|
Ballav S, Biswas B, Sahu VK, Ranjan A, Basu S. PPAR-γ Partial Agonists in Disease-Fate Decision with Special Reference to Cancer. Cells 2022; 11:3215. [PMID: 36291082 PMCID: PMC9601205 DOI: 10.3390/cells11203215] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) has emerged as one of the most extensively studied transcription factors since its discovery in 1990, highlighting its importance in the etiology and treatment of numerous diseases involving various types of cancer, type 2 diabetes mellitus, autoimmune, dermatological and cardiovascular disorders. Ligands are regarded as the key determinant for the tissue-specific activation of PPAR-γ. However, the mechanism governing this process is merely a contradictory debate which is yet to be systematically researched. Either these receptors get weakly activated by endogenous or natural ligands or leads to a direct over-activation process by synthetic ligands, serving as complete full agonists. Therefore, fine-tuning on the action of PPAR-γ and more subtle modulation can be a rewarding approach which might open new avenues for the treatment of several diseases. In the recent era, researchers have sought to develop safer partial PPAR-γ agonists in order to dodge the toxicity induced by full agonists, akin to a balanced activation. With a particular reference to cancer, this review concentrates on the therapeutic role of partial agonists, especially in cancer treatment. Additionally, a timely examination of their efficacy on various other disease-fate decisions has been also discussed.
Collapse
Affiliation(s)
- Sangeeta Ballav
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Bini Biswas
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Vishal Kumar Sahu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Amit Ranjan
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| |
Collapse
|
10
|
Rosiglitazone Alleviates Contrast-Induced Acute Kidney Injury in Rats via the PPARγ/NLRP3 Signaling Pathway. DISEASE MARKERS 2022; 2022:4158692. [PMID: 36225198 PMCID: PMC9550500 DOI: 10.1155/2022/4158692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Background This study investigated the effect and mechanism of rosiglitazone on a rat model with contrast-induced acute kidney injury (CI-AKI). Materials and Methods The CI-AKI rat model was established from Sprague Dawley rats by furosemide injection (10 ml/kg) to the caudal vein followed by iohexol (11.7 ml/kg). The experimental grouping was randomly allocated into control, model, rosiglitazone, and T0070907 groups. Blood samples were collected from the abdominal aorta. Serum creatinine, urea nitrogen, MDA, and SOD contents were detected by biochemical analysis. TNF-α and IL-10 expression was detected by ELISA. Urine creatinine and urine protein were measured following 24-h urine biochemistry testing. Cell pathology and apoptosis were detected by H&E and TUNEL staining, respectively. PPARγ, NLRP3, eNOS, and caspase-3 mRNA expression were detected by qPCR. Caspase-3 and NLRP3 expression were detected by immunohistochemistry. Results The CI-AKI rat model was successfully established because the results showed that compared with control, serum creatinine, urea nitrogen, MDA, SOD, TNF-α, and IL-10, urine creatinine and urine protein levels were significantly increased in the model group, indicating AKI, but was significantly decreased with rosiglitazone treatment, indicating recovery from injury, while opposite results were obtained with SOD. Apoptosis rate was significantly increased in the model group and significantly decreased with rosiglitazone treatment. NLRP3 and eNOS increased significantly in the model group and decreased significantly with rosiglitazone treatment, while opposite results were obtained with PPARγ. NLRP3 and caspase-3 protein expression was significantly increased in the model group and significantly decreased with rosiglitazone treatment. Conclusion Rosiglitazone could alleviate acute renal injury in the CI-AKI rat model by regulating the PPARγ/NLRP3 signaling pathway and should be further investigated as a potential treatment in clinical studies.
Collapse
|
11
|
Meijer FA, Saris AOWM, Doveston RG, Oerlemans GJM, de Vries RMJM, Somsen BA, Unger A, Klebl B, Ottmann C, Cossar PJ, Brunsveld L. Structure-Activity Relationship Studies of Trisubstituted Isoxazoles as Selective Allosteric Ligands for the Retinoic-Acid-Receptor-Related Orphan Receptor γt. J Med Chem 2021; 64:9238-9258. [PMID: 34008974 PMCID: PMC8273893 DOI: 10.1021/acs.jmedchem.1c00475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The inhibition of
the nuclear receptor retinoic-acid-receptor-related
orphan receptor γt (RORγt) is a promising strategy in
the treatment of autoimmune diseases. RORγt features an allosteric
binding site within its ligand-binding domain that provides an opportunity
to overcome drawbacks associated with orthosteric modulators. Recently,
trisubstituted isoxazoles were identified as a novel class of allosteric
RORγt inverse agonists. This chemotype offers new opportunities
for optimization into selective and efficacious allosteric drug-like
molecules. Here, we explore the structure–activity relationship
profile of the isoxazole series utilizing a combination of structure-based
design, X-ray crystallography, and biochemical assays. The initial
lead isoxazole (FM26) was optimized, resulting in compounds
with a ∼10-fold increase in potency (low nM), significant cellular
activity, promising pharmacokinetic properties, and a good selectivity
profile over the peroxisome-proliferated-activated receptor γ
and the farnesoid X receptor. We envisage that this work will serve
as a platform for the accelerated development of isoxazoles and other
novel chemotypes for the effective allosteric targeting of RORγt.
Collapse
Affiliation(s)
- Femke A Meijer
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Annet O W M Saris
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Richard G Doveston
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands.,Leicester Institute of Structural and Chemical Biology and School of Chemistry, University of Leicester, University Road, LE1 7RH Leicester, U.K
| | - Guido J M Oerlemans
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Rens M J M de Vries
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Bente A Somsen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Anke Unger
- Lead Discovery Center GmbH, 44227 Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, 44227 Dortmund, Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
12
|
Hsieh MS, Hung PS, Hsieh VCR, Liao SH, How CK. Association between thiazolidinedione use and rheumatoid arthritis risk in patients with type II diabetes, a population-based, case-control study. Int J Clin Pract 2021; 75:e13804. [PMID: 33124165 DOI: 10.1111/ijcp.13804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/21/2020] [Indexed: 11/27/2022] Open
Abstract
AIM A previous study revealed that PPARγ agonists have anti-inflammatory effects in rheumatoid arthritis (RA). Furthermore, some studies have shown that type 2 diabetes mellitus (T2DM) may elicit the development of RA. In this study, we aimed to investigate whether the use of thiazolidinediones (TZDs) is associated with a lower risk of developing RA in patients with T2DM. METHODS Based on the Taiwan National Health Insurance Research Database, we conducted a nationwide case-control study. The selected cases were patients with T2DM who were diagnosed with RA between 2000 and 2013. The controls were retrieved at a ratio of 1:4 by propensity score matching. Logistic regression was conducted to evaluate whether TZD use lowers the risk of RA in patients with T2DM. The dose-response effect was examined according to the total TZD dose, within 2 years before the index date (the first diagnosis date of RA), and TZD doses were divided into four groups by cumulative Defined Daily Dose (cDDD): <30, 31-90, 91-365, and >365 cDDDs. RESULTS A total of 3605 cases and 14 420 controls were included in this study. After adjusting for age, sex, baseline comorbidities, the results demonstrated that TZD use did not significantly reduce the risk of RA in patients with T2DM (adjusted OR = 0.91, 95% CI 0.81-1.02). In the subgroup analysis by total TZD exposure dose within 2 years, 91-365 cDDDs of TZD had a lower risk of RA development, aOR = 0.87 (95% CI 0.71-1.06) and >365 cDDDs of TZD, aOR = 0.85 (95% CI 0.73-1.01). In the trend test, P was <.05. CONCLUSIONS TZD use might reduce the risk of RA in patients with T2DM, but it was non-statistically significant. Further research is necessary to assess this association.
Collapse
Affiliation(s)
- Ming-Shun Hsieh
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan, Taiwan
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pin-Shun Hung
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Vivian Chia-Rong Hsieh
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Shu-Hui Liao
- Department of Pathology and Laboratory, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan, Taiwan
| | - Chorng-Kuang How
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Kinmen Hospital, Ministry of Health and Welfare, Kinmen, Taiwan
| |
Collapse
|
13
|
Goldspink PH, Warren CM, Kitajewski J, Wolska BM, Solaro RJ. A Perspective on Personalized Therapies in Hypertrophic Cardiomyopathy. J Cardiovasc Pharmacol 2021; 77:317-322. [PMID: 33298734 PMCID: PMC7933064 DOI: 10.1097/fjc.0000000000000968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
ABSTRACT A dominant mechanism of sudden cardiac death in the young is the progression of maladaptive responses to genes encoding proteins linked to hypertrophic cardiomyopathy. Most are mutant sarcomere proteins that trigger the progression by imposing a biophysical defect on the dynamics and levels of myofilament tension generation. We discuss approaches for personalized treatments that are indicated by recent advanced understanding of the progression.
