1
|
Carruthers ER, Grimsey NL. Cannabinoid CB 2 receptor orthologues; in vitro function and perspectives for preclinical to clinical translation. Br J Pharmacol 2024; 181:2247-2269. [PMID: 37349984 DOI: 10.1111/bph.16172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Cannabinoid CB2 receptor agonists are in development as therapeutic agents, including for immune modulation and pain relief. Despite promising results in rodent preclinical studies, efficacy in human clinical trials has been marginal to date. Fundamental differences in ligand engagement and signalling responses between the human CB2 receptor and preclinical model species orthologues may contribute to mismatches in functional outcomes. This is a tangible possibility for the CB2 receptor in that there is a relatively large degree of primary amino acid sequence divergence between human and rodent. Here, we summarise CB2 receptor gene and protein structure, assess comparative molecular pharmacology between CB2 receptor orthologues, and review the current status of preclinical to clinical translation for drugs targeted at the CB2 receptor, focusing on comparisons between human, mouse and rat receptors. We hope that raising wider awareness of, and proposing strategies to address, this additional challenge in drug development will assist in ongoing efforts toward successful therapeutic translation of drugs targeted at the CB2 receptor. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Emma R Carruthers
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
2
|
Role of Cannabinoid CB2 Receptor in Alcohol Use Disorders: From Animal to Human Studies. Int J Mol Sci 2022; 23:ijms23115908. [PMID: 35682586 PMCID: PMC9180470 DOI: 10.3390/ijms23115908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Cumulative evidence has pointed out cannabinoid CB2 receptors (CB2r) as a potential therapeutic key target for treating alcohol use disorder (AUD). This review provides the most relevant results obtained from rodent and human studies, including an integrative section focused on the involvement of CB2r in the neurobiology of alcohol addiction. A literature search was conducted using the electronic databases Medline and Scopus for articles. The search strategy was as follows: “Receptor, Cannabinoid, CB2” AND “Alcohol-Related Disorders” AND “human/or patients”; “Receptor, Cannabinoid, CB2” AND “Alcohol” OR “Ethanol” AND “rodents/or mice/or rats”. Pharmacological approaches demonstrated that the activation or blockade of CB2r modulated different alcohol-addictive behaviors. Rodent models of alcoholism revealed significant alterations of CB2r in brain areas of the reward system. In addition, mice lacking CB2r (CB2KO) show increased alcohol consumption, motivation, and relapse alterations. It has been stressed that the potential neurobiological mechanisms underlying their behavioral effects involve critical elements of the alcohol reward system. Interestingly, recent postmortem studies showed CNR2 alterations in brain areas of alcoholic patients. Moreover, although the number of studies is limited, the results revealed an association between some genetic alterations of the CNR2 and an increased risk for developing AUD. This review provides evidence that CB2r may play a role in alcohol addiction. Clinical studies are necessary to figure out whether CB2r ligands may prove useful for the treatment of AUD in humans.
Collapse
|
3
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Navarro D, Manzanares J. CB2 Receptor Involvement in the Treatment of Substance Use Disorders. Biomolecules 2021; 11:1556. [PMID: 34827554 PMCID: PMC8615453 DOI: 10.3390/biom11111556] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
The pharmacological modulation of the cannabinoid receptor 2 (CB2r) has emerged as a promising potential therapeutic option in addiction. The purpose of this review was to determine the functional involvement of CB2r in the effects produced by drugs of abuse at the central nervous system (CNS) level by assessing evidence from preclinical and clinical studies. In rodents, several reports suggest the functional involvement of CB2r in the effects produced by drugs of abuse such as alcohol, cocaine, or nicotine. In addition, the discovery of CB2r in brain areas that are part of the reward system supports the relevance of CB2r in the field of addiction. Interestingly, animal studies support that the CB2r regulates anxiety and depression behavioral traits. Due to its frequent comorbidity with neuropsychiatric disorders, these pharmacological actions may be of great interest in managing SUD. Preliminary clinical trials are focused on exploring the therapeutic potential of modulating CB2r in treating addictive disorders. These promising results support the development of new pharmacological tools regulating the CB2r that may help to increase the therapeutic success in the management of SUD.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| |
Collapse
|
4
|
Moerke MJ, McMahon LR, Wilkerson JL. More than Smoke and Patches: The Quest for Pharmacotherapies to Treat Tobacco Use Disorder. Pharmacol Rev 2020; 72:527-557. [PMID: 32205338 DOI: 10.1124/pr.119.018028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tobacco use is a persistent public health issue. It kills up to half its users and is the cause of nearly 90% of all lung cancers. The main psychoactive component of tobacco is nicotine, primarily responsible for its abuse-related effects. Accordingly, most pharmacotherapies for smoking cessation target nicotinic acetylcholine receptors (nAChRs), nicotine's major site of action in the brain. The goal of the current review is twofold: first, to provide a brief overview of the most commonly used behavioral procedures for evaluating smoking cessation pharmacotherapies and an introduction to pharmacokinetic and pharmacodynamic properties of nicotine important for consideration in the development of new pharmacotherapies; and second, to discuss current and potential future pharmacological interventions aimed at decreasing tobacco use. Attention will focus on the potential for allosteric modulators of nAChRs to offer an improvement over currently approved pharmacotherapies. Additionally, given increasing public concern for the potential health consequences of using electronic nicotine delivery systems, which allow users to inhale aerosolized solutions as an alternative to smoking tobacco, an effort will be made throughout this review to address the implications of this relatively new form of nicotine delivery, specifically as it relates to smoking cessation. SIGNIFICANCE STATEMENT: Despite decades of research that have vastly improved our understanding of nicotine and its effects on the body, only a handful of pharmacotherapies have been successfully developed for use in smoking cessation. Thus, investigation of alternative pharmacological strategies for treating tobacco use disorder remains active; allosteric modulators of nicotinic acetylcholine receptors represent one class of compounds currently under development for this purpose.
Collapse
Affiliation(s)
- M J Moerke
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| | - L R McMahon
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| | - J L Wilkerson
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| |
Collapse
|
5
|
Shoaib M, Perkins KA. Preclinical and clinical research on the discriminative stimulus effects of nicotine. Neuropharmacology 2020; 170:108063. [PMID: 32220607 DOI: 10.1016/j.neuropharm.2020.108063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Across species, nicotine can produce robust discriminative stimulus (DS) effects, as with other drugs of abuse, a feature that has been harnessed to advance our understanding on the neuropharmacological mechanisms of nicotine's actions. With the crucial role played by nicotine in supporting tobacco dependence, nicotine DS effects have presented an ideal platform to develop novel generation of smoking cessation compounds. Findings from preclinical strands of research have invigorated the field of human discrimination research to objectively assess nicotine's interoceptive stimulus effects. As such, translation studies provide proof of concept for nicotine DS research as a method to assess the subjective effects of nicotine per se, separate from non-nicotine stimuli involved in smoking. Recent clinical studies with low doses have demonstrated that perceiving nicotine's DS effects is necessary, yet not sufficient, for that dose to be reinforcing. These measures have been instrumental in developing novel strategies with regards to establishing threshold doses of nicotine contained in tobacco products, to then determine subthreshold doses that cannot be discriminated and, therefore, fail to maintain reinforcement. Findings from preclinical and clinical nicotine DS research could substantially inform public health policies aimed at regulating nicotine content of consumer products so that they minimize risks of dependency. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Mohammed Shoaib
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle, NE2 4HH, UK.
| | - Kenneth A Perkins
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Rosecrans JA, Young R. Discriminative Stimulus Properties of S(-)-Nicotine: "A Drug for All Seasons". Curr Top Behav Neurosci 2019; 39:51-94. [PMID: 28391535 DOI: 10.1007/7854_2017_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
S(-)-Nicotine is the major pharmacologically active substance in tobacco and can function as an effective discriminative stimulus in both experimental animals and humans. In this model, subjects must detect and communicate the nicotine drug state versus the non-drug state. This review describes the usefulness of the procedure to study nicotine, presents a general overview of the model, and provides some relevant methodological details for the establishment of this drug as a stimulus. Once established, the (-)-nicotine stimulus can be characterized for dose response and time course effects. Moreover, tests can be conducted to determine the similarity of effects produced by test drugs to those produced by the training dose of nicotine. Such tests have shown that the stimulus effects of nicotine are stereoselective [S(-)-nicotine >R(+)-nicotine] and that other "natural" tobacco alkaloids and (-)-nicotine metabolites can produce (-)-nicotine-like effects, but these drugs are much less potent than (-)-nicotine. Stimulus antagonism tests with mecamylamine and DHβE (dihydro-β-erythroidine) indicate that the (-)-nicotine stimulus is mediated via α4β2 nicotinic acetylcholine receptors (nAChRs) in brain; dopamine systems also are likely involved. Individuals who try to cease their use of nicotine-based products are often unsuccessful. Bupropion (Zyban®) and varenicline (Chantix®) may be somewhat effective as anti-smoking medications because they probably produce stimulus effects that serve as suitable substitutes for (-)-nicotine in the individual who is motivated to quit smoking. Finally, it is proposed that future drug discrimination studies should apply the model to the issue of maintenance of abstinence from (-)-nicotine-based products.
