1
|
Shlykova O, Izmailova O, Kabaliei A, Palchyk V, Shynkevych V, Kaidashev I. PPARG stimulation restored lung mRNA expression of core clock, inflammation- and metabolism-related genes disrupted by reversed feeding in male mice. Physiol Rep 2023; 11:e15823. [PMID: 37704580 PMCID: PMC10499569 DOI: 10.14814/phy2.15823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
The circadian rhythm system regulates lung function as well as local and systemic inflammations. The alteration of this rhythm might be induced by a change in the eating rhythm. Peroxisome proliferator-activated receptor gamma (PPARG) is a key molecule involved in circadian rhythm regulation, lung functions, and metabolic processes. We described the effect of the PPARG agonist pioglitazone (PZ) on the diurnal mRNA expression profile of core circadian clock genes (Arntl, Clock, Nr1d1, Cry1, Cry2, Per1, and Per2) and metabolism- and inflammation-related genes (Nfe2l2, Pparg, Rela, and Cxcl5) in the male murine lung disrupted by reversed feeding (RF). In mice, RF disrupted the diurnal expression pattern of core clock genes. It decreased Nfe2l2 and Pparg and increased Rela and Cxcl5 expression in lung tissue. There were elevated levels of IL-6, TNF-alpha, total cells, macrophages, and lymphocyte counts in bronchoalveolar lavage (BAL) with a significant increase in vascular congestion and cellular infiltrates in male mouse lung tissue. Administration of PZ regained the diurnal clock gene expression, increased Nfe2l2 and Pparg expression, and reduced Rela, Cxcl5 expression and IL-6, TNF-alpha, and cellularity in BAL. PZ administration at 7 p.m. was more efficient than at 7 a.m.
Collapse
|
2
|
Anjum NF, Shanmugarajan D, Prashantha Kumar BR, Faizan S, Durai P, Raju RM, Javid S, Purohit MN. Novel Derivatives of Eugenol as a New Class of PPARγ Agonists in Treating Inflammation: Design, Synthesis, SAR Analysis and In Vitro Anti-Inflammatory Activity. Molecules 2023; 28:molecules28093899. [PMID: 37175309 PMCID: PMC10180488 DOI: 10.3390/molecules28093899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 05/15/2023] Open
Abstract
The main objective of this research was to develop novel compounds from readily accessed natural products especially eugenol with potential biological activity. Eugenol, the principal chemical constituent of clove (Eugenia caryophyllata) from the family Myrtaceae is renowned for its pharmacological properties, which include analgesic, antidiabetic, antioxidant, anticancer, and anti-inflammatory effects. According to reports, PPARγ regulates inflammatory reactions. The synthesized compounds were structurally analyzed using FT-IR, 1HNMR, 13CNMR, and mass spectroscopy techniques. Molecular docking was performed to analyze binding free energy and important amino acids involved in the interaction between synthesized derivatives and the target protein. The development of the structure-activity relationship is based on computational studies. Additionally, the stability of the best-docked protein-ligand complexes was assessed using molecular dynamic modeling. The in-vitro PPARγ competitive binding Lanthascreen TR-FRET assay was used to confirm the affinity of compounds to the target protein. All the synthesized derivatives were evaluated for an in vitro anti-inflammatory activity using an albumin denaturation assay and HRBC membrane stabilization at varying concentrations from 6.25 to 400 µM. In this background, with the aid of computational research, we were able to design six novel derivatives of eugenol synthesized, analyzed, and utilized TR-FRET competitive binding assay to screen them for their ability to bind PPARγ. Anti-inflammatory activity evaluation through in vitro albumin denaturation and HRBC method revealed that 1f exhibits maximum inhibition of heat-induced albumin denaturation at 50% and 85% protection against HRBC lysis at 200 and 400 µM, respectively. Overall, we found novel derivatives of eugenol that could potentially reduce inflammation by PPARγ agonism.
Collapse
Affiliation(s)
- Noor Fathima Anjum
- Department of Pharmaceutical Chemistry, Farooqia College of Pharmacy, Mysuru 570 015, India
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Dhivya Shanmugarajan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Priya Durai
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Ruby Mariam Raju
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Saleem Javid
- Department of Pharmaceutical Chemistry, Farooqia College of Pharmacy, Mysuru 570 015, India
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Madhusudan N Purohit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| |
Collapse
|
3
|
Low 15d-PGJ2 status is associated with oxidative stress in chronic obstructive pulmonary disease patients. Inflamm Res 2023; 72:171-180. [PMID: 36371490 DOI: 10.1007/s00011-022-01637-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent nuclear receptor and highly expressed in human and rodent lungs. 15-Deoxy-delta-12,14-prostaglandin J2 (15d-PGJ2), known for cyclopentenone prostaglandin, is the endogenous ligand of PPARγ. However, the associations among PPARγ, 15d-PGJ2 and chronic obstructive pulmonary disease (COPD) were unclear. METHODS All 130 fasting blood samples and 40 lung specimens were obtained from COPD patients and control subjects. Serum 15d-PGJ2 was detected by ELISA. The expressions of oxidative stress indicators were measured using western blotting and PPARγ nuclei were evaluated with immunohistochemistry in lungs. The associations among serum 15d-PGJ2, pulmonary PPARγ and oxidative stress indicators, and COPD were estimated. RESULTS Serum 15d-PGJ2 was reduced in COPD patients compared with healthy volunteers. Linear and logistic regression analysis indicated that serum 15d-PGJ2 was positively associated with pulmonary function in COPD patients. In addition, PPARγ-positive nuclei were reduced and oxidative stress indicators, included HO-1 and NOX-4, were increased in lungs of COPD patients. Further correlative analysis suggested that pulmonary function parameters was positively correlated with serum 15d-PGJ2 and pulmonary PPARγ-positive nuclei, inversely related to oxidative stress indicators in lungs of COPD patients. Pretreatment with 15d-PGJ2 obviously attenuated TNFα-induced oxidative stress in BEAS-2B cells. CONCLUSIONS Serum 15d-PGJ2 and pulmonary PPARγ are reduced, and oxidative stress is elevated in COPD patients. Serum 15d-PGJ2 is inversely associated with oxidative stress in COPD patients.
Collapse
|
4
|
Wang H, Liu J, Gao J, Yan W, Rehan VK. Perinatal Exposure to Nicotine Alters Sperm RNA Profiles in Rats. Front Endocrinol (Lausanne) 2022; 13:893863. [PMID: 35600600 PMCID: PMC9114732 DOI: 10.3389/fendo.2022.893863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 01/31/2023] Open
Abstract
Perinatal exposure to smoking has been associated with childhood asthma, one of the most common pediatric conditions affecting millions of children globally. Of great interest, this disease phenotype appears heritable as it can persist across multiple generations even in the absence of persistent exposure to smoking in subsequent generations. Although the molecular mechanisms underlying childhood asthma induced by perinatal exposure to smoking or nicotine remain elusive, an epigenetic mechanism has been proposed, which is supported by the data from our earlier analyses on germline DNA methylation (5mC) and histone marks (H3 and H4 acetylation). To further investigate the potential epigenetic inheritance of childhood asthma induced by perinatal nicotine exposure, we profiled both large and small RNAs in the sperm of F1 male rats. Our data revealed that perinatal exposure to nicotine leads to alterations in the profiles of sperm-borne RNAs, including mRNAs and small RNAs, and that rosiglitazone, a PPARγ agonist, can attenuate the effect of nicotine and reverse the sperm-borne RNA profiles of F1 male rats to close to placebo control levels.
Collapse
Affiliation(s)
- Hetan Wang
- Department of Medical Genetics, China Medical University, Shenyang, China
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Jie Liu
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Jianjun Gao
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Wei Yan, ; Virender K. Rehan,
| | - Virender K. Rehan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Wei Yan, ; Virender K. Rehan,
| |
Collapse
|
5
|
Stephensen CB, Lietz G. Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2. Br J Nutr 2021; 126:1663-1672. [PMID: 33468263 PMCID: PMC7884725 DOI: 10.1017/s0007114521000246] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
SARS-CoV2 infects respiratory epithelial cells via its cellular receptor angiotensin-converting enzyme 2, causing a viral pneumonia with pronounced inflammation resulting in significant damage to the lungs and other organ systems, including the kidneys, though symptoms and disease severity are quite variable depending on the intensity of exposure and presence of underlying conditions that may affect the immune response. The resulting disease, coronavirus disease 2019 (COVID-19), can cause multi-organ system dysfunction in patients requiring hospitalisation and intensive care treatment. Serious infections like COVID-19 often negatively affect nutritional status, and the resulting nutritional deficiencies may increase disease severity and impair recovery. One example is the viral infection measles, where associated vitamin A (VA) deficiency increases disease severity and appropriately timed supplementation during recovery reduces mortality and hastens recovery. VA may play a similar role in COVID-19. First, VA is important in maintaining innate and adaptive immunity to promote clearance of a primary infection as well as minimise risks from secondary infections. Second, VA plays a unique role in the respiratory tract, minimising damaging inflammation, supporting repair of respiratory epithelium and preventing fibrosis. Third, VA deficiency may develop during COVID-19 due to specific effects on lung and liver stores caused by inflammation and impaired kidney function, suggesting that supplements may be needed to restore adequate status. Fourth, VA supplementation may counteract adverse effects of SARS-CoV2 on the angiotensin system as well as minimises adverse effects of some COVID-19 therapies. Evaluating interactions of SARS-CoV2 infection with VA metabolism may thus provide improved COVID-19 therapy.
Collapse
Affiliation(s)
- C. B. Stephensen
- Immunity and Disease Prevention Research Unit, USDA Western Human Nutrition Research Center, and Nutrition Department, University of California, Davis, CA, USA
| | - G. Lietz
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| |
Collapse
|
6
|
Che M, Kweon SM, Teo JL, Yuan YC, Melstrom LG, Waldron RT, Lugea A, Urrutia RA, Pandol SJ, Lai KKY. Targeting the CBP/β-Catenin Interaction to Suppress Activation of Cancer-Promoting Pancreatic Stellate Cells. Cancers (Basel) 2020; 12:cancers12061476. [PMID: 32516943 PMCID: PMC7352534 DOI: 10.3390/cancers12061476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Although cyclic AMP-response element binding protein-binding protein (CBP)/β-catenin signaling is known to promote proliferation and fibrosis in various organ systems, its role in the activation of pancreatic stellate cells (PSCs), the key effector cells of desmoplasia in pancreatic cancer and fibrosis in chronic pancreatitis, is largely unknown. Methods: To investigate the role of the CBP/β-catenin signaling pathway in the activation of PSCs, we have treated mouse and human PSCs with the small molecule specific CBP/β-catenin antagonist ICG-001 and examined the effects of treatment on parameters of activation. Results: We report for the first time that CBP/β-catenin antagonism suppresses activation of PSCs as evidenced by their decreased proliferation, down-regulation of “activation” markers, e.g., α-smooth muscle actin (α-SMA/Acta2), collagen type I alpha 1 (Col1a1), Prolyl 4-hydroxylase, and Survivin, up-regulation of peroxisome proliferator activated receptor gamma (Ppar-γ) which is associated with quiescence, and reduced migration; additionally, CBP/β-catenin antagonism also suppresses PSC-induced migration of cancer cells. Conclusion: CBP/β-catenin antagonism represents a novel therapeutic strategy for suppressing PSC activation and may be effective at countering PSC promotion of pancreatic cancer.
