1
|
Oz M, Lorke DE, Howarth FC. Transient receptor potential vanilloid 1 (TRPV1)-independent actions of capsaicin on cellular excitability and ion transport. Med Res Rev 2023. [PMID: 36916676 DOI: 10.1002/med.21945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/17/2023] [Accepted: 02/26/2023] [Indexed: 03/15/2023]
Abstract
Capsaicin is a naturally occurring alkaloid derived from chili pepper that is responsible for its hot pungent taste. Capsaicin is known to exert multiple pharmacological actions, including analgesia, anticancer, anti-inflammatory, antiobesity, and antioxidant effects. The transient receptor potential vanilloid subfamily member 1 (TRPV1) is the main receptor mediating the majority of the capsaicin effects. However, numerous studies suggest that the TRPV1 receptor is not the only target for capsaicin. An increasing number of studies indicates that capsaicin, at low to mid µM ranges, not only indirectly through TRPV1-mediated Ca2+ increases, but also directly modulates the functions of voltage-gated Na+ , K+ , and Ca2+ channels, as well as ligand-gated ion channels and other ion transporters and enzymes involved in cellular excitability. These TRPV1-independent effects are mediated by alterations of the biophysical properties of the lipid membrane and subsequent modulation of the functional properties of ion channels and by direct binding of capsaicin to the channels. The present study, for the first time, systematically categorizes this diverse range of non-TRPV1 targets and discusses cellular and molecular mechanisms mediating TRPV1-independent effects of capsaicin in excitable, as well as nonexcitable cells.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Dietrich E Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Mechanisms Underlining Inflammatory Pain Sensitivity in Mice Selected for High and Low Stress-Induced Analgesia-The Role of Endocannabinoids and Microglia. Int J Mol Sci 2022; 23:ijms231911686. [PMID: 36232988 PMCID: PMC9570076 DOI: 10.3390/ijms231911686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
In this work we strived to determine whether endocannabinoid system activity could account for the differences in acute inflammatory pain sensitivity in mouse lines selected for high (HA) and low (LA) swim-stress-induced analgesia (SSIA). Mice received intraplantar injections of 5% formalin and the intensity of nocifensive behaviours was scored. To assess the contribution of the endocannabinoid system, mice were intraperitoneally (i.p.) injected with rimonabant (0.3–3 mg/kg) prior to formalin. Minocycline (45 and 100 mg/kg, i.p.) was administered to investigate microglial activation. The possible involvement of the endogenous opioid system was investigated with naloxone (1 mg/kg, i.p.). Cannabinoid receptor types 1 and 2 (Cnr1, Cnr2) and opioid receptor subtype (Oprm1, Oprd1, Oprk1) mRNA levels were quantified by qPCR in the structures of the central nociceptive circuit. Levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured by liquid chromatography coupled with the mass spectrometry method (LC-MS/MS). In the interphase, higher pain thresholds in the HA mice correlated with increased spinal anandamide and 2-AG release and higher Cnr1 transcription. Downregulation of Oprd1 and Oprm1 mRNA was noted in HA and LA mice, respectively, however no differences in naloxone sensitivity were observed in either line. As opposed to the LA mice, inflammatory pain sensitivity in the HA mice in the tonic phase was attributed to enhanced microglial activation, as evidenced by enhanced Aif1 and Il-1β mRNA levels. To conclude, Cnr1 inhibitory signaling is one mechanism responsible for decreased pain sensitivity in HA mice in the interphase, while increased microglial activation corresponds to decreased pain thresholds in the tonic inflammatory phase.
Collapse
|
3
|
Winters BL, Vaughan CW. Mechanisms of endocannabinoid control of synaptic plasticity. Neuropharmacology 2021; 197:108736. [PMID: 34343612 DOI: 10.1016/j.neuropharm.2021.108736] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023]
Abstract
The endogenous cannabinoid transmitter system regulates synaptic transmission throughout the nervous system. Unlike conventional transmitters, specific stimuli induce synthesis of endocannabinoids (eCBs) in the postsynaptic neuron, and these travel backwards to modulate presynaptic inputs. In doing so, eCBs can induce short-term changes in synaptic strength and longer-term plasticity. While this eCB regulation is near ubiquitous, it displays major regional and synapse specific variations with different synapse specific forms of short-versus long-term plasticity throughout the brain. These differences are due to the plethora of pre- and postsynaptic mechanisms which have been implicated in eCB signalling, the intricacies of which are only just being realised. In this review, we shall describe the current understanding and highlight new advances in this area, with a focus on the retrograde action of eCBs at CB1 receptors (CB1Rs).
Collapse
Affiliation(s)
- Bryony Laura Winters
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia.
| | - Christopher Walter Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| |
Collapse
|
4
|
Khakpoor M, Vaseghi S, Mohammadi-Mahdiabadi-Hasani MH, Nasehi M. The effect of GABA-B receptors in the basolateral amygdala on passive avoidance memory impairment induced by MK-801 in rats. Behav Brain Res 2021; 409:113313. [PMID: 33891976 DOI: 10.1016/j.bbr.2021.113313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 11/19/2022]
Abstract
MK-801 (dizocilpine) is a potent non-competitive N-methyl-[D]-aspartate (NMDA) receptor antagonist that affects cognitive function, learning, and memory. As we know, NMDA receptors are significantly involved in memory function, as well as GABA (Gamma-Aminobutyric acid) receptors. In this study, we aimed to discover the effect of GABA-B receptors in the basolateral amygdala (BLA) on MK-801-induced memory impairment. We used 160 male Wistar rats. The shuttle box was used to evaluate passive avoidance memory and locomotion apparatus was used to evaluate locomotor activity. MK-801 (0.125, 0.25, and 0.5 μg/rat), baclofen (GABA-B agonist, 0.0001, 0.001, and 0.01 μg/rat) and phaclofen (GABA-B antagonist, 0.0001, 0.001, and 0.01 μg/rat) were injected intra-BLA, after the training. The results showed that MK-801 at the dose of 0.5 μg/rat, baclofen at the doses of 0.001 and 0.01 μg/rat, and phaclofen at the doses of 0.001 and 0.01 μg/rat, impaired passive avoidance memory. Locomotor activity did not alter in all groups. Furthermore, the subthreshold dose of both baclofen (0.0001 μg/rat) and phaclofen (0.0001 μg/rat) restored the impairment effect of MK-801 (0.5 μg/rat) on memory. Also, both baclofen (0.0001 μg/rat) potentiated the impairment effect of MK-801 (0.125 μg/rat) and phaclofen (0.0001 μg/rat) potentiated the impairment effect of MK-801 (0.125 and 0.25 μg/rat) on passive avoidance memory. In conclusion, our results indicated that BLA GABA-B receptors can alter the effect of NMDA inactivation on passive avoidance memory.