Collapse
Affiliation(s)
- John A Rosecrans
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980613, Richmond, VA, 23298-0613, USA
| | - Richard Young
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, P.O. Box 980540, Richmond, VA, 23219-0540, USA.
| |
Collapse
|
7
|
Nicotine drug discrimination and nicotinic acetylcholine receptors in differentially reared rats. Psychopharmacology (Berl) 2018; 235:1415-1426. [PMID: 29464302 DOI: 10.1007/s00213-018-4850-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 02/05/2018] [Indexed: 01/31/2023]
Abstract
RATIONALE Individuals vary in sensitivity to the behavioral effects of nicotine, resulting in differences in vulnerability to nicotine addiction. The role of rearing environment in determining individual sensitivity to nicotine is unclear. The neuropharmacological mechanisms mediating the effect of rearing environment on the behavioral actions of nicotine are also poorly understood. OBJECTIVES The contribution of rearing environment in determining the sensitivity to the interoceptive effects of nicotine was determined in rats reared in isolated conditions (IC) or enriched conditions (EC). The role of dopamine receptors and α4β2*-nicotinic acetylcholine (nACh) receptors in mediating the differential effect of IC and EC on the interoceptive action of nicotine was determined. METHODS The interoceptive action of nicotine was measured as the discriminative stimulus effect of nicotine. Mecamylamine- and eticlopride-inhibition of the nicotine stimulus were used to examine nACh and dopamine receptors, respectively. α4β2*-nACh receptor expression in the mesolimbic dopamine pathway was determined by quantitative autoradiography of [125I]-epibatidine binding. RESULTS EC-reared rats are less sensitive than IC-reared rats to the discriminative stimulus effects of nicotine at all but maximally effective doses. Mecamylamine inhibited the nicotine stimulus threefold more potently in EC-reared rats (IC50 = 0.25 mg/kg) compared to IC-reared rats (IC50 = 0.75 mg/kg); eticlopride inhibition was not different. [125I]-epibatidine binding in the ventral tegmental area of EC-reared rats was reduced (2.8 ± 0.3 fmol) compared to that of IC-reared rats (4.0 ± 0.4 fmol); there was no difference in the nucleus accumbens. CONCLUSIONS Rearing environment regulates the sensitivity to the interoceptive effects of nicotine and α4β2*-nACh receptor expression in the mesolimbic dopamine pathway.
Collapse
|
8
|
Moerke MJ, Zhu AZX, Tyndale RF, Javors MA, McMahon LR. The discriminative stimulus effects of i.v. nicotine in rhesus monkeys: Pharmacokinetics and apparent pA 2 analysis with dihydro-β-erythroidine. Neuropharmacology 2016; 116:9-17. [PMID: 27940077 DOI: 10.1016/j.neuropharm.2016.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/28/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
Abstract
Quantitative analysis of antagonism is infrequently used to identify nAChRs mediating behavioral effects. Here, nicotine (0.032 mg/kg i.v.) was established as a discriminative stimulus in rhesus monkeys responding under a fixed ratio 5 schedule; pharmacokinetics and underlying nAChR mechanism(s) were examined. When measured up to 4 h in venous blood, the training dose resulted in the following mean pharmacokinetic parameters: nicotine Cmax = 71.7 ng/ml, t1/2 = 116 min, and clearance = 6.25 ml/min/kg; cotinine Cmax = 191 ng/ml; and 3OH-cotinine Cmax = 63 ng/ml. The ED50 value of nicotine to produce discriminative stimulus effects was 0.013 mg/kg. Epibatidine and varenicline increased drug-lever responding to 97% and 95%, respectively (ED50 values = 0.00015 and 0.031 mg/kg, respectively), whereas cocaine, midazolam, and morphine produced no more than 28% drug-appropriate responding. Mecamylamine and dihydro-β-erythroidine (DHβE) dose-dependently attenuated the discriminative stimulus effects of the nicotine training dose, whereas methyllycaconitine (MLA) did not. DHβE (0.1 and 0.32) produced rightward shifts of the nicotine and varenicline dose-response functions; Schild plots fitted through individual data resulted in slopes that were not different from unity; the apparent pA2 calculated for DHβE did not significantly differ in the presence of nicotine (6.58) or varenicline (6.45). Compared to human cigarette smoking, nicotine blood levels after 0.032 mg/kg nicotine i.v. took a similar time to reach maximal concentration, levels at Cmax were similar to smoking 2-3 cigarettes, while average nicotine levels were comparable to smoking 5-6 cigarettes. Apparent pA2 analysis with DHβE under these conditions is consistent with nicotine and varenicline acting through the same nAChRs to produce discriminative stimulus effects.
Collapse
Affiliation(s)
- Megan J Moerke
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Andy Z X Zhu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Department of Pharmacology and Toxicology, and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Department of Pharmacology and Toxicology, and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Martin A Javors
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Lance R McMahon
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
9
|
Charntikov S, Falco AM, Fink K, Dwoskin LP, Bevins RA. The effect of sazetidine-A and other nicotinic ligands on nicotine controlled goal-tracking in female and male rats. Neuropharmacology 2016; 113:354-366. [PMID: 27765626 DOI: 10.1016/j.neuropharm.2016.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
Nicotine is the primary addictive component of tobacco products and its complex stimulus effects are readily discriminated by human and non-human animals. Previous research with rodents directly investigating the nature of the nicotine stimulus has been limited to males. The current study began to address this significant gap in the literature by training female and male rats to discriminate 0.4 mg/kg nicotine from saline in the discriminated goal-tracking task. In this task, access to sucrose was intermittently available on nicotine session. On interspersed saline session, sucrose was not available. Both sexes acquired the discrimination as evidenced by increased head entries into sucrose receptacle (goal-tracking) evoked by nicotine; the nicotine generalization curves were also similar between females and males. The pharmacological profile of the nicotine stimulus was assessed using substitution and targeted combination tests with the following ligands: sazetidine-A, PHA-543613, PNU-120596, bupropion, nornicotine, and cytisine. For females and males, nornicotine fully substituted for the nicotine stimulus, whereas sazetidine-A, bupropion, and cytisine all evoked partial substitution. Female and male rats responded in a similar manner to interaction tests where a combination of 1 mg/kg of sazetidine-A plus nicotine or nornicotine shifted the nicotine dose-effect curve to the left. The combination of sazetidine-A plus bupropion or cytisine failed to do so. These findings begin to fill a significant gap the in scientific literature by studying the nature of the nicotine stimulus and response to therapeutically interesting combinations using a model that includes both sexes.
Collapse
Affiliation(s)
- S Charntikov
- Department of Psychology, University of New Hampshire, 15 Academic Way, Durham, NH 03824, USA
| | - A M Falco
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588-0308, USA
| | - K Fink
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588-0308, USA
| | - L P Dwoskin
- Department of Pharmaceutical Sciences, University of Kentucky, 465 College of Pharmacy, 789 S. Limestone Street, Lexington, KY 40536-0596, USA
| | - R A Bevins
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588-0308, USA.
| |
Collapse
|
10
|
Kohut SJ. Interactions between nicotine and drugs of abuse: a review of preclinical findings. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 43:155-170. [PMID: 27589579 DOI: 10.1080/00952990.2016.1209513] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polysubstance abuse is common among substance-use disorder patients, and nicotine is one of the most commonly co-used substances. Epidemiological and clinical laboratory studies suggest that nicotine, when combined with other drugs of abuse, increases intake of one or both substances. This review focuses on the preclinical literature regarding nicotine's interaction with alcohol, stimulants (i.e., cocaine, amphetamines), opioids (i.e., morphine, heroin), and Δ9-tetrahydrocannabinol (THC). The current understanding of how these various classes of abused drugs may interact with nicotine on behavioral, physiological, and pharmacological indices that may be important in maintaining co-use of one or both substances in human populations are highlighted. Suggestions as to future areas of research and gaps in knowledge are offered.
Collapse
Affiliation(s)
- Stephen J Kohut
- a McLean Hospital and Department of Psychiatry, Harvard Medical School , Belmont , MA , USA
| |
Collapse
|
11
|
Boutros N, Semenova S, Markou A. Adolescent alcohol exposure decreased sensitivity to nicotine in adult Wistar rats. Addict Biol 2016; 21:826-34. [PMID: 25950618 DOI: 10.1111/adb.12263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many adolescents engage in heavy alcohol use. Limited research in humans indicates that adolescent alcohol use predicts adult tobacco use. The present study investigated whether adolescent intermittent ethanol (AIE) exposure alters nicotine sensitivity in adulthood. Adolescent male Wistar rats (postnatal day 28-53) were exposed to AIE exposure that consisted of 5 g/kg of 25 percent ethanol three times per day in a 2 days on/2 days off regimen. Control rats received water with the same exposure regimen. In adulthood, separate groups of rats were tested for nicotine intravenous self-administration (IVSA), drug discrimination and conditioned taste aversion (CTA). The dose-response function for nicotine IVSA under a fixed-ratio schedule of reinforcement was similar in AIE-exposed and control rats. However, AIE-exposed rats self-administered less nicotine at the lowest dose, suggesting that low-dose nicotine was less reinforcing in AIE-exposed, compared with control rats. AIE-exposed rats self-administered less nicotine under a progressive-ratio schedule, suggesting decreased motivation for nicotine after AIE exposure. The discriminative stimulus effects of nicotine were diminished in AIE-exposed rats compared with control rats. No group differences in nicotine CTA were observed, suggesting that AIE exposure had no effect on the aversive properties of nicotine. Altogether, these results demonstrate that AIE exposure decreases sensitivity to the reinforcing, motivational and discriminative properties of nicotine while leaving the aversive properties of nicotine unaltered in adult rats. These findings suggest that drinking during adolescence may result in decreased sensitivity to nicotine in adult humans, which may in turn contribute to the higher rates of tobacco smoking.