Collapse
Affiliation(s)
- Mingtian Che
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (M.C.); (S.-M.K.); (J.-L.T.)
| | - Soo-Mi Kweon
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (M.C.); (S.-M.K.); (J.-L.T.)
| | - Jia-Ling Teo
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (M.C.); (S.-M.K.); (J.-L.T.)
| | - Yate-Ching Yuan
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| | - Laleh G. Melstrom
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Richard T. Waldron
- Pancreatic Research Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.T.W.); (A.L.); (S.J.P.)
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Aurelia Lugea
- Pancreatic Research Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.T.W.); (A.L.); (S.J.P.)
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Raul A. Urrutia
- Department of Surgery and the Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Stephen J. Pandol
- Pancreatic Research Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.T.W.); (A.L.); (S.J.P.)
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Keane K. Y. Lai
- Department of Pathology, City of Hope National Medical Center, and Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence:
| |
Collapse
|
7
|
Dai J, Ji B, Zhao G, Lu Y, Liu Y, Mou Q, Sakurai R, Xie Y, Zhang Q, Xu S, Rehan VK. Developmental Timing Determines the Protective Effect of Maternal Electroacupuncture on Perinatal Nicotine Exposure-Induced Offspring Lung Phenotype. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8030972. [PMID: 32190681 PMCID: PMC7064824 DOI: 10.1155/2020/8030972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022]
Abstract
Introduction. Environmental exposure of the developing offspring to cigarette smoke or nicotine is an important predisposing factor for many chronic respiratory conditions, such as asthma, emphysema, pulmonary fibrosis, and so forth, in the exposed offspring. Studies showed that electroacupuncture (EA) applied to maternal "Zusanli" (ST36) acupoints during pregnancy and lactation protects against perinatal nicotine exposure- (PNE-) induced lung damage. However, the most effective time period, that is, prenatal vs. postnatal, to attain this effect has not been determined. OBJECTIVE To determine the most effective developmental timing of EA's protective effect against PNE-induced lung phenotype in the exposed offspring. METHODS Pregnant rats were given (1) saline ("S" group); (2) nicotine ("N" group); (3) nicotine + EA, exclusively prenatally ("Pre-EA" group); (4) nicotine + EA, exclusively postnatally ("Post-EA," group); and (5) nicotine + EA, administered both prenatally and postnatally ("Pre- and Post-EA" group). Nicotine was injected once daily (1 mg/kg, 100 μl) and EA was administered to bilateral ST36 acupoints once daily during the specified time-periods. At the end of the experimental periods, key hypothalamic pituitary adrenal (HPA) axis markers in pups and dams, and lung function, morphometry, and the central molecular markers of lung development in the offspring were determined. RESULTS After nicotine exposure, alveolar mean linear intercept (MLI) increased, but mean alveolar number (MAN) decreased and lung PPARγ level decreased, but glucocorticoid receptor (GR) and serum corticosterone (Cort) levels increased, in line with the known PNE-induced lung phenotype. In the nicotine exposed group, maternal hypothalamic corticotropin releasing hormone (CRH) level decreased, but pituitary adrenocorticotropic hormone (ACTH) and serum Cort levels increased. In the "Pre- and Post-EA" groups, PNE-induced alterations in lung morphometry, lung development markers, and HPA axis were blocked. In the "Pre-EA" group, PNE-induced changes in lung morphometry, GR, and maternal HPA axis improved; lung PPARγ level decreased, but glucocorticoid receptor (GR) and serum corticosterone (Cort) levels increased, in line with the known PNE-induced lung phenotype. In the nicotine exposed group, maternal hypothalamic corticotropin releasing hormone (CRH) level decreased, but pituitary adrenocorticotropic hormone (ACTH) and serum Cort levels increased. In the "Pre- and Post-EA" groups, PNE-induced alterations in lung morphometry, lung development markers, and HPA axis were blocked. In the "Pre-EA" group, PNE-induced changes in lung morphometry, GR, and maternal HPA axis improved; lung PPAR. CONCLUSIONS Maternal EA applied to ST36 acupoints during both pre- and postnatal periods preserves offspring lung structure and function despite perinatal exposure to nicotine. EA applied during the "prenatal period" affords only limited benefits, whereas EA applied during the "postnatal period" is ineffective, suggesting that the EA's effects in modulating PNE-induced lung phenotype are limited to specific time-periods during lung development.
Collapse
Affiliation(s)
- Jian Dai
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bo Ji
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guozhen Zhao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Lu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yitian Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiujie Mou
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Reiko Sakurai
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90502, USA
| | - Yana Xie
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qin Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shuang Xu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Virender K. Rehan
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90502, USA
| |
Collapse
|
8
|
Katsiki N, Steiropoulos P, Papanas N, Mikhailidis DP. Diabetes Mellitus and Chronic Obstructive Pulmonary Disease: An Overview. Exp Clin Endocrinol Diabetes 2019; 129:699-704. [PMID: 31739346 DOI: 10.1055/a-1038-3883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common disease with an increasing prevalence, characterised by persistent respiratory symptoms and airflow limitation. Apart from cigarette smoking, certain occupational and environmental exposures, low socioeconomic status and genetic factors may contribute to the pathogenesis of COPD. Comorbidities, e. g. diabetes mellitus (DM), can negatively affect quality of life, COPD outcomes and cardiovascular risk. The present narrative review considers the potential links between COPD and DM, such as systemic inflammation, oxidative stress, hypoxaemia and hyperglycaemia. The effects of antidiabetic drugs on lung function and COPD outcomes, as well as the possibility of common therapeutic modalities are also briefly considered. Further research is needed in this field to elucidate these relationships as well as their potential clinical implications in daily practice.
Collapse
Affiliation(s)
- Niki Katsiki
- First Department of Internal Medicine, Diabetes Centre, Division of Endocrinology and Metabolism, AHEPA University Hospital, Thessaloniki, Greece
| | - Paschalis Steiropoulos
- Department of Pneumonology, Democritus University of Thrace School of Health Sciences, Alexandroupolis, Greece
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, University College London, Royal Free Hospital Campus, London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
9
|
Stark JM, Tibbitt CA, Coquet JM. The Metabolic Requirements of Th2 Cell Differentiation. Front Immunol 2019; 10:2318. [PMID: 31611881 PMCID: PMC6776632 DOI: 10.3389/fimmu.2019.02318] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
Upon activation, naïve CD4+ T cells differentiate into a number of specialized T helper (Th) cell subsets. Th2 cells are central players in immunity to helminths and are implicated in mediating the inflammatory pathology associated with allergies. The differentiation of Th2 cells is dependent on transcription factors such as GATA3 and STAT6, which prime Th2 cells for the secretion of interleukin- (IL-) 4, IL-5, and IL-13. Several lines of work now suggest that differentiating Th2 cells in the lymph node are potent IL-4 cytokine producers, but do not become competent IL-5- and IL-13-producing cells until after receiving cues from non-lymphoid tissue. It is evident that Th2 cells that enter tissues undergo considerable changes in chromatin architecture and gene expression, and that over this time, the metabolic requirements of these cells change considerably. Herein, we discuss the metabolic requirements of Th2 cells during their early and late differentiation, focusing on the impact of glucose and lipid metabolism, mTOR activation, the nuclear receptor PPAR-γ and several metabolites.
Collapse
Affiliation(s)
- Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christopher A Tibbitt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
The nitrated fatty acid, 10-nitrooleate inhibits the neutrophil chemotaxis via peroxisome proliferator-activated receptor gamma in CLP-induced sepsis in mice. Int Immunopharmacol 2019; 72:159-165. [DOI: 10.1016/j.intimp.2019.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 01/09/2023]
|
11
|
Kokuho N, Terasaki Y, Kunugi S, Saito Y, Urushiyama H, Terasaki M, Hayashi H, Gemma A, Shimizu A. Analyses of alveolar epithelial injury via lipid-related stress in mammalian target of rapamycin inhibitor-induced lung disease. J Transl Med 2019; 99:853-865. [PMID: 30728465 DOI: 10.1038/s41374-018-0158-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 09/22/2018] [Accepted: 10/18/2018] [Indexed: 11/09/2022] Open
Abstract
Although mammalian target of rapamycin inhibitors (mTORi) are used to treat various malignancies, they frequently induce active alveolitis and dyslipidemia. Abnormal lipid metabolism affects alveolar surfactant function and results in pulmonary disorders; however, the pathophysiology of lung injury and its relationship with lipid metabolism remain unknown. We investigated the relationship between lipid metabolism and alveolar epithelial injury, focusing on peroxisome proliferator-activated receptor-γ (PPAR-γ) as a lipid stress-related factor in mTORi-induced lung injury. We clinicopathologically examined three patients with mTORi-induced lung injury. We constructed an mTORi injury mouse model using temsirolimus in mice (30 mg/kg/day), with the vehicle control and bleomycin injury groups. We also constructed a cultured alveolar epithelial cell injury model using temsirolimus (0-40 μM) in the mouse lung epithelial cell line MLE-12 and performed analysis with or without pioglitazone (PPAR-γ agonist) treatment. All three patients had dyslipidemia and lung lesions of hyperplastic pneumocytes with foamy and enlarged changes. In the mouse model, temsirolimus induced significantly higher levels of total cholesterol and free fatty acids in serum and higher levels of surfactant protein D in serum and BAL fluid with an increase in inflammatory cytokines in the lung compared to control. Temsirolimus also induced hyperplastic foamy pneumocytes with increased lipid-associated spots and larger round electron-lucent bodies compared to the control or bleomycin groups in microscopic analyses. Multiple lipid-associated spots within the cytoplasm were also induced by temsirolimus administration in MLE-12 cells. Temsirolimus downregulated PPAR-γ expression in mouse lung and MLE-12 cells but upregulated cleaved caspase-3 in MLE-12 cells. Pioglitazone blocked the upregulated cleaved caspase-3 expression in MLE-12 cells. The pathogenesis of mTORi-induced lung disease may be involved in alveolar epithelial injury, via lipid metabolic stress associated with downregulated PPAR-γ expression. Focusing on the relationship between lipid metabolic stress and alveolar epithelial injury represents a potentially novel approach to the study of pulmonary damage.