Collapse
Affiliation(s)
- Mitra Khakpoor
- Department of Basic Science, Farhangian University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | | | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Capsaicin inhibits the function of α 7-nicotinic acetylcholine receptors expressed in Xenopus oocytes and rat hippocampal neurons. Eur J Pharmacol 2019; 857:172411. [PMID: 31152699 DOI: 10.1016/j.ejphar.2019.172411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 11/21/2022]
Abstract
Capsaicin is a naturally occurring alkaloid derived from Chili peppers fruits. Using the two-electrode voltage-clamp technique in Xenopus oocyte expression system, actions of capsaicin on the functional properties of α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor were investigated. Ion currents activated by ACh (100 μM) were reversibly inhibited with an IC50 value of 8.6 μM. Inhibitory actions of capsaicin was independent of membrane potential. Furthermore, Ca2+-dependent Cl- channels expressed endogenously in oocytes were not involved in inhibitory actions of capsaicin. In addition, increasing the ACh concentrations could not reverse the inhibitory effects of capsaicin. Importantly, specific binding of [125I] α-bungarotoxin remained unaltered by capsaicin suggesting that its effect is noncompetitive. Whole cell patch-clamp technique was performed in CA1 stratum radiatum interneurons of rat hippocampal slices. Ion currents induced by choline, a selective-agonist of α7-receptor, were reversibly inhibited by 10 min bath application of capsaicin (10 μM). Collectively, results of our investigation indicate that the function of the α7-nACh receptor expressed in Xenopus oocytes and in hippocampal interneurons are inhibited by capsaicin.
Collapse
|
6
|
Nazıroğlu M, Taner AN, Balbay E, Çiğ B. Inhibitions of anandamide transport and FAAH synthesis decrease apoptosis and oxidative stress through inhibition of TRPV1 channel in an in vitro seizure model. Mol Cell Biochem 2018; 453:143-155. [PMID: 30159798 DOI: 10.1007/s11010-018-3439-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/24/2018] [Indexed: 02/03/2023]
Abstract
The expression level of TRPV1 is high in hippocampus which is a main epileptic area in the brain. In addition to the actions of capsaicin (CAP) and reactive oxygen species (ROS), the TRPV1 channel is activated in neurons by endogenous cannabinoid, anandamide (AEA). In the current study, we investigated the role of inhibitors of TRPV1 (capsazepine, CPZ), AEA transport (AM404), and FAAH (URB597) on the modulation of Ca2+ entry, apoptosis, and oxidative stress in in vitro seizure-induced rat hippocampus and human glioblastoma (DBTRG) cell line. The seizure was induced in the hippocampal and DBTRG neurons using in vitro 4-aminopyridine (4-AP) to trigger a seizure-like activity model. CPZ and AM404 were fully effective in reversing 4-AP-induced intracellular free Ca2+ concentration of the hippocampus and TRPV1 current density of DBTRG. However, AEA and CAP did not activate TRPV1 in the URB597-treated neurons. Hence, we observed TRPV1 blocker effects of URB597 in the DBTRG neurons. In addition, the AM404 and CPZ treatments decreased intracellular ROS production, mitochondrial membrane depolarization, apoptosis, caspases 3 and 9 values in the hippocampus. In conclusion, the results indicate that inhibition of AEA transport, FAAH synthesis, and TRPV1 activity can result in remarkable neuroprotective effects in the epileptic neurons. Possible molecular pathways of involvement of capsazepine (CPZ) and AM4040 in anandamide and capsaicin (CAP)-induced apoptosis, oxidative stress, and Ca2+ accumulation through TRPV1 channel in the seizure-induced rat hippocampus and human glioblastoma neurons. The TRPV1 channel is activated by different stimuli including reactive oxygen species (ROS), anandamide (AEA), and CAP and it is blocked by capsazepine (CPZ). Cannabinoid receptor type 1 (CB1) is also activated by AEA. The AEA levels in cytosol are decreased by fatty acid amide hydrolase (FAAH) enzyme. Inhibition of FAAH through URB597 induces stimulation of CB1 receptor through accumulation AEA. URB597 acts antiepileptic effects through inhibition of TRPV1. Overloaded Ca2+ concentration of mitochondria can induce an apoptotic program by stimulating the release of apoptosis-promoting factors such as caspases 3 and caspase 9 by generating ROS due to respiratory chain damage. AM404 and CPZ reduce TRPV1 channel activation and Ca2+ entry in the in vitro 4-AP seizure model-induced hippocampal and glioblastoma neurons.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, 32260, Isparta, Turkey. .,Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Afife Nur Taner
- Medicine Faculty, Suleyman Demirel University, Isparta, Turkey
| | - Esra Balbay
- Medicine Faculty, Suleyman Demirel University, Isparta, Turkey
| | - Bilal Çiğ
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
7
|
Rivera P, Pastor A, Arrabal S, Decara J, Vargas A, Sánchez-Marín L, Pavón FJ, Serrano A, Bautista D, Boronat A, de la Torre R, Baixeras E, Lucena MI, de Fonseca FR, Suárez J. Acetaminophen-Induced Liver Injury Alters the Acyl Ethanolamine-Based Anti-Inflammatory Signaling System in Liver. Front Pharmacol 2017; 8:705. [PMID: 29056914 PMCID: PMC5635604 DOI: 10.3389/fphar.2017.00705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Protective mechanisms against drug-induced liver injury are actively being searched to identify new therapeutic targets. Among them, the anti-inflammatory N-acyl ethanolamide (NAE)-peroxisome proliferators activated receptor alpha (PPARα) system has gained much interest after the identification of its protective role in steatohepatitis and liver fibrosis. An overdose of paracetamol (APAP), a commonly used analgesic/antipyretic drug, causes hepatotoxicity, and it is being used as a liver model. In the present study, we have analyzed the impact of APAP on the liver NAE-PPARα system. A dose-response (0.5-5-10-20 mM) and time-course (2-6-24 h) study in human HepG2 cells showed a biphasic response, with a decreased PPARα expression after 6-h APAP incubation followed by a generalized increase of NAE-PPARα system-related components (PPARα, NAPE-PLD, and FAAH), including the NAEs oleoyl ethanolamide (OEA) and docosahexaenoyl ethanolamide, after a 24-h exposure to APAP. These results were partially confirmed in a time-course study of mice exposed to an acute dose of APAP (750 mg/kg). The gene expression levels of Pparα and Faah were decreased after 6 h of treatment and, after 24 h, the gene expression levels of Nape-pld and Faah, as well as the liver levels of OEA and palmitoyl ethanolamide, were increased. Repeated APAP administration (750 mg/kg/day) up to 4 days also decreased the expression levels of PPARα and FAAH, and increased the liver levels of NAEs. A resting period of 15 days completely restored these impairments. Liver immunohistochemistry in a well-characterized human case of APAP hepatotoxicity confirmed PPARα and FAAH decrements. Histopathological and hepatic damage (Cyp2e1, Caspase3, αSma, Tnfα, and Mcp1)-related alterations observed after repeated APAP administration were aggravated in the liver of Pparα-deficient mice. Our results demonstrate that the anti-inflammatory NAE-PPARα signaling system is implicated in liver toxicity after exposure to APAP overdose, and may contribute to its recovery through a long-term time-dependent response.