Collapse
Affiliation(s)
| | | | - Athina Markou
- University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Lee JY, Choi MJ, Choe ES, Lee YJ, Seo JW, Yoon SS. Differential discriminative-stimulus effects of cigarette smoke condensate and nicotine in nicotine-discriminating rats. Behav Brain Res 2016; 306:197-201. [DOI: 10.1016/j.bbr.2016.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/09/2016] [Accepted: 03/16/2016] [Indexed: 01/14/2023]
|
13
|
Ashare RL, Kimmey BA, Rupprecht LE, Bowers ME, Hayes MR, Schmidt HD. Repeated administration of an acetylcholinesterase inhibitor attenuates nicotine taking in rats and smoking behavior in human smokers. Transl Psychiatry 2016; 6:e713. [PMID: 26784967 PMCID: PMC5068882 DOI: 10.1038/tp.2015.209] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/08/2015] [Accepted: 10/30/2015] [Indexed: 01/14/2023] Open
Abstract
Tobacco smoking remains the leading cause of preventable death worldwide and current smoking cessation medications have limited efficacy. Thus, there is a clear need for translational research focused on identifying novel pharmacotherapies for nicotine addiction. Our previous studies demonstrated that acute administration of an acetylcholinesterase inhibitor (AChEI) attenuates nicotine taking and seeking in rats and suggest that AChEIs could be repurposed for smoking cessation. Here, we expand upon these findings with experiments designed to determine the effects of repeated AChEI administration on voluntary nicotine taking in rats as well as smoking behavior in human smokers. Rats were trained to self-administer intravenous infusions of nicotine (0.03 mg kg(-1) per 0.59 ml) on a fixed-ratio-5 schedule of reinforcement. Once rats maintained stable nicotine taking, galantamine or donepezil was administered before 10 consecutive daily nicotine self-administration sessions. Repeated administration of 5.0 mg kg(-1) galantamine and 3.0 mg kg(-1) donepezil attenuated nicotine self-administration in rats. These effects were reinforcer-specific and not due to adverse malaise-like effects of drug treatment as repeated galantamine and donepezil administration had no effects on sucrose self-administration, ad libitum food intake and pica. The effects of repeated galantamine (versus placebo) on cigarette smoking were also tested in human treatment-seeking smokers. Two weeks of daily galantamine treatment (8.0 mg (week 1) and 16.0 mg (week 2)) significantly reduced smoking rate as well as smoking satisfaction and reward compared with placebo. This translational study indicates that repeated AChEI administration reduces nicotine reinforcement in rats and smoking behavior in humans at doses not associated with tolerance and/or adverse effects.
Collapse
Affiliation(s)
- R L Ashare
- Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - B A Kimmey
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L E Rupprecht
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M E Bowers
- Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - H D Schmidt
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Discriminative-stimulus effects of NS9283, a nicotinic α4β2* positive allosteric modulator, in nicotine-discriminating rats. Psychopharmacology (Berl) 2014; 231:67-74. [PMID: 23925734 DOI: 10.1007/s00213-013-3207-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 07/04/2013] [Indexed: 02/02/2023]
Abstract
RATIONALE Neuronal α4β2* nicotinic acetylcholine receptors mediate cognition, pain, and the discriminative and reinforcing effects of nicotine. In addition to traditional orthosteric agonists, α4β2* positive allosteric modulators (PAMs) have recently been identified. With increased subtype selectivity relative to agonists, PAMs administered alone or in combination with low-dose α4β2* agonists may be used as powerful tools for increasing our understanding of α4β2* pharmacology. OBJECTIVES The present experiments tested the nicotine discriminative-stimulus effects of the α4β2* PAM NS9283 (A-969933) in the presence and absence of low-dose nicotine or nicotinic subtype-selective agonist. METHODS Rats were trained to discriminate 0.4 mg/kg nicotine from saline in a two-lever drug discrimination paradigm. In subsequent generalization tests, rats were administered nicotine, the α4β2*-preferring agonist ABT-594, and NS9283, alone or in two-drug combinations. RESULTS Nicotine and ABT-594 showed dose-dependent nicotine generalization. NS9283 alone resulted in a non-significant increase in nicotine-appropriate lever selection. Combination of non-effective doses of nicotine or ABT-594 with escalating doses of NS9283 resulted in a complete conversion to 100 % nicotine-appropriate choice in the case of nicotine combination and incomplete, though significant, generalization for ABT-594. CONCLUSIONS The α4β2* PAM NS9283 alone did not produce nicotine-like discriminative effects, but did demonstrate dose-related increases in nicotine lever choice when combined with a non-effective dose of nicotine or the α4β2* agonist ABT-594. This finding provides confirmation of the positive allosteric modulating effect of NS9283 in a functional in vivo paradigm. NS9283 is a potentially valuable tool for studying the role of α4β2* receptors in various nicotinic acetylcholine receptor-related functions.
Collapse
|
15
|
Charntikov S, Swalve N, Pittenger S, Fink K, Schepers S, Hadlock GC, Fleckenstein AE, Hu G, Li M, Bevins RA. Iptakalim attenuates self-administration and acquired goal-tracking behavior controlled by nicotine. Neuropharmacology 2013; 75:138-44. [PMID: 23916479 PMCID: PMC3864985 DOI: 10.1016/j.neuropharm.2013.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 07/05/2013] [Accepted: 07/10/2013] [Indexed: 12/22/2022]
Abstract
Iptakalim is an ATP-sensitive potassium channel opener, as well as an α4β2-containing nicotinic acetylcholine receptor (nAChR) antagonist. Pretreatment with iptakalim diminishes nicotine-induced dopamine (DA) and glutamate release in the nucleus accumbens. This neuropharmacological profile suggests that iptakalim may be useful for treatment of nicotine dependence. Thus, we examined the effects of iptakalim in two preclinical models. First, the impact of iptakalim on the interoceptive stimulus effect of nicotine was evaluated by training rats in a discriminated goal-tracking task that included intermixed nicotine (0.4 mg/kg, SC) and saline sessions. Sucrose was intermittently presented in a response-independent manner only on nicotine sessions. On intervening test days, rats were pretreated with iptakalim (10, 30, 60 mg/kg, IP). Results revealed that iptakalim attenuated nicotine-evoked responding controlled by the nicotine stimulus in a dose-dependent manner. In a separate study, the impact of iptakalim on the reinforcing effects of nicotine was investigated by training rats to lever-press to self-administer nicotine (0.01 mg/kg/infusion) [Dosage error corrected]. Results revealed that pretreatment with iptakalim (1, 3, 6 mg/kg, IV) decreased nicotine intake (i.e., less active lever responding). Neither behavioral effect was due to a non-specific motor effect of iptakalim, nor to an ability of iptakalim to inhibit DA transporter (DAT) or serotonin transporter (SERT) function. Together, these finding support the notion that iptakalim may be an effective pharmacotherapy for increasing smoking cessation and a better understanding of its action could contribute to medication development.
Collapse
Affiliation(s)
- S Charntikov
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588-0308, USA
| | - N Swalve
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588-0308, USA
| | - S Pittenger
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588-0308, USA
| | - K Fink
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588-0308, USA
| | - S Schepers
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588-0308, USA
| | - G C Hadlock
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Room 201, Salt Lake City, UT 84112, USA
| | - A E Fleckenstein
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Room 201, Salt Lake City, UT 84112, USA
| | - G Hu
- Jiangsu Province Key Lab of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, PR China
| | - M Li
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588-0308, USA
| | - R A Bevins
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588-0308, USA.
| |
Collapse
|
16
|
Jutkiewicz EM, Rice KC, Carroll FI, Woods JH. Patterns of nicotinic receptor antagonism II: cardiovascular effects in rats. Drug Alcohol Depend 2013; 131:284-97. [PMID: 23333294 PMCID: PMC4174279 DOI: 10.1016/j.drugalcdep.2012.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Tobacco cessation pharmacotherapies currently are limited to nicotine itself, the partial nicotine agonists varenicline and cytisine, and the antidepressant bupropion. Compared with agonists, nicotinic antagonists such as the noncompetitive, nonselective compound mecamylamine, and the competitive, α4β2-preferring antagonist dihydro-β-erythroidine (DHβE) may be a novel approach to the treatment of tobacco smoking as both are effective antagonists of nicotine's central effects. Considering nicotinic acetylcholine receptors mediate critical peripheral effects of acetylcholine, such as cardiovascular effects, it is important to study how nicotinic antagonists would alter the cardiovascular system and the cardiovascular changes induced by nicotine. METHODS The effects of several nicotinic agonists and antagonists on blood pressure and heart rate were measured in conscious, unrestrained rats following parenteral administration using a telemetry system. RESULTS Nicotine and other nicotinic receptor agonists (epibatidine, varenicline, and cytisine) produced similar increases in blood pressure, whereas their effects on heart rate were biphasic. The cardiovascular changes were attenuated by the nonselective nicotine antagonist, mecamylamine, but the peripherally restricted antagonist hexamethonium blocked only the agonist-induced changes in blood pressure. The α7-preferring antagonist, MLA, and the α4β2-preferring antagonist, DHβE, were much less effective in blocking the agonist-induced cardiovascular changes, indicating that nicotine's cardiovascular effects, are due to activation at autonomic ganglia involving nicotinic receptor subtypes other than α4, α7, or β2. CONCLUSIONS The data indicate that the cardiovascular effects of nicotine and nicotine-like agents are mediated through receptor mechanisms that are distinct from those that mediate the central effects of nicotine.