Collapse
Affiliation(s)
- Nariaki Kokuho
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Shinobu Kunugi
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshinobu Saito
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hirokazu Urushiyama
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mika Terasaki
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hiroki Hayashi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
12
|
Rosiglitazone attenuates paraquat-induced lung fibrosis in rats in a PPAR gamma-dependent manner. Eur J Pharmacol 2019; 851:133-143. [PMID: 30797787 DOI: 10.1016/j.ejphar.2019.02.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 11/24/2022]
Abstract
Rosiglitazone, a PPAR-γ agonist, possesses anti-fibritic effect; however, its inhibitory effect on paraquat (PQ)-induced pulmonary fibrosis is not completely understood. Here, we investigated the inhibitory effect of rosiglitazone on PQ-induced acute pulmonary fibrosis in rats and its underlying mechanism. Male Sprague-Dawly rats were administered a single intraperitoneal injection of 30 mg/kg PQ and euthanised 7, 14, 21, and 28 days after PQ poisoning. PQ-induced pulmonary fibrosis was most obvious on day 28. Male Sprague-Dawly rats were exposed either against distilled water as control groups or PQ (30 mg/kg, i.p.) as test groups. The control groups were nominated as NC group (without treatment), RSG group (only treatment with rosiglitazone, 10 mg/kg/d), and GW group (only treatment with GW9662, a PPAR-γ antagonist, 1 mg/kg/d). The test groups were nominated as PQ group (PQ exposed without treatment), PQ + RSG group (treatment with rosiglitazone), and PQ + RSG + GW group (treatment with rosiglitazone and GW9662). Rosiglitazone was able to recover the PQ-induced decrease in arterial oxygen partial pressure (PaO2), increase in the wet-to-dry (W/D) lung tissue weight ratio and lung fibrosis score. Rosiglitazone inhibited the PQ-induced reduction in protein and mRNA levels of PPAR-γ and PTEN and elevation in protein and mRNA levels of TGF-β1 and α-SMA. GW9662 administration antagonized the effect of rosiglitazone. These data suggest that rosiglitazone attenuated PQ-induced pulmonary fibrosis by upregulateing PTEN and downregulating TGF-β1 expression in a PPAR-γ dependent manner.
Collapse
|
13
|
Wang JL, Dong YH, Ko WC, Chang CH, Wu LC, Chuang LM, Chen PC. Thiazolidinediones and reduced risk of incident bacterial abscess in adults with type 2 diabetes: A population-based cohort study. Diabetes Obes Metab 2018; 20:2811-2820. [PMID: 29974616 DOI: 10.1111/dom.13461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/26/2018] [Accepted: 07/01/2018] [Indexed: 01/01/2023]
Abstract
AIM Previous research has suggested that peroxisome proliferator-activated receptor-gamma (PPAR-γ) may play an important role in immunomodulation. We aimed to examine the association between thiazolidinediones, PPAR-γ agonists and incidence of bacterial abscess among patients with type 2 diabetes. MATERIALS AND METHODS This retrospective cohort study between 2000 and 2010 included 46 986 propensity (PS)-matched patients diagnosed with type 2 diabetes. We compared the incidence of bacterial abscess, including liver and non-liver abscesses, between patients treated with metformin plus a thiazolidinedione (M + T, N = 7831) or metformin plus a sulfonylurea (M + S, N = 39 155). Data were retrieved from a population-based Taiwanese database. We applied Cox proportional hazard regression models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs), comparing M + T and M + S after PS matching. RESULTS During a median follow-up of 4.5 years, the incidence rate of bacterial abscess was lower with M + T than with M + S treatment (1.89 vs 3.15 per 1000 person-years) in the PS-matched cohort. M + T was associated with a reduced risk of bacterial abscess (HRs after PS matching, 0.58; 95% CI, 0.42-0.80 for total bacterial abscess; 0.54; 95% CI, 0.28-1.07 for liver abscess; 0.59; 95% CI, 0.41-0.85 for non-liver abscess). Results did not change materially after accounting for unmeasured confounding factors using high-dimenional PS matching and differential censoring between regimen groups. Rosiglitazone and pioglitazone, in combination with metformin, produced similar reductions in risk of all abscess outcomes. CONCLUSION We found that M + T may provide a protective benefit in reducing the incidence of bacterial abscesses. These findings merit further investigation.
Collapse
Affiliation(s)
- Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Department of Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Yaa-Hui Dong
- Faculty of Pharmacy, School of Pharmaceutical Science, National Yang-Ming University, Taipei, Taiwan
- Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Department of Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Chia-Hsuin Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Li-Chiu Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
14
|
Bazewicz CG, Dinavahi SS, Schell TD, Robertson GP. Aldehyde dehydrogenase in regulatory T-cell development, immunity and cancer. Immunology 2018; 156:47-55. [PMID: 30387499 DOI: 10.1111/imm.13016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
The role of aldehyde dehydrogenase (ALDH) in carcinogenesis and resistance to cancer therapies is well known. Mounting evidence also suggests a potentially important role for ALDH in the induction and function of regulatory T (Treg) cells. Treg cells are important cells of the immune system involved in promoting immune tolerance and preventing aberrant immune responses to beneficial or non-harmful antigens. However, Treg cells also impair tumor immunity, leading to the progression of various carcinomas. ALDH expression and the subsequent production of retinoic acid by numerous cells, including dendritic cells, macrophages, eosinophils and epithelial cells, seems important in Treg induction and function in multiple organ systems. This is particularly evident in the gastrointestinal tract, pulmonary tract and skin, which are exposed to a myriad of environmental antigens and represent interfaces between the human body and the outside world. Expression of ALDH in Treg cells themselves may also be involved in the proliferation of these cells and resistance to certain cytotoxic therapies. Hence, inhibition of ALDH expression may be useful to treat cancer. Besides the direct effect of ALDH inhibition on carcinogenesis and resistance to cancer therapies, inhibition of ALDH could potentially augment the immune response to tumor antigens by inhibiting Treg induction, function and ability to promote immune tolerance to tumor cells in multiple cancer types.
Collapse
Affiliation(s)
- Christopher G Bazewicz
- College of Medicine, The Pennsylvania State University Medical Center, Hershey, PA, USA.,The Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University Medical Center, Hershey, PA, USA
| | - Saketh S Dinavahi
- The Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University Medical Center, Hershey, PA, USA.,Department of Pharmacology, The Pennsylvania State University Medical Center, Hershey, PA, USA
| | - Todd D Schell
- Department of Microbiology and Immunology, The Pennsylvania State University Medical Center, Hershey, PA, USA
| | - Gavin P Robertson
- The Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University Medical Center, Hershey, PA, USA.,Department of Pharmacology, The Pennsylvania State University Medical Center, Hershey, PA, USA.,Department of Pathology, The Pennsylvania State University Medical Center, Hershey, PA, USA.,Department of Dermatology, The Pennsylvania State University Medical Center, Hershey, PA, USA.,Department of Surgery, The Pennsylvania State University Medical Center, Hershey, PA, USA.,Penn State Melanoma Therapeutics Program, The Pennsylvania State University Medical Center, Hershey, PA, USA.,Foreman Foundation for Melanoma Research, The Pennsylvania State University Medical Center, Hershey, PA, USA
| |
Collapse
|
15
|
Feller D, Kun J, Ruzsics I, Rapp J, Sarosi V, Kvell K, Helyes Z, Pongracz JE. Cigarette Smoke-Induced Pulmonary Inflammation Becomes Systemic by Circulating Extracellular Vesicles Containing Wnt5a and Inflammatory Cytokines. Front Immunol 2018; 9:1724. [PMID: 30090106 PMCID: PMC6068321 DOI: 10.3389/fimmu.2018.01724] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/12/2018] [Indexed: 01/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a devastating, irreversible pathology affecting millions of people worldwide. Clinical studies show that currently available therapies are insufficient, have no or little effect on elevated comorbidities and on systemic inflammation. To develop alternative therapeutic options, a better understanding of the molecular background of COPD is essential. In the present study, we show that non-canonical and pro-inflammatory Wnt5a is up-regulated by cigarette smoking with parallel up-regulation of pro-inflammatory cytokines in both mouse and human model systems. Wnt5a is not only a pro-inflammatory Wnt ligand but can also inhibit the anti-inflammatory peroxisome proliferator-activated receptor gamma transcription and affect M1/M2 macrophage polarization. Both Wnt5a and pro-inflammatory cytokines can be transported in lipid bilayer sealed extracellular vesicles that reach and deliver their contents to every organ measured in the blood of COPD patients, therefore, demonstrating a potential mechanism for the systemic nature of this crippling disease.
Collapse
Affiliation(s)
- Diana Feller
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary.,Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Jozsef Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Istvan Ruzsics
- Department of Internal Medicine, Clinical Centre and Medical School, University of Pecs, Pecs, Hungary
| | - Judit Rapp
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Veronika Sarosi
- Department of Internal Medicine, Clinical Centre and Medical School, University of Pecs, Pecs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Judit E Pongracz
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| |
Collapse
|
16
|
van der Plaat DA, de Jong K, Lahousse L, Faiz A, Vonk JM, van Diemen CC, Nedeljkovic I, Amin N, Obeidat M, van Duijn CM, Boezen HM, Postma DS. The Well-Known Gene HHIP and Novel Gene MECR Are Implicated in Small Airway Obstruction. Am J Respir Crit Care Med 2017; 194:1299-1302. [PMID: 27845578 DOI: 10.1164/rccm.201604-0843le] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Diana A van der Plaat
- 1 University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC) Groningen, the Netherlands
| | - Kim de Jong
- 1 University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC) Groningen, the Netherlands
| | - Lies Lahousse
- 2 Erasmus Medical Center Rotterdam, the Netherlands.,3 Ghent University Hospital Ghent, Belgium and
| | - Alen Faiz
- 1 University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC) Groningen, the Netherlands
| | - Judith M Vonk
- 1 University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC) Groningen, the Netherlands
| | - Cleo C van Diemen
- 1 University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC) Groningen, the Netherlands
| | | | - Najaf Amin
- 2 Erasmus Medical Center Rotterdam, the Netherlands
| | | | | | - H Marike Boezen
- 1 University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC) Groningen, the Netherlands
| | - Dirkje S Postma
- 1 University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC) Groningen, the Netherlands
| |
Collapse
|
17
|
Sutton MT, Fletcher D, Episalla N, Auster L, Kaur S, Gwin MC, Folz M, Velasquez D, Roy V, van Heeckeren R, Lennon DP, Caplan AI, Bonfield TL. Mesenchymal Stem Cell Soluble Mediators and Cystic Fibrosis. ACTA ACUST UNITED AC 2017; 7. [PMID: 29291140 DOI: 10.4172/2157-7633.1000400] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human Mesenchymal stem cells (hMSCs) secrete products (supernatants) that are anti-inflammatory and antimicrobial. We have previously shown that hMSCs decrease inflammation and Pseudomonas aeruginosa infection in the in vivo murine model of Cystic Fibrosis (CF). Cystic Fibrosis (CF) is a genetic disease in which pulmonary infection and inflammation becomes the major cause of morbidity and mortality. Our studies focus on determining how MSCs contribute to improved outcomes in the CF mouse model centering on how the MSCs impact the inflammatory response to pathogenic organisms. We hypothesize that MSCs secrete products that are anti-inflammatory in scenarios of chronic pulmonary infections using the murine model of infection and inflammation with a specific interest in Pseudomonas aeruginosa (gram negative). Further, our studies will identify whether the MSCs are impacting this inflammatory response through the regulation of peroxisome proliferator activator receptor gamma (PPARγ) which aides in decreasing inflammation.