Collapse
Affiliation(s)
- Patricia Rivera
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Antoni Pastor
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - Sergio Arrabal
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Decara
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonio Vargas
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Laura Sánchez-Marín
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Dolores Bautista
- Unidad de Gestión Clínica de Anatomía Patológica, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Anna Boronat
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Rafael de la Torre
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - Elena Baixeras
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - M Isabel Lucena
- Servicio de Farmacología Clínica, Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto Salud Carlos III, Madrid, Spain
| | - Fernando R de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
8
|
Voitychuk OI, Asmolkova VS, Gula NM, Sotkis GV, Galadari S, Howarth FC, Oz M, Shuba YM. Modulation of excitability, membrane currents and survival of cardiac myocytes by N-acylethanolamines. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1167-76. [DOI: 10.1016/j.bbalip.2012.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 04/17/2012] [Accepted: 05/11/2012] [Indexed: 12/21/2022]
|
9
|
Chicca A, Marazzi J, Nicolussi S, Gertsch J. Evidence for bidirectional endocannabinoid transport across cell membranes. J Biol Chem 2012; 287:34660-82. [PMID: 22879589 DOI: 10.1074/jbc.m112.373241] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite extensive research on the trafficking of anandamide (AEA) across cell membranes, little is known about the membrane transport of other endocannabinoids, such as 2-arachidonoylglycerol (2-AG). Previous studies have provided data both in favor and against a cell membrane carrier-mediated transport of endocannabinoids, using different methodological approaches. Because AEA and 2-AG undergo rapid and almost complete intracellular hydrolysis, we employed a combination of radioligand assays and absolute quantification of cellular and extracellular endocannabinoid levels. In human U937 leukemia cells, 100 nm AEA and 1 μm 2-AG were taken up through a fast and saturable process, reaching a plateau after 5 min. Employing differential pharmacological blockage of endocannabinoid uptake, breakdown, and interaction with intracellular binding proteins, we show that eicosanoid endocannabinoids harboring an arachidonoyl chain compete for a common membrane target that regulates their transport, whereas other N-acylethanolamines did not interfere with AEA and 2-AG uptake. By combining fatty acid amide hydrolase or monoacyl glycerol lipase inhibitors with hydrolase-inactive concentrations of the AEA transport inhibitors UCM707 (1 μm) and OMDM-2 (5 μm), a functional synergism on cellular AEA and 2-AG uptake was observed. Intriguingly, structurally unrelated AEA uptake inhibitors also blocked the cellular release of AEA and 2-AG. We show, for the first time, that UCM707 and OMDM-2 inhibit the bidirectional movement of AEA and 2-AG across cell membranes. Our findings suggest that a putative endocannabinoid cell membrane transporter controls the cellular AEA and 2-AG trafficking and metabolism.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research TransCure, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
10
|
Scherma M, Justinová Z, Zanettini C, Panlilio LV, Mascia P, Fadda P, Fratta W, Makriyannis A, Vadivel SK, Gamaleddin I, Le Foll B, Goldberg SR. The anandamide transport inhibitor AM404 reduces the rewarding effects of nicotine and nicotine-induced dopamine elevations in the nucleus accumbens shell in rats. Br J Pharmacol 2012; 165:2539-48. [PMID: 21557729 DOI: 10.1111/j.1476-5381.2011.01467.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE The fatty acid amide hydrolase inhibitor URB597 can reverse the abuse-related behavioural and neurochemical effects of nicotine in rats. Fatty acid amide hydrolase inhibitors block the degradation (and thereby magnify and prolong the actions) of the endocannabinoid anandamide (AEA), and also the non-cannabinoid fatty acid ethanolamides oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). OEA and PEA are endogenous ligands for peroxisome proliferator-activated receptors alpha (PPAR-α). Since recent evidence indicates that PPAR-α can modulate nicotine reward, it is unclear whether AEA plays a role in the effects of URB597 on nicotine reward. EXPERIMENTAL APPROACH A way to selectively increase endogenous levels of AEA without altering OEA or PEA levels is to inhibit AEA uptake into cells by administering the AEA transport inhibitor N-(4-hydroxyphenyl)-arachidonamide (AM404). To clarify AEA's role in nicotine reward, we investigated the effect of AM404 on conditioned place preference (CPP), reinstatement of abolished CPP, locomotor suppression and anxiolysis in an open field, and dopamine elevations in the nucleus accumbens shell induced by nicotine in Sprague-Dawley rats. KEY RESULTS AM404 prevented the development of nicotine-induced CPP and impeded nicotine-induced reinstatement of the abolished CPP. Furthermore, AM404 reduced nicotine-induced increases in dopamine levels in the nucleus accumbens shell, the terminal area of the brain's mesolimbic reward system. AM404 did not alter the locomotor suppressive or anxiolytic effect of nicotine. CONCLUSIONS AND IMPLICATIONS These findings suggest that AEA transport inhibition can counteract the addictive effects of nicotine and that AEA transport may serve as a new target for development of medications for treatment of tobacco dependence. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
Affiliation(s)
- Maria Scherma
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kaczocha M, Vivieca S, Sun J, Glaser ST, Deutsch DG. Fatty acid-binding proteins transport N-acylethanolamines to nuclear receptors and are targets of endocannabinoid transport inhibitors. J Biol Chem 2011; 287:3415-24. [PMID: 22170058 DOI: 10.1074/jbc.m111.304907] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
N-acylethanolamines (NAEs) are bioactive lipids that engage diverse receptor systems. Recently, we identified fatty acid-binding proteins (FABPs) as intracellular NAE carriers. Here, we provide two new functions for FABPs in NAE signaling. We demonstrate that FABPs mediate the nuclear translocation of the NAE oleoylethanolamide, an agonist of nuclear peroxisome proliferator-activated receptor α (PPARα). Antagonism of FABP function through chemical inhibition, dominant-negative approaches, or shRNA-mediated knockdown reduced PPARα activation, confirming a requisite role for FABPs in this process. In addition, we show that NAE analogs, traditionally employed as inhibitors of the putative endocannabinoid transmembrane transporter, target FABPs. Support for the existence of the putative membrane transporter stems primarily from pharmacological inhibition of endocannabinoid uptake by such transport inhibitors, which are widely employed in endocannabinoid research despite lacking a known cellular target(s). Our approach adapted FABP-mediated PPARα signaling and employed in vitro binding, arachidonoyl-[1-(14)C]ethanolamide ([(14)C]AEA) uptake, and FABP knockdown to demonstrate that transport inhibitors exert their effects through inhibition of FABPs, thereby providing a molecular rationale for the underlying physiological effects of these compounds. Identification of FABPs as targets of transport inhibitors undermines the central pharmacological support for the existence of an endocannabinoid transmembrane transporter.