Collapse
Affiliation(s)
- Emily M Jutkiewicz
- Department of Pharmacology, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI 48109-5632, USA
| | | | | | | |
Collapse
|
17
|
Nickell JR, Grinevich VP, Siripurapu KB, Smith AM, Dwoskin LP. Potential therapeutic uses of mecamylamine and its stereoisomers. Pharmacol Biochem Behav 2013; 108:28-43. [PMID: 23603417 PMCID: PMC3690754 DOI: 10.1016/j.pbb.2013.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 04/01/2013] [Accepted: 04/03/2013] [Indexed: 12/17/2022]
Abstract
Mecamylamine (3-methylaminoisocamphane hydrochloride) is a nicotinic parasympathetic ganglionic blocker, originally utilized as a therapeutic agent to treat hypertension. Mecamylamine administration produces several deleterious side effects at therapeutically relevant doses. As such, mecamylamine's use as an antihypertensive agent was phased out, except in severe hypertension. Mecamylamine easily traverses the blood-brain barrier to reach the central nervous system (CNS), where it acts as a nicotinic acetylcholine receptor (nAChR) antagonist, inhibiting all known nAChR subtypes. Since nAChRs play a major role in numerous physiological and pathological processes, it is not surprising that mecamylamine has been evaluated for its potential therapeutic effects in a wide variety of CNS disorders, including addiction. Importantly, mecamylamine produces its therapeutic effects on the CNS at doses 3-fold lower than those used to treat hypertension, which diminishes the probability of peripheral side effects. This review focuses on the pharmacological properties of mecamylamine, the differential effects of its stereoisomers, S(+)- and R(-)-mecamylamine, and the potential for effectiveness in treating CNS disorders, including nicotine and alcohol addiction, mood disorders, cognitive impairment and attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Justin R Nickell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | | | |
Collapse
|
18
|
Di Marzo V, De Petrocellis L. Why do cannabinoid receptors have more than one endogenous ligand? Philos Trans R Soc Lond B Biol Sci 2013; 367:3216-28. [PMID: 23108541 DOI: 10.1098/rstb.2011.0382] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The endocannabinoid system was revealed following the understanding of the mechanism of action of marijuana's major psychotropic principle, Δ(9)-tetrahydrocannabinol, and includes two G-protein-coupled receptors (GPCRs; the cannabinoid CB1 and CB2 receptors), their endogenous ligands (the endocannabinoids, the best studied of which are anandamide and 2-arachidonoylglycerol (2-AG)), and the proteins that regulate the levels and activity of these receptors and ligands. However, other minor lipid metabolites different from, but chemically similar to, anandamide and 2-AG have also been suggested to act as endocannabinoids. Thus, unlike most other GPCRs, cannabinoid receptors appear to have more than one endogenous agonist, and it has been often wondered what could be the physiological meaning of this peculiarity. In 1999, it was proposed that anandamide might also activate other targets, and in particular the transient receptor potential of vanilloid type-1 (TRPV1) channels. Over the last decade, this interaction has been shown to occur both in peripheral tissues and brain, during both physiological and pathological conditions. TRPV1 channels can be activated also by another less abundant endocannabinoid, N-arachidonoyldopamine, but not by 2-AG, and have been proposed by some authors to act as ionotropic endocannabinoid receptors. This article will discuss the latest discoveries on this subject, and discuss, among others, how anandamide and 2-AG differential actions at TRPV1 and cannabinoid receptors contribute to making this signalling system a versatile tool available to organisms to fine-tune homeostasis.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto Chimica Biomolecolare, CNR, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, NA, Italy.
| | | |
Collapse
|
19
|
Kruk M, Miszkiel J, McCreary AC, Przegaliński E, Filip M, Biała G. Effects of the histamine H3 receptor antagonist ABT-239 on cognition and nicotine-induced memory enhancement in mice. Pharmacol Rep 2012; 64:1316-25. [DOI: 10.1016/s1734-1140(12)70929-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 08/03/2012] [Indexed: 11/16/2022]
|
20
|
LeSage MG, Shelley D, Pravetoni M, Pentel PR. Enhanced attenuation of nicotine discrimination in rats by combining nicotine-specific antibodies with a nicotinic receptor antagonist. Pharmacol Biochem Behav 2012; 102:157-62. [PMID: 22503967 DOI: 10.1016/j.pbb.2012.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/23/2012] [Accepted: 03/28/2012] [Indexed: 11/24/2022]
Abstract
Tobacco addiction requires activation by nicotine of a variety of central nicotinic acetylcholine receptors (nAChRs). In animals, both nAChR antagonists and immunization against nicotine can reduce nAChR activation by nicotine and block a variety of addiction-relevant behaviors. However, clinical use of nAChR antagonists for smoking cessation is limited by dose-related side effects, and immunization does not reliably produce sufficient antibody levels in smokers to enhance smoking cessation rates. Combining these approaches may be one way of addressing the limitations of each while enhancing overall efficacy. This study examined the individual and combined effects of passive immunization with the monoclonal nicotine-specific antibody Nic311 and the nicotinic receptor antagonist mecamylamine (MEC) on nicotine's discriminative stimulus effects. Rats were trained to discriminate 0.4 mg/kg of nicotine from saline using a two-lever operant discrimination procedure. Antagonism of nicotine discrimination by Nic311 (160 mg/kg i.v.) and ascending doses of MEC (0.03, 0.1, 0.3, and 1.0 mg/kg s.c.) was assessed across four consecutive daily 2-min extinction test sessions using a 2×2 design. Nic311 alone produced a 24-48% reduction in % nicotine-lever responding (%NLR) across all four test sessions. MEC produced a dose-dependent decrease in %NLR, with no effect at the two lowest doses and 80-93% attenuation at the two highest doses. Nic311 combined with MEC significantly suppressed %NLR at every MEC dose (85-92% reduction across all four test sessions). Very low doses of MEC that were ineffective alone completely blocked nicotine discrimination when combined with Nic311. These data demonstrate that nicotine-specific antibodies and MEC can work synergistically to suppress the subjective effects of nicotine and suggest that low doses of MEC may significantly enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Mark G LeSage
- Department of Medicine, Minneapolis Medical Research Foundation, Minneapolis, MN, United States.