Collapse
Affiliation(s)
- Morgan T Sutton
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,National Center of Regenerative Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948.,School of Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948.,School of Engineering, Case Western Reserve University, Cleveland Ohio 44106-4948.,Hathaway Brown School, Shaker Heights Ohio 44122.,Summer Programs in Undergraduate Research, Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland Ohio 44106-4948
| | - David Fletcher
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Nicole Episalla
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,Department of Biology, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Lauren Auster
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,Department of Biology, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Sukhmani Kaur
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,Hathaway Brown School, Shaker Heights Ohio 44122
| | - Mary Chandler Gwin
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,Summer Programs in Undergraduate Research, Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland Ohio 44106-4948
| | - Michael Folz
- School of Engineering, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Dante Velasquez
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,National Center of Regenerative Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Varun Roy
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,School of Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Rolf van Heeckeren
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Donald P Lennon
- Department of Biology, Case Western Reserve University, Cleveland Ohio 44106-4948.,Skeletal Research Center, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Arnold I Caplan
- Department of Biology, Case Western Reserve University, Cleveland Ohio 44106-4948.,Skeletal Research Center, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Tracey L Bonfield
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,National Center of Regenerative Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948.,School of Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948.,Skeletal Research Center, Case Western Reserve University, Cleveland Ohio 44106-4948
| |
Collapse
|
18
|
Coutinho DS, Anjos-Valotta EA, do Nascimento CVMF, Pires ALA, Napimoga MH, Carvalho VF, Torres RC, E Silva PMR, Martins MA. 15-Deoxy-Delta-12,14-Prostaglandin J 2 Inhibits Lung Inflammation and Remodeling in Distinct Murine Models of Asthma. Front Immunol 2017; 8:740. [PMID: 28713373 PMCID: PMC5491902 DOI: 10.3389/fimmu.2017.00740] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/12/2017] [Indexed: 12/11/2022] Open
Abstract
15-deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) has been described as an anti-inflammatory lipid mediator in several in vitro and in vivo studies, but its effect on allergic pulmonary inflammation remains elusive. The aim of this study was to investigate the therapeutic potential of 15d-PGJ2 based on distinct murine models of allergic asthma triggered by either ovalbumin (OVA) or house dust mite extract (HDM). Characteristics of lung inflammation, airway hyper-reactivity (AHR), mucus exacerbation, and lung remodeling in sensitized A/J mice treated or not with 15d-PGJ2 were assessed. 15d-PGJ2 treatments were carried out systemically or topically given via subcutaneous injection or intranasal instillation, respectively. Analyses were carried out 24 h after the last allergen provocation. Irrespective of the route of administration, 15d-PGJ2 significantly inhibited the peribronchial accumulation of eosinophils and neutrophils, subepithelial fibrosis and also mucus exacerbation caused by either OVA or HDM challenge. The protective effect of 15d-PGJ2 occurred in parallel with inhibition of allergen-induced AHR and lung tissue production of pro-inflammatory cytokines, such as interleukin (IL)-5, IL-13, IL-17, and TNF-α. Finally, 15d-PGJ2 was found effective in inhibiting NF-κB phosphorylation upon HDM challenge as measured by Western blotting. In conclusion, our findings suggest that 15d-PGJ2 can reduce crucial features of asthma, including AHR, lung inflammation, and remodeling in distinct murine models of the disease. These effects are associated with a decrease in lung tissue generation of pro-inflammatory cytokines by a mechanism related to downregulation of NF-κB phosphorylation.
Collapse
Affiliation(s)
- Diego S Coutinho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Caio V M F do Nascimento
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Lucia A Pires
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcelo H Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - Vinícius F Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rafael C Torres
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Patrícia M R E Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marco A Martins
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Kaler M, Barochia AV, Weir NA, Cuento RA, Stylianou M, Roth MJ, Filie AC, Vaughey EC, Nathan SD, Levine SJ. A randomized, placebo-controlled, double-blinded, crossover trial of pioglitazone for severe asthma. J Allergy Clin Immunol 2017. [PMID: 28625806 DOI: 10.1016/j.jaci.2017.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maryann Kaler
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Amisha V Barochia
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Nargues A Weir
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md; Advanced Lung Disease and Lung Transplant Clinic, Inova Fairfax Hospital, Falls Church, Va
| | - Rosemarie A Cuento
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Mario Stylianou
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Mark J Roth
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Armando C Filie
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Ellen C Vaughey
- Northern Virginia Pulmonary and Critical Care Associates, Annandale, Va
| | - Steven D Nathan
- Advanced Lung Disease and Lung Transplant Clinic, Inova Fairfax Hospital, Falls Church, Va
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
20
|
Kim SH, Hong JH, Lee JE, Lee YC. 18β-Glycyrrhetinic acid, the major bioactive component of Glycyrrhizae Radix, attenuates airway inflammation by modulating Th2 cytokines, GATA-3, STAT6, and Foxp3 transcription factors in an asthmatic mouse model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:99-113. [PMID: 28410469 DOI: 10.1016/j.etap.2017.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/03/2017] [Accepted: 03/18/2017] [Indexed: 06/07/2023]
Abstract
18β-Glycyrrhetinic acid (18Gly), the major bioactive component of Glycyrrhizae Radix, possesses anti-ulcerative, anti-inflammatory, and other pharmacological properties. Although 18Gly is associated with immunoregulatory functions of allergic diseases, the pathophysiological mechanisms of 18Gly action in allergic inflammatory lung disease have not been examined. Moreover, there are no in vivo studies on the anti-asthmatic effects of 18Gly in allergic asthma. We investigated its effect and mechanism of action in airway inflammation in a BALB/c mouse model of allergic asthma. Interestingly, 18Gly strongly suppressed airway hyperresponsiveness, accumulation of inflammatory cells, and levels of T helper type 2 (Th2) cytokines (interleukin (IL)-5 and IL-13) in bronchoalveolar lavage fluid (BALF). It also attenuated lung IL-5, IL-13, and IL-4 expression, but it upregulated peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression in lungs. Moreover, it exerted immunomodulatory effects by suppressing Th2 cytokines (IL-5, IL-13) production through upregulation of forkhead box p3 (Foxp3), and downregulation of signal transducer and activator of transcription (STAT6), GATA-binding protein 3 (GATA-3), and retinoic acid-related orphan receptor γ t (RORγt) expression. These results suggest that the anti-asthmatic activity of 18Gly may occur by the suppression of IL-5, IL-13, and OVA-specific Immunoglobulin E (IgE) production through inhibition of the RORγt, STAT6, GATA-3 pathways and upregulation of the Foxp3 transcription pathway. Also, 18Gly treatment was protective against the oxidative stress by inducing significant decrease of reactive oxygen species (ROS) generation in MH-S alveolar macrophage cells. Our results suggest that 18Gly can improve allergic asthma and can be a novel therapeutic component for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Seung-Hyung Kim
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 300-716, Republic of Korea
| | - Jung-Hee Hong
- Department of Herbology, College of Korean Medicine, Sangji University, Wonju 220-702, Republic of Korea
| | - Ji-Eun Lee
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 300-716, Republic of Korea
| | - Young-Cheol Lee
- Department of Herbology, College of Korean Medicine, Sangji University, Wonju 220-702, Republic of Korea.
| |
Collapse
|
21
|
Luczak E, Wieczfinska J, Sokolowska M, Pniewska E, Luczynska D, Pawliczak R. Troglitazone, a PPAR-γ agonist, decreases LTC 4 concentration in mononuclear cells in patients with asthma. Pharmacol Rep 2017; 69:1315-1321. [PMID: 29128815 DOI: 10.1016/j.pharep.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/06/2017] [Accepted: 05/11/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND Asthma is an inflammatory disorder with multiple mediators involved in the inflammatory response. Despite several attempts, no new anti-inflammatory drugs have been registered for asthma treatment for several years. However, thiazolidinediones, peroxisome proliferator-activated receptor agonists, have demonstrated some anti-inflammatory properties in various experimental settings. The aim of this study was to assess the influence of troglitazone on LTC4 and 15-HETE concentrations. It also evaluates TNF-induced eotaxin synthesis in peripheral blood mononuclear cells from 14 patients with mild asthma and 13 healthy controls. METHODS PBMCs were isolated from the whole blood of the asthmatics and healthy subjects and pretreated with 0.1, 1 or 10μM of Troglitazone. The cells were then exposed to 10-6M calcium jonophore or 10ng/ml TNF. The production and release of LTC4, 15-HETE and eotaxin were then assessed. RESULTS Troglitazone caused a dose-dependent inhibition in LTC4 synthesis in both asthmatics and healthy subjects. Troglitazone did not influence 15-HETE or eotaxin production in either asthmatic patients or in healthy individuals. CONCLUSION Due to its inhibition of LTC4 synthesis, troglitazone therapy is an interesting potential therapeutic approach in asthma and other LTC4 related inflammatory disorders.