Collapse
Affiliation(s)
- Martin Kaczocha
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA.
| | | | | | | | | |
Collapse
|
12
|
Goonawardena AV, Sesay J, Sexton CA, Riedel G, Hampson RE. Pharmacological elevation of anandamide impairs short-term memory by altering the neurophysiology in the hippocampus. Neuropharmacology 2011; 61:1016-25. [PMID: 21767554 DOI: 10.1016/j.neuropharm.2011.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 06/05/2011] [Accepted: 07/01/2011] [Indexed: 10/18/2022]
Abstract
In rodents, many exogenous cannabinoid agonists including Δ(9)-THC and WIN55,212-2 (WIN-2) have been shown to impair short-term memory (STM) by inhibition of hippocampal neuronal assemblies. However, the mechanisms by which endocannabinoids such as anandamide and 2-arachidonyl glycerol (2-AG) modulate STM processes are not well understood. Here the effects of anandamide on performance of a Delayed-Non-Match-to-Sample (DNMS) task (i.e. STM task) and concomitant hippocampal ensemble activity were assessed following administration of either URB597 (0.3, 3.0 mg/kg), an inhibitor of the Fatty Acid Amide Hydrolase (FAAH), AM404 (1.5, 10.0 mg/kg), a putative anandamide uptake/FAAH inhibitor, or R-methanandamide (3.0, 10.0 mg/kg), a stable analog of anandamide. Principal cells from hippocampal CA3/CA1 were recorded extracellularly by multi-electrode arrays in Long-Evans rats during DNMS task (1-30 s delays) performance and tracked throughout drug administration and recovery. Both R-methanandamide and URB597 caused dose- and delay-dependent deficits in DNMS performance with suppression of hippocampal ensemble activity during the encoding (sample) phase. R-methanandamide-induced effects were not reversed by capsaicin excluding a contribution of TRPV-1 receptors. AM404 produced subtle deficits at longer delay intervals but did not alter hippocampal neuronal activity during task-specific events. Collectively, these data indicate that endocannabinoid levels affect performance in a STM task and their pharmacological elevation beyond normal concentrations is detrimental also for the underlying physiological responses. They also highlight a specific window of memory processing, i.e. encoding, which is sensitive to cannabinoid modulation.
Collapse
Affiliation(s)
- Anushka V Goonawardena
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 271157-1083, USA
| | | | | | | | | |
Collapse
|
13
|
Rawls SM, Benamar K. Effects of opioids, cannabinoids, and vanilloids on body temperature. Front Biosci (Schol Ed) 2011; 3:822-45. [PMID: 21622235 DOI: 10.2741/190] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cannabinoid and opioid drugs produce marked changes in body temperature. Recent findings have extended our knowledge about the thermoregulatory effects of cannabinoids and opioids, particularly as related to delta opioid receptors, endogenous systems, and transient receptor potential (TRP) channels. Although delta opioid receptors were originally thought to play only a minor role in thermoregulation compared to mu and kappa opioid receptors, their activation has been shown to produce hypothermia in multiple species. Endogenous opioids and cannabinoids also regulate body temperature. Mu and kappa opioid receptors are thought to be in tonic balance, with mu and kappa receptor activation producing hyperthermia and hypothermia, respectively. A particularly intense research focus is TRP channels, where TRPV1 channel activation produces hypothermia whereas TRPA1 and TRPM8 channel activation causes hyperthermia. The marked hyperthermia produced by TRPV1 channel antagonists suggests these warm channels tonically control body temperature. A better understanding of the roles of cannabinoid, opioid, and TRP systems in thermoregulation may have broad clinical implications and provide insights into interactions among neurotransmitter systems involved in thermoregulation.
Collapse
Affiliation(s)
- Scott M Rawls
- Department of Pharmaceutical Sciences, Temple University Health Sciences Center, Temple University, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
14
|
Rawls SM, Benamar K. Effects of opioids, cannabinoids, and vanilloids on body temperature. Front Biosci (Schol Ed) 2011. [PMID: 21622235 DOI: 10.2741/s190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cannabinoid and opioid drugs produce marked changes in body temperature. Recent findings have extended our knowledge about the thermoregulatory effects of cannabinoids and opioids, particularly as related to delta opioid receptors, endogenous systems, and transient receptor potential (TRP) channels. Although delta opioid receptors were originally thought to play only a minor role in thermoregulation compared to mu and kappa opioid receptors, their activation has been shown to produce hypothermia in multiple species. Endogenous opioids and cannabinoids also regulate body temperature. Mu and kappa opioid receptors are thought to be in tonic balance, with mu and kappa receptor activation producing hyperthermia and hypothermia, respectively. A particularly intense research focus is TRP channels, where TRPV1 channel activation produces hypothermia whereas TRPA1 and TRPM8 channel activation causes hyperthermia. The marked hyperthermia produced by TRPV1 channel antagonists suggests these warm channels tonically control body temperature. A better understanding of the roles of cannabinoid, opioid, and TRP systems in thermoregulation may have broad clinical implications and provide insights into interactions among neurotransmitter systems involved in thermoregulation.