| | | | | | | |
Collapse
|
21
|
Gamaleddin I, Wertheim C, Zhu AZX, Coen KM, Vemuri K, Makryannis A, Goldberg SR, Le Foll B. Cannabinoid receptor stimulation increases motivation for nicotine and nicotine seeking. Addict Biol 2012; 17:47-61. [PMID: 21521420 DOI: 10.1111/j.1369-1600.2011.00314.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cannabinoid system appears to play a critical facilitative role in mediating the reinforcing effects of nicotine and relapse to nicotine-seeking behaviour in abstinent subjects based on the actions of cannabinoid (CB) receptor antagonists. However, the effects of CB receptor stimulation on nicotine self-administration and reinstatement have not been systematically studied. Here, we studied the effects of WIN 55,212-2, a CB1/2 agonist, on intravenous nicotine self-administration under fixed-ratio (FR) and progressive-ratio (PR) schedules of reinforcement in rats. The effects of WIN 55,212-2 on responding for food under similar schedules were also studied. In addition, the effects of WIN 55,212-2 on nicotine- and cue-induced reinstatement of nicotine seeking were also studied, as well as the effects of WIN 55,212-2 on nicotine discrimination. WIN 55,212-2 decreased nicotine self-administration under the FR schedule. However, co-administration of WIN 55,212-2 with nicotine decreased responding for food, which suggests that this effect was non-selective. In contrast, WIN 55,212-2 increased both nicotine self-administration and responding for food under the PR schedule, produced dose-dependent reinstatement of nicotine seeking, and enhanced the reinstatement effects of nicotine-associated cues. Some of these effects were reversed by the CB1 antagonist rimonabant, but not by the CB2 antagonist AM630. In the drug discrimination tests between saline and 0.4 mg/kg nicotine, WIN 55,212-2 produced no nicotine-like discriminative effects but significantly potentiated discriminative stimulus effects of nicotine at the low dose through a CB1-receptor-dependent mechanism. These findings indicate that cannabinoid CB1-receptor stimulation increases the reinforcing effects of nicotine and precipitates relapse to nicotine-seeking behaviour in abstinent subjects. Thus, modulating CB1-receptor signalling might have therapeutic value for treating nicotine dependence.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Addictive/chemically induced
- Behavior, Animal
- Benzoxazines/pharmacology
- Conditioning, Operant/drug effects
- Cues
- Discrimination, Psychological/drug effects
- Dose-Response Relationship, Drug
- Extinction, Psychological/drug effects
- Feeding Behavior/drug effects
- Male
- Morpholines/pharmacology
- Motivation/drug effects
- Motor Activity/drug effects
- Naphthalenes/pharmacology
- Nicotine/administration & dosage
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Long-Evans
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Reinforcement, Psychology
- Rimonabant
- Self Administration/statistics & numerical data
- Tobacco Use Disorder
Collapse
Affiliation(s)
- Islam Gamaleddin
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Effects of the histamine (H)3 receptor antagonist ABT-239 on acute and repeated nicotine locomotor responses in rats. Pharmacol Rep 2011; 63:1553-9. [DOI: 10.1016/s1734-1140(11)70720-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/01/2011] [Indexed: 11/22/2022]
|
23
|
Jutkiewicz EM, Brooks EA, Kynaston AD, Rice KC, Woods JH. Patterns of nicotinic receptor antagonism: nicotine discrimination studies. J Pharmacol Exp Ther 2011; 339:194-202. [PMID: 21730011 DOI: 10.1124/jpet.111.182170] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Evaluation of the discriminative stimulus effects of drugs is a useful procedure for identification of receptor mediation of in vivo drug effects. This assay can be enhanced when the stimulus effects of different doses of agonist are evaluated. In the present study, rats were trained to discriminate small or large doses of nicotine from saline, and interactions of these effects with nicotinic receptor antagonists and partial agonists were determined. The insurmountable nicotine antagonist mecamylamine blocked both the discriminative stimulus and response rate-reducing effects of nicotine but was less effective against the large dose of nicotine. The α4β2*-selective, competitive antagonist dihydro-β-erythrodine (DHβE) antagonized the discriminative stimulus effects of both doses but was less effective against the larger training dose of nicotine. Schild analyses of DHβE suggested that different nicotinic receptor populations may be mediating the stimulus effects of large and small doses of nicotine. This suggestion was supported by observations that the discriminative stimulus effects of the partial agonist cytisine were more like those of the large dose than of the small dose of nicotine and that cytisine antagonized the effects of only the small nicotine dose. Varenicline produced nicotine-like effects in both training dose groups but reduced the discriminative stimulus effects of intermediate doses of nicotine in the group trained to the small dose of nicotine. Overall, these results suggest that small doses of nicotine produce their stimulus effects via α4β2* nicotine receptors, whereas larger doses of nicotine recruit additional nicotine receptor subtypes, as revealed by drug discrimination assays in rats.
Collapse
Affiliation(s)
- Emily M Jutkiewicz
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-5632, USA
| | | | | | | | | |
Collapse
|
24
|
Mascia P, Pistis M, Justinova Z, Panlilio LV, Luchicchi A, Lecca S, Scherma M, Fratta W, Fadda P, Barnes C, Redhi GH, Yasar S, Le Foll B, Tanda G, Piomelli D, Goldberg SR. Blockade of nicotine reward and reinstatement by activation of alpha-type peroxisome proliferator-activated receptors. Biol Psychiatry 2011; 69:633-41. [PMID: 20801430 PMCID: PMC2994947 DOI: 10.1016/j.biopsych.2010.07.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Recent findings indicate that inhibitors of fatty acid amide hydrolase (FAAH) counteract the rewarding effects of nicotine in rats. Inhibition of FAAH increases levels of several endogenous substances in the brain, including the endocannabinoid anandamide and the noncannabinoid fatty acid ethanolamides oleoylethanolamide (OEA) and palmitoylethanolamide, which are ligands for alpha-type peroxisome proliferator-activated nuclear receptors (PPAR-α). Here, we evaluated whether directly acting PPAR-α agonists can modulate reward-related effects of nicotine. METHODS We combined behavioral, neurochemical, and electrophysiological approaches to evaluate effects of the PPAR-α agonists [[4-Chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid (WY14643) and methyl oleoylethanolamide (methOEA; a long-lasting form of OEA) on 1) nicotine self-administration in rats and squirrel monkeys; 2) reinstatement of nicotine-seeking behavior in rats and monkeys; 3) nicotine discrimination in rats; 4) nicotine-induced electrophysiological activity of ventral tegmental area dopamine neurons in anesthetized rats; and 5) nicotine-induced elevation of dopamine levels in the nucleus accumbens shell of freely moving rats. RESULTS The PPAR-α agonists dose-dependently decreased nicotine self-administration and nicotine-induced reinstatement in rats and monkeys but did not alter food- or cocaine-reinforced operant behavior or the interoceptive effects of nicotine. The PPAR-α agonists also dose-dependently decreased nicotine-induced excitation of dopamine neurons in the ventral tegmental area and nicotine-induced elevations of dopamine levels in the nucleus accumbens shell of rats. The ability of WY14643 and methOEA to counteract the behavioral, electrophysiological, and neurochemical effects of nicotine was reversed by the PPAR-α antagonist 1-[(4-Chlorophenyl)methyl]-3-[(1,1-dimethylethyl)thio]-a,a-dimethyl-5-(1-methylethyl)-1H-Indole-2-propanoic acid (MK886). CONCLUSIONS These findings indicate that PPAR-α might provide a valuable new target for antismoking medications.
Collapse
Affiliation(s)
- Paola Mascia
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Medications Discovery Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mecamylamine, dihydro-beta-erythroidine, and dextromethorphan block conditioned responding evoked by the conditional stimulus effects of nicotine. Pharmacol Biochem Behav 2009; 94:319-28. [PMID: 19778551 DOI: 10.1016/j.pbb.2009.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 11/21/2022]
Abstract
Current smokers express the desire to quit. However, the majority find it difficult to remain abstinent. As such, research efforts continually seek to develop more effective treatment. One such area of research involves the interoceptive stimulus effects of nicotine as either a discriminative stimulus in an operant drug discrimination task, or more recently as a conditional stimulus (CS) in a discriminated goal-tracking task. The present work investigated the potential role nicotinic acetylcholine receptors play in the CS effects of nicotine (0.4mg/kg) using antagonists with differential selectivity for beta2*, alpha7*, alpha6beta2*, and alpha3beta4* receptors. Methyllycaconitine (MLA) had no effect on nicotine-evoked conditioned responding. Mecamylamine and dihydro-beta-erythroidine (DHbetaE) dose-dependently blocked responding evoked by the nicotine CS. In a time-course assessment of mecamylamine and DHbetaE, each blocked conditioned responding when given 5min before testing and still blocked conditioned responding when administered 200min before testing. Two novel bis-picolinium analogs (N, N'-(3, 3'-(dodecan-1,12-diyl)-bis-picolinium dibromide [bPiDDB], and N, N'-(decan-1,10-diyl)-bis-picolinium diiodide [bPiDI]) did not block nicotine-evoked conditioned responding. Finally, pretreatment with low dose combinations of mecamylamine, dextromethorphan, and/or bupropion was used to target alpha3beta4* receptors. No combination blocked conditioned responding evoked by the training dose of nicotine. However, a combination of mecamylamine and dextromethorphan partially blocked nicotine-evoked conditioned responding to a lower dose of nicotine (0.1mg/kg). These results indicate that beta2* and potentially alpha3beta4* nicotinic acetylcholine receptors play a role in the CS effects of nicotine and are potential targets for the development of nicotine cessation aids.
Collapse
|
26
|
Murray JE, Wells NR, Lyford GD, Bevins RA. Investigation of endocannabinoid modulation of conditioned responding evoked by a nicotine CS and the Pavlovian stimulus effects of CP 55,940 in adult male rats. Psychopharmacology (Berl) 2009; 205:655-65. [PMID: 19495728 DOI: 10.1007/s00213-009-1572-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE The cannabinoid CB(1) receptor antagonist/inverse agonist rimonabant (SR 141716) has been shown to block reinforcing and rewarding effects of nicotine. Research has not investigated whether the cannabinoid system is involved in the interoceptive stimulus effects of nicotine functioning as a conditional stimulus (CS). OBJECTIVE We examined the effects of rimonabant and the CB(1/2) receptor agonist, CP 55,940, on responding evoked by a nicotine CS in rats. Additionally, we determined whether CP 55,940 functioned as a CS or a Pavlovian positive drug feature MATERIALS AND METHODS Pavlovian discrimination training involved intermixed nicotine (0.2 mg base/kg) and saline sessions with intermittent access to water only on nicotine. Antagonism tests with rimonabant (0.1-3 mg/kg) and substitution tests with CP 55,940 (0.003-0.1 mg/kg) followed. An effective dose of CP 55,940 was tested against the nicotine generalization curve. A separate group received CS training with CP 55,940 (0.01 mg/kg). Two other groups were trained using CP 55,940 (0.01 or 0.03 mg/kg) as a positive drug feature in which a brief light CS signaled access to water only on CP 55,940 sessions. RESULTS Rimonabant blocked nicotine-evoked responding. CP 55,940 partially substituted for nicotine and enhanced responding to lower nicotine doses. Overall, CP 55,940 did not acquire control of conditioned responding in either Pavlovian drug discrimination task. CONCLUSIONS The cannabinoid system was involved in the CS effects of nicotine. This finding is counter to the operant drug discrimination research with nicotine as a discriminative stimulus, warranting further research into this possible dissociation.