Collapse
Affiliation(s)
- Paul H. Goldspink
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612
| | - Chad M. Warren
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612
| | - Jan Kitajewski
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612
| | - Beata M. Wolska
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612
| | - R. John Solaro
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612
| |
Collapse
|
14
|
Ju Z, Su M, Hong J, Kim EL, Jung JH. Anti-inflammatory effects of an optimized PPAR-γ agonist via NF-κB pathway inhibition. Bioorg Chem 2020; 96:103611. [DOI: 10.1016/j.bioorg.2020.103611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/30/2022]
|
15
|
Kazan HH, Urfali-Mamatoglu C, Yalcin GD, Bulut O, Sezer A, Banerjee S, Gunduz U. 15-LOX-1 has diverse roles in the resensitization of resistant cancer cell lines to doxorubicin. J Cell Physiol 2019; 235:4965-4978. [PMID: 31663148 DOI: 10.1002/jcp.29375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/07/2019] [Indexed: 11/10/2022]
Abstract
Lipoxygenases (LOXs) are a family of enzymes that can oxygenate polyunsaturated fatty acids. As a member of the family, 15-lipoxygenase-1 (15-LOX-1) specifically metabolizes arachidonic acid and linoleic acid. 15-LOX-1 can affect physiological and pathophysiological events via regulation of the protein-lipid interactome, alterations in intracellular redox state and production of lipid metabolites that are involved in the induction and resolution of inflammation. Although several studies have shown that 15-LOX-1 has an antitumorigenic role in many different cancer models, including breast cancer, the role of the protein in cancer drug resistance has not been established yet. In this study, we, for the first time, aimed to show the potential role of 15-LOX-1 in acquired doxorubicin (DOX) resistance in MCF7 and HeLa cancer cell lines. Our results show that ALOX15 was transcriptionally downregulated in DOX-resistant cells compared with their drug-sensitive counterparts. Moreover, overexpression of ALOX15 in the drug-resistant cells resulted in resensitization of those cells to DOX in a cell-dependent manner. 15-LOX-1 expression could induce apoptosis by activating PPARγ and enhance the accumulation of DOX in drug-resistant MCF7 cells by altering cellular motility properties, and membrane dynamics. However, HeLa DOX cells did not show any of these effects but were susceptible to cell death when treated with 13(S)-HODE. These results underline the role and importance of 15-LOX-1 in cancer drug resistance, and points to novel mechanisms as a therapeutic approach to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Hasan Huseyin Kazan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | | | - Gizem Damla Yalcin
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Onur Bulut
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.,Department of Molecular Biology and Genetics, Konya Food and Agriculture University, Konya, Turkey.,Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University, Konya, Turkey
| | - Abdullah Sezer
- Department of Medical Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ufuk Gunduz
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
16
|
Badawy AM, El-Naga RN, Gad AM, Tadros MG, Fawzy HM. Wogonin pre-treatment attenuates cisplatin-induced nephrotoxicity in rats: Impact on PPAR-γ, inflammation, apoptosis and Wnt/β-catenin pathway. Chem Biol Interact 2019. [DOI: https://doi.org/10.1016/j.cbi.2019.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Ferreira SR, Vélez LM, F Heber M, Abruzzese GA, Motta AB. Prenatal androgen excess alters the uterine peroxisome proliferator-activated receptor (PPAR) system. Reprod Fertil Dev 2019; 31:1401-1409. [PMID: 31039921 DOI: 10.1071/rd18432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/18/2019] [Indexed: 02/03/2023] Open
Abstract
It is known that androgen excess induces changes in fetal programming that affect several physiological pathways. Peroxisome proliferator-activated receptors (PPARs) α, δ and γ are key mediators of female reproductive functions, in particular in uterine tissues. Thus, we aimed to study the effect of prenatal hyperandrogenisation on the uterine PPAR system. Rats were treated with 2mg testosterone from Day 16 to 19 of pregnancy. Female offspring (PH group) were followed until 90 days of life, when they were killed. The PH group exhibited an anovulatory phenotype. We quantified uterine mRNA levels of PPARα (Ppara ), PPARδ (Ppard ), PPARγ (Pparg ), their regulators peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Ppargc1a ) and nuclear receptor co-repressor 1 (Ncor1 ) and cyclo-oxygenase (COX)-2 (Ptgs2 ), and assessed the lipid peroxidation (LP) index and levels of glutathione (GSH) and prostaglandin (PG) E2 . The PH group showed decreased levels of all uterine PPAR isoforms compared with the control group. In addition, PGE2 and Ptgs2 levels were increased in the PH group, which led to a uterine proinflammatory environment, as was LP, which led to a pro-oxidant status that GSH was not able to compensate for. These results suggest that prenatal exposure to androgen excess has a fetal programming effect that affects the gene expression of PPAR isoforms, and creates a misbalanced oxidant-antioxidant state and a proinflammatory status.
Collapse
Affiliation(s)
- Silvana R Ferreira
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina
| | - Leandro M Vélez
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina
| | - Maria F Heber
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina
| | - Giselle A Abruzzese
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina
| | - Alicia B Motta
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina; and Corresponding author
| |
Collapse
|
18
|
Ju Z, Su M, Li D, Hong J, Im DS, Kim S, Kim EL, Jung JH. An Algal Metabolite-Based PPAR-γ Agonist Displayed Anti-Inflammatory Effect via Inhibition of the NF-κB Pathway. Mar Drugs 2019; 17:md17060321. [PMID: 31151271 PMCID: PMC6627743 DOI: 10.3390/md17060321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 11/16/2022] Open
Abstract
In our previous study, a synthetic compound, (+)-(R,E)-6a1, that incorporated the key structures of anti-inflammatory algal metabolites and the endogenous peroxisome proliferator-activated receptor γ (PPAR-γ) ligand 15-deoxy-∆12,14-prostaglandin J2 (15d-PGJ2), exerted significant PPAR-γ transcriptional activity. Because PPAR-γ expressed in macrophages has been postulated as a negative regulator of inflammation, this study was designed to investigate the anti-inflammatory effect of the PPAR-γ agonist, (+)-(R,E)-6a1. Compound (+)-(R,E)-6a1 displayed in vitro anti-inflammatory activity in lipopolysaccharides (LPS)-stimulated murine RAW264.7 macrophages. Compound (+)-(R,E)-6a1 suppressed the expression of proinflammatory factors, such as nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), possibly by the inhibition of the nuclear factor-κB (NF-κB) pathway. In macrophages, (+)-(R,E)-6a1 suppressed LPS-induced phosphorylation of NF-κB, inhibitor of NF-κB α (IκBα), and IκB kinase (IKK). These results indicated that PPAR-γ agonist, (+)-(R,E)-6a1, exerts anti-inflammatory activity via inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Zhiran Ju
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Mingzhi Su
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Dandan Li
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Jongki Hong
- College of Pharmacy, Kyunghee University, Seoul 02447, Korea.
| | - Dong-Soon Im
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Suhkmann Kim
- Center for Proteome Biophysics, Department of Chemistry, Pusan National University, Busan 46241, Korea.