Collapse
Affiliation(s)
- Scott M Rawls
- Department of Pharmaceutical Sciences, Temple University Health Sciences Center, Temple University, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
15
|
|
16
|
Alptekin A, Galadari S, Shuba Y, Petroianu G, Oz M. The effects of anandamide transport inhibitor AM404 on voltage-dependent calcium channels. Eur J Pharmacol 2010; 634:10-5. [PMID: 20171208 DOI: 10.1016/j.ejphar.2010.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/30/2010] [Accepted: 02/09/2010] [Indexed: 11/27/2022]
Abstract
The effects of anandamide transport inhibitor AM404 were investigated on depolarization-induced 45Ca2+ fluxes in transverse tubule membrane vesicles from rabbit skeletal muscle and on Ba2+ currents through L-type voltage-dependent Ca2+ channels in rat myotubes. AM404, at the concentration of 3 microM and higher, caused a significant inhibition of 45Ca2+ fluxes. Radioligand binding studies indicated that the specific binding of [3H]Isradipine to transverse tubule membranes was also inhibited significantly by AM404. In controls and in presence of 10 microM AM404, B(max) values were 51+/-6 and 27+/-5 pM/mg, and KD values were 236+/-43 and 220+/-37 pM, respectively. Inhibitory effects of AEA and arachidonic acid on 45Ca2+ flux and [3H]Isradipine binding reported in earlier studies, were also enhanced significantly in the presence of AM404. In the presence of VDM11 (1 microM), another anandamide transport inhibitor, AM404 continued to inhibit 45Ca2+ fluxes and [3H]Isradipine binding. In rat myotubes, Ca2+ currents through L-type Ca2+ channels recorded in whole-cell configuration of patch clamp technique were inhibited by AM404 in a concentration-dependent manner with an IC50 value of 3.2 microM. In conclusion, results indicate that AM404 inhibits directly the function of L-type voltage-dependent Ca2+ channels in mammalian skeletal muscles.
Collapse
Affiliation(s)
- Alp Alptekin
- Department of Anesthesiology, Yildirim Beyazit Training and Research Hospital, Ankara, 06270, Turkey
| | | | | | | | | |
Collapse
|
17
|
Trezza V, Vanderschuren LJMJ. Divergent effects of anandamide transporter inhibitors with different target selectivity on social play behavior in adolescent rats. J Pharmacol Exp Ther 2008; 328:343-50. [PMID: 18948500 DOI: 10.1124/jpet.108.141069] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The endocannabinoid system plays an important role in the modulation of affect, motivation, and emotion. Social play behavior is a natural reinforcer in adolescent rats, and we have recently shown that interacting endocannabinoid, opioid, and dopamine systems modulate social play. In the present study, we tested the hypothesis that, in contrast to administration of exogenous cannabinoid agonists, increasing local endocannabinoid signaling through anandamide transporter inhibition enhances social play. To this aim, we tested the effects of two anandamide transporter inhibitors with different target selectivity on social play behavior in adolescent rats. Interestingly, we found that the prototypical anandamide transporter inhibitor N-(4-hydroxyphenyl)-arachidonamide (AM404) reduced social play, whereas its more selective analog N-arachidonoyl-(2-methyl-4-hydroxyphenyl)amine (VDM11) enhanced it. The effects of AM404 were not mediated through its known pharmacological targets, since they were not blocked by the CB(1) cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716A), the CB(2) cannabinoid receptor antagonist N-(1,3,3-trimethylbicyclo(2.2.1)heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide (SR144528), or by the transient receptor potential vanilloid 1 receptor antagonist capsazepine. In contrast, the increase in social play induced by VDM11 was dependent on cannabinoid, opioid, and dopaminergic neurotransmission, since it was blocked by the CB(1) cannabinoid receptor antagonist SR141716A, the opioid receptor antagonist naloxone, and the dopamine receptor antagonist alpha-flupenthixol. These findings support the notion that anandamide plays an important role in the modulation of social interaction in adolescent rats, and they suggest that selective anandamide transporter inhibitors might be useful for the treatment of social dysfunctions. Furthermore, these results suggest that off-target effects may be responsible for some of the conflicting effects of anandamide transporter inhibitors on behavior.
Collapse
Affiliation(s)
- Viviana Trezza
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | |
Collapse
|
18
|
Abstract
Paracetamol has a central analgesic effect that is mediated through activation of descending serotonergic pathways. Debate exists about its primary site of action, which may be inhibition of prostaglandin (PG) synthesis or through an active metabolite influencing cannabinoid receptors. Prostaglandin H(2) synthetase (PGHS) is the enzyme responsible for metabolism of arachidonic acid to the unstable PGH(2). The two major forms of this enzyme are the constitutive PGHS-1 and the inducible PGHS-2. PGHS comprises of two sites: a cyclooxygenase (COX) site and a peroxidase (POX) site. The conversion of arachidonic acid to PGG(2) is dependent on a tyrosine-385 radical at the COX site. Formation of a ferryl protoporphyrin IX radical cation from the reducing agent Fe(3+) at the POX site is essential for conversion of tyrosine-385 to its radical form. Paracetamol acts as a reducing cosubstrate on the POX site and lessens availability of the ferryl protoporphyrin IX radical cation. This effect can be reduced in the presence of hydroperoxide-generating lipoxygenase enzymes within the cell (peroxide tone) or by swamping the POX site with substrate such as PGG(2). Peroxide tone and swamping explain lack of peripheral analgesic effect, platelet effect, and anti-inflammatory effect by paracetamol. Alternatively, paracetamol effects may be mediated by an active metabolite (p-aminophenol). p-Aminophenol is conjugated with arachidonic acid by fatty acid amide hydrolase to form AM404. AM404 exerts effect through cannabinoid receptors. It may also work through PGHS, particularly in areas of the brain with high concentrations of fatty acid amide hydrolase.
Collapse
Affiliation(s)
- Brian J Anderson
- Department of Anaesthesiology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
19
|
Di Marzo V. Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov 2008; 7:438-55. [PMID: 18446159 DOI: 10.1038/nrd2553] [Citation(s) in RCA: 618] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As our understanding of the endocannabinoids improves, so does the awareness of their complexity. During pathological states, the levels of these mediators in tissues change, and their effects vary from those of protective endogenous compounds to those of dysregulated signals. These observations led to the discovery of compounds that either prolong the lifespan of endocannabinoids or tone down their action for the potential future treatment of pain, affective and neurodegenerative disorders, gastrointestinal inflammation, obesity and metabolic dysfunctions, cardiovascular conditions and liver diseases. When moving to the clinic, however, the pleiotropic nature of endocannabinoid functions will require careful judgement in the choice of patients and stage of the disorder for treatment.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council (CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy.
| |
Collapse
|
20
|
Chang HT, Huang CC, Cheng HH, Wang JL, Lin KL, Hsu PT, Tsai JY, Liao WC, Lu YC, Huang JK, Jan CR. Mechanisms of AM404-induced [Ca(2+)](i) rise and death in human osteosarcoma cells. Toxicol Lett 2008; 179:53-8. [PMID: 18485626 DOI: 10.1016/j.toxlet.2008.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/02/2008] [Accepted: 04/02/2008] [Indexed: 11/16/2022]
Abstract
The effect of N-(4-hydroxyphenyl) arachidonoyl-ethanolamide (AM404), a drug commonly used to inhibit the anandamide transporter, on intracellular free Ca2+ levels ([Ca2+]i) and viability was studied in human MG63 osteosarcoma cells using the fluorescent dyes fura-2 and WST-1, respectively. AM404 at concentrations > or = 5 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 60 microM. The Ca2+ signal was reduced partly by removing extracellular Ca2+. AM404 induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was sensitive to La3+, Ni2+, nifedipine and verapamil. In Ca2+-free medium, after pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), AM404-induced [Ca2+]i rise was abolished; and conversely, AM404 pretreatment totally inhibited thapsigargin-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not change AM404-induced [Ca2+]i rise. At concentrations between 10 and 200 microM, AM404 killed cells in a concentration-dependent manner presumably by inducing apoptotic cell death. The cytotoxic effect of 50 microM AM404 was partly reversed by prechelating cytosolic Ca2+ with BAPTA/AM. Collectively, in MG63 cells, AM404 induced [Ca2+]i rise by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx via L-type Ca2+ channels. AM404 caused cytotoxicity which was possibly mediated by apoptosis.