Collapse
Affiliation(s)
- Emilia Luczak
- Department of Immunopathology, Medical University of Lodz, Łódź, Poland
| | | | - Milena Sokolowska
- Department of Immunopathology, Medical University of Lodz, Łódź, Poland; Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Ewa Pniewska
- Department of Immunopathology, Medical University of Lodz, Łódź, Poland
| | - Daria Luczynska
- Department of Immunopathology, Medical University of Lodz, Łódź, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Medical University of Lodz, Łódź, Poland.
| |
Collapse
|
22
|
Lacy SH, Woeller CF, Thatcher TH, Maddipati KR, Honn KV, Sime PJ, Phipps RP. Human lung fibroblasts produce proresolving peroxisome proliferator-activated receptor-γ ligands in a cyclooxygenase-2-dependent manner. Am J Physiol Lung Cell Mol Physiol 2016; 311:L855-L867. [PMID: 27612965 DOI: 10.1152/ajplung.00272.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/31/2016] [Indexed: 11/22/2022] Open
Abstract
Human lung fibroblasts (HLFs) act as innate immune sentinel cells that amplify the inflammatory response to injurious stimuli. Here, we use targeted lipidomics to explore the hypothesis that HLFs also play an active role in the resolution of inflammation. We detected cyclooxygenase-2 (COX-2)-dependent production of both proinflammatory and proresolving prostaglandins (PGs) in conditioned culture medium from HLFs treated with a proinflammatory stimulus, IL-1β. Among the proresolving PGs in the HLF lipidome were several known ligands for peroxisome proliferator-activated receptor-γ (PPARγ), a transcription factor whose activation in the lung yields potent anti-inflammatory, antifibrotic, and proresolving effects. Next, we used a cell-based luciferase reporter to confirm the ability of HLF supernatants to activate PPARγ, demonstrating, for the first time, that primary HLFs activated with proinflammatory IL-1β or cigarette smoke extract produce functional PPARγ ligands; this phenomenon is temporally regulated, COX-2- and lipocalin-type PGD synthase-dependent, and enhanced by arachidonic acid supplementation. Finally, we used luciferase reporter assays to show that several of the PGs in the lipidome of activated HLFs independently activate PPARγ and/or inhibit NFκB. These results indicate that HLFs, as immune sentinels, regulate both proinflammatory and proresolving responses to injurious stimuli. This novel endogenous resolution pathway represents a new therapeutic target for globally important inflammatory diseases such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Shannon H Lacy
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Collynn F Woeller
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Thomas H Thatcher
- Division of Pulmonary Diseases and Critical Care, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.,Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Krishna Rao Maddipati
- Lipidomics Core Facility, Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan; and
| | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan
| | - Patricia J Sime
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.,Division of Pulmonary Diseases and Critical Care, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.,Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; .,Division of Pulmonary Diseases and Critical Care, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.,Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
23
|
Mitochondrial H2O2 in Lung Antigen-Presenting Cells Blocks NF-κB Activation to Prevent Unwarranted Immune Activation. Cell Rep 2016; 15:1700-14. [PMID: 27184852 DOI: 10.1016/j.celrep.2016.04.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/10/2016] [Accepted: 04/15/2016] [Indexed: 12/21/2022] Open
Abstract
Inhalation of environmental antigens such as allergens does not always induce inflammation in the respiratory tract. While antigen-presenting cells (APCs), including dendritic cells and macrophages, take up inhaled antigens, the cell-intrinsic molecular mechanisms that prevent an inflammatory response during this process, such as activation of the transcription factor NF-κB, are not well understood. Here, we show that the nuclear receptor PPARγ plays a critical role in blocking NF-κB activation in response to inhaled antigens to preserve immune tolerance. Tolerance induction promoted mitochondrial respiration, generation of H2O2, and suppression of NF-κB activation in WT, but not PPARγ-deficient, APCs. Forced restoration of H2O2 in PPARγ-deficient cells suppressed IκBα degradation and NF-κB activation. Conversely, scavenging reactive oxygen species from mitochondria promoted IκBα degradation with loss of regulatory and promotion of inflammatory T cell responses in vivo. Thus, communication between PPARγ and the mitochondria maintains immune quiescence in the airways.
Collapse
|
24
|
Lee HY, Rhee CK, Kang JY, Park CK, Lee SY, Kwon SS, Kim YK, Yoon HK. Effect of intranasal rosiglitazone on airway inflammation and remodeling in a murine model of chronic asthma. Korean J Intern Med 2016; 31:89-97. [PMID: 26767862 PMCID: PMC4712439 DOI: 10.3904/kjim.2016.31.1.89] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND/AIMS Asthma is characterized by airway hyperresponsiveness, inflammation, and remodeling. Peroxisome proliferator-activated receptors have been reported to regulate inflammatory responses in many cells. In this study, we examined the effects of intranasal rosiglitazone on airway remodeling in a chronic asthma model. METHODS We developed a mouse model of airway remodeling, including smooth muscle thickening, in which ovalbumin (OVA)-sensitized mice were repeatedly exposed to intranasal OVA administration twice per week for 3 months. Mice were treated intranasally with rosiglitazone with or without an antagonist during OVA challenge. We determined airway inflammation and the degree of airway remodeling by smooth muscle actin area and collagen deposition. RESULTS Mice chronically exposed to OVA developed sustained eosinophilic airway inflammation, compared with control mice. Additionally, the mice developed features of airway remodeling, including thickening of the peribronchial smooth muscle layer. Administration of rosiglitazone intranasally inhibited the eosinophilic inflammation significantly, and, importantly, airway smooth muscle remodeling in mice chronically exposed to OVA. Expression of Toll-like receptor (TLR)-4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was increased in the OVA group and decreased in the rosiglitazone group. Co-treatment with GW9660 (a rosiglitazone antagonist) and rosiglitazone increased the expression of TLR-4 and NF-κB. CONCLUSIONS These results suggest that intranasal administration of rosiglitazone can prevent not only air way inf lammation but also air way remodeling associated with chronic allergen challenge. This beneficial effect is mediated by inhibition of TLR-4 and NF-κB pathways.
Collapse
Affiliation(s)
- Hwa Young Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Young Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chan Kwon Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook Young Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soon Suk Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Kyoon Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyoung Kyu Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Correspondence to Hyoung Kyu Yoon, M.D. Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Yeouido St. Mary’s Hospital, The Catholic University of Korea, 10 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea Tel: +82-2-3779-2213 Fax: +82-2-780-3132 E-mail:
| |
Collapse
|
25
|
Khare A, Chakraborty K, Raundhal M, Ray P, Ray A. Cutting Edge: Dual Function of PPARγ in CD11c+ Cells Ensures Immune Tolerance in the Airways. THE JOURNAL OF IMMUNOLOGY 2015; 195:431-5. [PMID: 26062999 DOI: 10.4049/jimmunol.1500474] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/17/2015] [Indexed: 01/15/2023]
Abstract
The respiratory tract maintains immune homeostasis despite constant provocation by environmental Ags. Failure to induce tolerogenic responses to allergens incites allergic inflammation. Despite the understanding that APCs have a crucial role in maintaining immune tolerance, the underlying mechanisms are poorly understood. Using mice with a conditional deletion of peroxisome proliferator-activated receptor γ (PPARγ) in CD11c(+) cells, we show that PPARγ performs two critical functions in CD11c(+) cells to induce tolerance, thereby preserving immune homeostasis. First, PPARγ was crucial for the induction of retinaldehyde dehydrogenase (aldh1a2) selectively in CD103(+) dendritic cells, which we recently showed promotes Foxp3 expression in naive CD4(+) T cells. Second, in all CD11c(+) cells, PPARγ was required to suppress expression of the Th17-skewing cytokines IL-6 and IL-23p19. Also, lack of PPARγ in CD11c(+) cells induced p38 MAPK activity, which was recently linked to Th17 development. Thus, PPARγ favors immune tolerance by promoting regulatory T cell generation and blocking Th17 differentiation.
Collapse
Affiliation(s)
- Anupriya Khare
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and
| | - Krishnendu Chakraborty
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and
| | - Mahesh Raundhal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Prabir Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
26
|
Solleti SK, Simon DM, Srisuma S, Arikan MC, Bhattacharya S, Rangasamy T, Bijli KM, Rahman A, Crossno JT, Shapiro SD, Mariani TJ. Airway epithelial cell PPARγ modulates cigarette smoke-induced chemokine expression and emphysema susceptibility in mice. Am J Physiol Lung Cell Mol Physiol 2015; 309:L293-304. [PMID: 26024894 DOI: 10.1152/ajplung.00287.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/26/2015] [Indexed: 11/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly prevalent, chronic inflammatory lung disease with limited existing therapeutic options. While modulation of peroxisome proliferator-activating receptor (PPAR)-γ activity can modify inflammatory responses in several models of lung injury, the relevance of the PPARG pathway in COPD pathogenesis has not been previously explored. Mice lacking Pparg specifically in airway epithelial cells displayed increased susceptibility to chronic cigarette smoke (CS)-induced emphysema, with excessive macrophage accumulation associated with increased expression of chemokines, Ccl5, Cxcl10, and Cxcl15. Conversely, treatment of mice with a pharmacological PPARγ activator attenuated Cxcl10 and Cxcl15 expression and macrophage accumulation in response to CS. In vitro, CS increased lung epithelial cell chemokine expression in a PPARγ activation-dependent fashion. The ability of PPARγ to regulate CS-induced chemokine expression in vitro was not specifically associated with peroxisome proliferator response element (PPRE)-mediated transactivation activity but was correlated with PPARγ-mediated transrepression of NF-κB activity. Pharmacological or genetic activation of PPARγ activity abrogated CS-dependent induction of NF-κB activity. Regulation of NF-κB activity involved direct PPARγ-NF-κB interaction and PPARγ-mediated effects on IKK activation, IκBα degradation, and nuclear translocation of p65. Our data indicate that PPARG represents a disease-relevant pathophysiological and pharmacological target in COPD. Its activation state likely contributes to NF-κB-dependent, CS-induced chemokine-mediated regulation of inflammatory cell accumulation.
Collapse
Affiliation(s)
- Siva Kumar Solleti
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, Rochester, New York
| | - Dawn M Simon
- Emory-Children's Center Pulmonary, Apnea, Cystic Fibrosis and Sleep Clinic, Atlanta, Georgia
| | - Sorachai Srisuma
- Faculty of Medicine, Department of Physiology, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Meltem C Arikan
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Soumyaroop Bhattacharya
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, Rochester, New York;
| | - Tirumalai Rangasamy
- Division of Pulmonary & Critical Care Medicine, University of Rochester Medical Center, Rochester, New York
| | - Kaiser M Bijli
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, Rochester, New York; Atlanta VA and Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, Georgia
| | - Arshad Rahman
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, Rochester, New York
| | - Joseph T Crossno
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, Colorado
| | - Steven D Shapiro
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas J Mariani
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, Rochester, New York;
| |
Collapse
|
27
|
Hou G, Yin Y, Han D, Wang QY, Kang J. Rosiglitazone attenuates the metalloprotease/anti-metalloprotease imbalance in emphysema induced by cigarette smoke: involvement of extracellular signal-regulated kinase and NFκB signaling. Int J Chron Obstruct Pulmon Dis 2015; 10:715-24. [PMID: 25897215 PMCID: PMC4396520 DOI: 10.2147/copd.s77514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective We investigated how rosiglitazone attenuated cigarette smoke (CS)-induced emphysema in a rat model. In particular, we focused on its possible effects on the imbalance between metalloprotease (MMP) and anti-MMP activity, mitogen-activated protein kinase (MAPK) phosphorylation, and nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB) signaling pathway over-activation. Methods A total of 36 Wistar rats were divided into three groups (n=12 each): animals were exposed to CS for 12 weeks in the absence (the CS group) or presence of 30 mg/kg rosiglitazone (the rosiglitazone-CS [RCS] group); a control group was treated with the rosiglitazone vehicle only, without any CS exposure. Histopathology of lung tissue in all groups was evaluated to grade severity of the disease. Expression levels of peroxisome proliferator-activated receptor γ (PPARγ), MMP2, and MMP9 in lung tissue were determined and compared using Western blotting and immunohistochemistry. Activation of MAPKs, NFκB, and the nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor, alpha (IκBα) phosphorylation in lung tissue was examined by Western blotting. Results Emphysema-related pathology, based on inter-alveolar wall distance and alveolar density, was less severe in the RCS group than in the CS group. Compared with the CS group, levels of PPARγ were higher in the RCS group, and levels of MMP2 and MMP9 proteins were lower in the RCS rats. Levels of activated MAPKs and NFκB were also lower, while the IκBαphosphorylation was increased in the lung tissue of RCS rats. Conclusion Our findings suggest that oral administration of rosiglitazone attenuates the metalloprotease activity induced by CS, and the underlying mechanism might involve the activation of signaling pathways dependent on MAPKs or NFκB. Our results further suggest that PPARγ contributes to the pathogenesis of emphysema as well as airway inflammation induced by CS.