Collapse
Affiliation(s)
- Jennifer E Murray
- Department of Psychology, University of Nebraska--Lincoln, Lincoln, NE 68588-0308, USA
| | | | | | | |
Collapse
|
27
|
Zaniewska M, McCreary AC, Stefański R, Przegaliński E, Filip M. Effect of varenicline on the acute and repeated locomotor responses to nicotine in rats. Synapse 2009; 62:935-9. [PMID: 18798299 DOI: 10.1002/syn.20564] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of this study was to evaluate the efficacy of varenicline, a novel partial agonist at alpha 4 beta 2 and full agonist at alpha 7 nicotinic acetylcholine receptor (nAChR) subtypes, in blocking the locomotor effects of acute or repeated treatments with nicotine (0.4 mg/kg, s.c.) in rats. Varenicline (0.3-3 mg/kg, s.c.) by itself enhanced the basal locomotor activity in naive rats while it had an inhibitory effect on acute nicotine-induced hyperlocomotion. Varenicline (0.3-3 mg/kg) did not change the nicotine-evoked conditioned locomotion, but when administered to nicotine-sensitized rats (0.1 and 1 mg/kg), reduced the expression of nicotine sensitization. In another set of experiments, varenicline (1 mg/kg) administered during the second withdrawal period (days 11-14) to nicotine-treated rats, attenuated the reestablishment of the expression of nicotine sensitization. Our pharmacological analyses further support the hypothesis that varenicline might be a useful treatment for smoking cessation considering its actions on the locomotor and reinforcing effects of nicotine without inhibition of conditioned locomotion.
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | | | | | | | | |
Collapse
|
28
|
Vann RE, Warner JA, Bushell K, Huffman JW, Martin BR, Wiley JL. Discriminative stimulus properties of delta9-tetrahydrocannabinol (THC) in C57Bl/6J mice. Eur J Pharmacol 2009; 615:102-7. [PMID: 19470387 DOI: 10.1016/j.ejphar.2009.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 05/05/2009] [Accepted: 05/18/2009] [Indexed: 11/16/2022]
Abstract
Primarily, rats have served as subjects in Delta(9)-tetrahydrocannabinol's (THC) discrimination studies although other species such as monkeys and pigeons have been used. While the introduction of the knockout and transgenic mice has vastly stimulated the study of the discriminative stimulus effects of drugs there is only a single published report of mice trained to discriminate THC. Thus, this study extended those results by providing a systematic replication that THC serves as an effective discriminative stimulus in mice and by further investigating the mechanisms of action involved in the THC discrimination model in the mouse. Male C57BL/6J mice were trained to discriminate 10 mg/kg THC from vehicle in 2-lever drug discrimination. THC fully and dose dependently substituted for itself. Cannabinoid indoles, except one with low cannabinoid CB(1) receptor affinity, substituted for THC. Anandamide failed to substitute for THC when administered alone but completely substituted when administered with the non-specific fatty acid amide hydrolase inhibitor, phenylmethylsulphonyl fluoride. As expected, nicotine failed to substitute for THC. Lastly, the cannabinoid CB(1) receptor antagonist rimonabant blocked THC's discriminative stimulus effects. Taken together these studies demonstrate THC's ability to produce discriminative stimulus effects as well as demonstrate its pharmacological specificity and mechanism of action in a two-lever drug discrimination mouse model.
Collapse
Affiliation(s)
- Robert E Vann
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States
| | | | | | | | | | | |
Collapse
|
29
|
Brasić JR, Zhou Y, Musachio JL, Hilton J, Fan H, Crabb A, Endres CJ, Reinhardt MJ, Dogan AS, Alexander M, Rousset O, Maris MA, Galecki J, Nandi A, Wong DF. Single photon emission computed tomography experience with (S)-5-[(123)I]iodo-3-(2-azetidinylmethoxy)pyridine in the living human brain of smokers and nonsmokers. Synapse 2009; 63:339-58. [PMID: 19140167 PMCID: PMC2766259 DOI: 10.1002/syn.20611] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
(S)-5-[(123)I]iodo-3-(2-azetidinylmethoxy)pyridine (5-[(123)I]IA), a novel potent radioligand for high-affinity alpha4beta2* neuronal nicotinic acetylcholine receptors (nAChRs), provides a means to evaluate the density and the distribution of nAChRs in the living human brain. We sought in healthy adult smokers and nonsmokers to (1) evaluate the safety, tolerability, and efficacy of 5-[(123)I]IA in an open nonblind trial and (2) to estimate the density and the distribution of alpha(4)beta(2)* nAChRs in the brain. Single photon emission computed tomography (SPECT) was performed for 5 h after the i.v. administration of approximately 0.001 microg/kg ( approximately 10 mCi) 5-[(123)I]IA. Blood pressure, heart rate, and neurobehavioral status were monitored before, during, and after the administration of 5-[(123)I]IA to 12 healthy adults (8 men and 4 women) (6 smokers and 6 nonsmokers) ranging in age from 19 to 46 years (mean = 28.25, standard deviation = 8.20). High plasma-nicotine level was significantly associated with low 5-[(123)I]IA binding in: (1) the caudate head, the cerebellum, the cortex, and the putamen, utilizing both the Sign and Mann-Whitney U-tests; (2) the fusiform gyrus, the hippocampus, the parahippocampus, and the pons utilizing the Mann-Whitney U-test; and (3) the thalamus utilizing the Sign test. We conclude that 5-[(123)I]IA is a safe, well-tolerated, and effective pharmacologic agent for human subjects to estimate high-affinity alpha4/beta2 nAChRs in the living human brain.
Collapse
Affiliation(s)
- James Robert Brasić
- Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Beardsley PM, Thomas BF, McMahon LR. Cannabinoid CB1 receptor antagonists as potential pharmacotherapies for drug abuse disorders. Int Rev Psychiatry 2009; 21:134-42. [PMID: 19367507 DOI: 10.1080/09540260902782786] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Since the discovery of the cannabinoid CB1 receptor (CB1R) in 1988, and subsequently of the CB2 receptor (CB2R) in 1993, there has been an exponential growth of research investigating the functions of the endocannabinoid system. The roles of CB1Rs have been of particular interest to psychiatry because of their selective presence within the CNS and because of their association with brain-reward circuits involving mesocorticolimbic dopamine systems. One potential role that has become of considerable focus is the ability of CB1Rs to modulate the effects of the drugs of abuse. Many drugs of abuse elevate dopamine levels, and the ability of CB1R antagonists or inverse agonists to modulate these elevations has suggested their potential application as pharmacotherapies for treating drug abuse disorders. With the identification of the selective CB1R antagonist, rimonabant, in 1994, and subsequently of other CB1R antagonists, there has been a rapid expansion of research investigating their ability to modulate the effects of the drugs of abuse. This review highlights some of the preclinical and clinical studies that have examined the effects of CB1R antagonists under conditions potentially predictive of their therapeutic efficacy as treatments for drug abuse disorders.
Collapse
Affiliation(s)
- Patrick M Beardsley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA.
| | | | | |
Collapse
|
31
|
Smith JW, Stolerman IP. Recognising nicotine: the neurobiological basis of nicotine discrimination. Handb Exp Pharmacol 2009:295-333. [PMID: 19184654 DOI: 10.1007/978-3-540-69248-5_11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Drug discrimination methodology makes possible the objective, quantitative study of the perception of psychoactive drug effects in either human or animal subjects. Investigations of the nicotine discriminative stimulus complex have contributed to our present understanding of nicotine psychopharmacology by defining the origin of its effects at specific subtypes of nicotinic receptor and the role of diverse neurotransmitter systems as mediating and modulating mechanisms. The evidence strongly supports central sites as the origins of the nicotine stimulus, and these are likely to be located in the mesocorticolimbic dopaminergic neurons; the medial prefrontal cortex is primarily involved, with the Nucleus accumbens and ventral tegmental area of secondary importance, while another element of the complex stimulus may arise in the dorsal hippocampus. Additionally, it appears that interactions of nicotine with the dopamine, serotonin, cannabinoid and probably glutamate systems all contribute to the final perceived stimulus. The resemblance between the nicotine discriminative stimulus and those of the psychomotor stimulant drugs amphetamine and cocaine contributes to defining the nature of the addictive properties of nicotine. It is particularly interesting that acute and chronic exposure to caffeine produce quantitative and qualitative changes in the characteristics of the nicotine stimulus. Interactions of nicotine with caffeine and cannabinoids strengthen proposals that the use of one substance serves as a "gateway" in sequential shifts of the target substance for drug-seeking behaviour, with profound implications for the human use of the substances concerned. Drug discrimination is also an important standard technique used in assessments of the abuse liability of novel psychoactive compounds, with relevance to attempts to develop novel nicotinic agonists for use as cognitive enhancers.