Collapse
Affiliation(s)
- Hong-Tai Chang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
La Rana G, Russo R, D'Agostino G, Sasso O, Raso GM, Iacono A, Meli R, Piomelli D, Calignano A. AM404, an anandamide transport inhibitor, reduces plasma extravasation in a model of neuropathic pain in rat: role for cannabinoid receptors. Neuropharmacology 2007; 54:521-9. [PMID: 18093621 DOI: 10.1016/j.neuropharm.2007.10.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/04/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
Abstract
Neuropathic pain consequent to peripheral nerve injury has been associated with local inflammation. Following noxious stimulation afferent fibres release substance P (SP) and calcitonin-gene related peptide (CGRP), which are closely related to oedema formation and plasma leakage. The effect of the anandamide transport blocker AM404 has been studied on plasma extravasation after chronic constriction injury (CCI) which consists in a unilateral loose ligation of the rat sciatic nerve (Bennett and Xie, 1988). AM404 (1-3-10 mg kg(-1)) reduced plasma extravasation in the legated paw, measured as mug of Evans Blue per gram of fresh tissue. A strong effect on vascular permeability was also produced by the synthetic cannabinoid agonist WIN 55,212-2 (0.1-0.3-1 mg kg(-1)). Using specific antagonists or enzyme inhibitors, we demonstrate that cannabinoids act at several levels: data on the 3rd day suggest a strong involvement of substance P (SP) and calcitonin gene-related peptide (CGRP) in the control of vascular tone, whereas at the 7th and 14th days the major role seems to be played by prostaglandins (PGs) and nitric oxide (NO). Capsaicin injection in ligated paws of AM404- or WIN 55,212-2-treated rats resulted in an increase of Evans Blue extravasation, suggesting the involvement of the cannabinergic system in the protective effect of C fibres of ligated paws. Taken together, these data demonstrate the efficacy of cannabinoids in controlling pain behaviour through the modulation of several pain mediators and markers of vascular reactivity, such as SP, CGRP, PGs and NO.
Collapse
Affiliation(s)
- G La Rana
- Department of Experimental Pharmacology, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fowler CJ. The pharmacology of the cannabinoid system--a question of efficacy and selectivity. Mol Neurobiol 2007; 36:15-25. [PMID: 17952646 DOI: 10.1007/s12035-007-0001-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 01/02/2007] [Indexed: 11/26/2022]
Abstract
Our knowledge of the function of the cannabinoid system in the body has been aided by the availability of pharmacological agents that affect its function. This has been achieved by the design of agents that either directly interact with the receptor (agonists and antagonist/inverse agonists) and agents that indirectly modulate the receptor output by changing the levels of the endogenous cannabinoids (endocannabinoids). In this review, examples of the most commonly used receptor agonists, antagonists/inverse agonists, and indirectly acting agents (anandamide uptake inhibitors, fatty acid amide hydrolase inhibitors, monoacylglycerol lipase inhibitors) are given, with particular focus upon their selectivity and, in the case of the directly acting compounds, efficacy. Finally, the links between the endocannabinoid and cyclooxygenase pathways are explored, in particular, with respect to agents whose primary function is to inhibit cyclooxygenase activity, but which also interact with the endocannabinoid system.
Collapse
Affiliation(s)
- Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-90187, Umeå, Sweden.
| |
Collapse
|
23
|
Köfalvi A, Pereira MF, Rebola N, Rodrigues RJ, Oliveira CR, Cunha RA. Anandamide and NADA bi-directionally modulate presynaptic Ca2+ levels and transmitter release in the hippocampus. Br J Pharmacol 2007; 151:551-63. [PMID: 17435795 PMCID: PMC2013959 DOI: 10.1038/sj.bjp.0707252] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Inhibitory CB(1) cannabinoid receptors and excitatory TRPV(1) vanilloid receptors are abundant in the hippocampus. We tested if two known hybrid endocannabinoid/endovanilloid substances, N-arachidonoyl-dopamine (NADA) and anandamide (AEA), presynapticaly increased or decreased intracellular calcium level ([Ca(2+)](i)) and GABA and glutamate release in the hippocampus. EXPERIMENTAL APPROACH Resting and K(+)-evoked levels of [Ca(2+)](i) and the release of [(3)H]GABA and [(3)H]glutamate were measured in rat hippocampal nerve terminals. KEY RESULTS NADA and AEA per se triggered a rise of [Ca(2+)](i) and the release of both transmitters in a concentration- and external Ca(2+)-dependent fashion, but independently of TRPV(1), CB(1), CB(2), or dopamine receptors, arachidonate-regulated Ca(2+)-currents, intracellular Ca(2+) stores, and fatty acid metabolism. AEA was recently reported to block TASK-3 potassium channels thereby depolarizing membranes. Common inhibitors of TASK-3, Zn(2+), Ruthenium Red, and low pH mimicked the excitatory effects of AEA and NADA, suggesting that their effects on [Ca(2+)](i) and transmitter levels may be attributable to membrane depolarization upon TASK-3 blockade. The K(+)-evoked Ca(2+) entry and Ca(2+)-dependent transmitter release were inhibited by nanomolar concentrations of the CB(1) receptor agonist WIN55212-2; this action was sensitive to the selective CB(1) receptor antagonist AM251. However, in the low micromolar range, WIN55212-2, NADA and AEA inhibited the K(+)-evoked Ca(2+) entry and transmitter release independently of CB(1) receptors, possibly through direct Ca(2+) channel blockade. CONCLUSIONS AND IMPLICATIONS We report here for hybrid endocannabinoid/endovanilloid ligands novel dual functions which were qualitatively similar to activation of CB(1) or TRPV(1) receptors, but were mediated through interactions with different targets.