| | - Eun La Kim
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Jee H Jung
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
19
|
Badawy AM, El-Naga RN, Gad AM, Tadros MG, Fawzy HM. Wogonin pre-treatment attenuates cisplatin-induced nephrotoxicity in rats: Impact on PPAR-γ, inflammation, apoptosis and Wnt/β-catenin pathway. Chem Biol Interact 2019; 308:137-146. [PMID: 31103702 DOI: 10.1016/j.cbi.2019.05.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 02/08/2023]
Abstract
Cisplatin, a platinum chemotherapeutic agent, is used in a diversity of malignancies; nevertheless, the excessive nephrotoxicity following cisplatin treatment is the dose-limiting devastating reaction. This study was designed to explore the possible nephroprotective impact of wogonin, a forceful anti-oxidant, anti-inflammatory, and anti-tumor agent, in a rat model of cisplatin-induced renal injury. The potential nephroprotective mechanisms were additionally investigated. Wogonin was given at a dose of 40 mg/kg. Acute nephrotoxicity was indicated by a significant rise in BUN, and serum creatinine levels in cisplatin-injected rats. Also, cisplatin enhanced the lipid peroxidation, diminished GSH, catalase, and PPAR-γ levels. Additionally, cisplatin-injected rats showed a significant rise in tissue levels of IL-1β, TNF-α, NF-kB, and caspase-3 enzymatic activity. Notably, the pre-treatment with wogonin ameliorated the nephrotoxicity indices, oxidative stress, inflammation, and apoptosis induced by cisplatin. Also, wogonin up-regulated PPAR-γ expression. The involvement of Wnt/β-catenin pathway was debatable; however, our findings showed that it was significantly induced by cisplatin. Wogonin pre-treatment markedly attenuated Wnt/β-catenin pathway. Collectively, these findings imply that wogonin is a promising nephroprotective agent that improves the therapeutic index of cisplatin via reducing oxidative stress, inflammation as well as inducing PPAR-γ. Also, Wnt/β-catenin pathway is partially involved in the pathogenesis of cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Alaa M Badawy
- Department of Pharmacology, The National Organization for Drug Control and Research, Cairo, Egypt
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Amany M Gad
- Department of Pharmacology, The National Organization for Drug Control and Research, Cairo, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hala M Fawzy
- Department of Pharmacology, The National Organization for Drug Control and Research, Cairo, Egypt
| |
Collapse
|
20
|
BAYIR YASIN, UN HARUN, CADIRCI ELIF, AKPINAR EROL, DIYARBAKIR BUSRA, CALIK ILKNUR, HALICI ZEKAI. Effects of Aliskiren, an RAAS inhibitor, on a carrageenan-induced pleurisy model of rats. ACTA ACUST UNITED AC 2019; 91:e20180106. [DOI: 10.1590/0001-3765201820180106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023]
Affiliation(s)
| | - HARUN UN
- Agri Ibrahim Cecen University Campus, Turkey
| | | | | | | | - ILKNUR CALIK
- Erzurum Region Education and Research Hospital, Turkey
| | | |
Collapse
|
21
|
Zeng J. Values of detection of NF-κB activation level combined with IL-6 and TNF-α levels in peripheral neutrophils in the prediction of multiple organ dysfunction syndrome in patients with severe multiple trauma. Exp Ther Med 2018; 16:2478-2482. [PMID: 30210598 PMCID: PMC6122592 DOI: 10.3892/etm.2018.6472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/01/2018] [Indexed: 01/16/2023] Open
Abstract
The aim of this study was to analyze the dynamic changes and predictive values of nuclear factor-κB (NF-κB) combined with interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in peripheral blood in multiple organ dysfunction syndrome (MODS) in patients with severe multiple trauma. Seventy patients diagnosed with severe multiple trauma in Emergency Department of Sichuan Provincial People's Hospital (Chengdu, China) from April 2014 to April 2016 were selected and retrospectively analyzed. The patients enrolled were divided into the MODS group (n=25) and the non-MODS group (n=45). The injury severity scores (ISSs), acute physiology and chronic health evaluation II (APACHE II) scores, NF-κB, IL-6 and TNF-α levels in patients were detected at different time points (12, 24 and 48 h after admission), the changes in different indexes and the areas under the receiver operating characteristic (ROC) curve (AUC) were analyzed. The predictive values of different detection methods in MODS patients were discussed and compared. The ISS, APACHE II score, NF-κB, IL-6 and TNF-α levels in the MODS group at admission and 24 and 48 h after admission were higher than those in the non-MODS group (P<0.05). Those indexes in the deceased patients at 12, 24 and 48 h after admission were higher than those in survivors (P<0.05). The ISS, APACHE II score, NF-κB, IL-6 and TNF-α levels were not the risk factors of MODS in patients with severe multiple trauma (P>0.05). AUCs of ISS >22 points and APACHE II score >14 points in predicting MODS were lower than that of combined detection of NF-κB >1.20. In conclusion, the combined detection of NF-κB, IL-6 and TNF-α in peripheral blood of patients with acute multiple trauma is more helpful to predict the occurrence of MODS, which has a certain guiding significance for the prognosis of patients with MODS.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Emergency Surgery, Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
22
|
Abstract
OBJECTIVES The aim of this study is to investigate the role of peroxisome proliferator-activated receptor-gamma isoform (PPARγ), in trigeminal neuropathic pain utilizing a novel mouse trigeminal inflammatory compression (TIC) injury model. RESULTS The study determined that the PPARγ nuclear receptor plays a significant role in trigeminal nociception transmission, evidenced by: 1) Intense PPARγ immunoreactivity is expressed 3 weeks after TIC nerve injury in the spinal trigeminal caudalis, the termination site of trigeminal nociceptive nerve fibers. 2) Systemic administration of a PPARγ agonist, pioglitazone (PIO), attenuates whisker pad mechanical allodynia at doses of 300 mg/kg i.p. and 600 mg/kg p.o. 3) Administration of a PPARγ antagonist, GW9662 (30 mg/kg i.p.), prior to providing the optimal dose of PIO (300 mg/kg i.p.) blocked the analgesic effect of PIO. DISCUSSION This is the first study localizing PPARγ immunoreactivity throughout the brainstem trigeminal sensory spinal nucleus (spV) and its increase three weeks after TIC nerve injury. This is also the first study to demonstrate that activation of PPARγ attenuates trigeminal hypersensitivity in the mouse TIC nerve injury model. The findings presented here suggest the possibility of utilizing the FDA approved diabetic treatment drug, PIO, as a new therapeutic that targets PPARγ for treatment of patients suffering from orofacial neuropathic pain.
Collapse
|
23
|
Schierle S, Flauaus C, Heitel P, Willems S, Schmidt J, Kaiser A, Weizel L, Goebel T, Kahnt AS, Geisslinger G, Steinhilber D, Wurglics M, Rovati GE, Schmidtko A, Proschak E, Merk D. Boosting Anti-Inflammatory Potency of Zafirlukast by Designed Polypharmacology. J Med Chem 2018; 61:5758-5764. [DOI: 10.1021/acs.jmedchem.8b00458] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Simone Schierle
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Cathrin Flauaus
- Institute of Pharmacology, College of Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Jurema Schmidt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Lilia Weizel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Tamara Goebel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Astrid S. Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Mario Wurglics
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - G. Enrico Rovati
- Institute of Pharmacological Sciences, University of Milan, Via Balzaretti 9, I-20133 Milan, Italy
| | - Achim Schmidtko
- Institute of Pharmacology, College of Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| |
Collapse
|
24
|
Zong J, Liao X, Ren B, Wang Z. The antidepressant effects of rosiglitazone on rats with depression induced by neuropathic pain. Life Sci 2018; 203:315-322. [DOI: 10.1016/j.lfs.2018.04.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
|
25
|
Vakrou S, Fukunaga R, Foster DB, Sorensen L, Liu Y, Guan Y, Woldemichael K, Pineda-Reyes R, Liu T, Tardiff JC, Leinwand LA, Tocchetti CG, Abraham TP, O'Rourke B, Aon MA, Abraham MR. Allele-specific differences in transcriptome, miRNome, and mitochondrial function in two hypertrophic cardiomyopathy mouse models. JCI Insight 2018; 3:94493. [PMID: 29563334 DOI: 10.1172/jci.insight.94493] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/14/2018] [Indexed: 01/06/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) stems from mutations in sarcomeric proteins that elicit distinct biophysical sequelae, which in turn may yield radically different intracellular signaling and molecular pathologic profiles. These signaling events remain largely unaddressed by clinical trials that have selected patients based on clinical HCM diagnosis, irrespective of genotype. In this study, we determined how two mouse models of HCM differ, with respect to cellular/mitochondrial function and molecular biosignatures, at an early stage of disease. We show that hearts from young R92W-TnT and R403Q-αMyHC mutation-bearing mice differ in their transcriptome, miRNome, intracellular redox environment, mitochondrial antioxidant defense mechanisms, and susceptibility to mitochondrial permeability transition pore opening. Pathway analysis of mRNA-sequencing data and microRNA profiles indicate that R92W-TnT mutants exhibit a biosignature consistent with activation of profibrotic TGF-β signaling. Our results suggest that the oxidative environment and mitochondrial impairment in young R92W-TnT mice promote activation of TGF-β signaling that foreshadows a pernicious phenotype in young individuals. Of the two mutations, R92W-TnT is more likely to benefit from anti-TGF-β signaling effects conferred by angiotensin receptor blockers and may be responsive to mitochondrial antioxidant strategies in the early stage of disease. Molecular and functional profiling may therefore serve as aids to guide precision therapy for HCM.
Collapse
Affiliation(s)
- Styliani Vakrou
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - D Brian Foster
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lars Sorensen
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yamin Liu
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, UCSF, San Francisco, California, USA
| | - Yufan Guan
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kirubel Woldemichael
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roberto Pineda-Reyes
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ting Liu
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jill C Tardiff
- Department of Internal Medicine and Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology and the BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Carlo G Tocchetti
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Theodore P Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Division of Cardiology, UCSF, San Francisco, California, USA
| | - Brian O'Rourke
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Miguel A Aon
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - M Roselle Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Division of Cardiology, UCSF, San Francisco, California, USA
| |
Collapse
|
26
|
Xu XJ, Wang F, Zeng T, Lin J, Liu J, Chang YQ, Sun PH, Chen WM. 4-arylamidobenzyl substituted 5-bromomethylene-2(5 H )-furanones for chronic bacterial infection. Eur J Med Chem 2018; 144:164-178. [DOI: 10.1016/j.ejmech.2017.11.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/11/2017] [Accepted: 11/27/2017] [Indexed: 01/06/2023]
|
27
|
Wei X, Li H, Zhao G, Yang J, Li L, Huang Y, Lan X, Ma Y, Hu L, Zheng H, Chen H. ΔFosB regulates rosiglitazone-induced milk fat synthesis and cell survival. J Cell Physiol 2017; 233:9284-9298. [PMID: 29154466 DOI: 10.1002/jcp.26218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023]
Abstract
Rosiglitazone induces adipogenesis in adipocyte and regulates cell survival and differentiation in number of cell types. However, whether PPARγ regulates the synthesis of milk fat and cell survival in goat mammary gland remains unknown. Rosiglitazone strongly enhanced cellular triacylglycerol content and accumulation of lipid droplet in goat mammary epithelial cells (GMEC). Furthermore, ΔFosB decreased the expression of PPARγ at both mRNA and protein levels, and rosiglitazone-induced milk fat synthesis was abolished by ΔFosB overexpression. ΔFosB reduced milk fat synthesis and enhanced saturated fatty acid concentration. Rosiglitazone increased the number of GMEC in G0/G1 phase and inhibited cell proliferation, and these effects were improved by overexpression of ΔFosB. ΔFosB was found to promote the expression of Bcl-2 and suppress the expression of Bax, and protected GMEC from apoptosis induced by rosiglitazone. Intracellular calcium trafficking assay revealed that rosiglitazone markedly increased intracellular calcium concentration. ΔFosB protected GMEC from apoptosis induced by intracellular Ca2+ overload. ΔFosB increased MMP-9 gelatinolytic activity. SB-3CT, an MMP-9 inhibitor, suppressed the expression of Bcl-2, and increased intracellular calcium levels, and this effect was abolished by ΔFosB overexpression. SB-3CT induced GMEC apoptosis and this effect was inhibited by ΔFosB overexpression. These findings suggest that ΔFosB regulates rosiglitazone-induced milk fat synthesis and cell survival. Therefore, ΔFosB may be an important checkpoint to control milk fat synthesis and cell apoptosis.