Collapse
Affiliation(s)
- Janice W Smith
- Institute of Psychiatry, King's College London, London, UK
| | | |
Collapse
|
32
|
Scherma M, Fadda P, Le Foll B, Forget B, Fratta W, Goldberg SR, Tanda G. The endocannabinoid system: a new molecular target for the treatment of tobacco addiction. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:468-81. [PMID: 19128204 PMCID: PMC3821699 DOI: 10.2174/187152708786927859] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tobacco addiction is one of the leading preventable causes of mortality in the world and nicotine appears to be the main critical psychoactive component in establishing and maintaining tobacco dependence. Several lines of evidence suggest that the rewarding effects of nicotine, which underlie its abuse potential, can be modulated by manipulating the endocannabinoid system. For example, pharmacological blockade or genetic deletion of cannabinoid CB(1) receptors reduces or eliminates many behavioral and neurochemical effects of nicotine that are related to its addictive potential. This review will focus on the recently published literature about the role of the endocannabinoid system in nicotine addiction and on the endocannabinoid system as a novel molecular target for the discovery of medications for tobacco dependence.
Collapse
Affiliation(s)
- Maria Scherma
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
- B.B. Brodie Department of Neuroscience, University of Cagliari, Italy
| | - Paola Fadda
- B.B. Brodie Department of Neuroscience, University of Cagliari, Italy
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, and University of Toronto, Toronto, Canada
| | - Benoit Forget
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, and University of Toronto, Toronto, Canada
| | - Walter Fratta
- B.B. Brodie Department of Neuroscience, University of Cagliari, Italy
| | - Steven R. Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
| | - Gianluigi Tanda
- Psychobiology Section, Medications Discovery Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
| |
Collapse
|
33
|
Mehrani H, Asadi B, Golmanesh L. Protective effects of mecamylamine and atropine against α(4)β(2) nicotinic receptor expression and functional toxicity in paraoxon-treated rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 26:247-254. [PMID: 21791372 DOI: 10.1016/j.etap.2008.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 05/20/2008] [Accepted: 05/22/2008] [Indexed: 05/31/2023]
Abstract
Chronic and acute exposure to organophosphate pesticides or related nerve agents may lead to persistent neurological and neurobehavioral effects, which cannot be explained by acetylcholinesterase (AChE) inhibition alone. In the present study, the effects of mecamylamine (2mg/kg), or atropine (10mg/kg) alone, or in combination, on the expression of nicotinic acetylcholine receptors (nAChRs) subunits, functional signs of toxicity and lethality in paraoxon-treated rats were investigated. Surviving animals were sacrificed after 48h of paraoxon administration. Paraoxon, at dosage of 1× LD50, significantly reduced expression of α(4) and β(2) nAChR subunits mRNA and protein in rat brain homogenates. Mecamylamine, efficiently prevented reduction of the α(4) and β(2) nAChR mRNA and protein in paraoxon exposed rat brains, but atropine was not efficient. Concurrent treatment with mecamylamine and atropine restored nAChRs mRNA and protein level and prevented lethality and severe involuntary movements induced by paraoxon. Nicotinic receptors antagonists may be included in the cocktail of therapeutic agents targeting the various mechanisms for neuronal injury by organophosphates.
Collapse
Affiliation(s)
- Hossein Mehrani
- Departments of Biochemistry Faculty of Medicine and Chemical Injuries Research center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
34
|
Abstract
Food, drugs and brain stimulation can serve as strong rewarding stimuli and are all believed to activate common brain circuits that evolved in mammals to favour fitness and survival. For decades, endogenous dopaminergic and opioid systems have been considered the most important systems in mediating brain reward processes. Recent evidence suggests that the endogenous cannabinoid (endocannabinoid) system also has an important role in signalling of rewarding events. First, CB(1) receptors are found in brain areas involved in reward processes, such as the dopaminergic mesolimbic system. Second, activation of CB(1) receptors by plant-derived, synthetic or endogenous CB(1) receptor agonists stimulates dopaminergic neurotransmission, produces rewarding effects and increases rewarding effects of abused drugs and food. Third, pharmacological or genetic blockade of CB(1) receptors prevents activation of dopaminergic neurotransmission by several addictive drugs and reduces rewarding effects of food and these drugs. Fourth, brain levels of the endocannabinoids anandamide and 2-arachidonoylglycerol are altered by activation of reward processes. However, the intrinsic activity of the endocannabinoid system does not appear to play a facilitatory role in brain stimulation reward and some evidence suggests it may even oppose it. The influence of the endocannabinoid system on brain reward processes may depend on the degree of activation of the different brain areas involved and might represent a mechanism for fine-tuning dopaminergic activity. Although involvement of the various components of the endocannabinoid system may differ depending on the type of rewarding event investigated, this system appears to play a major role in modulating reward processes.
Collapse
|
35
|
Shoaib M. The cannabinoid antagonist AM251 attenuates nicotine self-administration and nicotine-seeking behaviour in rats. Neuropharmacology 2007; 54:438-44. [PMID: 18054052 DOI: 10.1016/j.neuropharm.2007.10.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 10/18/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
Abstract
The cannabinoid receptor subtype (CB1) antagonist rimonabant (SR141716) has been shown to decrease nicotine self-administration and attenuate nicotine-evoked dopamine release in the nucleus accumbens; effects that support recent findings on its clinical efficacy as a smoking cessation aid. The present experiments aim to advance our understanding on the role of CB1 receptors in rodent models of nicotine dependence. AM251, a selective antagonist at CB1 receptors dose-dependently (1, 3 and 10mg/kg IP) suppressed intravenous nicotine (0.03mg/kg per infusion) self-administration in rats during three successive days of pre-treatment. This reduction was short lasting since behaviour was reinstated by suspending AM251 pre-treatment. This was relatively specific to nicotine self-administration since the profile of these reductions produced by AM251 was significantly different from the responses maintained by food pellets. In a model of nicotine-seeking behaviour, rats that had been extinguished by removal of nicotine and associated cues, and presented with a priming dose of nicotine (0.2mg/kg SC) with the cues, showed robustly reinstated responses to nicotine-seeking behaviour. Acute pre-treatment with AM251 (1-10mg/kg IP) dose-dependently attenuated the reinstatement effects produced by nicotine and the contingently presented cues. These preclinical findings support the use of rimonabant as a smoking cessation aid and highlight the CB1 receptor as a viable target to control intake of nicotine and prevent relapse.
Collapse
Affiliation(s)
- Mohammed Shoaib
- Psychobiology Research Laboratories, Newcastle Medical School, Newcastle University, Newcastle, NE2 4HH, UK.
| |
Collapse
|
36
|
Lerman C, LeSage MG, Perkins KA, O'Malley SS, Siegel SJ, Benowitz NL, Corrigall WA. Translational research in medication development for nicotine dependence. Nat Rev Drug Discov 2007; 6:746-62. [PMID: 17690709 DOI: 10.1038/nrd2361] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A major obstacle to the development of medications for nicotine dependence is the lack of animal and human laboratory models with sufficient predictive clinical validity to support the translation of knowledge from laboratory studies to clinical research. This Review describes the animal and human laboratory paradigms commonly used to investigate the pathophysiology of nicotine dependence, and proposes how their predictive validity might be determined and improved, thereby enhancing the development of new medications.
Collapse
Affiliation(s)
- Caryn Lerman
- Department of Psychiatry and Abramson Cancer Center, University of Pennsylvania, 3535 Market Street, Suite 4100, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Hayase T. Chronologically overlapping occurrences of nicotine-induced anxiety- and depression-related behavioral symptoms: effects of anxiolytic and cannabinoid drugs. BMC Neurosci 2007; 8:76. [PMID: 17877812 PMCID: PMC2075518 DOI: 10.1186/1471-2202-8-76] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 09/18/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anxiety and depression are among the most frequently-observed psychiatric symptoms associated with nicotine (NC). In addition to the similarity to other addictive drugs, these NC-induced symptoms are characteristic in that the opposite behavioral effects, i.e. anxiolytic and antidepressant effects, which may reinforce the habitual use of NC, have also been reported. In the present study, the time course of anxiety- and depression-related behavioral alterations was examined in mice. Furthermore, based on the reported similarity in the mechanisms responsible for NC-induced anxiety- and depression-related symptoms, as well as the contribution of brain cannabinoid (CB) receptors to these behavioral symptoms, the effects of anxiolytics and CB receptor ligands (CBs) against these behavioral symptoms were investigated. RESULTS Repeated subcutaneous NC treatments (0.3 mg/kg, 4 days), compared with a single treatment (0.5 mg/kg), caused both prolonged anxiogenic effects in the elevated plus-maze test, and prolonged depressive effects in the forced swimming test, even at 120 min time point after the last NC treatment. A transient anxiolytic preference for open arms was also observed in the elevated plus-maze test. Among the anxiolytics and CBs, the serotonin 1A (5-HT1A) antagonist WAY 100135 and the endogenous mixed CB agonist/antagonist virodhamine (VD), when administered intraperitoneally before each NC treatment, provided the strongest antagonistic effects against the anxiety-related symptoms. However, against the depression-related symptoms, only VD provided significant antagonistic effects in both single and repeated treatment groups. CONCLUSION The present results support the presence of a chronological overlap of NC-induced anxiety- and depression-related behavioral symptoms, and the contribution of brain CB receptors to these behavioral symptoms. The repeated NC-induced prolongation of these behavioral symptoms and the early transient anxiolytic behavioral alterations support an increased possibility of the habitual use of NC. Furthermore, based on the antagonistic effects of VD, one can predict that the characteristic effects on brain CB receptors as a mixed CB agonist/antagonist contributed to its therapeutic effects as both an anxiolytic and an antidepressant.