Collapse
Affiliation(s)
- A Köfalvi
- Center for Neurosciences of Coimbra, University of Coimbra, Coimbra, Portugal.
| | | | | | | | | | | |
Collapse
|
24
|
Petrosino S, Palazzo E, de Novellis V, Bisogno T, Rossi F, Maione S, Di Marzo V. Changes in spinal and supraspinal endocannabinoid levels in neuropathic rats. Neuropharmacology 2007; 52:415-22. [PMID: 17011598 DOI: 10.1016/j.neuropharm.2006.08.011] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 08/08/2006] [Accepted: 08/08/2006] [Indexed: 10/24/2022]
Abstract
Recent studies have shown that activation of the cannabinoid CB(1) receptor by synthetic agonists, and pharmacological elevation of endocannabinoid levels, suppress hyperalgesia and allodynia in animal models of neuropathic pain. However, the concentrations of endocannabinoids in the nervous tissues involved in pain transmission during neuropathic pain have never been measured. Here we have determined the levels of anandamide and 2-arachidonoylglycerol (2-AG), as well as of the analgesic anandamide congener, palmitoylethanolamide (PEA), in three brain areas involved in nociception, i.e. the dorsal raphe (DR), periaqueductal grey (PAG) and rostral ventral medulla (RVM), as well as in the spinal cord (SC), following chronic constriction injury (CCI) of the sciatic nerve in the rat, in comparison with sham-operated rats. After 3 days from CCI, anandamide or 2-AG levels were significantly enhanced only in the SC or PAG, respectively. After 7 days from CCI, when thermal hyperalgesia and mechanical allodynia are maximal, a strong (1.3-3-fold) increase of both anandamide and 2-AG levels was observed in the PAG, RVM and SC. At this time point, anandamide, but not 2-AG, levels were also enhanced in the DR. PEA levels were significantly decreased in the SC after 3 days, and in the DR and RVM after 7 days from CCI. These data indicate that anandamide and 2-AG, operating at both spinal and supra-spinal levels, are up-regulated during CCI of the sciatic nerve, possibly to inhibit pain. Yet to be developed substances that inhibit both endocannabinoid and PEA inactivation might be useful for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (C.N.R.), Via Dei Campi Flegrei 34, Comprensorio Olivetti, Pozzuoli, Naples 80078, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Bortolato M, Campolongo P, Mangieri RA, Scattoni ML, Frau R, Trezza V, La Rana G, Russo R, Calignano A, Gessa GL, Cuomo V, Piomelli D. Anxiolytic-like properties of the anandamide transport inhibitor AM404. Neuropsychopharmacology 2006; 31:2652-9. [PMID: 16541083 DOI: 10.1038/sj.npp.1301061] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endocannabinoids anandamide and 2-arachidonoyglycerol (2-AG) may contribute to the regulation of mood and emotion. In this study, we investigated the impact of the endocannabinoid transport inhibitor AM404 on three rat models of anxiety: elevated plus maze, defensive withdrawal and separation-induced ultrasonic vocalizations. AM404 (1-5 mg kg(-1), intraperitoneal (i.p.)) exerted dose-dependent anxiolytic-like effects in the three models. These behavioral effects were associated with increased levels of anandamide, but not 2-AG, in the prefrontal cortex and were prevented by the CB(1) cannabinoid antagonist rimonabant (SR141716A), suggesting that they were dependent on anandamide-mediated activation of CB(1) cannabinoid receptors. We also evaluated whether AM404 might influence motivation (in the conditioned place preference (CPP) test), sensory reactivity (acoustic startle reflex) and sensorimotor gating (prepulse inhibition (PPI) of the startle reflex). In the CPP test, AM404 (1.25-10 mg kg(-1), i.p.) elicited rewarding effects in rats housed under enriched conditions, but not in rats kept in standard cages. Moreover, AM404 did not alter reactivity to sensory stimuli or cause overt perceptual distortion, as suggested by its lack of effect on startle or PPI of startle. These results support a role of anandamide in the regulation of emotion and point to the anandamide transport system as a potential target for anxiolytic drugs.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Anti-Anxiety Agents/pharmacology
- Anxiety Disorders/drug therapy
- Anxiety Disorders/metabolism
- Anxiety Disorders/physiopathology
- Anxiety, Separation/drug therapy
- Anxiety, Separation/metabolism
- Anxiety, Separation/physiopathology
- Arachidonic Acids/metabolism
- Arachidonic Acids/pharmacology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Cannabinoid Receptor Modulators/metabolism
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/drug effects
- Disease Models, Animal
- Endocannabinoids
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Piperidines/pharmacology
- Polyunsaturated Alkamides/metabolism
- Pyrazoles/pharmacology
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Rimonabant
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Psychiatry and Human Behavior, Center for Drug Discovery, University of California, Irvine, CA 92697-4625, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Oz M. Receptor-independent actions of cannabinoids on cell membranes: Focus on endocannabinoids. Pharmacol Ther 2006; 111:114-44. [PMID: 16584786 DOI: 10.1016/j.pharmthera.2005.09.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 09/30/2005] [Indexed: 01/08/2023]
Abstract
Cannabinoids are a structurally diverse group of mostly lipophilic molecules that bind to cannabinoid receptors. In fact, endogenous cannabinoids (endocannabinoids) are a class of signaling lipids consisting of amides and esters of long-chain polyunsaturated fatty acids. They are synthesized from lipid precursors in plasma membranes via Ca(2+) or G-protein-dependent processes and exhibit cannabinoid-like actions by binding to cannabinoid receptors. However, endocannabinoids can produce effects that are not mediated by these receptors. In pharmacologically relevant concentrations, endocannabinoids modulate the functional properties of voltage-gated ion channels including Ca(2+) channels, Na(+) channels, various types of K(+) channels, and ligand-gated ion channels such as serotonin type 3, nicotinic acetylcholine, and glycine receptors. In addition, modulatory effects of endocannabinoids on other ion-transporting membrane proteins such as transient potential receptor-class channels, gap junctions and transporters for neurotransmitters have also been demonstrated. Furthermore, functional properties of G-protein-coupled receptors for different types of neurotransmitters and neuropeptides are altered by direct actions of endocannabinoids. Although the mechanisms of these effects are currently not clear, it is likely that these direct actions of endocannabinoids are due to their lipophilic structures. These findings indicate that additional molecular targets for endocannabinoids exist and that these targets may represent novel sites for cannabinoids to alter either the excitability of the neurons or the response of the neuronal systems. This review focuses on the results of recent studies indicating that beyond their receptor-mediated effects, endocannabinoids alter the functions of ion channels and other integral membrane proteins directly.