Collapse
Affiliation(s)
- Xuefeng Wei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Hui Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Guangwei Zhao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiameng Yang
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Lihui Li
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Yongzhen Huang
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Xianyong Lan
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Yun Ma
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Huiling Zheng
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| |
Collapse
|
28
|
Bolten CW, Blanner PM, McDonald WG, Staten NR, Mazzarella RA, Arhancet GB, Meier MF, Weiss DJ, Sullivan PM, Hromockyj AE, Kletzien RF, Colca JR. Insulin Sensitizing Pharmacology of Thiazolidinediones Correlates with Mitochondrial Gene Expression rather than Activation of PPARγ. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [DOI: 10.1177/117762500700100008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Insulin sensitizing thiazolidinediones (TZDs) are generally considered to work as agonists for the nuclear receptor peroxisome proliferative activated receptor-gamma (PPARγ). However, TZDs also have acute, non-genomic metabolic effects and it is unclear which actions are responsible for the beneficial pharmacology of these compounds. We have taken advantage of an analog, based on the metabolism of pioglitazone, which has much reduced ability to activate PPARγ. This analog (PNU-91325) was compared to rosiglitazone, the most potent PPARγ activator approved for human use, in a variety of studies both in vitro and in vivo. The data demonstrate that PNU-91325 is indeed much less effective than rosiglitazone at activating PPARγ both in vitro and in vivo. In contrast, both compounds bound similarly to a mitochondrial binding site and acutely activated PI-3 kinase-directed phosphorylation of AKT, an action that was not affected by elimination of PPARγ activation. The two compounds were then compared in vivo in both normal C57 mice and diabetic KKAy mice to determine whether their pharmacology correlated with biomarkers of PPARγ activation or with the expression of other gene transcripts. As expected from previous studies, both compounds improved insulin sensitivity in the diabetic mice, and this occurred in spite of the fact that there was little increase in expression of the classic PPARγ target biomarker adipocyte binding protein-2 (aP2) with PNU-91325 under these conditions. An examination of transcriptional profiling of key target tissues from mice treated for one week with both compounds demonstrated that the relative pharmacology of the two thiazolidinediones correlated best with an increased expression of an array of mitochondrial proteins and with expression of PPARγ coactivator 1-alpha (PGC1α), the master regulator of mitochondrial biogenesis. Thus, important pharmacology of the insulin sensitizing TZDs may involve acute actions, perhaps on the mitochondria, that are independent of direct activation of the nuclear receptor PPARγ. These findings suggest a potential alternative route to the discovery of novel insulin sensitizing drugs.
Collapse
Affiliation(s)
- Charles W. Bolten
- Discovery Research, Pfizer Corporation 700 Chesterfield Parkway West Chesterfield, MO 63017
| | - Patrick M. Blanner
- Discovery Research, Pfizer Corporation 700 Chesterfield Parkway West Chesterfield, MO 63017
| | - William G. McDonald
- Discovery Research, Pfizer Corporation 700 Chesterfield Parkway West Chesterfield, MO 63017
| | - Nicholas R. Staten
- Discovery Research, Pfizer Corporation 700 Chesterfield Parkway West Chesterfield, MO 63017
| | - Richard A. Mazzarella
- Discovery Research, Pfizer Corporation 700 Chesterfield Parkway West Chesterfield, MO 63017
| | - Graciela B. Arhancet
- Discovery Research, Pfizer Corporation 700 Chesterfield Parkway West Chesterfield, MO 63017
| | - Martin F. Meier
- Discovery Research, Pfizer Corporation 700 Chesterfield Parkway West Chesterfield, MO 63017
| | - David J. Weiss
- Discovery Research, Pfizer Corporation 700 Chesterfield Parkway West Chesterfield, MO 63017
| | - Patrick M. Sullivan
- Discovery Research, Pfizer Corporation 700 Chesterfield Parkway West Chesterfield, MO 63017
| | - Alexander E. Hromockyj
- Discovery Research, Pfizer Corporation 700 Chesterfield Parkway West Chesterfield, MO 63017
| | - Rolf F. Kletzien
- Discovery Research, Pfizer Corporation 700 Chesterfield Parkway West Chesterfield, MO 63017
| | - Jerry R. Colca
- Discovery Research, Pfizer Corporation 700 Chesterfield Parkway West Chesterfield, MO 63017
| |
Collapse
|
29
|
Iqbal F, Baker WS, Khan MI, Thukuntla S, McKinney KH, Abate N, Tuvdendorj D. Current and future therapies for addressing the effects of inflammation on HDL cholesterol metabolism. Br J Pharmacol 2017; 174:3986-4006. [PMID: 28326542 PMCID: PMC5660004 DOI: 10.1111/bph.13743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/16/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide. Inflammatory processes arising from metabolic abnormalities are known to precipitate the development of CVD. Several metabolic and inflammatory markers have been proposed for predicting the progression of CVD, including high density lipoprotein cholesterol (HDL-C). For ~50 years, HDL-C has been considered as the atheroprotective 'good' cholesterol because of its strong inverse association with the progression of CVD. Thus, interventions to increase the concentration of HDL-C have been successfully tested in animals; however, clinical trials were unable to confirm the cardiovascular benefits of pharmaceutical interventions aimed at increasing HDL-C levels. Based on these data, the significance of HDL-C in the prevention of CVD has been called into question. Fundamental in vitro and animal studies suggest that HDL-C functionality, rather than HDL-C concentration, is important for the CVD-preventive qualities of HDL-C. Our current review of the literature positively demonstrates the negative impact of systemic and tissue (i.e. adipose tissue) inflammation in the healthy metabolism and function of HDL-C. Our survey indicates that HDL-C may be a good marker of adipose tissue health, independently of its atheroprotective associations. We summarize the current findings on the use of anti-inflammatory drugs to either prevent HDL-C clearance or improve the function and production of HDL-C particles. It is evident that the therapeutic agents currently available may not provide the optimal strategy for altering HDL-C metabolism and function, and thus, further research is required to supplement this mechanistic approach for preventing the progression of CVD. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Fatima Iqbal
- Division of Endocrinology, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - Wendy S Baker
- Division of Endocrinology, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - Madiha I Khan
- Division of Endocrinology, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - Shwetha Thukuntla
- Division of Endocrinology, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - Kevin H McKinney
- Division of Endocrinology, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - Nicola Abate
- Division of Endocrinology, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - Demidmaa Tuvdendorj
- Division of Endocrinology, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| |
Collapse
|
30
|
Lynch JJ, Van Vleet TR, Mittelstadt SW, Blomme EAG. Potential functional and pathological side effects related to off-target pharmacological activity. J Pharmacol Toxicol Methods 2017; 87:108-126. [PMID: 28216264 DOI: 10.1016/j.vascn.2017.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/24/2017] [Accepted: 02/15/2017] [Indexed: 12/22/2022]
Abstract
Most pharmaceutical companies test their discovery-stage proprietary molecules in a battery of in vitro pharmacology assays to try to determine off-target interactions. During all phases of drug discovery and development, various questions arise regarding potential side effects associated with such off-target pharmacological activity. Here we present a scientific literature curation effort undertaken to determine and summarize the most likely functional and pathological outcomes associated with interactions at 70 receptors, enzymes, ion channels and transporters with established links to adverse effects. To that end, the scientific literature was reviewed using an on-line database, and the most commonly reported effects were summarized in tabular format. The resultant table should serve as a practical guide for research scientists and clinical investigators for the prediction and interpretation of adverse side effects associated with molecules interacting with components of this screening battery.