Collapse
Affiliation(s)
- Gang Hou
- Department of Respiratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yan Yin
- Department of Respiratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Dan Han
- Department of Respiratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qiu-Yue Wang
- Department of Respiratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jian Kang
- Department of Respiratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
28
|
Peroxisome Proliferator-Activated Receptor- γ in Thyroid Autoimmunity. PPAR Res 2015; 2015:232818. [PMID: 25722716 PMCID: PMC4333335 DOI: 10.1155/2015/232818] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/24/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor- (PPAR-) γ expression has been shown in thyroid tissue from patients with thyroiditis or Graves' disease and furthermore in the orbital tissue of patients with Graves' ophthalmopathy (GO), such as in extraocular muscle cells. An increasing body of evidence shows the importance of the (C-X-C motif) receptor 3 (CXCR3) and cognate chemokines (C-X-C motif) ligand (CXCL)9, CXCL10, and CXCL11, in the T helper 1 immune response and in inflammatory diseases such as thyroid autoimmune disorders. PPAR-γ agonists show a strong inhibitory effect on the expression and release of CXCR3 chemokines, in vitro, in various kinds of cells, such as thyrocytes, and in orbital fibroblasts, preadipocytes, and myoblasts from patients with GO. Recently, it has been demonstrated that rosiglitazone is involved in a higher risk of heart failure, stroke, and all-cause mortality in old patients. On the contrary, pioglitazone has not shown these effects until now; this favors pioglitazone for a possible use in patients with thyroid autoimmunity. However, further studies are ongoing to explore the use of new PPAR-γ agonists in the treatment of thyroid autoimmune disorders.
Collapse
|
29
|
Smith SG, Hill M, Oliveria JP, Watson BM, Baatjes AJ, Dua B, Howie K, Campbell H, Watson RM, Sehmi R, Gauvreau GM. Evaluation of peroxisome proliferator-activated receptor agonists on interleukin-5-induced eosinophil differentiation. Immunology 2014; 142:484-91. [PMID: 24628018 DOI: 10.1111/imm.12280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/26/2014] [Accepted: 03/07/2014] [Indexed: 12/30/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) agonists have been suggested as novel therapeutics for the treatment of inflammatory lung disease, such as allergic asthma. Treatment with PPAR agonists has been shown to inhibit airway eosinophilia in murine models of allergic asthma, which can occur through several mechanisms including attenuated generation of chemoattractants (e.g. eotaxin) and decreased eosinophil migrational responses. In addition, studies report that PPAR agonists can inhibit the differentiation of several cell types. To date, no studies have examined the effects of PPAR agonists on interleukin-5 (IL-5) -induced eosinophil differentiation from haemopoietic progenitor cells. Non-adherent mononuclear cells or CD34(+) cells isolated from the peripheral blood of allergic subjects were grown for 2 weeks in Methocult(®) cultures with IL-5 (10 ng/ml) and IL-3 (25 ng/ml) in the presence of 1-1000 nm PPARα agonist (GW9578), PPARβ/δ agonist (GW501516), PPARγ agonist (rosiglitazone) or diluent. The number of eosinophil/basophil colony-forming units (Eo/B CFU) was quantified by light microscopy. The signalling mechanism involved was assessed by phosphoflow. Blood-extracted CD34(+) cells cultured with IL-5 or IL-5 + IL-3 formed Eo/B CFU, which were significantly inhibited by rosiglitazone (100 nm, P < 0·01) but not GW9578 or GW501516. In addition, rosglitazone significantly inhibited IL-5-induced phosphorylation of extracellular signal-regulated kinase 1/2. We observed an inhibitory effect of rosiglitazone on eosinophil differentiation in vitro, mediated by attenuation of the extracellular signal-regulated kinase 1/2 signalling pathway. These findings indicate that the PPARγ agonist can attenuate tissue eosinophilia by interfering with local differentiative responses.
Collapse
Affiliation(s)
- Steven G Smith
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pomari E, Stefanon B, Colitti M. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages. J Inflamm Res 2014; 7:103-12. [PMID: 25075197 PMCID: PMC4106015 DOI: 10.2147/jir.s61471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Arctium lappa (AL), Camellia sinensis (CS), Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG), and Vaccinium myrtillus (VM) are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (m)RNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results A noncytotoxic dose (200 μM) of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001) regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in vitro and in vivo investigation into molecular mechanisms modulated by herbal extracts should be undertaken to shed light on the development of novel modulating therapeutic strategies.
Collapse
Affiliation(s)
- Elena Pomari
- Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy
| | - Bruno Stefanon
- Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy
| | - Monica Colitti
- Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy
| |
Collapse
|
31
|
Martin C, Frija-Masson J, Burgel PR. Targeting Mucus Hypersecretion: New Therapeutic Opportunities for COPD? Drugs 2014; 74:1073-89. [DOI: 10.1007/s40265-014-0235-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Gährs M, Roos R, Andersson PL, Schrenk D. Role of the nuclear xenobiotic receptors CAR and PXR in induction of cytochromes P450 by non-dioxinlike polychlorinated biphenyls in cultured rat hepatocytes. Toxicol Appl Pharmacol 2013; 272:77-85. [DOI: 10.1016/j.taap.2013.05.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 12/12/2022]
|
33
|
Reduction of carrageenan-induced acute pulmonary inflammation in mice by novel thiazolidinedione derivative LPSF/RA-4. Eur J Pharmacol 2013; 718:197-205. [DOI: 10.1016/j.ejphar.2013.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 08/14/2013] [Accepted: 08/30/2013] [Indexed: 01/28/2023]
|
34
|
Xue X, Zheng Q, Wu H, Zou L, Li P. Different responses to mechanical injury in neonatal and adult ovine articular cartilage. Biomed Eng Online 2013; 12:53. [PMID: 23773399 PMCID: PMC3691644 DOI: 10.1186/1475-925x-12-53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/10/2013] [Indexed: 12/25/2022] Open
Abstract
Background Articular cartilage injury remains a major challenge in orthopedic surgery. This study aimed to identify differences in gene expression and molecular responses between neonatal and adult articular cartilage during the healing of an injury. Methods An established in vitro model was used to compare the transcriptional response to cartilage injury in neonatal and adult sheep by microarray analysis of gene expression. Total RNA was isolated from tissue samples, linearly amplified, and 15,208 ovine probes were applied to cDNA microarray. Validation for selected genes was obtained by real-time quantitative polymerase chain reaction (RT-qPCR). Results We found 1,075 (11.6%) differentially expressed probe sets in adult injured cartilage relative to normal cartilage. A total of 1,016 (11.0%) probe sets were differentially expressed in neonatal injured cartilage relative to normal cartilage. A total of 1,492 (16.1%) probe sets were differentially expressed in adult normal cartilage relative to neonatal normal cartilage. A total of 1,411 (15.3%) probe sets were differentially expressed in adult injured cartilage relative to neonatal injured cartilage. Significant functional clusters included genes associated with wound healing, articular protection, inflammation, and energy metabolism. Selected genes (PPARG, LDH, TOM, HIF1A, SMAD7, and NF-κB) were also found and validated by RT-qPCR. Conclusions There are significant differences in gene expression between neonatal and adult ovine articular cartilage following acute injury. They are partly due to intrinsic differences in the process of development, and partly to different biological responses to mechanical trauma between neonatal and adult articular cartilage.
Collapse
Affiliation(s)
- Xuhong Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | | | | | | | | |
Collapse
|
35
|
Anticancer Activities of PPARγ in Breast Cancer Are Context-Dependent. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1972-5. [DOI: 10.1016/j.ajpath.2013.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 03/15/2013] [Indexed: 11/21/2022]
|
36
|
Kim V, Kato K, Kim KC, Lillehoj EP. Role of Epithelial Cells in Chronic Inflammatory Lung Disease. SMOKING AND LUNG INFLAMMATION 2013. [PMCID: PMC7121463 DOI: 10.1007/978-1-4614-7351-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Airborne pathogens entering the lungs first encounter the mucus layer overlaying epithelial cells as a first line of host defense [1, 2]. In addition to serving as the physical barrier to these toxic agents, intact epithelia also are major sources of various macromolecules including antimicrobial agents, antioxidants and antiproteases [3, 4] as well as proinflammatory cytokines and chemokines that initiate and amplify host defensive responses to these toxic agents [5]. Airway epithelial cells can be categorized as either ciliated or secretory [6]. Secretory cells, such as goblet cells and Clara cells, are responsible for the production and secretion of mucus along the apical epithelial surface and, in conjunction with ciliated cells, for the regulation of airway surface liquid viscosity. In addition, submucosal mucus glands connect to the airway lumen through a ciliated duct that propels mucins outward. These glands are present in the larger airways between bands of smooth muscle and cartilage. See Fig. 1.
Collapse
|
37
|
de Lima FM, Albertini R, Dantas Y, Maia-Filho AL, Santana CDL, Castro-Faria-Neto HC, França C, Villaverde AB, Aimbire F. Low-level laser therapy restores the oxidative stress balance in acute lung injury induced by gut ischemia and reperfusion. Photochem Photobiol 2012; 89:179-88. [PMID: 22882462 DOI: 10.1111/j.1751-1097.2012.01214.x] [Citation(s) in RCA: 295] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/13/2012] [Indexed: 11/30/2022]
Abstract
It remains unknown if the oxidative stress can be regulated by low-level laser therapy (LLLT) in lung inflammation induced by intestinal reperfusion (i-I/R). A study was developed in which rats were irradiated (660 nm, 30 mW, 5.4 J) on the skin over the bronchus and euthanized 2 h after the initial of intestinal reperfusion. Lung edema and bronchoalveolar lavage fluid neutrophils were measured by the Evans blue extravasation and myeloperoxidase (MPO) activity respectively. Lung histology was used for analyzing the injury score. Reactive oxygen species (ROS) was measured by fluorescence. Both expression intercellular adhesion molecule 1 (ICAM-1) and peroxisome proliferator-activated receptor-y (PPARy) were measured by RT-PCR. The lung immunohistochemical localization of ICAM-1 was visualized as a brown stain. Both lung HSP70 and glutathione protein were evaluated by ELISA. LLLT reduced neatly the edema, neutrophils influx, MPO activity and ICAM-1 mRNA expression. LLLT also reduced the ROS formation and oppositely increased GSH concentration in lung from i-I/R groups. Both HSP70 and PPARy expression also were elevated after laser irradiation. Results indicate that laser effect in attenuating the acute lung inflammation is driven to restore the balance between the pro- and antioxidants mediators rising of PPARy expression and consequently the HSP70 production.