Collapse
Affiliation(s)
- Murat Oz
- National Institute on Drug Abuse, NIH/DHHS, Intramural Research Program, Cellular Neurobiology Branch, 5500 Nathan Shock Drive, Baltimore MD, 21224, USA.
| |
Collapse
|
28
|
Vandevoorde S, Fowler CJ. Inhibition of fatty acid amide hydrolase and monoacylglycerol lipase by the anandamide uptake inhibitor VDM11: evidence that VDM11 acts as an FAAH substrate. Br J Pharmacol 2006; 145:885-93. [PMID: 15895107 PMCID: PMC1576210 DOI: 10.1038/sj.bjp.0706253] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
There is some dispute concerning the extent to which the uptake inhibitor VDM11 (N-(4-hydroxy-2-methylphenyl) arachidonoyl amide) is capable of inhibiting the metabolism of the endocannabinoid anandamide (AEA) by fatty acid amide hydrolase (FAAH). In view of a recent study demonstrating that the closely related compound AM404 (N-(4-hydroxyphenyl)arachidonylamide) is a substrate for FAAH, we re-examined the interaction of VDM11 with FAAH. In the presence of fatty acid-free bovine serum albumin (BSA, 0.125% w v(-1)), both AM404 and VDM11 inhibited the metabolism of AEA by rat brain FAAH with similar potencies (IC(50) values of 2.1 and 2.6 microM, respectively). The compounds were about 10-fold less potent as inhibitors of the metabolism of 2-oleoylglycerol (2-OG) by cytosolic monoacylglycerol lipase (MAGL). The potency of VDM11 towards FAAH was dependent upon the assay concentration of fatty acid-free bovine serum albumin (BSA). Thus, in the absence of fatty acid-free BSA, the IC(50) value for inhibition of FAAH was reduced by a factor of about two (from 2.9 to 1.6 microM). A similar reduction in the IC(50) value for the inhibition of membrane bound MAGL by both this compound (from 14 to 6 microM) and by arachidonoyl serinol (from 24 to 13 microM) was seen. An HPLC assay was set up to measure 4-amino-m-cresol, the hypothesised product of FAAH-catalysed VDM11 hydrolysis. 4-Amino-m-cresol was eluted with a retention time of approximately 2.4 min, but showed a time-dependent degradation to compounds eluting at peaks of approximately 5.6 and approximately 8 min. Peaks with the same retention times were also found following incubation of the membranes with VDM11, but were not seen when the membranes were preincubated with the FAAH inhibitors URB597 (3'-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate) and CAY10401 (1-oxazolo[4,5-b]pyridin-2-yl-9-octadecyn-1-one) prior to addition of VDM11. The rate of metabolism of VDM11 was estimated to be roughly 15-20% of that for anandamide. It is concluded that VDM11 is an inhibitor of FAAH under the assay conditions used here, and that the inhibition may at least in part be a consequence of the compound acting as an alternative substrate.
Collapse
Affiliation(s)
- Séverine Vandevoorde
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden.
| | | |
Collapse
|
29
|
Straiker A, Mackie K. Depolarization-induced suppression of excitation in murine autaptic hippocampal neurones. J Physiol 2005; 569:501-17. [PMID: 16179366 PMCID: PMC1464237 DOI: 10.1113/jphysiol.2005.091918] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Depolarization-induced suppression of excitation and inhibition (DSE and DSI) appear to be important forms of short-term retrograde neuronal plasticity involving endocannabinoids (eCB) and the activation of presynaptic cannabinoid CB1 receptors. We report here that CB1-dependent DSE can be elicited from autaptic cultures of excitatory mouse hippocampal neurones. DSE in autaptic cultures is both more robust and elicited with a more physiologically relevant stimulus than has been thus far reported for conventional hippocampal cultures. An additional requirement for autaptic DSE is filled internal calcium stores. Pharmacological experiments favour a role for 2-arachidonyl glycerol (2-AG) rather than arachidonyl ethanolamide (AEA) or noladin ether as the relevant endocannabinoid to elicit DSE. In particular, the latter two compounds fail to reversibly inhibit EPSCs, a quality inconsistent with the role of bona fide eCB mediating DSE. Delta9-Tetrahydrocannabinol (delta9-THC) fails to inhibit EPSCs, yet readily occludes both DSE and EPSC inhibition by a synthetic CB1 agonist, WIN 55212-2. With long-term exposure (approximately 18 h), delta9-THC also desensitizes CB1 receptors. Lastly, a functional endocannabinoid transporter is necessary for the expression of DSE.
Collapse
Affiliation(s)
- Alex Straiker
- Department of Anaesthesiology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
30
|
Abstract
Anandamide (AEA) uptake has been described over the last decade to occur by facilitated diffusion, but a protein has yet to be isolated. In some cell types, it has recently been suggested that AEA, an uncharged hydrophobic molecule, passively diffuses through the plasma membrane in a process that is not protein-mediated. Since that observation, recent kinetics studies (using varying assay conditions) have both supported and denied the presence of an AEA transporter. In this review, we analyze the current literature exploring the mechanism of AEA uptake and endeavor to explain the reasons for the divergent views. One of the main variables among laboratories is the incubation time of the cells with AEA. Initial kinetics (at time points <1 min depending upon the cell type) isolate events that occur at the plasma membrane and are most useful to study saturability of uptake and effects of purported transport inhibitors upon uptake. Results with longer incubation times reflect events not only at the plasma membrane but also interactions at intracellular sites that may include enzyme(s), other proteins, or specialized lipid-binding domains. Furthermore, at long incubation times, antagonists to AEA receptors reduce AEA uptake. Another complicating factor in AEA transport studies is the nonspecific binding to plastic culture dishes. The magnitude of this effect may exceed AEA uptake into cells. Likewise, AEA may be released from plastic culture dishes (without cells) in such a manner as to mimic efflux from cells. AEA transport protocols using BSA, similar to the method used for fatty acid uptake studies, are gaining acceptance. This may improve AEA solution stability and minimize binding to plastic, although some groups report that BSA interferes with uptake. In response to criticisms that many transport inhibitors also inhibit the fatty acid amide hydrolase (FAAH), new compounds have recently been synthesized. Following their characterization in FAAH+/+ and FAAH-/- cells and transgenic mice, several inhibitors have been shown to have physiological activity in FAAH-/- mice. Their targets are now being characterized with the possibility that a protein transporter for AEA may be characterized.
Collapse
Affiliation(s)
- Sherrye T Glaser
- Medical Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | | | | |
Collapse
|
31
|
Lambert DM, Fowler CJ. The Endocannabinoid System: Drug Targets, Lead Compounds, and Potential Therapeutic Applications. J Med Chem 2005; 48:5059-87. [PMID: 16078824 DOI: 10.1021/jm058183t] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Didier M Lambert
- Unité de Chimie Pharmaceutique et de Radiopharmacie, Université Catholique de Louvain, 73 Avenue Mounier, UCL-CMFA 73.40, B-1200 Brussels, Belgium.
| | | |
Collapse
|