Collapse
Affiliation(s)
- James J Lynch
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA.
| | | | | | - Eric A G Blomme
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA
| |
Collapse
|
31
|
The In Vitro and In Vivo Anti-Inflammatory Effects of a Phthalimide PPAR-γ Agonist. Mar Drugs 2017; 15:md15010007. [PMID: 28054961 PMCID: PMC5295227 DOI: 10.3390/md15010007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 01/09/2023] Open
Abstract
Previously, the authors found that 4-hydroxy-2-(4-hydroxyphenethyl) isoindoline-1,3-dione (PD1) (a phthalimide analogue) bound to and activated peroxisome proliferator-activated receptor-γ (PPAR-γ). Since PPAR-γ suppresses inflammatory responses, the present study was undertaken to investigate the anti-inflammatory effects of PD1. In lipopolysaccharide (LPS)-stimulated murine RAW264.7 macrophages, PD1 suppressed the inductions of pro-inflammatory factors, including inducible nitric oxide synthase (iNOS), nitric oxide (NO), cyclooxygenase 2 (COX-2), tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Concomitantly, PD1 enhanced the expressions of anti-inflammatory factors, such as arginase-1 and interleukin-10 (IL-10), and suppressed LPS-evoked nuclear factor kappa B (NF-κB) p65 subunit phosphorylation in macrophages. In addition, PPAR-γ activated by PD1 was intensively translocated to the nucleus. These observations suggest that the anti-inflammatory mechanism of PD1 involves inhibition of the NF-κB pathway. In a subsequent in vivo animal experiment conducted using a carrageenan-induced acute inflammatory rat paw edema model, intraperitoneal injection of PD1 significantly reduced paw swelling. Histological analysis of rat paw tissue sections revealed less infiltration of immune cells in PD1-pretreated animals. These findings suggest that PD1 be viewed as a lead compound for the development of novel anti-inflammatory therapeutics.
Collapse
|
32
|
Kwon EJ, Park EJ, Choi S, Kim SR, Cho M, Kim J. PPARγ agonist rosiglitazone inhibits migration and invasion by downregulating Cyr61 in rheumatoid arthritis fibroblast-like synoviocytes. Int J Rheum Dis 2016; 20:1499-1509. [PMID: 27456070 DOI: 10.1111/1756-185x.12913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIM Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have anti-inflammatory properties that reduce inflammatory cytokine production in rheumatoid arthritis (RA). Cysteine-rich angiogenic inducer 61 (Cyr61) is associated with diseases related to chronic inflammation. The aim of this study was to investigate the mechanisms underlying the effects of PPARγ agonists on tumor necrosis factor (TNF)-α-induced fibroblast-like synoviocyte (FLS) invasion and migration, as well as Cyr61 production, in RA-FLS. METHODS FLS were cultured with TNF-α and Cyr61 in the presence or absence of PPARγ agonists. Matrix metalloproteinase and Cyr61 expression levels in RA-FLS and culture supernatants were measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. The migration and invasion phenotypes of RA-FLS were determined by wound healing and Boyden chamber assays. RESULTS Cyr61 protein was expressed in RA-FLS, and its intracellular expression and secretion levels were increased by TNF-α. Moreover, Cyr61 directly promoted RA-FLS migration and invasion. Rosiglitazone (RSG) significantly decreased TNF-α-induced Cyr61 expression. RSG decreased TNF-α-induced nuclear factor (NF)-κB activation and inhibitor of κBα degradation. Furthermore, RSG inhibited TNF-α-induced RA-FLS migration and invasion and decreased Cyr61 treatment-induced RA-FLS invasion. Finally, blocking Cyr61 significantly attenuated TNF-α-induced migration. CONCLUSIONS Our results demonstrate for the first time that PPARγ agonists may have beneficial effects on the migration and invasion of RA-FLS via the downregulation of Cyr61. Therefore, PPARγ agonists could be potential treatment targets for RA.
Collapse
Affiliation(s)
- Eun-Jeong Kwon
- Department of Medicine, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Eun-Jung Park
- Department of Internal Medicine, Jeju National University Hospital, Jeju, Republic of Korea
| | - Sungwook Choi
- Department of Orthopedic Surgery, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Sang-Rim Kim
- Department of Orthopedic Surgery, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Moonjae Cho
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Jinseok Kim
- Department of Medicine, Jeju National University School of Medicine, Jeju, Republic of Korea.,Department of Internal Medicine, Jeju National University Hospital, Jeju, Republic of Korea
| |
Collapse
|
33
|
Neurokinin-1 receptor inhibition reverses ischaemic brain injury and dementia in bilateral common carotid artery occluded rats: possible mechanisms. Inflammopharmacology 2016; 24:133-43. [DOI: 10.1007/s10787-016-0271-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/21/2016] [Indexed: 02/01/2023]
|
34
|
Abstract
Thiazolidinediones (TZDs) are selective ligands of peroxisome-proliferator-activated receptor g increasingly used in the treatment of type 2 diabetes. Both in vitro and in vivo studies provide evidence that TZDs have anti-inflammatory properties. TZDs inhibit macrophage activation and decrease inflammatory cytokine expression and release in macrophage and monocyte. In vivo, treatment with TZDs decreases circulating mononuclear cells nuclear NF-kB content while increasing, in the same cells, expression of IkB, an NK-kB inhibitor. Furthermore, TZD treatment results in decreased plasma levels of inflammation and cardiovascular risk markers such as CRP, MMP9, PAI-1 and sCD40 in both obese and type 2 diabetic patients. Finally, TZDs induce synoviocyte apoptosis and reduce secretion of TNFa, IL-6 and IL-8 in synoviocyte from rheumatoid arthritis patients. TZDs might thus be considered for use in clinical trials targeting prevention of atherosclerosis and cardiovascular diseases and in pilot trials exploring the possibility that TZDs might help in the treatment of rheumatic diseases.
Collapse
Affiliation(s)
- A Consoli
- Department of Medicine and Aging Sciences, University of Chieti, Italy.
| | | |
Collapse
|
35
|
Houshmand G, Mansouri MT, Naghizadeh B, Hemmati AA, Hashemitabar M. Potentiation of indomethacin-induced anti-inflammatory response by pioglitazone in carrageenan-induced acute inflammation in rats: Role of PPARγ receptors. Int Immunopharmacol 2016; 38:434-42. [PMID: 27376854 DOI: 10.1016/j.intimp.2016.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/08/2016] [Accepted: 06/24/2016] [Indexed: 02/06/2023]
Abstract
This study aimed to assess the interaction between anti-inflammatory effects of pioglitazone (peroxysome proliferator activated receptor-gamma (PPARγ) agonist, PGL), and indomethacin (cyclooxygenase (COX) inhibitor, IND) and to evaluate the possible underlying mechanisms. Paw edema induced by carrageenan was used to induce inflammation. Different doses of IND (0.3-10mg/kg) and PGL (1-20mg/kg) alone or in combination were administered intraperitoneally to rats. Paw tissue levels of PPARγ, COX-2, and prostaglandin E2 and serum levels of TNF-α and IL-10 were also estimated. Doses of IND and PGL showed a statistically significant anti-inflammatory effect. Combination of a non-effective dose of IND (0.3mg/kg) with increasing doses of PGL (1-10mg/kg) resulted in potentiated anti-inflammation and vise versa. IND, PGL and the combination were able to reduce the COX-2, PGE2 contents and TNF-α level. Moreover, all these treatments caused elevation in PPARγ levels and IL-10 levels. However, when the rats were pre-treated with GW-9662 (a selective PPARγ antagonist), all the anti-inflammation and alterations in the biochemical factors were antagonized. These results showed that PGL markedly enhanced the anti-inflammatory activity of IND and this effect mediated partly at least, through PPARγ. Possible mechanisms of the interaction were that PGL stimulates the PPARγ and inhibits COX-2 by those cytokines that trigger the PPARγ and also inhibit COX-2. This study suggests that combination therapy with pioglitazone and indomethacin may provide an alternative for the clinical control of inflammation especially in patients with diabetes.
Collapse
Affiliation(s)
- Gholamreza Houshmand
- Dept. of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Mohammad Taghi Mansouri
- Dept. of Pharmacology, School of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran.
| | - Bahareh Naghizadeh
- Dept. of Pharmacology, School of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Ali Asghar Hemmati
- Dept. of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Mahmoud Hashemitabar
- Dept. of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| |
Collapse
|
36
|
Pioglitazone Attenuates Drug-Eluting Stent-Induced Proinflammatory State in Patients by Blocking Ubiquitination of PPAR. PPAR Res 2016; 2016:7407153. [PMID: 27403152 PMCID: PMC4923578 DOI: 10.1155/2016/7407153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/11/2016] [Accepted: 05/16/2016] [Indexed: 11/17/2022] Open
Abstract
The inflammatory response after polymer-based drug-eluting stent (DES) placement has recently emerged as a major concern. The biologic roles of peroxisome proliferator-activated receptor-γ (PPAR-γ) activators thiazolidinedione (TZD) remain controversial in cardiovascular disease. Herein, we investigated the antiinflammatory effects of pioglitazone (PIO) on circulating peripheral blood mononuclear cells (MNCs) in patients after coronary DES implantation. Methods and Results. Twenty-eight patients with coronary artery disease and who underwent DES implantations were randomly assigned to pioglitazone (30 mg/d; PIO) or placebo (control; Con) treatment in addition to optimal standard therapy. After 12 weeks of treatment, plasma concentrations of high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and matrix metalloproteinase-9 (MMP-9) were significantly decreased in PIO group compared to the Con group (P = 0.035, 0.011, 0.008, and 0.012, resp.). DES-induced mRNA expressions of IL-6, TNF-α, and MMP-9 in circulating MNC were significantly blocked by PIO (P = 0.031, 0.012, and 0.007, resp.). In addition, PIO markedly inhibited DES-enhanced NF-κB function and DES-blocked PPAR-γ activity. Mechanically, DES induced PPAR-γ ubiquitination and degradation in protein level, which can be totally reversed by PIO. Conclusion. PIO treatment attenuated DES-induced PPAR loss, NF-κB activation, and proinflammation, indicating that PIO may have a novel direct protective role in modulating proinflammation in DES era.