Collapse
Affiliation(s)
- Flávia Mafra de Lima
- Department of Rehabilitation Sciences, Universidade Nove de Julho-UNINOVE, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Reddy AT, Lakshmi SP, Kleinhenz JM, Sutliff RL, Hart CM, Reddy RC. Endothelial cell peroxisome proliferator-activated receptor γ reduces endotoxemic pulmonary inflammation and injury. THE JOURNAL OF IMMUNOLOGY 2012; 189:5411-20. [PMID: 23105142 DOI: 10.4049/jimmunol.1201487] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bacterial endotoxin (LPS)-mediated sepsis involves severe, dysregulated inflammation that injures the lungs and other organs, often fatally. Vascular endothelial cells are both key mediators and targets of LPS-induced inflammatory responses. The nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) exerts anti-inflammatory actions in various cells, but it is unknown whether it modulates inflammation through actions within endothelial cells. To determine whether PPARγ acts within endothelial cells to diminish endotoxemic lung inflammation and injury, we measured inflammatory responses and mediators in mice with endothelial-targeted deletion of PPARγ. Endothelial cell PPARγ (ePPARγ) knockout exacerbated LPS-induced pulmonary inflammation and injury as shown by several measures, including infiltration of inflammatory cells, edema, and production of reactive oxygen species and proinflammatory cytokines, along with upregulation of the LPS receptor TLR4 in lung tissue and increased activation of its downstream signaling pathways. In isolated LPS-stimulated endothelial cells in vitro, absence of PPARγ enhanced the production of numerous inflammatory markers. We hypothesized that the observed in vivo activity of the ligand-activated ePPARγ may arise, in part, from nitrated fatty acids (NFAs), a novel class of endogenous PPARγ ligands. Supporting this idea, we found that treating isolated endothelial cells with physiologically relevant concentrations of the endogenous NFA 10-nitro-oleate reduced LPS-induced expression of a wide range of inflammatory markers in the presence of PPARγ, but not in its absence, and also inhibited neutrophil mobility in a PPARγ-dependent manner. Our results demonstrate a key protective role of ePPARγ against endotoxemic injury and a potential ePPARγ-mediated anti-inflammatory role for NFAs.
Collapse
Affiliation(s)
- Aravind T Reddy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University and Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | | | | | | | | | | |
Collapse
|
39
|
Park YS, Guang W, Blanchard TG, Chul Kim K, Lillehoj EP. Suppression of IL-8 production in gastric epithelial cells by MUC1 mucin and peroxisome proliferator-associated receptor-γ. Am J Physiol Gastrointest Liver Physiol 2012; 303:G765-74. [PMID: 22766852 PMCID: PMC3468531 DOI: 10.1152/ajpgi.00023.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
MUC1 is a membrane-tethered mucin expressed on the apical surface of epithelial cells. Our previous report (Guang W, Ding H, Czinn SJ, Kim KC, Blanchard TG, Lillehoj EP. J Biol Chem 285: 20547-20557, 2010) demonstrated that expression of MUC1 in AGS gastric epithelial cells limits Helicobacter pylori infection and reduces bacterial-driven IL-8 production. In this study, we identified the peroxisome proliferator-associated receptor-γ (PPARγ) upstream of MUC1 in the anti-inflammatory pathway suppressing H. pylori- and phorbol 12-myristate 13-acetate (PMA)-stimulated IL-8 production. Treatment of AGS cells with H. pylori or PMA increased IL-8 levels in cell culture supernatants compared with cells treated with the respective vehicle controls. Prior small interfering (si)RNA-induced MUC1 silencing further increased H. pylori- and PMA-stimulated IL-8 levels compared with a negative control siRNA. MUC1-expressing AGS cells pretreated with the PPARγ agonist troglitazone (TGN) had reduced H. pylori- and PMA-stimulated IL-8 levels compared with cells treated with H. pylori or PMA alone. However, following MUC1 siRNA knockdown, no differences in IL-8 levels were seen between TGN/H. pylori and H. pylori-only cells or between TGN/PMA and PMA-only cells. Finally, TGN-treated AGS cells had increased Muc1 promoter activity, as measured using a Muc1-luciferase reporter gene, and greater MUC1 protein levels by Western blot analysis, compared with vehicle controls. These results support the hypothesis that PPARγ stimulates MUC1 expression by AGS cells, thereby attenuating H. pylori- and PMA-induced IL-8 production.
Collapse
Affiliation(s)
- Yong Sung Park
- 1Department of Physiology and Lung Center, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Wei Guang
- 2Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Thomas G. Blanchard
- 2Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - K. Chul Kim
- 1Department of Physiology and Lung Center, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Erik P. Lillehoj
- 2Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
40
|
Monemdjou R, Vasheghani F, Fahmi H, Perez G, Blati M, Taniguchi N, Lotz M, St-Arnaud R, Pelletier JP, Martel-Pelletier J, Beier F, Kapoor M. Association of cartilage-specific deletion of peroxisome proliferator-activated receptor γ with abnormal endochondral ossification and impaired cartilage growth and development in a murine model. ACTA ACUST UNITED AC 2012; 64:1551-61. [PMID: 22131019 DOI: 10.1002/art.33490] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Long bones develop through the strictly regulated process of endochondral ossification within the growth plate, resulting in the replacement of cartilage by bone. Defects in this process can result in skeletal abnormalities and a predisposition to degenerative joint diseases such as osteoarthritis (OA). Studies suggest that activation of the transcription factor peroxisome proliferator-activated receptor γ (PPARγ) is an important therapeutic target in OA. To devise PPARγ-related therapies in OA, it is critical to identify the role of this transcription factor in cartilage biology. Therefore, this study sought to determine the in vivo role of PPARγ in endochondral ossification and cartilage development, using cartilage-specific PPARγ-knockout (KO) mice. METHODS Cartilage-specific PPARγ-KO mice were generated using the Cre/loxP system. Histomorphometric and immunohistochemical analyses were performed to assess the patterns of ossification, proliferation, differentiation, and hypertrophy of chondrocytes, skeletal organization, bone density, and calcium deposition in the KO mice. RESULTS PPARγ-KO mice exhibited reductions in body length, body weight, length of the long bones, skeletal growth, cellularity, bone density, calcium deposition, and trabecular bone thickness, abnormal organization of the growth plate, loss of columnar organization, shorter hypertrophic zones, and delayed primary and secondary ossification. Immunohistochemical analyses for Sox9, 5-bromo-2'-deoxyuridine, p57, type X collagen, and platelet endothelial cell adhesion molecule 1 revealed reductions in the differentiation, proliferation, and hypertrophy of chondrocytes and in vascularization of the growth plate in mutant mice. Isolated chondrocytes and cartilage explants from mutant mice showed aberrant expression of Sox9 and extracellular matrix markers, including aggrecan, type II collagen, and matrix metalloproteinase 13. In addition, chondrocytes from mutant mice exhibited enhanced phosphorylation of p38 and decreased expression of Indian hedgehog. CONCLUSION The presence of PPARγ is required for normal endochondral ossification and cartilage development in vivo.
Collapse
Affiliation(s)
- Roxana Monemdjou
- University of Montreal Hospital Research Centre and University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhou B, Buckley ST, Patel V, Liu Y, Luo J, Krishnaveni MS, Ivan M, DeMaio L, Kim KJ, Ehrhardt C, Crandall ED, Borok Z. Troglitazone attenuates TGF-β1-induced EMT in alveolar epithelial cells via a PPARγ-independent mechanism. PLoS One 2012; 7:e38827. [PMID: 22745681 PMCID: PMC3380041 DOI: 10.1371/journal.pone.0038827] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 05/13/2012] [Indexed: 12/30/2022] Open
Abstract
Peroxisome proliferator activated receptor γ (PPARγ) agonists are effective antifibrotic agents in a number of tissues. Effects of these agents on epithelial-mesenchymal transition (EMT) of primary alveolar epithelial cells (AEC) and potential mechanisms underlying effects on EMT have not been well delineated. We examined effects of troglitazone, a synthetic PPARγ agonist, on transforming growth factor (TGF)-β1-induced EMT in primary rat AEC and an alveolar epithelial type II (AT2) cell line (RLE-6TN). TGF-β1 (2.5 ng/mL) induced EMT in both cell types, as evidenced by acquisition of spindle-like morphology, increased expression of the mesenchymal marker α-smooth muscle actin (α-SMA) and downregulation of the tight junctional protein zonula occludens-1 (ZO-1). Concurrent treatment with troglitazone (or rosiglitazone), ameliorated effects of TGF-β1. Furthermore, following stimulation with TGF-β1 for 6 days, troglitazone reversed EMT-related morphological changes and restored both epithelial and mesenchymal markers to control levels. Treatment with GW9662 (an irreversible PPARγ antagonist), or overexpression of a PPARγ dominant negative construct, failed to inhibit these effects of troglitazone in AEC. Troglitazone not only attenuated TGF-β1-induced phosphorylation of Akt and glycogen synthase kinase (GSK)-3β, but also inhibited nuclear translocation of β-catenin, phosphorylation of Smad2 and Smad3 and upregulation of the EMT-associated transcription factor SNAI1. These results demonstrate inhibitory actions of troglitazone on TGF-β1-induced EMT in AEC via a PPARγ-independent mechanism likely through inhibition of β-catenin-dependent signaling downstream of TGF-β1, supporting a role for interactions between TGF-β and Wnt/β-catenin signaling pathways in EMT.
Collapse
Affiliation(s)
- Beiyun Zhou
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Stephen T. Buckley
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Vipul Patel
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yixin Liu
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jiao Luo
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Manda Sai Krishnaveni
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Mihaela Ivan
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Lucas DeMaio
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kwang-Jin Kim
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Edward D. Crandall
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Emerging PPARγ-Independent Role of PPARγ Ligands in Lung Diseases. PPAR Res 2012; 2012:705352. [PMID: 22778711 PMCID: PMC3385049 DOI: 10.1155/2012/705352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/28/2012] [Accepted: 04/12/2012] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator activated receptor (PPAR)-γ is a nuclear hormone receptor that is activated by multiple agonists including thiazolidinediones, prostaglandins, and synthetic oleanolic acids. Many PPARγ ligands are under investigation as potential therapies for human diseases. These ligands modulate multiple cellular pathways via both PPARγ-dependent and PPARγ-independent mechanisms. Here, we review the role of PPARγ and PPARγ ligands in lung disease, with emphasis on PPARγ-independent effects. PPARγ ligands show great promise in moderating lung inflammation, as antiproliferative agents in combination to enhance standard chemotherapy in lung cancer and as treatments for pulmonary fibrosis, a progressive fatal disease with no effective therapy. Some of these effects occur when PPARγ is pharmaceutically antagonized or genetically PPARγ and are thus independent of classical PPARγ-dependent transcriptional control. Many PPARγ ligands demonstrate direct binding to transcription factors and other proteins, altering their function and contributing to PPARγ-independent inhibition of disease phenotypes. These PPARγ-independent mechanisms are of significant interest because they suggest new therapeutic uses for currently approved drugs and because they can be used as probes to identify novel proteins and pathways involved in the pathogenesis or treatment of disease, which can then be targeted for further investigation and drug development.