Collapse
Affiliation(s)
- Tamaki Hayase
- Department of Legal Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
38
|
Zaniewska M, McCreary AC, Przegaliński E, Filip M. Effects of the serotonin 5-HT2A and 5-HT2C receptor ligands on the discriminative stimulus effects of nicotine in rats. Eur J Pharmacol 2007; 571:156-65. [PMID: 17617403 DOI: 10.1016/j.ejphar.2007.05.067] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 05/25/2007] [Accepted: 05/30/2007] [Indexed: 11/29/2022]
Abstract
The present study tested the hypothesis that serotonergic (5-HT) 5-HT2A or 5-HT2C receptors or their pharmacological stimulation modulated the discriminative stimulus effects of nicotine in male Wistar rats. To this end the selective 5-HT2A receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol (M100,907; 0.5-1 mg/kg, i.p.), the functional 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI; 0.1-1 mg/kg, s.c.), the selective 5-HT2C receptor antagonist 6-chloro-5-methyl-1-{[2-(2-methylpyrid-3-yloxy)pyrid-5-yl]carbamoyl}indoline (SB 242,084; 0.25-1 mg/kg, i.p.) and the 5-HT2C receptor agonists (S)-2-chloro-5-fluoro-indol-1-yl)-1-methylethylamine fumarate (Ro 60-0175; 0.3-1 mg/kg, s.c.) and (7bR, 10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole (WAY 163,909; 0.75-1.5 mg/kg, i.p.) were used. Additionally, the effects of the selective alpha4beta2 nicotinic acetylcholine receptor subtype agonist 5-iodo-3-(2(S)-azetidinylmethoxy)pyridine (5-IA; 0.01 mg/kg, s.c.) were investigated. In rats trained to discriminate (-)-nicotine (0.4 mg/kg, s.c.) from saline in a two-lever, water-reinforced fixed ratio 10 task, substitutions were not observed with 5-HT2 receptor ligands (<32% nicotine-lever responding), conversely 5-IA induced a full substitution (100% nicotine-lever responding). In combination studies, fixed doses of M100,907 (0.5-1 mg/kg) or SB 242,084 (0.25-1 mg/kg) did not alter the dose-response curve of nicotine, while DOI (0.3 mg/kg), Ro 60-0175 (1 mg/kg) and WAY 163,909 (1 and 1.5 mg/kg) attenuated the discriminative stimulus effects of nicotine. The decrease in the expression of the discriminative stimulus effects of nicotine produced by DOI was blocked by M100,907 (1 mg/kg), but not by SB 242,084 (1 mg/kg), while that evoked by Ro 60-0175 or WAY 163,909 was blocked by SB 242,084 (1 mg/kg), but not by M100,907 (1 mg/kg). Further studies showed that DOI (0.3 mg/kg) and Ro 60-0175 (1 mg/kg), but not WAY 163,909 (1.5 mg/kg) blocked full substitution of 5-IA (0.01 mg/kg) for nicotine. Our pharmacological analyses indicate that tonic activation of 5-HT2A or 5-HT2C receptors is not required for subjective effects of nicotine, however these receptors appear to have inhibitory influence on nicotine cue, since pharmacological stimulation of either receptor attenuates the discriminative stimulus effects of nicotine.
Collapse
MESH Headings
- Aminopyridines/pharmacology
- Amphetamines/pharmacology
- Animals
- Azepines/pharmacology
- Azetidines/pharmacology
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Discrimination, Psychological/drug effects
- Dose-Response Relationship, Drug
- Ethylamines/pharmacology
- Fluorobenzenes/pharmacology
- Indoles/pharmacology
- Ligands
- Male
- Nicotine/pharmacology
- Nicotinic Agonists/pharmacology
- Piperidines/pharmacology
- Pyridines/pharmacology
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2C/metabolism
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/metabolism
- Serotonin 5-HT2 Receptor Agonists
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, 12 Smetna, Poland
| | | | | | | |
Collapse
|
39
|
Miller DK, Rodvelt KR, Constales C, Putnam WC. Analogs of SR-141716A (Rimonabant) alter d-amphetamine-evoked [3H] dopamine overflow from preloaded striatal slices and amphetamine-induced hyperactivity. Life Sci 2007; 81:63-71. [PMID: 17532007 DOI: 10.1016/j.lfs.2007.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 03/28/2007] [Accepted: 04/18/2007] [Indexed: 11/16/2022]
Abstract
The CB(1) cannabinoid receptor antagonist SR-141716A (Rimonabant) markedly diminishes the behavioral effects of opiates and nicotine and has been an important tool to ascertain the role of cannabinoid receptors in drug addiction. The present goal was to determine the less-explored interaction of SR-141716A and d-amphetamine in neurochemical and behavioral assays. Additionally, the effect of the substituents and substitution patterns on the phenyl ring located at the 5 position of SR-141716A (4-chlorophenyl), and of the CB(1)/CB(2) cannabinoid receptor agonist WIN-55,212-2, was determined. SR-141716A, AM-251 (4-iodophenyl) and NIDA-41020 (4-methoxyphenyl) did not alter amphetamine-evoked [(3)H]overflow from rat striatal slices preloaded with [(3)H]dopamine. MRI-8273-30-1 (4-fluorophenyl; 0.1-10 microM) attenuated amphetamine (3 microM)-evoked [(3)H]overflow, and MRI-8273-59 (3,4-dichlorphenyl; 0.01-10 microM) augmented amphetamine (0.3-3 microM)-evoked [(3)H]overflow. WIN-55,212-2 was without effect. In a locomotor activity experiment, SR-141716A and MRI-8273-30-1 did not alter amphetamine-induced hyperactivity. However, MRI-8273-59 (1-3 mg/kg) dose-dependently attenuated amphetamine (1 mg/kg)-induced hyperactivity. The present results suggest that SR-141716A is less efficacious to alter amphetamine effects than its reported efficacy to diminish the effects of opiates and nicotine. Modification of the 5-phenyl position of SR-141716A affords compounds that do interact with amphetamine in vitro and in vivo.
Collapse
Affiliation(s)
- Dennis K Miller
- Department of Psychological Sciences and Interdepartmental Neuroscience Program, University of Missouri, Columbia, MO 65202, USA.
| | | | | | | |
Collapse
|
40
|
Rodvelt KR, Bumgarner DM, Putnam WC, Miller DK. WIN-55,212-2 and SR-141716A alter nicotine-induced changes in locomotor activity, but do not alter nicotine-evoked [3H]dopamine release. Life Sci 2007; 80:337-44. [PMID: 17067637 DOI: 10.1016/j.lfs.2006.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/16/2006] [Accepted: 09/18/2006] [Indexed: 12/11/2022]
Abstract
Nicotine, the main psychoactive ingredient in tobacco, plays a key role in the development of cigarette smoking addiction. The endocannabinoid system has been demonstrated to have an important role in the motivational and reinforcing effects of drugs. The present study used behavioral and neurochemical techniques to study the interaction of cannabinoid receptors and nicotine pharmacology. In a locomotor activity experiment in rats, the CB(1)/CB(2) cannabinoid receptor agonist WIN-55,212-2 (0.28-2.8 mg/kg) attenuated nicotine (0.4 mg/kg)-induced hyperactivity, but did not alter nicotine (1.0 mg/kg)-induced hypoactivity. In contrast, the selective CB(1) cannabinoid receptor antagonist SR-141716A (1.0 mg/kg) diminished nicotine-induced hypoactivity, but did not alter nicotine-induced hyperactivity. In a neurochemical experiment, rat striatal slices preloaded with [(3)H]dopamine were superfused with WIN-55,212-2 or SR-141716A. A high concentration (100 microM) of WIN-55,212-2 evoked [(3)H]overflow, but this effect was not blocked by the cannabinoid receptor antagonist AM-251. SR-141716A did not evoke [(3)H]overflow, and neither WIN-55,212-2 nor SR-141716A altered nicotine-evoked [(3)H]overflow. Overall, these results indicate a behavioral interaction between cannabinoid receptors and nicotine pharmacology. Likely, WIN-55,212-2 and SR-141716A block nicotine-induced changes in behavior through an indirect mechanism, such as alteration in endocannabinoid regulation of motor circuits, rather than directly through blockade of nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Kelli R Rodvelt
- Department of Psychological Sciences, University of Missouri, Columbia MO, USA
| | | | | | | |
Collapse
|