Collapse
|
37
|
Xu Y, Romero R, Miller D, Kadam L, Mial TN, Plazyo O, Garcia-Flores V, Hassan SS, Xu Z, Tarca AL, Drewlo S, Gomez-Lopez N. An M1-like Macrophage Polarization in Decidual Tissue during Spontaneous Preterm Labor That Is Attenuated by Rosiglitazone Treatment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:2476-2491. [PMID: 26889045 PMCID: PMC4779725 DOI: 10.4049/jimmunol.1502055] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/12/2016] [Indexed: 01/07/2023]
Abstract
Decidual macrophages are implicated in the local inflammatory response that accompanies spontaneous preterm labor/birth; however, their role is poorly understood. We hypothesized that decidual macrophages undergo a proinflammatory (M1) polarization during spontaneous preterm labor and that PPARγ activation via rosiglitazone (RSG) would attenuate the macrophage-mediated inflammatory response, preventing preterm birth. In this study, we show that: 1) decidual macrophages undergo an M1-like polarization during spontaneous term and preterm labor; 2) anti-inflammatory (M2)-like macrophages are more abundant than M1-like macrophages in decidual tissue; 3) decidual M2-like macrophages are reduced in preterm pregnancies compared with term pregnancies, regardless of the presence of labor; 4) decidual macrophages express high levels of TNF and IL-12 but low levels of peroxisome proliferator-activated receptor γ (PPARγ) during spontaneous preterm labor; 5) decidual macrophages from women who underwent spontaneous preterm labor display plasticity by M1↔M2 polarization in vitro; 6) incubation with RSG reduces the expression of TNF and IL-12 in decidual macrophages from women who underwent spontaneous preterm labor; and 7) treatment with RSG reduces the rate of LPS-induced preterm birth and improves neonatal outcomes by reducing the systemic proinflammatory response and downregulating mRNA and protein expression of NF-κB, TNF, and IL-10 in decidual and myometrial macrophages in C57BL/6J mice. In summary, we demonstrated that decidual M1-like macrophages are associated with spontaneous preterm labor and that PPARγ activation via RSG can attenuate the macrophage-mediated proinflammatory response, preventing preterm birth and improving neonatal outcomes. These findings suggest that the PPARγ pathway is a new molecular target for future preventative strategies for spontaneous preterm labor/birth.
Collapse
Affiliation(s)
- Yi Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tara N. Mial
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Olesya Plazyo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhonghui Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sascha Drewlo
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
38
|
Chen W, Lin YJ, Zhou XY, Chen H, Jin Y. Rosiglitazone protects rat liver against acute liver injury associated with the NF-κB signaling pathway. Can J Physiol Pharmacol 2016; 94:28-34. [DOI: 10.1139/cjpp-2015-0230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rosiglitazone, which is mainly used in the treatment of diabetes mellitus, is also involved in the regulation of inflammation. The peroxisome proliferator-activated receptor (PPAR)-γ receptor subtype appears to play a pivotal role in the regulation of inflammation. However, the exact mechanism for the protective effects of rosiglitazone against inflammation such as liver injury remains unclear. The aim of this study was to investigate the effects of rosiglitazone on inflammation in the liver of rats treated with D-GaIN/LPS. Male Sprague–Dawley rats were injected with D-GaIN/LPS with or without pre-administration of rosiglitazone (3, 10, or 30 mg/kg, intraperitoneal injection). Our data showed that rosiglitazone significantly inhibited D-GaIN/LPS-induced hepatotoxicity in a dose-dependent manner, as indicated by both diagnostic indicators of liver damage (serum aminotransferase activities) and histopathological analysis. Western blot analysis showed that rosiglitazone significantly decreased protein expression levels of COX-2 and production of pro-inflammatory markers, including TNF-α and IL-6, in D-GaIN/LPS-treated rat liver. The results indicated that the inhibition of D-GaIN/LPS-induced inflammation by rosiglitazone can be attributed, at least partially, to its capacity to regulate the the immunoregulatory transcription factor nuclear factor kappa B (NF-κB) signaling pathway.
Collapse
Affiliation(s)
- Wei Chen
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, People’s Republic of China
| | - Yuan-Jie Lin
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, People’s Republic of China
| | - Xu-Ya Zhou
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, People’s Republic of China
| | - Hao Chen
- Institute of Clinical Pharmacology,Anhui Medical University, 81 Meishan Road, Hefei, Anhui, People’s Republic of China
| | - Yong Jin
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
39
|
Bhat MA, Al-Omar MA, Ansari MA, Zoheir KMA, Imam F, Attia SM, Bakheet SA, Nadeem A, Korashy HM, Voronkov A, Berishvili V, Ahmad SF. Design and Synthesis of N-Arylphthalimides as Inhibitors of Glucocorticoid-Induced TNF Receptor-Related Protein, Proinflammatory Mediators, and Cytokines in Carrageenan-Induced Lung Inflammation. J Med Chem 2015; 58:8850-67. [PMID: 26456029 DOI: 10.1021/acs.jmedchem.5b00934] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
N-Arylphthalimides (1-10P) derived from thalidomide by insertion of hydrophobic groups were evaluated for anti-inflammatory activity, and (4-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-N'-[(4-ethoxyphenyl)methylidene]benzohydrazide 6P was identified as a promising anti-inflammatory agent. Further testing confirmed that compared with the control, 6P treatment resulted in a considerable decrease in CD4(+), NF-κB p65(+), TNF-α(+), IL-6(+), GITR(+), and IL-17(+) cell populations and an increase in the Foxp3(+), CD4(+)Foxp3(+), and IκBα(+) populations in whole blood and pleural fluid of a mouse model of lung inflammation. Moreover, treatment with compound 6P decreased the proteins associated with inflammation including TNF-α, IL-6, IL-17, GITR, NF-κB, COX-2, STAT-3, and iNOS and increased the anti-inflammatory mediators such as IL-10 and IL-4. Further, histopathological examination confirmed the potent anti-inflammatory effects of compound 6P. Thus, the N-arylphthalimide derivative 6P acts as a potent anti-inflammatory agent in the carrageenan-induced lung inflammation model, suggesting that this compound may be useful for the treatment of inflammation in a clinical setting.
Collapse
Affiliation(s)
- Mashooq A Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University , 2457 Riyadh, Kingdom of Saudi Arabia
| | - Mohamed A Al-Omar
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University , 2457 Riyadh, Kingdom of Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University , 2457 Riyadh, Kingdom of Saudi Arabia
| | - Khairy M A Zoheir
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University , 2457 Riyadh, Kingdom of Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University , 2457 Riyadh, Kingdom of Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University , 2457 Riyadh, Kingdom of Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University , 2457 Riyadh, Kingdom of Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University , 2457 Riyadh, Kingdom of Saudi Arabia
| | - Hesham M Korashy
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University , 2457 Riyadh, Kingdom of Saudi Arabia
| | - Andrey Voronkov
- Department of Chemistry, Lomonosov Moscow State University , Leninskie Gory, 1/3, Moscow 119991, Russia
- Digital Bio Pharm Ltd. , 145-157 St. John Street, London, EC1V 4PW, U.K
- Moscow Institute of Physics and Technology (State University) , 9 Institutskiy Lane, Dolgoprudny, Moscow Oblast 141700, Russia
| | - Vladimir Berishvili
- Department of Chemistry, Lomonosov Moscow State University , Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University , 2457 Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Unacylated ghrelin restores insulin and autophagic signaling in skeletal muscle of diabetic mice. Pflugers Arch 2015; 467:2555-69. [PMID: 26228926 DOI: 10.1007/s00424-015-1721-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/21/2015] [Accepted: 07/13/2015] [Indexed: 01/04/2023]
Abstract
Impairment of insulin signaling in skeletal muscle detrimentally affects insulin-stimulated disposal of glucose. Restoration of insulin signaling in skeletal muscle is important as muscle is one of the major sites for disposal of blood glucose. Recently, unacylated ghrelin (UnAG) has received attention in diabetic research due to its favorable actions on improving glucose tolerance, glycemic control, and insulin sensitivity. The investigation of UnAG has entered phase Ib clinical trial in type 2 diabetes and phase II clinical trial in hyperphagia in Prader-Willi syndrome. Nonetheless, the precise mechanisms responsible for the anti-diabetic actions of UnAG remain incompletely understood. In this study, we examined the effects of UnAG on restoring the impaired insulin signaling in skeletal muscle of db/db diabetic mice. Our results demonstrated that UnAG effectively restored the impaired insulin signaling in diabetic muscle. UnAG decreased insulin receptor substrate (IRS) phosphorylation, increased protein kinase B (Akt) phosphorylation, and, hence, suppressed mTOR signaling. Consequently, UnAG enhanced Glut4 localization and increased PDH activity in the diabetic skeletal muscle. Intriguingly, our data indicated that UnAG normalized the suppressed autophagic signaling in diabetic muscle. In conclusion, our findings illustrated that UnAG restored the impaired insulin and autophagic signaling in skeletal muscle of diabetic mice, which are valuable to understand the underlying mechanisms of the anti-diabetic action of UnAG at peripheral skeletal muscle level.