Collapse
|
43
|
PPARγ as a Potential Target to Treat Airway Mucus Hypersecretion in Chronic Airway Inflammatory Diseases. PPAR Res 2012; 2012:256874. [PMID: 22761606 PMCID: PMC3385647 DOI: 10.1155/2012/256874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/19/2012] [Accepted: 05/08/2012] [Indexed: 02/05/2023] Open
Abstract
Airway mucus hypersecretion (AMH) is a key pathophysiological feature of chronic airway inflammatory diseases such as bronchial asthma, cystic fibrosis, and chronic obstructive pulmonary disease. AMH contributes to the pathogenesis of chronic airway inflammatory diseases, and it is associated with reduced lung function and high rates of hospitalization and mortality. It has been suggested that AMH should be a target in the treatment of chronic airway inflammatory diseases. Recent evidence suggests that a key regulator of airway inflammation, hyperresponsiveness, and remodeling is peroxisome proliferator-activated receptor gamma (PPARγ), a ligand-activated transcription factor that regulates adipocyte differentiation and lipid metabolism. PPARγ is expressed in structural, immune, and inflammatory cells in the lung. PPARγ is involved in mucin production, and PPARγ agonists can inhibit mucin synthesis both in vitro and in vivo. These findings suggest that PPARγ is a novel target in the treatment of AMH and that further work on this transcription factor may lead to new therapies for chronic airway inflammatory diseases.
Collapse
|
44
|
Samah M, El-Aidy AER, Tawfik MK, Ewais MMS. Evaluation of the antifibrotic effect of fenofibrate and rosiglitazone on bleomycin-induced pulmonary fibrosis in rats. Eur J Pharmacol 2012; 689:186-93. [PMID: 22659583 DOI: 10.1016/j.ejphar.2012.05.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 05/16/2012] [Accepted: 05/22/2012] [Indexed: 11/26/2022]
Abstract
Idiopathic pulmonary fibrosis is the most prevalent chronic fibrosing lung disease. Peroxisome proliferator-activated receptors-gamma agonists provide potential therapy for fibrotic diseases of the lung. Peroxisome proliferator-activated receptors-alpha agonists may be helpful in the treatment of lung inflammatory diseases, however their therapeutic potential on the "fibro-proliferative" process and extracellular matrix accumulation in idiopathic pulmonary fibrosis has been less well studied. So, the present study was conducted to evaluate the anti-fibrotic effects of fenofibrate (peroxisome proliferator-activated receptors-alpha agonist) alone and in combination with rosiglitazone (peroxisome proliferator-activated receptors-gamma agonist) on lung injury induced by bleomycin administration. Oral administration of either rosiglitazone (5 mg/kg/d) or fenofibrate (100 mg/kg/d) for 14 days, attenuated the severity of bleomycin-induced lung injury and fibrosis through decreasing lung water contents, lung fibrotic grading, lung hydroxyproline contents and lung transforming growth factor-beta1 levels; with no significant difference between them. Combined low doses of rosiglitazone (1 mg/kg/d) and fenofibrate (30 mg/kg/d) provided more benefits than full separate doses of each on the deleterious effects accompanied bleomycin administration. These findings suggested the potential use of peroxisome proliferator-activated receptors-alpha ligands as anti-fibrotic agents in lung fibrosis. Additionally, the concurrent administration of fenofibrate and rosiglitazone in low doses has synergistic effect and enhanced the beneficial effects afforded by either fenofibrate or rosiglitazone.
Collapse
Affiliation(s)
- M Samah
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | | | | |
Collapse
|
45
|
Dekkers JF, van der Ent CK, Kalkhoven E, Beekman JM. PPARγ as a therapeutic target in cystic fibrosis. Trends Mol Med 2012; 18:283-91. [PMID: 22494945 DOI: 10.1016/j.molmed.2012.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/06/2012] [Accepted: 03/12/2012] [Indexed: 12/31/2022]
Abstract
Cystic fibrosis (CF) is characterized by a proinflammatory pulmonary condition that may result from increased infections and altered intracellular metabolism in CFTR-deficient cells. The lipid-activated transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) has well-established roles in immune cell function and inflammatory modulation and has been demonstrated to play an important role in the heightened inflammatory response in CF cells. Here, we summarize current literature describing PPARγ-dependent alterations of CF cells and discuss the potential of PPARγ ligands for treating CF.
Collapse
Affiliation(s)
- Johanna F Dekkers
- Department of Pediatric Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
46
|
Matera MG, Calzetta L, Segreti A, Cazzola M. Emerging drugs for chronic obstructive pulmonary disease. Expert Opin Emerg Drugs 2012; 17:61-82. [DOI: 10.1517/14728214.2012.660917] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
47
|
Park YS, Lillehoj EP, Kato K, Park CS, Kim KC. PPARγ inhibits airway epithelial cell inflammatory response through a MUC1-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2012; 302:L679-87. [PMID: 22268120 DOI: 10.1152/ajplung.00360.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was conducted to examine the relationship between the peroxisome proliferator-associated receptor-γ (PPARγ) and MUC1 mucin, two anti-inflammatory molecules expressed in the airways. Treatment of A549 lung epithelial cells or primary mouse tracheal surface epithelial (MTSE) cells with phorbol 12-myristate 13-acetate (PMA) increased the levels of tumor necrosis factor (TNF)-α in cell culture media compared with cells treated with vehicle alone. Overexpression of MUC1 in A549 cells decreased PMA-stimulated TNF-α levels, whereas deficiency of Muc1 expression in MTSE cells from Muc1 null mice increased PMA-induced TNF-α levels. Treatment of A549 or MTSE cells with the PPARγ agonist troglitazone (TGN) blocked the ability of PMA to stimulate TNF-α levels. However, the effect of TGN required the presence of MUC1/Muc1, since no differences in TNF-α levels were seen between PMA and PMA plus TGN in MUC1/Muc1-deficient cells. Similarly, whereas TGN decreased interleukin-8 (IL-8) levels in culture media of MUC1-expressing A549 cells treated with Pseudomonas aeruginosa strain K (PAK), no differences in IL-8 levels were seen between PAK and PAK plus TGN in MUC1-nonexpressing cells. EMSA confirmed the presence of a PPARγ-binding element in the MUC1 gene promoter. Finally, TGN treatment of A549 cells increased MUC1 promoter activity measured using a MUC1-luciferase reporter gene, augmented MUC1 mRNA levels by quantitative RT-PCR, and enhanced MUC1 protein expression by Western blot analysis. These combined data are consistent with the hypothesis that PPARγ stimulates MUC1/Muc1 expression, thereby blocking PMA/PAK-induced TNF-α/IL-8 production by airway epithelial cells.
Collapse
Affiliation(s)
- Yong Sung Park
- Center for Inflammation, Translational and Clinical Lung Research, Temple Univ. School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
48
|
Peroxisome Proliferator-Activator Receptor γ: A Link between Macrophage CD36 and Inflammation in Malaria Infection. PPAR Res 2012; 2012:640769. [PMID: 22287954 PMCID: PMC3263638 DOI: 10.1155/2012/640769] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/19/2011] [Indexed: 12/21/2022] Open
Abstract
Severe malaria infection caused by Plasmodium falciparum is a global life-threatening disease and a leading cause of death worldwide. Intensive investigations have demonstrated that macrophages play crucial roles in control of inflammatory and immune responses and clearance of Plasmodium-falciparum-parasitized erythrocytes (PE). This paper focuses on how macrophage CD36 recognizes and internalizes PE and participates the inflammatory signaling in response to Plasmodium falciparum. In addition, recent advances in our current understanding of the biological actions of PPARγ on CD36 and malaria clearance from the hosts are highlighted.
Collapse
|
49
|
Farnesi-de-Assunção TS, Alves CF, Carregaro V, de Oliveira JR, da Silva CA, Cheraim AB, Cunha FQ, Napimoga MH. PPAR-γ agonists, mainly 15d-PGJ2, reduce eosinophil recruitment following allergen challenge. Cell Immunol 2012; 273:23-9. [DOI: 10.1016/j.cellimm.2011.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/04/2011] [Accepted: 11/29/2011] [Indexed: 11/24/2022]
|
50
|
Tamimi A, Serdarevic D, Hanania NA. The effects of cigarette smoke on airway inflammation in asthma and COPD: therapeutic implications. Respir Med 2011; 106:319-28. [PMID: 22196881 DOI: 10.1016/j.rmed.2011.11.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 12/29/2022]
Abstract
Asthma and COPD are two chronic inflammatory disorders of the airway characterized by airflow limitation. While many similarities exist between these two diseases, they are pathologically distinct due to the involvement of different inflammatory cells; predominantly neutrophils, CD8 lymphocytes in COPD and eosinophils and CD4 lymphocytes in asthma. Cigarette smoking is associated with accelerated decline of lung function, increased mortality, and worsening of symptoms in both asthma and COPD. Furthermore, exposure to cigarette smoke can alter the inflammatory mechanisms in asthma to become similar to that seen in COPD with increasing CD8 cells and neutrophils and may therefore alter the response to therapy. Cigarette smoke exposure has been associated with a poor response to inhaled corticosteroids which are recommended as first line anti-inflammatory medications in asthma and as an add-on therapy in patients with severe COPD with history of exacerbations. While the main proposed mechanism for this altered response is the reduction of the histone deacetylase 2 (HDAC2) enzyme system, other possible mechanisms include the overexpression of GR-β, activation of p38 MAPK pathway and increased production of inflammatory cytokines such as IL-2, 4, 8, TNF-α and NF-Kß. Few clinical trials suggest that leukotriene modifiers may be an alternative to corticosteroids in smokers with asthma but there are currently no drugs which effectively reduce the progression of inflammation in smokers with COPD. However, several HDAC2 enhancers including low dose theophylline and other potential anti-inflammatory therapies including PDE4 inhibitors and p38 MAPK inhibitors are being evaluated.
Collapse
Affiliation(s)
- Asad Tamimi
- Clinical Sciences, Primary Care Business Unit, Pfizer Inc, Ramsgate Road, Sandwich CT13 9NJ, UK
| | | | | |
Collapse
|