Collapse
|
41
|
Hegde VL, Singh UP, Nagarkatti PS, Nagarkatti M. Critical Role of Mast Cells and Peroxisome Proliferator-Activated Receptor γ in the Induction of Myeloid-Derived Suppressor Cells by Marijuana Cannabidiol In Vivo. THE JOURNAL OF IMMUNOLOGY 2015; 194:5211-22. [PMID: 25917103 DOI: 10.4049/jimmunol.1401844] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 03/23/2015] [Indexed: 12/26/2022]
Abstract
Cannabidiol (CBD) is a natural nonpsychotropic cannabinoid from marijuana (Cannabis sativa) with anti-epileptic and anti-inflammatory properties. Effect of CBD on naive immune system is not precisely understood. In this study, we observed that administering CBD into naive mice triggers robust induction of CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSC) in the peritoneum, which expressed functional arginase 1, and potently suppressed T cell proliferation ex vivo. Furthermore, CBD-MDSC suppressed LPS-induced acute inflammatory response upon adoptive transfer in vivo. CBD-induced suppressor cells were comprised of CD11b(+)Ly6-G(+)Ly6-C(+) granulocytic and CD11b(+)Ly6-G(-)Ly6-C(+) monocytic subtypes, with monocytic MDSC exhibiting higher T cell-suppressive function. Induction of MDSC by CBD was markedly attenuated in Kit-mutant (Kit(W/W-v)) mast cell-deficient mice. MDSC response was reconstituted upon transfer of wild-type bone marrow-derived mast cells in Kit(W/W-v) mice, suggesting the key role of cKit (CD117) as well as mast cells. Moreover, mast cell activator compound 48/80 induced significant levels of MDSC in vivo. CBD administration in mice induced G-CSF, CXCL1, and M-CSF, but not GM-CSF. G-CSF was found to play a key role in MDSC mobilization inasmuch as neutralizing G-CSF caused a significant decrease in MDSC. Lastly, CBD enhanced the transcriptional activity of peroxisome proliferator-activated receptor γ in luciferase reporter assay, and PPAR-γ selective antagonist completely inhibited MDSC induction in vivo, suggesting its critical role. Together, the results suggest that CBD may induce activation of PPAR-γ in mast cells leading to secretion of G-CSF and consequent MDSC mobilization. CBD being a major component of Cannabis, our study indicates that marijuana may modulate or dysregulate the immune system by mobilizing MDSC.
Collapse
Affiliation(s)
- Venkatesh L Hegde
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209; and
| | - Udai P Singh
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209; and
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209; and
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209; and Wm. Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC 29208
| |
Collapse
|
42
|
Rhizoma Dioscoreae Nipponicae polysaccharides protect HUVECs from H2O2-induced injury by regulating PPARγ factor and the NADPH oxidase/ROS–NF-κB signal pathway. Toxicol Lett 2015; 232:149-58. [DOI: 10.1016/j.toxlet.2014.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/02/2014] [Accepted: 10/04/2014] [Indexed: 12/23/2022]
|
43
|
Sharma AN, Bauer IE, Sanches M, Galvez JF, Zunta-Soares GB, Quevedo J, Kapczinski F, Soares JC. Common biological mechanisms between bipolar disorder and type 2 diabetes: Focus on inflammation. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:289-98. [PMID: 24969830 DOI: 10.1016/j.pnpbp.2014.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/11/2014] [Accepted: 06/15/2014] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) patients present a 3-5 fold greater risk of developing type 2 diabetes (T2D) compared to general population. The underlying mechanisms for the increased prevalence of T2D in BD population are poorly understood. OBJECTIVES The purpose of this review is to critically review evidence suggesting that inflammation may have an important role in the development of both BD and T2D. RESULTS The literature covered in this review suggests that inflammatory dysregulation take place among many BD patients. Such dysregulated and low grade chronic inflammatory process may also increase the prevalence of T2D in BD population. Current evidence supports the hypothesis of dysregulated inflammatory processes as a critical upstream event in BD as well as in T2D. CONCLUSIONS Inflammation may be a factor for the development of T2D in BD population. The identification of inflammatory markers common to these two medical conditions will enable researchers and clinicians to better understand the etiology of BD and develop treatments that simultaneously target all aspects of this multi-system condition.
Collapse
Affiliation(s)
- Ajaykumar N Sharma
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Center for Molecular Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Isabelle E Bauer
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Marsal Sanches
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Juan F Galvez
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Giovana B Zunta-Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joao Quevedo
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Flavio Kapczinski
- Center for Molecular Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratory of Molecular Psychiatry, Department of Psychiatry and Legal Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jair C Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
44
|
Ahmad SF, Zoheir KMA, Abdel-Hamied HE, Alrashidi I, Attia SM, Bakheet SA, Ashour AE, Abd-Allah ARA. Role of a histamine 4 receptor as an anti-inflammatory target in carrageenan-induced pleurisy in mice. Immunology 2014; 142:374-83. [PMID: 24460575 DOI: 10.1111/imm.12257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 12/21/2022] Open
Abstract
The histamine 4 receptor (H4R) is expressed primarily on cells involved in inflammation and immune responses. Despite much research into inflammatory diseases, no drugs with favourable safety profiles are yet available for their treatment. The aim of the present study was to determine the potential anti-inflammatory effect of 4-methylhistamine (4-MeH) or JNJ77777120 (JNJ) and to explore the role of H4R in a mouse model of carrageenan (Cg) -induced pleurisy. A single dose of 4-MeH or JNJ (30 mg/kg) was administered intraperitoneally 1 hr before Cg administration. The results illustrate that both the numbers of CD4(+) , CD25(+) , CD4(+) CD25(+) , GITR(+) , GITR(+) IL-17A(+) -expressing T cells and the levels of T helper type 1 (Th1)/Th17 cytokines were markedly increased in both the Cg-treated and 4-MeH-treated groups, whereas the cytokines produced by Th2 cells were significantly decreased in the same groups. However, JNJ treatment significantly decreased both the number of T-cell subsets and GITR(+) , GITR(+) IL-17A(+) -expressing T cells, and the production of Th1/Th17 cytokines. Further, JNJ up-regulated the expression of the Th2 cytokines. RT-PCR analysis revealed an increased expression of interleukin-1β, tumour necrosis factor-α, monocyte chemoattractant protein-1 and intercellular adhesion molecule-1 in the Cg-treated and 4-MeH-treated groups, which was reduced by treatment with JNJ in lung tissues. Moreover, histological examinations revealed anti-inflammatory effects of JNJ, whereas 4-MeH worsened Cg-induced inflammation. In conclusion, the results of the present work clearly indicate that JNJ possesses important anti-inflammatory properties that are increased in 4-MeH-treated mice, suggesting that H4R are involved in pleurisy and that JNJ has an anti-inflammatory effect in associated disease conditions.
Collapse
Affiliation(s)
- Sheikh Fayaz Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sziksz E, Molnár K, Lippai R, Pap D, Onody A, Veres-Székely A, Vörös P, Szabó D, Győrffy H, Veres G, Tulassay T, Vannay A, Arató A. Peroxisome proliferator-activated receptor-γ and thymic stromal lymphopoietin are involved in the pathophysiology of childhood coeliac disease. Virchows Arch 2014; 465:385-93. [PMID: 25187315 DOI: 10.1007/s00428-014-1650-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/01/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022]
Abstract
Celiac disease (CD) is a chronic autoimmune enteropathy caused by exposure to dietary gluten in genetically predisposed individuals. The transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) was shown to exert protective effects in several immune-mediated disorders. Activation of PPARγ suppressed the expression of thymic stromal lymphopoietin (TSLP), an inducer of proinflammatory cytokines. Since the role of TSLP in gluten-sensitive enteropathy is completely unknown, we investigated the involvement of TSLP and its regulator PPARγ in childhood CD. We collected duodenal biopsy specimens from 19 children with newly diagnosed CD, 6 children with treated CD (gluten-free diet, GFD), and 10 controls. Expression of mRNA and protein levels of PPARγ, TSLP, and TSLP receptor were determined by real-time RT-PCR and Western blot, respectively. Duodenal localization of PPARγ and TSLP was studied by immunohistochemistry. In duodenal mucosa of children with CD, the amount of PPARγ was significantly lower and simultaneously that of TSLP significantly higher compared to controls (p < 0.05). In GFD-treated patients, the levels of PPARγ mRNA and protein were significantly higher while that of TSLP markedly lower compared to newly diagnosed CD (p < 0.05). Immunohistochemistry revealed PPARγ and TSLP expression in lamina propria immune cells and in enterocytes. Low expression of PPARγ and high expression of TSLP in the duodenal mucosa of children with newly diagnosed CD suggest that they are involved in the pathophysiology of CD. We hypothesize that PPARγ may be an inhibitory regulator of TSLP-stimulated inflammatory processes in CD.
Collapse
Affiliation(s)
- Erna Sziksz
- MTA-SE, Pediatrics and Nephrology Research Group, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hyper-inflammation and skin destruction mediated by rosiglitazone activation of macrophages in IL-6 deficiency. J Invest Dermatol 2014; 135:389-399. [PMID: 25184961 PMCID: PMC4291681 DOI: 10.1038/jid.2014.375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 11/24/2022]
Abstract
Injury initiates recruitment of macrophages to support tissue repair; however, excessive macrophage activity may exacerbate tissue damage causing further destruction and subsequent delay in wound repair. Here we show that the peroxisome proliferation–activated receptor-γ agonist, rosiglitazone (Rosi), a medication recently reintroduced as a drug to treat diabetes and with known anti-inflammatory properties, paradoxically generates pro-inflammatory macrophages. This is observed in both IL-6-deficient mice and control wild-type mice experimentally induced to produce high titers of auto-antibodies against IL-6, mimicking IL-6 deficiency in human diseases. IL-6 deficiency when combined with Rosi-mediated upregulation of suppressor of cytokine signaling 3 leads to an altered ratio of nuclear signal transducer and activator of transcription 3/NF-κB that allows hyper-induction of inducible nitric oxide synthase (iNOS). Macrophages activated in this manner cause de novo tissue destruction, recapitulating human chronic wounds, and can be reversed in vivo by recombinant IL-6, blocking macrophage infiltration, or neutralizing iNOS. This study provides insight into an unanticipated paradoxical role of Rosi in mediating hyper-inflammatory macrophage activation significant for diseases associated with IL-6 deficiency.
Collapse
|
47
|
Li H, Singh S, Potula R, Persidsky Y, Kanmogne GD. Dysregulation of claudin-5 in HIV-induced interstitial pneumonitis and lung vascular injury. Protective role of peroxisome proliferator-activated receptor-γ. Am J Respir Crit Care Med 2014; 190:85-97. [PMID: 22345580 DOI: 10.1164/rccm.201106-1151oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE HIV-1-induced interstitial pneumonitis (IP) is a serious complication of HIV-1 infection, characterized by inflammation and cellular infiltration in lungs, often leading to respiratory failure and death. The barrier function of the pulmonary endothelium is caused in part by tight junction (TJ) proteins, such as claudin-5. Peroxisome proliferator-activated receptor (PPAR)-γ is expressed in lung tissues and regulates inflammation. We hypothesize that HIV-1 induces vascular lung injury, and HIV-1-mediated damage of the pulmonary endothelium and IP is associated with dysregulation of PPAR-γ. OBJECTIVES Investigate the effects of HIV-1 infection on the pulmonary microvasculature and the modulatory effects of the PPAR-γ ligands. METHODS Using human lung tissues, we demonstrated down-regulation of claudin-5 (marker of pulmonary barrier integrity), down-regulation of PPAR-γ transcription, and expression in lung tissues of HIV-1-infected humans with IP. MEASUREMENTS AND MAIN RESULTS Human lung microvascular endothelial cells expressed the TJ proteins claudin-5, ZO-1, and ZO-2; HIV-1 decreased TJ proteins expression and induced nuclear factor-κB promoter activity, which was reversed by PPAR-γ agonist. Using two murine HIV/AIDS models, we demonstrated decreased claudin-5 expression and increased macrophage infiltration in the lungs of HIV-1-infected animals. Activation of PPAR-γ prevented HIV-1-induced claudin-5 down-regulation and significantly reduced viremia and pulmonary macrophage infiltration. CONCLUSIONS HIV-induced IP is associated with injury to the lung vascular endothelium, with decreased TJ and PPAR-γ expression, and increased pulmonary macrophage infiltration. PPAR-γ ligands abrogated these effects. Thus, regulation of PPAR-γ can be a therapeutic approach against HIV-1-induced vascular damage and IP in infected humans. Removal of Expression of Concern: Issues leading to the previous expression of concern for this article have been resolved after further revisions and editorial review. No further concerns exist.
Collapse
Affiliation(s)
- Hong Li
- 1 Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska; and
| | | | | | | | | |
Collapse
|
48
|
Aristatile B, Al-Assaf AH, Pugalendi KV. Carvacrol ameliorates the PPAR-A and cytochrome P450 expression on D-galactosamine induced hepatotoxicity rats. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2014; 11:118-23. [PMID: 25371573 PMCID: PMC4202429 DOI: 10.4314/ajtcam.v11i3.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Carvacrol (2-methyl-5-(1-methylethyl)-phenol) is a predominant monoterpenic phenol which occurs in many essential oils of the family Labiatae including Origanum, Satureja, Thymbra, Thymus, and Corydothymus species. It is well known for its anti-inflammatory, antioxidant and antitumor activities. The present study investigates the influence of carvacrol on CYP2E1 and PPAR-α on D-Galactosamine (D-GalN)-induced hepatotoxic rats. MATERIALS AND METHODS The mRNA and protein expression levels of CYP2E1 and PPAR-α have been assayed by semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and western blot analysis. RESULT The result demonstrated that the mRNA and protein expressions of CYP2E1(p=0.012; p=0.015) significantly up-regulated while the mRNA and protein expressions of PPAR-α (p=0.026; p=0.03) significantly down-regulated on D-galactosamine induced hepatotoxic rats and treatment with carvacrol significantly suppressed the mRNA and protein (CYP2E1, p=0.010; p=0.011) (PPAR-α, p=0.033; p=0.037) expressions of these genes. CONCLUSION Thus, the present results have shown that carvacrol has the hepatoprotective effect and also alleviates liver damage associated with GalN induced hepatotoxic rats by down-regulating the CYP2E1 and up-regulating the PPAR-α expression.
Collapse
Affiliation(s)
- Balakrishnan Aristatile
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdullah H Al-Assaf
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Kodukkur Viswanathan Pugalendi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar - 608 002, Tamilnadu, India
| |
Collapse
|
49
|
Are conjugated linolenic acid isomers an alternative to conjugated linoleic acid isomers in obesity prevention? ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.endoen.2014.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Yuan M, Qiu M, Cui J, Zhang X, Zhang P. Protective effects of pioglitazone against immunoglobulin deposition on heart of streptozotocin-induced diabetic rats. J Endocrinol Invest 2014; 37:375-84. [PMID: 24682915 DOI: 10.1007/s40618-013-0046-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 12/17/2013] [Indexed: 11/28/2022]
Abstract
AIM Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists have immunomodulatory and anti-inflammatory effects. The study investigated the autoimmune injuries of diabetic cardiomyopathy (DCM) and tested the hypothesis that PPAR-γ agonists suppress disordered immune responses in diabetic heart, thereby preventing evolution of DCM. METHODS STZ-induced diabetic rats were assigned to five groups: DM group, given no treatment; INS group, given insulin (4 U kg(-1) d(-1)); PIL group, given low dose pioglitazone (4 mg kg(-1) d(-1)); PIL/INS group, given both low dose pioglitazone and insulin; PIH group, given high dose pioglitazone (20 mg kg(-1) d(-1)). Normal rats (CON group) were also monitored as control. The pathologic abnormalities of hearts were observed. The immunoglobulin deposition was examined by immunohistochemistry and immunofluorescence. RESULTS At 16 weeks, interstitial fibrosis was shown in diabetic heart which was accompanied by plenty of inflammatory cells infiltrated. Pioglitazone therapy could ameliorate the cardiac injuries. Shown by immunohistochemistry, the difference of integrated optical density (IOD) of immunoglobulin deposition among each group had statistic significance. No obvious immunoglobulins were deposited in the intercellular substance of heart in CON group (IgA 290.8 ± 88.1, IgG 960.4 ± 316.0 and IgM 341.3 ± 67.9). But the deposition of immunoglobulins increased significantly in DM group (IgA 7,047.5 ± 1,328.3, P < 0.05; IgG 28,945.9 ± 5,160.7, P < 0.05 and IgM 8,580.8 ± 1,336.8, P < 0.05). Administration of pioglitazone greatly reduced the increased deposition in a dose-dependent fashion. Moreover, the statistical significance was the same with immunofluorescence analysis as with immunohistochemical examination. CONCLUSIONS The data suggest that disordered immune responses play an important role in the pathogenesis of DCM. Pioglitazone showed protective effects by inhibiting the immunoglobulin deposition on diabetic myocardium.
Collapse
Affiliation(s)
- M Yuan
- Department of Endocrinology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | | | | | | | | |
Collapse
|